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Abstract

Large Language Models (LLMs) have shown
promising results in coreference resolution, es-
pecially after fine-tuning. However, recent gen-
erative approaches face a critical issue: hallu-
cinations—where the model generates content
not present in the original input. These hal-
lucinations make evaluation difficult and de-
crease overall performance. To address this is-
sue, we analyze the underlying causes of hallu-
cinations and propose a low-hallucination and
efficient solution. Specifically, we introduce Ef-
ficient Constrained Decoding for Coreference
Resolution, which maintains strong robustness
while significantly improving computational
efficiency. On the English OntoNotes develop-
ment set, our approach achieved slightly bet-
ter performance than previous state-of-the-art
methods, while requiring substantially fewer
parameters 1.

1 Introduction

Coreference resolution (CR) is the task of detect-
ing and grouping mentions that refer to the same
entity in text. This task requires deep linguistic
and contextual understanding, which makes it a
vital component for many downstream NLP ap-
plications, including information extraction, text
summarization, chatbots, and dialogue systems. As
a result, CR has attracted significant attention from
the NLP community (Poesio et al., 2023).

Most recently, the rise of Large Language Mod-
els (LLMs) has transformed NLP by providing
strong contextual understanding and knowledge in-
tegration across tasks. Recent studies have demon-
strated LLMs’ effectiveness at coreference reso-
lution, especially in zero- and few-shot scenarios
(Yang et al., 2022; Agrawal et al., 2022; Le and
Ritter, 2024; Zhu et al., 2024; Gan et al., 2024). Le
and Ritter (2024) achieved superior performance
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1Our code is available here.

Template Input:

Constrained Decoding 
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[John]​(#) and [Lily](#) go to the [market](#). 
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Legend:

cluster_1) and [Lily]​(#
 go to the [market]​(#

cluster_3)

[John]​(#
cluster_2)LLM

Prompt Input:
Annotate all entity mentions in the 
following text with coreference 
clusters. Input: [John]​(#) and 
[Lily](#) go to the [market](#). 

Output:

The red part alone represents direct decoding, and adding the remaining 
components in the figure completes the constrained decoding approach.

Figure 1: An example of constrained decoding. During
decoding, the model generates content only at desig-
nated positions while copying the template text else-
where.

among these approaches with their document tem-
plate method. This method used Markdown-style
formatting to highlight candidate mentions and
places at the designated character positions as clus-
ter ID placeholders. The model then generated the
original document while inserting cluster IDs at
these designated positions. These IDs served to
indicate which mentions refer to the same entity, as
illustrated by the red portion in Figure 1.

However, we observed that asking the model
to reproduce the full text often introduced halluci-
nations—generating content not present in the in-
put—making it not robust and difficult to evaluate
the accuracy of predicted cluster IDs. For exam-
ple, the LLM incorrectly generated “There are a
candle a candle a wall ...” by adding the redundant
mention “a candle”. In such cases, aligning these
mentions with the original document becomes sig-
nificantly more challenging. Ideally, the output
should be identical to the input except at the des-
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ignated positions where cluster IDs are inserted.
However, we find that it is non-trivial for LLMs
to perform this task reliably, as hallucinations are
widespread across models. Appendix C presents
examples of hallucinations produced by different
LLMs.

We attribute one of the main causes of hallu-
cinations to LLMs’ inability to strictly adhere to
the original content in the prompt—particularly
when processing long and structurally complex in-
put texts. Building on this observation, our previ-
ous method restricted the model to output cluster
IDs for one mention at a time rather than reproduc-
ing the full document (Gan et al., 2025). While
this approach proved effective in mitigating hallu-
cinations, its training efficiency was relatively low.
Motivated by this limitation, we propose Efficient
Constrained Decoding for Coreference Resolution,
which preserves robustness while significantly im-
proving computational efficiency. On the English
OntoNotes development set, our method achieved
slightly better performance than previous state-of-
the-art methods, despite using substantially fewer
parameters.

2 Related Work

Our work primarily builds on two studies by Le and
Ritter (2024) and Zhang et al. (2023). In addition,
we draw inspiration from the use of constrained de-
coding in named entity recognition (De Cao et al.,
2021), and adapt this approach to the task of coref-
erence resolution. Since both document-annotation-
based coreference resolution and constrained de-
coding are central to our method, we discuss them
in this section. Other related work is discussed in
Appendix A.

2.1 Document Annotation-based Coreference
Resolution

The traditional document annotation-based method
framed coreference resolution as a generation task,
where the input document was returned with men-
tions and cluster information explicitly annotated.

Zhang et al. (2023) proposed a seq2seq frame-
work built on a prompt-fine-tuned T0 model. Their
system took a full document as input and outputs
the same document annotated with mentions and
cluster information. This method achieved perfor-
mance comparable to that of Bohnet et al. (2023).

Le and Ritter (2024) have introduced a prompt-
based approach where LLMs were presented with

documents containing highlighted mentions (either
predicted or gold), each followed by a special clus-
ter placeholder (#). The model was tasked with
filling in these placeholders with the appropriate
cluster IDs.

2.2 Constrained Decoding

Constrained Decoding is a technique used in lan-
guage models (LLMs) to ensure that the generated
output adheres to a specific constraint (Geng et al.,
2023). This approach first appeared in the form
of a grammar decoder, designed to ensure that the
outputs generated by the decoder are syntactically
correct (Kusner et al., 2017), such as guarantee-
ing the validity of SQL syntax (Gan et al., 2020).
It is now particularly valuable for tasks requiring
syntactic or semantic correctness, such as code
generation and symbolic math reasoning (Banerjee
et al., 2025).

Several approaches to constrained decoding ex-
ist, including constrained decoding with lookahead
heuristics (CDLH) (Nakshatri et al., 2025), spec-
ulative lookaheads (Anderson et al., 2017), and
grammar-aligned methods (Geng et al., 2023).

A key challenge in constrained decoding is strik-
ing the right balance between constraint satisfac-
tion and LLM expressivity. While strict grammati-
cal constraints can inhibit an LLM’s ability to gen-
erate novel and creative responses (Banerjee et al.,
2025), insufficient constraints may lead to syntacti-
cally or semantically incorrect output (Geng et al.,
2023). Researchers have developed adaptive con-
strained decoding techniques to address this chal-
lenge. For instance, Yuan et al. (2024) introduced
Contextual Information-Entropy Constrained De-
coding (COIECD), an adaptive method that de-
tected and handled knowledge conflicts during gen-
eration.

Constrained decoding remains a crucial tech-
nique for ensuring LLMs generate syntactically
and semantically correct output (Geng et al., 2023).
Through careful balancing of constraint satisfaction
and expressivity, researchers continue to develop
more effective and efficient algorithms applicable
across various domains.

3 Hallucination Analysis and Causal
Hypotheses

We argue that one of the primary causes of halluci-
nations in coreference resolution is LLMs’ inability
to strictly follow the original content in the prompt,
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particularly with long and structurally complex in-
put text. This complexity often stems from missing
punctuation, ambiguous pronouns, or omitted con-
textual information (e.g., dialogues lacking back-
ground) —factors that significantly increase the
risk of hallucination during generation.

One possible underlying reason is attention dilu-
tion in Transformer-based models (Qin et al., 2022).
As input length grows, the attention weight for each
token in the softmax distribution decreases. This
dilution makes it harder for the model to focus on
crucial input elements, causing it to rely more heav-
ily on pre-trained language patterns and potentially
deviate from the source text. Moreover, Liu et al.
(2024) have demonstrated that LLMs tend to fo-
cus disproportionately on the beginning and end
of long inputs while neglecting important middle
content, further increasing the hallucination risk.

Based on the above analysis, we believe that
preventing hallucinations in coreference resolution
requires constraining the model from generating
incorrect tokens when processing long and complex
input texts.

4 Hypothesis-Driven Methods

To test our hypothesis, we use two methods for pre-
venting incorrect token generation: Iterative Doc-
ument Generation (our previous work) and Con-
strained Decoding for Coreference Resolution.

4.1 Iterative Document Generation

The core idea of Iterative Document Generation is
to avoid direct full-text generation by the model.
Instead, the original one-shot generation task is
decomposed into multiple steps, where the model
generates a cluster ID for one mention at a time.
The process works step by step: we input a short
text snippet ending with the mention to be predicted
and prompt the LLM to output only the cluster ID
of that mention. We then combine the original input
with the predicted cluster ID and continue append-
ing the remaining content up to the next mention.
This updated text is used to form a new prompt,
which is fed to the LLMs to predict the cluster ID
for the next mention. Through these iterative steps,
we obtain cluster IDs for all mentions across the
document without requiring the LLMs to generate
the original text. For further implementation de-
tails and illustrations, please refer to Appendix B.1,
which provides a reformulated description based
on our previous work (Gan et al., 2025).

4.2 Efficient Constrained Decoding for
Coreference Resolution

Constrained Decoding. Unlike Iterative Docu-
ment Generation, which completely avoids gener-
ating original text, Constrained Decoding prevents
incorrect text fragments through guided generation.
The model uses both a structured prompt—similar
to that used by Le and Ritter (2024)—and a tem-
plate that constrains the output sequence. This tem-
plate ensures certain parts of the model’s output
match the prompt exactly.

As shown in Figure 1, the LLM strictly follows
the template when generating initial tokens. When
it emits a special marker (‘(#’), it enters an uncon-
strained free-form generation phase. This contin-
ues until another marker (‘)’) appears, after which
constraint-guided decoding resumes. The process
repeats until the model produces complete and cor-
rect text with corresponding cluster IDs.

Grammatical Framework. Previous applica-
tions of Constrained Decoding primarily focused
on code generation tasks like SQL, where well-
defined grammars ensured syntactic correctness.
However, in CR, there is no universally accepted
grammar comparable to programming languages.
In our framework, we treat the original text as a
task-specific ‘grammar’ or template. Because of
natural language’s inherent variability, this tem-
plate must be explicitly provided to the LLM dur-
ing each decoding step to guide generation.

A significant challenge during decoding relates
to tokenization. Common tokenization schemes
like byte pair encoding (BPE) (Sennrich et al.,
2016) allow multiple tokenization possibilities for
a single string. For example, the template marker
‘(#)’ may be tokenized as ‘(# )’, ‘(#)’, or ‘( # )’,
which are all detokenized to the same string. This
variability creates ambiguity in constrained decod-
ing. To address this challenge, we replaced com-
monly ambiguous tokens with special tokens.

Efficient Constrained Decoding. In contrast to
tasks like SQL generation that produce sparse gram-
mar tokens, our coreference resolution setting re-
quires generating text that largely replicates the
input, with minimal insertions like cluster IDs (see
Figure 1). Leveraging this characteristic, we intro-
duce a fast decoding strategy that moves beyond
token-by-token generation. For grammar regions
defined by the template, we perform multi-token
decoding in a single step. For instance, in Fig-
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System CoNLL F1

SpanBERT+e2e (Joshi et al., 2020a) 91.1
Llama2 (7B) (Le and Ritter, 2024) 91.2
Llama2 (13B) (Le and Ritter, 2024) 92.8
Llama2 (70B) (Le and Ritter, 2024) 93.6
coref-T0 (11B) (Zhang et al., 2023) 94.8
LLAMA3 (8B) I (Ours) 94.7
LLAMA3 (8B) E (Ours) 95.1

Table 1: Coreference resolution performance on the
English OntoNotes dev set.

ure 1, tokens at time steps t = 0 and t = 1 can
be generated simultaneously during the first de-
coding step, eliminating repeated GPU invocations.
This approach improves decoding efficiency with-
out sacrificing accuracy, as the grammar tokens are
deterministically constrained by the template. See
Appendix B.2 for details and examples.

5 Experiments

5.1 Experimental Setup

Datasets. We used the same datasets as Le and
Ritter (2024): English OntoNotes 5.0 (Pradhan
et al., 2012) and CRAC (Poesio et al., 2018; Yu
et al., 2022). We utilized three subsets of CRAC:
LIGHT, Penn Treebank, and TRAINS. Consistent
with the experimental setup of previous work, we
used gold mentions.

Models. To validate the feasibility of our method,
we fine-tuned different LLMs as base models:
Llama 2, Llama 3.1, Llama 3.2 (Grattafiori et al.,
2024) and Qwen 2.5 (Qwen et al., 2025). The
symbols associated with the models are defined as
follows:
• LLAMA3 (8B) indicates Llama 3.1 8B Instruct.
• LLAMA3 (1B) indicates Llama 3.2 1B Instruct.
• LLAMA2 (7B) indicates Llama 2 7B.
• QWEN (7B) indicates Qwen 2.5 7B Instruct.
• D: full-document training and direct decoding.
• E: indicates full-document training and efficient

constrained decoding.
• I: indicates iterative document generation for

both training and inference.
For details of implementation and metrics,

please refer to Appendix D.1.

5.2 Overall Performance

As shown in Table 1, our proposed models based on
Llama 3.1 8B achieved state-of-the-art results on
the English OntoNotes 5.0 development set. Specif-
ically, the E variant of our model reached an F1

score of 95.1, slightly surpassing previous best-
performing systems such as coref-T0 (94.8) and sig-
nificantly outperforming other LLaMA2 baselines
with comparable or larger parameter sizes. Notably,
our best model attained this performance using
only 8B parameters, whereas prior top-performing
models typically required larger architectures (e.g.,
LLaMA2 70B or coref-T0 11B). While our cur-
rent results establish a new performance bench-
mark, we anticipate further gains with larger model
scales. However, due to computational limitations,
we did not explore scaling beyond the 8B parameter
range. It is worth noting that the LLAMA3 (8B) D
variant encountered several unalignable examples
during inference on the development set, prevent-
ing us from computing an exact CoNLL F1 score.
Therefore, we omit direct comparisons involving
LLAMA3 D in this section. For a more comprehen-
sive comparison including this variant, please refer
to the next section, which presents evaluations on
the test set.

5.3 Hallucination Analysis
Table 2 presents CoNLL F1 scores and the percent-
age of unaligned samples for each approach. We
fine-tuned all models on OntoNotes and tested them
on both OntoNotes and CRACs datasets to evalu-
ate their cross-domain robustness. Using the align-
ment check (“Pass”) from Le and Ritter (2024),
we measured hallucination rates by identifying un-
aligned outputs as instances of severe hallucination.
We also conducted exact match (“EM”) evaluation,
which directly measured the proportion of the out-
put faithfully reproduced by the model from the
original input. See Appendix C for hallucination
examples, and Appendix D.2 for results fine-tuned
on CRACs.

Both I and E methods achieved 100% rates in
both Pass and EM alignment checks, suggesting
that they effectively eliminated hallucinations re-
sulted from textual alignment. Manual inspection
further confirmed that there were no instances of
such hallucinations. However, in the TRAINS sub-
set, hallucinations persisted with D despite its per-
fect pass rate. The notably low EM score in this
case indicates that the alignment check may over-
estimate reliability, as we observed clear cases of
hallucinated content not flagged. This discrepancy
stems from the overly lenient nature of the check
proposed by Le and Ritter (2024), which assessed
only the number of predicted clusters without con-
sidering their semantic correctness. As a result,
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LIGHT Penn Treebank TRAINS OntoNotes
Approach CoNLL F1 Pass EM CoNLL F1 Pass EM CoNLL F1 Pass EM CoNLL F1 Pass EM

LLAMA2 (7B) D 86.7 76.32% 50% 81.7 85.00% 65% 42.5 100% 43.75% 93.6 98.28% 93.97%
LLAMA2 (7B) I 87.1 100% 100% 84.1 100% 100% 75.4 100% 100% 94.2 100% 100%
LLAMA2 (7B) E 87.2 100% 100% 80.8 100% 100% 68.1 100% 100% 93.5 100% 100%
LLAMA3 (1B) D 84.6 94.74% 78.95% 77.7 93.33% 70% 54.0 100% 50.0% 91.6 98.56% 94.54%
LLAMA3 (1B) I 85.7 100% 100% 82.8 100% 100% 72.3 100% 100% 92.1 100% 100%
LLAMA3 (1B) E 84.5 100% 100% 80.0 100% 100% 75.9 100% 100% 91.9 100% 100%
LLAMA3 (8B) D 86.6 92.11% 81.58% 82.5 100% 70% 73.4 100% 62.50% 95.3 99.71% 97.41%
LLAMA3 (8B) I 87.8 100% 100% 85.2 100% 100% 76.4 100% 100% 94.9 100% 100%
LLAMA3 (8B) E 86.5 100% 100% 83.3 100% 100% 78.0 100% 100% 95.4 100% 100%
QWEN (7B) D 87.0 97.37% 92.11% 83.2 98.33% 71.67% 77.2 100% 81.25% 95.0 99.14% 97.13%
QWEN (7B) E 85.7 100% 100% 80.6 100% 100% 79.6 100% 100% 94.8 100% 100%

Table 2: Test set results comparing different approaches fine-tuned on the OntoNotes training set. “Pass” denotes
the proportion of documents that passed the alignment check according to Le and Ritter (2024). “EM” (Exact
Match) denotes the proportion of the output that exactly matches the original text.

System Training Inference
LLAMA2(7B) D 1:35:04 (100%) 0:37:59 (338%)
LLAMA2(7B) I 50:36:17 (3194%) 0:22:40 (202%)
LLAMA2(7B) E 1:35:24 (100%) 0:11:14 (100%)

Table 3: Comparison of runtime for different methods
in the same environment and on the same dataset.

invalid outputs could still be accepted, giving a
misleadingly high pass rate. Consequently, I and
E showed better overall performance than D on
TRAINS. Since hallucinated examples in D were
not filtered out, they were included in the F1 com-
putation, ultimately dragging down the final score.

Besides, D models—particularly smaller
or older variants such as LLaMA3 1B and
LLaMA2—produced more hallucinated outputs.
However, our I and E methods remained robust in
all domains. These results support the hypotheses
presented in Section 3. The F1 score, being calcu-
lated only on aligned samples, may overestimate
the performance of weaker models by excluding
difficult cases. Nevertheless, the overall F1 scores
across D, I, and E remain comparable.

5.4 Computational Efficiency
Table 3 compares runtime performance across
methods. Other models exhibited similar trends, so
we omit their results for brevity. E demonstrated
superior efficiency, achieving the least inference
time while maintaining training costs comparable
to D. In contrast, I was substantially more resource-
intensive—requiring 30× longer for training and 2×
longer for inference—due to its iterative approach.
While D matched E in training time, it performed
3× slower during inference and exhibited halluci-
nation problems, making it less practical than E.

6 Conclusion

Hallucinations are a key challenge for LLM-based
coreference resolution, arising from models’ inabil-

ity to faithfully follow the input text. To verify this
hypothesis, we revisited Iterative Document Gener-
ation from our previous work, which demonstrated
the benefit of constraining the output space. Build-
ing on this insight, this paper introduces Efficient
Constrained Decoding for coreference resolution,
which not only eliminated hallucinations but also
achieved substantially better efficiency, surpass-
ing previous state-of-the-art results on OntoNotes
while using fewer parameters.
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Limitations

Due to limited computational resources, we did not
evaluate our methods on larger-scale language mod-
els. However, given the consistent results across
different model families and parameter sizes, we be-
lieve our findings are expected to generalize across
scales. In theory, our approach may still produce
hallucinations in rare cases—for example, when the
model fails to correctly generate a cluster ID. Such
failures are more likely to occur with extremely
small models. However, models of such scales typ-
ically fall beyond the scope of discussion on LLMs,
thus not deemed as the focus of this study.
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A Detailed Related Work

A.1 Coreference Resolution

A.1.1 Traditional Coreference Resolution
Systems

Traditional coreference resolution systems have
largely relied on mention-ranking models. Early
approaches, such as those by Wiseman et al. (2015)
and Clark and Manning (2016), followed a two-
step pipeline: first detecting potential mentions in
the text, and then clustering them into coreference
groups using a separate model. A significant ad-
vancement came with the work of Lee et al. (2017),
who introduced an end-to-end neural model that
jointly performed mention detection and clustering.
This elegant architecture has become a standard
in the field due to its effectiveness and conceptual
simplicity.

Subsequent research built on this foundation by
incorporating richer contextual representations and
addressing more nuanced challenges. For instance,
Lee et al. (2018) and Kantor and Globerson (2019)
enhanced performance by leveraging contextual
embeddings. Yu et al. (2020) tackled the problem
of singletons and non-referring expressions, which
had previously been overlooked. Later, Joshi et al.
(2019, 2020b) improved the model’s representa-
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tional power by replacing LSTMs with pre-trained
transformer models such as BERT and SpanBERT.

A.1.2 Coreference Resolution as Question
Answering

Recent work has explored reframing coreference
resolution as a question-answering (QA) task, en-
abling models to approach the problem through
more interpretable and flexible interfaces.

Wu et al. (2020) proposed CorefQA, which re-
formulated coreference resolution by treating each
mention as a question and identifying all other
mentions that belonged to the same cluster as an-
swers. Using SpanBERT pre-trained on datasets
like Quoref and SQuAD 2.0, they employed a BIO
tagging scheme for span prediction. A key insight
from their work was the importance of bidirectional
scoring between mention pairs (i.e., Si,j and Sj,i).

This QA formulation has been extended by other
research in various ways. Aralikatte et al. (2021)
addressed ellipsis resolution using a BERT-based
machine reading comprehension (MRC) model
that identified antecedents for incomplete men-
tions. Yang et al. (2022) evaluated early GPT
models on the ECB+ dataset, using few-shot QA
templates to classify mention pairs as coreferent
or not, though results were limited. Bohnet et al.
(2023) achieved state-of-the-art performance by
fine-tuning the mT5-XXL (13B) model to gener-
ate both candidate mentions and their associated
clusters.

Le and Ritter (2024) have demonstrated that
prompt-based, instruction-tuned language models
performed coreference resolution effectively using
a QA-style template. In this setup, models were
given open-ended wh-questions to extract corefer-
ent entities from passages. Building on this idea,
Gan et al. (2024) have conducted a comprehensive
evaluation of LLMs’ ability to identify antecedents
and corresponding sentence IDs. Zhu et al. (2024)
also adopted a prompt-based setting but employed
a multiple-choice formulation to evaluate LLMs’
decisions over candidate coreference links.

A.2 Hallucination in LLMs

Hallucination in Large Language Models (LLMs)
has emerged as a critical challenge, particularly as
these models see increasing deployment in high-
stakes domains. This phenomenon occurs when
LLMs generate fluent but factually incorrect, un-
supported, or misleading content. Recent surveys
Sahoo et al. (2024) have categorized LLM halluci-

nations into distinct types, including factual inac-
curacies, semantic distortions, and contextual dis-
connections, revealing their varied manifestations
and effects.

To combat this issue, researchers have devel-
oped numerous detection and mitigation meth-
ods. Detection approaches include probabilis-
tic self-evaluation (e.g., SelfCheckGPT; Manakul
et al., 2023), automatic evaluation (e.g., FACTOID;
Rawte et al., 2025), and evidence retrieval (e.g.,
FACTSCORE; Min et al., 2023). These methods
can identify hallucinated content without always
needing external knowledge bases. For mitigation,
promising strategies include fine-tuning with fac-
tual supervision (e.g., PURR; Chen et al., 2023),
chain-of-thought and reasoning enhancement (e.g.,
CoVe; Dhuliawala et al., 2024), and prompt engi-
neering and instructional techniques (e.g., Instruc-
tional Prompting; Varshney et al., 2023).

Despite these advances, hallucination remains
stubbornly persistent. Xu et al. (2025) have sug-
gested that hallucination might be inherent to
LLMs’ generative mechanisms and offered a for-
mal framework for understanding its origins rel-
ative to ground truth. This insight has driven
research into proactive solutions like retrieval-
augmented generation, instruction tuning, and rein-
forcement learning with factual constraints.

In summary, research on LLM hallucinations
represents a dynamic field that seeks both to en-
hance model reliability and to grasp fundamental
limitations from theoretical and practical stand-
points. These findings are crucial for ensuring
LLMs can be deployed safely and effectively in
real-world applications.

B Further Details of the Method

B.1 Iterative Document Generation
We illustrate the Iterative Document Generation
framework in Figure 3. Both sub-figures depict the
same core process: rather than generating full text,
the model incrementally predicts cluster IDs for
each entity mention in a document.

Iterative Process. At the heart of this approach
is a step-by-step mention-level resolution process.
Instead of prompting the model to generate the
document all at once, we proceed as follows:

• At each iteration, we provide the model with
a short text segment ending in the target men-
tion.
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Template Input:

Constrained Decoding 
with LLM

Output:

LLM

[John]​(#) and [Lily](#) go to the [market](#). 

Prompt Input:
Annotate all entity mentions in the 
following text with coreference 
clusters. Input: [John]​(#) and 
[Lily](#) go to the [market](#). 

t = 0

t = 1

t = 2

...
Repeat

[John] (# Lily and

[John]​(#cluster_1) and [Lily]​(#
cluster_2)

(#is has also ...

cluster_1 ...

t = 3 )thesuch is ...

t = 4 and wall light people ...

t = 5 [Lily]some ais ...

... ...

which ...are during

 go to the [market]​(#
cluster_3)

Template Text unconstrained textforbidden token  allowed token

Legend:

Template Input:

Output:

LLM

[John]​(#) and [Lily](#) go to the [market](#). 

Prompt Input:
Annotate all entity mentions in the 
following text with coreference 
clusters. Input: [John]​(#) and 
[Lily](#) go to the [market](#). 

Repeat

[John]​(#cluster_1) and [Lily]​(#
cluster_2)

... ...

 go to the [market]​(#
cluster_3)

Template Text unconstrained text allowed token

Legend:

Constrained Decoding 
with LLM

t = 0

t = 1

t = 2

t = 3

t = 5

t = 6

[John]​(#

t = 1 which ...cluster_1 are during

t = 2 ) ...such the is

and [Lily]​(#

t = 2 ) ...has cluster_2 now

) ...] # is

...

copied segments

Constrained Decoding Efficient Constrained Decoding

Figure 2: An example of efficient constrained decoding. During decoding, the model copies entire segments of the
original text at once, rather than processing individual words.

• The model is prompted to generate only the
cluster ID corresponding to this mention.

• The predicted cluster ID is appended after the
mention in the context.

• We then extend the prompt with additional
text, continuing until the next mention ap-
pears.

This process continues sequentially until all men-
tions in the document have been assigned cluster
IDs. By restricting generation to structured identi-
fiers rather than open-ended language, the method
significantly reduces hallucinations and enhances
control over the output format.

Training vs. Inference. A key distinction in this
framework lies in how model inputs differ between
training and inference:

• During training, the model receives gold-
standard cluster IDs. All previous cluster IDs
in the prompt are correct, allowing the model
to learn from error-free context.

• During inference, gold labels are unavailable.
If the model makes an incorrect prediction
at any step, that incorrect cluster ID is still
injected into the prompt. Subsequent predic-
tions must be made based on potentially noisy
and incorrect prior context.

This discrepancy may introduce error propaga-
tion during inference. However, it mirrors real-
world usage, where ground truth annotations are
not available at test time.

Document

Iterative 
Document 
Generation

Integrate
Output

There are [a candel]​(#

LLM

cluster_1)

There are [a candel]​(#

There are [a candel]​(#  a wall a temple and [parishioner]​(#) )

cluster_1) a wall cluster_2)

There are [a candel]​(#  a wall a temple and [parishioner]​(#cluster_1) cluster_2)

Copy Original Text Generated Text

a temple and [parishioner]​(#

Figure 3: An example of the iterative document genera-
tion. Only the cluster ID is generated, while the original
text is reused.

Limitations and Challenges. While the iterative
document generation framework offers improved
robustness and reduced hallucination rates, the ap-
proach is computationally inefficient. Since the
model processes one mention at a time, the number
of required forward passes scales linearly with the
number of mentions in a document. This repeated
invocation of the model significantly increases both
training and inference time, making the method less
practical for large-scale applications.

B.2 Constrained Decoding for Coreference
Resolution

Figure 2 illustrates the transition from standard con-
strained decoding to our proposed efficient variant.
As shown in the figure, efficient constrained decod-
ing allows the model to generate all constrained-
specified tokens in a single step. For example, de-
coding that originally completed at time step t = 6
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under standard decoding can now be completed as
early as t = 3. This results in a substantial reduc-
tion in decoding steps. Moreover, the efficiency
gain becomes more pronounced as the number of
constrained tokens increases. The detailed algo-
rithm is provided in Algorithm 1.

As discussed in the main text, using predefined
markers such as ‘(#)’ can introduce complications
during BPE tokenization. This is particularly
problematic when the original text contains similar
symbols, increasing the risk of tokenization
mismatches and decoding errors. To address this,
we experimented with replacing such ambiguous
markers with special tokens. As different LLMs
support different special tokens, we take LlamA
3 as an example: the opening marker ‘(#’ is
replaced with <|reserved_special_token_87|>
and the closing marker ‘)’ with
<|reserved_special_token_88|>. How-
ever, this approach has a key limitation. Although
these special tokens are reserved by the model,
LlamA 3 does not allow them to be generated
during decoding. As such, this technique is not
applicable under direct decoding settings.

Under constrained decoding, however, this limi-
tation is less severe. Even if the special tokens can-
not be output directly by the model, the decoding
constraints can still enforce their correct placement.
Empirically, we observed that using special tokens
yielded similar performance to using the original
marker ‘(#)’, confirming the feasibility of this strat-
egy. Nonetheless, due to the lack of output support
and inconsistent special token definitions across
different LLMs, we did not adopt this approach in
our main experiments. Instead, we validated its
viability solely under Llama 3. Notably, when the
model was forced to generate such special tokens, it
often substituted them with a fixed token. In Llama
3, this corresponds to token index 124, which can
be detokenized to the character ‘À’.

Importantly, constrained decoding was only ap-
plied at inference time. The training procedure
remains identical to that of direct decoding. We
also experimented with modifying the training pro-
cess by masking the loss for grammar-constrained
portions, that is, setting their labels to −100 so that
the loss was computed only on cluster ID spans.
However, across multiple models, we observed no
significant performance improvements compared
to standard training. Therefore, all experiments in
this paper used the same training set up as direct
decoding, with constrained decoding applied only

[cat]\ufffdcluster_18\ufffd said: To [me]\ufffdcluster_18\ufffd, [I]\ufffdcluster_18\ufffd m just a 

simple cat. 

[a shape - shifting cat]\ufffdcluster_20\ufffd said: A simple cat [you]\ufffdcluster_18\ufffd may 

be, but [that]\ufffdcluster_25\ufffd is the form [I]\ufffdcluster_20\ufffd enjoy.

In this example, Llama3 generated meaningless garbled characters “\ufffd” in the output.

Generating meaningless gibberish or labels

Output:

Analysis:

Figure 4: Example of generating meaningless gibberish
or labels

[it]​(#cluster_56) is [the wardrobe](#cluster_56) [it](#cluster_56) is [the wardrobe] 
(#cluster_56) [it](#cluster_56) is [the wardrobe](#cluster_56)

In this example, Llama2 repeated the same phrase along with its cluster tag “[it] 
(#cluster_56) is [the wardrobe](#cluster_56)”.

Producing repetitive expressions or labels

Output:

Analysis:

Figure 5: Example of producing repetitive expressions
or labels

during inference.

C Observed Hallucination

The cases where LLM hallucinations occur typi-
cally fall into four main categories: (1) generating
meaningless gibberish or labels which do not exist
in the original text; (2) copying unnecessary textual
expressions or labels repetitively; (3) failing to de-
tect a mention, or missing the coreference link; (4)
incorrectly identifying a mention or its boundaries.
We provide examples to illustrate these categories,
which can be seen in Figure 4, 5, 6, and 7.

D Supplementary Experimental Content

D.1 Additional Experimental Setup

Implementation. All the results in this paper
were based on a single run. All experiments were
conducted using LLAMA Factory (Zheng et al.,
2024), with LoRA-based (Hu et al., 2021) fine-
tuning utilizing the bf16 precision. The relevant
hyperparameters were configured as follows:
• preprocessing_num_workers: 16
• per_device_train_batch_size: 1
• gradient_accumulation_steps: 4
• learning_rate: 1.0e-4
• num_train_epochs: 3.0
• lr_scheduler_type: cosine
• warmup_ratio: 0.1

Other parameters were set to the default values
provided by LLAMA Factory (Zheng et al., 2024).
The experiments were conducted on single or mul-
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Algorithm 1 Efficient Constrained Decoding
Input: input_ids, template_ids, model, tokenizer
Output: input_ids // Generated token sequence
Initialize:
followup← True, followup_slow← True, offset← 0
last_token← ‘’, end_token← 0, end_token_str← ‘’

0: while has_unfinished_sequences(cur_len,max_length) do
0: model_inputs← prepare_model_inputs(input_ids)
0: if not followup then // Normal decoding mode using sampling or argmax
0: outputs← model_forward_pass(model,model_inputs)
0: next_token_scores← process_logits(outputs)
0: if do_sample then
0: next_tokens← sample_from_probs(next_token_scores)
0: else
0: next_tokens← argmax(next_token_scores)
0: end if
0: else // Constrained decoding mode
0: current_template_token← template_ids[0][offset]
0: next_tokens← force_token(current_template_token)
0: current_token_str ← decode_token(current_template_token)
0: if is_start_token(current_token_str, special_tokens) then
0: handle_start_token_case()
0: followup← False // Change to normal generation mode
0: update_end_token()
0: adjust_offset()
0: else if is_middle_token(current_token_str, last_token, special_tokens) then
0: followup← False
0: update_end_token()
0: offset← offset + 1 // Update the current template position marker
0: else if is_end_token(current_token_str, end_token_str, special_tokens) then
0: handle_end_token_case()
0: followup← True // Keep constrained decoding mode
0: offset← offset + 1
0: last_token← current_token_str
0: end if
0: end if
0: input_ids← append_token(input_ids, next_tokens) // Update the generated sequence
0: if not followup_slow then // Efficient constrained decoding
0: model_kwargs← update_model_kwargs(outputs)
0: clear_outputs()
0: else // Normal constrained decoding
0: update_attention_mask()
0: update_cache_position()
0: followup_slow ← followup
0: end if
0: cur_len← cur_len + 1
0: offset← offset + 1
0: if offset ≥ len(template_ids[0]) then
0: break
0: end if
0: end while
0: Return input_ids =0

Output:

Analysis:

cat said: [To]​(#cluster_26) me, [I m just](#cluster_27) a [simple cat.](#cluster_28)

In this example, the mention "cat" in the original text was missed by Llama2.

Failing to detect a mention or a coreference link

Figure 6: Example of failing to detect a mention or a
coreference link

tiple A100 GPUs (40GB/80GB). For multi-GPU
setups, DeepSpeed was used to optimize parallel
training.

Metrics. We directly used the CoNLL F1 evalua-
tion script provided by Le and Ritter (2024). This
script retains singleton mentions during evaluation.
For corpora that did not include singleton mentions

cat said: [To]​(#cluster_25) me, [I m just](#cluster_15) a [simple cat.](#cluster_26)

[a shape-​shifting cat said:](#cluster_17) A simple cat you [may](#cluster_27) be [, but 

[that](#cluster_28) is](#cluster_29) the [form I](#cluster_15) enjoy [.

In this example, some mentions and their boundaries were incorrectly identified. 

Expressions beyond noun phrases, such as “to” and “may”, were wrongly recognized as 

mentions. Additionally, boundary detection involving punctuation marks (e.g. “[,” and “[.”) 

was inaccurate.

Incorrectly identifying a mention or its boundaries

Output:

Analysis:

Figure 7: Example of incorrectly identifying a mentions
or its boundaries

(e.g., OntoNotes), this has minimal impact, as sin-
gletons only appeared in the system-generated clus-
ters. However, for corpora that contained singleton
mentions (e.g., CRAC), this difference in setting
can lead to changes of over 10% in CoNLL F1
scores. To ensure a fair comparison, we followed
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LIGHT Penn Treebank TRAINS
Approach CoNLL F1 Pass CoNLL F1 Pass CoNLL F1 Pass
LLAMA3 (1B) D 87.8 84.21% 86.7 95.0% 61.8 100%
LLAMA3 (1B) E 88.5 100% 87.8 100% 82.9 100%
LLAMA3 (8B) D 91.4 97.37% 90.3 95.0% 83.8 100%
LLAMA3 (8B) E 92.0 100% 92.0 100% 87.1 100%
QWEN (7B) D 92.1 94.74% 90.1 96.67% 82.7 100%
QWEN (7B) E 91.6 100% 93.4 100% 86.3 100%

Table 4: Comparison of different approaches fine-tuned on the CRACs training set. “Pass” denotes the proportion of
documents that pass the alignment check according to Le and Ritter (2024).

the same evaluation settings when comparing with
their system.

D.2 Additional Experimental Results
In the main body of this paper, we presented re-
sults based on models fine-tuned on the OntoNotes
dataset. To further assess the generalizability of
our approach, we also conducted experiments us-
ing models fine-tuned on the CRACs training set.
Table 4 summarizes the performance of various
models across three benchmark test sets: LIGHT,
Penn Treebank, and TRAINS.

The experimental conclusions are consistent
with those in the main text: our E method con-
tinued to demonstrate robust performance across
all evaluation settings. Notably, when both training
and evaluation were conducted on CRACs, the per-
formance gains of the E approach were even more
pronounced than those reported in the main body.

E Prompts

E.1 Prompt for Iterative Document
Generation

We provide the prompt for Iterative Document Gen-
eration along with an example that pairs an input
document template with its output, which can be
seen in Figure 8.

E.2 Prompt for Constrained Decoding for
Coreference Resolution

We also provide the prompt for Constrained Decod-
ing for coreference resolution along with an exam-
ple that pairs an input document template with its
output, which can be seen in Figure 9.

17255



Instruction:
Annotate the last mention in the based on the original text with coreference clusters. Use Markdown tags to indicate clusters in the output, with the 
following format [mention]​(\#cluster\_name)

Input:
a baptismal an offering plate a pew a baptismal font a candle a stained glass a bible a paper a Cross parishioner petitioner parishioner said: My 
crops are withering without rain, what sins have I committed for God to have forsaken me ? petitioner said: I would ask the same, for I am sick and it 
is most likely that I will die soon. parishioner said: What sickness befalls one such as yourself ? parishioner said: I have heard that the water of 
Saint Marthas will heal all who drink of it. petitioner said: The doctors have been unable to come to a real conclusion as to what it is, that is why I 
came to seek prayers.

Annotate the last mention:[a baptismal](\#

Output:
cluster\_0)

Prompt for Iterative Document Generation

Prompt:

LLM:

Figure 8: Prompt for Iterative Document Generation

Instruction:
Annotate all entity mentions in the following text with coreference clusters. Use Markdown tags to indicate clusters in the output, with the following 
format [mention]​(\#cluster\_name)

Input:
[a baptismal](#) [an [offering](#) plate](#) [a pew](#) [a [baptismal](#) font](#) [a candle](#) [a stained glass](#) [a bible](#) [a paper](#) [a Cross](#) 
[parishioner](#) [petitioner](#) [parishioner](#) said: [[My](#) crops](#) are withering without [rain](#), [what sins](#) have [I](#) committed for [God](#) 
to have forsaken [me](#) ? [petitioner](#) said: [I](#) would ask [the same](#), for [I](#) am sick and it is most likely that [I](#) will die soon.

Output:
[a baptismal](#cluster_0) [an [offering](#cluster_1) plate](#cluster_2) [a pew](#cluster_3) [a [baptismal](#cluster_4) font](#cluster_5) [a 
candle](#cluster_6) [a stained glass](#cluster_7) [a bible](#cluster_8) [a paper](#cluster_9) [a Cross](#cluster_10) [parishioner](#cluster_11) 
[petitioner](#cluster_12) [parishioner](#cluster_11) said: [[My](#cluster_11) crops](#cluster_13) are withering without [rain](#cluster_14), [what 
sins](#cluster_15) have [I](#cluster_11) committed for [God](#cluster_16) to have forsaken [me](#cluster_11) ? [petitioner](#cluster_12) said: 
[I](#cluster_12) would ask [the same](#cluster_17), for [I](#cluster_12) am sick and it is most likely that [I](#cluster_12) will die soon.

Prompt for Constrained Decoding 

Prompt:

LLM:

Figure 9: Prompt for Constrained Decoding for Coreference Resolution
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