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Abstract
With the increasing scale of training data for
Multimodal Large Language Models (MLLMs)
and the lack of data details, there is growing
concern about privacy breaches and data secu-
rity issues. Under black-box access, explor-
ing effective Membership Inference Attacks
(MIA) has garnered increasing attention. In
real-world applications, where most samples
are non-members, the issue of non-members
being over-represented in the data manifold,
leading to misclassification as member sam-
ples, becomes more prominent. This has mo-
tivated recent work to focus on developing ef-
fective difficulty calibration strategies, produc-
ing promising results. However, these methods
only consider text-only input during calibration,
and their effectiveness is diminished when mi-
grated to MLLMs due to the presence of visual
embeddings. To address the above problem, we
propose PC-MMIA, focusing on visual instruc-
tion fine-tuning data. PC-MMIA is based on
the idea that tokens located in poorly general-
ized local manifolds can better reflect traces
of member samples that have been trained.
By employing bidirectional perturbation of im-
age embeddings to capture tokens critical to
MIA and assigning them different weights, we
achieve difficulty calibration. Experimental re-
sults demonstrate that our proposed method
surpasses existing methods.

1 Introduction

In recent years, the rapid development of large
language models (LLMs) has brought new op-
portunities for Multimodal Large Language Mod-
els (MLLMs) research, leading to the emergence
of vision-language models such as GPT-4o and
Qwen2.5-VL (Bai et al., 2025; OpenAI, 2024). By
aligning visual embeddings with the textual space,
MLLMs can process and reason on multimodal
data, enabling them to perform complex tasks such
as image captioning and visual question answer-
ing (Wang et al., 2024b; Zheng et al., 2025).
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Figure 1: Text-only calibration fails to consider image
semantics, consequently overestimating the difficulty of
predicting "wheelbarrows."

This rapid development is heavily reliant on
the availability of large-scale internet datasets,
which have tremendously improved model perfor-
mance (Zhang et al., 2024a; Wang et al., 2024a).
However, this also raises concerns about privacy
leakage and unauthorized data usage. For instance,
image data used in commercial model training
may include private photos or copyrighted con-
tent (Grynbaum and Mac, 2023; Knibbs, 2023).
To explore these issues, Membership Inference At-
tacks (MIA) serve as a common technique, where
attackers attempt to infer whether specific data sam-
ples are part of the model’s training set (Shokri
et al., 2017). MIA has now evolved from a mere
attack method into an effective tool for auditing
black-box models (Hu et al., 2022; Wu and Cao,
2025), providing a new perspective on data pri-
vacy protection. MIA can generally be divided into
three attack scenarios: black-box access, gray-box
access, and white-box access (Cheng et al., 2025).
In next-token prediction, black-box access provides
only the probability of the predicted token, while
gray-box access allows retrieval of probabilities for
all candidate tokens in the vocabulary (Shi et al.,
2024b; Zhang et al., 2025b). Under white-box ac-
cess, attackers can access the model’s architecture
and parameters and even train the model.

Research on MIA is crucial for protecting data
security and maintaining user privacy, especially
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for MIA targeting visual instruction fine-tuning
data, which is more likely to contain unauthorized
or private data (Li et al., 2024; Song et al., 2025;
Wang et al., 2025). Despite numerous MIA meth-
ods proposed in the LLMs domain, their direct
naive migration to MLLMs is unsatisfactory due
to the multimodal inputs of MLLMs (Wu and Cao,
2025). Thus, there is an urgent need for a MIA
framework specifically designed for MLLMs.

The major challenge faced by MIA against
MLLMs is the need to consider the impact of
image embeddings on the difficulty of token pre-
diction. Previous conventional methods rely on the
notion that the word probability distribution based
on text can reveal whether it is included in the train-
ing set (Shi et al., 2024b). For instance, when a
token’s predicted probability is high, these methods
assume that the token is likely present in member
samples. However, they overlook the fact that the
token may simply be simple and easy to predict,
meaning non-member samples might themselves
be over-represented in the data manifold (Zhang
et al., 2024b; Shi et al., 2024a). To address this,
Watson et al. (2022) introduce the concept of dif-
ficulty calibration, highlighting the need to miti-
gate biases arising from the intrinsic complexity
of samples, and calibrate using the predictive dif-
ficulty of the tokens themselves. Recent works
attempt to utilize various methods including key-
word marking (Antebi et al., 2025) and divergence-
from-randomness (Zhang et al., 2024b) for calibra-
tion, yielding promising results. Nonetheless, as
illustrated in Figure 1, in multimodal data, these
calibration methods are only effective for text to-
kens and fail to account for the impact of image
embeddings on the probability distribution, leading
to suboptimal performance.

Facing the challenges above, our research aims
to address the question: In the presence of image
embedding input, if a specific text token in the
response has a high probability, is this due to
verbatim memorization (overfitting of member
data), or is it simply because the token itself
is easily predictable? Inspired by Mattern et al.
(2023), we propose a perturbation-based calibration
method, named PC-MMIA, to calibrate token prob-
abilities for membership inference attacks against
MLLMs. Our core idea is that tokens located in
poorly generalized local manifolds can better re-
flect traces of training on member samples. After
perturbing images, we observe probability changes
for each token in the samples to determine whether

the token’s probability contribution stems more
from generalized prediction or verbatim memoriza-
tion of member data. Subsequently, we normalize
the changes in log-likelihood for each token be-
fore and after perturbation to serve as correction
weights.

We summarize our main contributions as fol-
lows: i) We propose PC-MMIA, a novel member-
ship inference attack method that focuses on the
issue of non-member samples potentially being
over-represented in the data manifold. ii) To the
best of our knowledge, we are the first to consider
the visual embeddings in the difficulty calibration
of MLLMs, opening up new directions for MIA
research. iii) Compared to other black-box MIA
methods, our approach achieves optimal perfor-
mance in commonly used detection metrics TPR
at low FPR and AUC. Additionally, we have open-
sourced the code to facilitate further research 1 .

2 Related Work

2.1 Membership Inference Attacks (MIA).

Initial MIA research concentrates on traditional
deep learning models, such as supervised classi-
fication models (Shokri et al., 2017; Yeom et al.,
2018; Hu et al., 2022). Recently, the focus shifts
towards Large Language Models (LLMs) (Wu and
Cao, 2025), with studies exploring their implica-
tions in privacy auditing, memorization assessment,
and the detection of data contamination and copy-
righted content (Steinke et al., 2023; Xu et al.,
2024a; Mireshghallah et al., 2022; Duarte et al.,
2024; Xu et al., 2024b). Our work primarily ad-
dresses the most challenging and general scenario:
black-box model access in MIA, which can be cat-
egorized into reference-based and reference-free
methods (Oren et al., 2023; Wu and Cao, 2025).

Reference-based methods assume access to a
shadow model trained on a dataset with the same
distribution as the target model. For instance, Fu
et al. (2024) utilizes synthetic data generated by
LLMs to train a reference model. While these
methods directly leverage the reference model for
difficulty calibration, they are often costly and have
limited applicability. Reference-free methods, cur-
rently the mainstream approach, aim to infer mem-
bership by analyzing token prediction probabili-
ties (Wu and Cao, 2025). Shi et al. (2024b) intro-
duces the Min-K% method, based on the assump-

1Our code is available at: https://github.com/
qingpingwan/PC-MMIA
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tion that non-member samples are more likely to
contain low-probability words. This approach over-
looks the inherent complexity of different samples.
To address this, Zhang et al. (2024b) constructs
a large-scale text database to estimate the predic-
tion difficulty of various tokens based on word fre-
quency distributions. Zhang et al. (2025b) employs
polarization enhancement for calibration, while
Zhang et al. (2024b) proposes Min-K%++, which
builds upon Min-K% by considering whether the
input forms a mode or has relatively high probabil-
ity under the conditional categorical distribution.
Although Min-K%++ achieves competitive results,
it requires gray-box access to the target model.

Approaches most related to ours are Neighbour-
hood Comparison methods (Mattern et al., 2023),
which involve rewriting or replacing keywords in
the text. These methods operate under the assump-
tion that such perturbations, which preserve the
text’s meaning, should not significantly increase
the overall loss unless the text is an overfitted mem-
ber sample (Zhang et al., 2025a). PC-MMIA funda-
mentally differs from these approaches. Our core
idea is to perturb images to calibrate the probabil-
ity contributions of different text tokens within the
same sample, thereby identifying tokens that bet-
ter reflect the training traces of member samples.
In contrast, Neighbourhood Comparison methods
directly use the loss changes of different samples
after text rewriting for membership inference, mak-
ing them more susceptible to inconsistencies in
perturbation strength across samples (Duan et al.,
2024). Additionally, these methods do not account
for the impact of image embeddings.

2.2 MIA against Multimodal LLMs
The interactive capabilities of MLLMs with hu-
mans largely depend on the instruction fine-tuning
phase, which is closely tied to the quality of the
multimodal datasets (Duan et al., 2024). However,
model developers are increasingly reluctant to dis-
close data details, prompting recent studies to ex-
plore MIA against MLLMs (Song et al., 2025).
Li et al. (2024), inspired by Min-K%, proposes
MaxRényi-K%, based on the assumption that mem-
ber data should have higher confidence in predict-
ing the next token, incorporating Rényi entropy to
measure prediction confidence. Hu et al. (2025)
amplifies the probability differences between mem-
ber and non-member data by adjusting the tem-
perature parameter. Nonetheless, these methods
overlook the inherent complexity of multimodal

samples and fail to calibrate prediction probabili-
ties (Watson et al., 2022), making it challenging to
distinguish whether high-probability tokens result
from verbatim memorization of member data or are
inherently easy to predict due to image semantics.

3 PC-MMIA

In order to achieve image understanding, MLLMs
like LLaVA (Liu et al., 2023) and CogVLM (Wang
et al., 2024c) project the image embeddings from
visual encoders into the feature space of LLMs.
Consequently, when considering the prediction dif-
ficulty of text tokens, the semantic impact of im-
ages must also be taken into account, hindering the
effective migration of most existing MIA methods
designed for LLMs to MLLMs. To address this,
we propose PC-MMIA, a novel approach tailored
for MLLMs.

3.1 Problem Description

We follow prior research (Li et al., 2024; Hu et al.,
2025), focusing on membership inference attacks
during the instruction fine-tuning phase, empha-
sizing the most challenging yet broadly applicable
black-box access. This implies only having access
to the probabilities of next text tokens, with no
access to logits, model weights, or gradients.

For a data instance v and a multimodal large
language model M fine-tuned on dataset D, the
goal of membership inference attacks is to de-
tect whether data instance v belongs to D. Here,
v = (x, ytext), x = (ximg, xtext), comprises in-
put image ximg, input text xtext, and response
ytext. Through calculating the membership score
S(v;M) and threshold decision-making, it is de-
termined whether v is a member or non-member
of dataset D. The key to MIA lies in designing an
appropriate scoring function S to better distinguish
between member and non-member data.

3.2 Motivation of PC-MMIA

Prior research has demonstrated significant vari-
ability in the strength of membership inference
signals conveyed by different tokens (Zhang et al.,
2024b; Antebi et al., 2025). Specifically, the pre-
diction probability contribution for some tokens
in the model may arise from verbatim memoriza-
tion of training data, while for others, it may stem
primarily from the model’s generalization capabil-
ity (Dong et al., 2024). This phenomenon becomes
more pronounced in multimodal inputs, as the rich
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Figure 2: Illustration of PC-MMIA. The core idea of PC-MMIA is to improve the representation of training traces in
member samples by identifying tokens located in poorly generalized local manifolds, thus calibrating non-member
samples that may themselves be over-represented in the data manifold.

visual semantics contained in image embeddings
further amplify these differences.

The PC-MMIA method is proposed to address
this issue, aiming to help distinguish tokens that
are memorized due to training data presence from
those tokens that are universally learned by the
model and easily predictable across any data. We
view the model’s decision-making process as map-
ping inputs within a high-dimensional space, where
each image-text pair sample lies on a manifold
representing the data distribution. When slight
perturbations are applied to the images, it leads
to small displacements of the data point on the
manifold. PC-MMIA identifies tokens located in
poorly generalized regions of the model’s decision
space by analyzing changes in prediction proba-
bilities before and after perturbation, thereby pin-
pointing areas likely influenced by specific training
instances rather than by generalized patterns. This
approach can also be seen as measuring the local
smoothness of the model’s prediction function in
the input space. Memorization of training samples
often induces local discontinuities in the predic-
tion function, manifesting as significant probability
fluctuations during perturbation. In contrast, pre-
dictions that generalize well exhibit robustness and
demonstrate better local stability.

3.3 Formulation of PC-MMIA
As illustrated in Figure 2, we first apply symmetric
Gaussian noise to provide bidirectional perturba-
tions to the image embeddings:

x+perturbed = (ximg + ϵ, xtext),

x−perturbed = (ximg − ϵ, xtext),
(1)

where ϵ denotes Gaussian noise with zero mean
and standard deviation σ, i.e., ϵ ∼ N (0, σ2). No-
tably, small-magnitude Gaussian noise can be re-
garded as a semantically equivalent perturbation.
Such perturbations preserve the structural and spa-
tial information of the original image, maintain-
ing visual attributes like color, shape, and dy-
namics. Subsequently, both the original and per-
turbed images are fed into the model M to com-
pute the likelihoods for each token in the sequence
ytext = {y1, y2, . . . , yn}:

p(yi | y<i, x;M) : 0 < i ≤ n,

p(yi | y<i, x
+
perturbed;M) : 0 < i ≤ n,

p(yi | y<i, x
−
perturbed;M) : 0 < i ≤ n,

(2)

where the probability of each token yi is predicted
based on prior context. For simplicity, we denote
p(yi | y<i, x;M) as p(yi;M, x).

Next, we compute the average change in log-
likelihood for each token before and after image
perturbation:

δ(yi) = log p(yi;M, x)−
1

2

[
log p(yi;M, x+

perturbed) + log p(yi;M, x−
perturbed)

]
.

(3)

We consider tokens with larger δ(yi) as poten-
tially containing more training traces, making them
more critical in membership inference attacks. In
contrast, tokens with smaller δ(yi) may be trivial
and easily predictable, thus reducing their weight
in S can prevent the influence of over-represented
samples within the data manifold, achieving dif-
ficulty correction. To accomplish this, we subse-
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quently perform softmax normalization on δ(yi):

wi =
exp(δ(yi))∑n
j=1 exp(δ(yj))

. (4)

Through softmax normalization, we use the rela-
tive relationship of δ(yi) within each sample, rather
than the absolute values, as the weight, which en-
sures that S(v;M) focuses only on the most dis-
criminative token features within the sample, elim-
inating score bias due to sensitivity differences to
global perturbations between samples, thereby ef-
fectively enhancing the decision boundary robust-
ness between members and non-members. Finally,
we calculate the corrected score for sample v ac-
cording to the normalized weights:

S(v;M) =

n∑

i=1

wi · log p(yi;M, x). (5)

Comparing the score to the predetermined thresh-
old λ, the final prediction results:

prediction(v,M) = I[S(v;M) > λ]. (6)

4 Experiments

In this section, we conduct comprehensive experi-
ments to validate the effectiveness of PC-MMIA.

4.1 Experimental Setup

Models. In the current mainstream open-source
multimodal models, most only provide access
to the model weights, which significantly limits
our experiments because it is difficult to confirm
whether our chosen evaluation datasets are included
in the training datasets. To overcome this bar-
rier, we select Llava-1.5-7b (Liu et al., 2023) and
CogVLM-17b (Wang et al., 2024c) for our exper-
iments. These models not only provide model
weights but also fully open multimodal datasets,
source code, and detailed training processes, allow-
ing us to completely reproduce the visual instruc-
tion tuning phase. Furthermore, they feature dif-
ferent model architectures and training strategies,
which strongly support the diversity and compre-
hensiveness of our experiments.

Datasets. Previous studies (Maini et al., 2024;
Duan et al., 2024) have indicated that dividing
member and non-member based on time may not
be reliable, as data generated at different times in-
herently undergo distribution shifts. To thoroughly

address this issue, we verify the method’s effec-
tiveness through complete training. We selected
NoCaps (Agrawal et al., 2019), Flickr30K (Young
et al., 2014), and PixMo (Deitke et al., 2024) for
experiments, as these datasets offer comprehen-
sive and diverse samples suitable for MIA evalu-
ation. Importantly, they are not included in the
training data of models. Each dataset is randomly
divided into member and non-member parts, with
the member portion mixed into the original fine-
tuning dataset to perform visual instruction tuning,
ensuring identical distribution between member
and non-member. More details about experiments
are found in Appendix §A and §D.

Baseline. We selected six popular methods for
evaluation, which include five methods for LLMs
and one method for MLLMs. Methods for LLMs:
Loss (Yeom et al., 2018), Neighbor (Mattern et al.,
2023), Min-K% Prob (Shi et al., 2024b), DC-
PDD (Zhang et al., 2024b), NormAC (Zade et al.,
2025), Min-K%++ Prob (Zhang et al., 2025b);
Method for MLLMs: MaxRényi-K% (Li et al.,
2024), which is currently the only black-box mem-
bership inference attack applicable directly to vi-
sual instruction tuning data. We perform simple
modifications on the methods aimed at LLMs to
make them applicable to MLLMs. A more detailed
description of the baseline is in Appendix §B.

Implementation Details and Evaluation Met-
rics. Following most existing works (Shi et al.,
2024b; Zhang et al., 2024b, 2025b), we do not set
the hyperparameter λ value but instead use AUC
scores (Area Under the ROC Curve) and TPR (True
Positive Rate) at low FPR (False Positive Rate)
as our metrics. For the model’s instruction fine-
tuning, due to hardware limitations, we maintain
the overall batch size invariant through gradient
accumulation, while other hyperparameters remain
consistent with the original fine-tuning. The Gaus-
sian noise hyperparameter σ is set to 0.1. For more
details, please refer to Appendix §C.

4.2 Results
The comparison of our method with other base-
lines is shown in Tables 1 and 2, we observe the
following key findings: 1) Our method outper-
forms all black-box access baselines across all
three datasets. Particularly on the CogVLM-17b
model evaluated on PixMo benchmark, PC-MMIA
achieves improvements of 4.9%, 7.1%, and 6.9%
in AUC, TPR@5%FPR, and TPR@1%FPR met-
rics respectively compared to the best baseline.
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Table 1: Performance comparison of PC-MMIA and baseline methods for LLaVA-1.5-7b across different datasets.
Metrics used are AUC, TPR at 5% FPR (T@5F), and TPR at 1% FPR (T@1F). Bolded number shows the best
result within each column across all methods.

Dataset
NoCaps Flickr30K PixMo

AUC T@5F T@1F AUC T@5F T@1F AUC T@5F T@1F

Loss 0.671 0.284 0.121 0.651 0.241 0.104 0.692 0.306 0.131
Neighbor 0.634 0.205 0.089 0.624 0.235 0.097 0.613 0.230 0.062

Min-K% Prob 0.700 0.310 0.142 0.683 0.272 0.112 0.694 0.312 0.145
DC-PDD 0.668 0.302 0.104 0.652 0.265 0.093 0.701 0.309 0.110

Min-K%++ Prob 0.718 0.329 0.130 0.707 0.297 0.132 0.715 0.318 0.142
MaxRényi-K% 0.686 0.290 0.136 0.674 0.241 0.092 0.723 0.335 0.129

NormAC 0.673 0.316 0.122 0.689 0.258 0.117 0.730 0.303 0.122

PC-MMIA 0.735 0.335 0.147 0.703 0.303 0.128 0.754 0.340 0.162

Table 2: Performance comparison of PC-MMIA and baseline methods for CogVLM-17b across different datasets.
Metrics used are AUC, TPR at 5% FPR (T@5F), and TPR at 1% FPR (T@1F). Bolded number shows the best
result within each column across all methods.

Dataset
NoCaps Flickr30K PixMo

AUC T@5F T@1F AUC T@5F T@1F AUC T@5F T@1F

Loss 0.713 0.296 0.126 0.681 0.252 0.098 0.725 0.322 0.135
Neighbor 0.728 0.304 0.124 0.654 0.248 0.111 0.663 0.281 0.096

Min-K% Prob 0.734 0.327 0.128 0.716 0.284 0.125 0.728 0.327 0.143
DC-PDD 0.722 0.318 0.108 0.704 0.279 0.128 0.735 0.326 0.124

Min-K%++ Prob 0.731 0.344 0.148 0.713 0.313 0.138 0.744 0.331 0.137
MaxRényi-K% 0.722 0.306 0.132 0.711 0.254 0.116 0.742 0.335 0.134

NormAC 0.719 0.302 0.128 0.706 0.266 0.120 0.728 0.328 0.135

PC-MMIA 0.741 0.351 0.143 0.717 0.317 0.133 0.781 0.359 0.153

This can mainly be attributed to other methods’
insufficient utilization of image embeddings, fo-
cusing solely on answer texts while neglecting the
impact of multimodal semantics on token prob-
ability distribution. 2) The performance gap be-
tween Min-K%++ Prob and our method is smaller
on the Flickr30K dataset, mainly because Min-
K%++ Prob is a gray-box method requiring access
to the model’s logits, meaning it necessitates ob-
taining the prediction scores for all tokens in the
model’s vocabulary. 3) The Neighbor method per-
turbs text, and its performance is relatively poor,
particularly on the PixMo dataset which exhibits
a large variance in text length distribution. This
also indicates that perturbations targeting pure text
are difficult to apply effectively to multimodal
data. 4) MaxRényi-K% focuses on Large Vision-
Language Models and can be applied to both text-
only and multimodal data. Nonetheless, naively

applying the text-focused method to response texts
in multimodal data creates a performance gap com-
pared to our method. Additionally, membership
inference attacks on CogVLM-17b show better re-
sults compared to LLaVA-1.5-7b, possibly due to
CogVLM’s larger model parameters, particularly
those handling image embeddings, allowing for
better memorization of fine-tuned data.

4.3 Ablation Study

PC-MMIA employs the following strategies to en-
hance the effectiveness of difficulty calibration: i)
Calibrate with changes in token probability distri-
bution rather than directly using it to distinguish
members from non-members. ii) Generate sym-
metric samples x+perturbed and x−perturbed using bidi-
rectional Gaussian noise. iii) Perform softmax nor-
malization on the change in token log-likelihood.
To further explore the effectiveness of these strate-
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Table 3: Ablation study exploring the impact of different strategies on PC-MMIA performance for LLaVA-1.5-7b
across different datasets. Metrics used are AUC, TPR at 5% FPR (T@5F), and TPR at 1% FPR (T@1F).

Dataset
NoCaps Flickr30K PixMo

AUC T@5F T@1F AUC T@5F T@1F AUC T@5F T@1F

PC-MMIA 0.735 0.335 0.147 0.703 0.303 0.128 0.754 0.340 0.162

direct δ(y) 0.692 0.310 0.123 0.680 0.281 0.108 0.719 0.319 0.135
only x+

perturbed 0.732 0.331 0.144 0.707 0.299 0.117 0.742 0.331 0.158
only x−

perturbed 0.724 0.328 0.132 0.692 0.295 0.115 0.756 0.335 0.155
w/o normalization 0.677 0.253 0.104 0.668 0.275 0.107 0.683 0.306 0.118
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Figure 3: Impact of perturbation strength σ on PC-MMIA performance, evaluated across three datasets using both
LLaVA-1.5-7b and CogVLM-17b models.

gies, we employ four variants for ablation study:
direct δ(y): Directly use the average change in
token log-likelihood as the scoring function S for
classification. only x+

perturbed: Use x+perturbed alone
to calculate the change in token log-likelihood post-
perturbation. only x−

perturbed: Use x−perturbed alone
to calculate the change in token log-likelihood post-
perturbation. w/o normalization: Use the change
in log-likelihood directly as each token’s calibra-
tion weight, without normalization.

As shown in Table 3, our method demonstrates
the contribution of these three strategies to PC-
MMIA. i) The performance of the direct δ(y) vari-
ant declines compared to PC-MMIA, primarily be-
cause although Gaussian noise of the same strength
is added to images, the intrinsic complexity of sam-
ples means that Gaussian noise of the same strength
cannot be considered as perturbations of equiva-
lent strength on visual semantics, hindering the
effectiveness of directly using δ(y) to distinguish
members from non-members. ii) Normalization
operations have a significant impact on the perfor-
mance of PC-MMIA because we use the relative
change, rather than the absolute change, of token
log-likelihoods as the basis for calibration. This
makes the scoring of different samples more con-
sistent and comparable, mitigating the bias intro-

duced by the inconsistent strength of image seman-
tic perturbations. iii) The performance reduction
in both the only x+perturbed and only x−perturbed vari-
ants demonstrates the effectiveness of our strategy.
Generating symmetric Gaussian noise samples can
be regarded as multiple sampling within the neigh-
borhood of the data manifold to analyze the impact
of equivalent perturbations on each token in the
text more accurately, facilitating better calibration
and capturing tokens more critical for reflecting
training traces.

4.4 Analysis Study

This section explores factors possibly affecting the
performance of PC-MMIA, including perturbation
strength, perturbation method, and text length.

How does perturbation strength σ affect PC-
MMIA? We evaluate the model’s performance un-
der different σ settings, as shown in Figure 3. Ex-
treme σ values, either too small or too large, impact
PC-MMIA performance. When σ is too small, per-
turbation strength is insufficient to observe poorly
generalized regions in the local manifold of mem-
ber samples. Conversely, when σ is too large, Gaus-
sian noise fails to remain approximately semanti-
cally invariant, broadly reducing likelihoods for
all tokens in member and non-member samples,
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Figure 4: AUC results for various perturbation methods
using the LLaVA model across different datasets.
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Figure 5: AUC results for various perturbation methods
using the CogVLM model across different datasets.

thus failing to capture more discriminative tokens
reflecting training traces.

How does different perturbation methods af-
fect PC-MMIA? In our experiments, we use Gaus-
sian noise as the image perturbation method. To
demonstrate its effectiveness, we also apply per-
turbations including rotation (±15 degrees), hor-
izontal flipping, and random cropping (retaining
80% of the original image area), then evaluate the
performance of PC-MMIA. The results are shown
in Figures 4 and 5. These methods perform worse
than Gaussian noise and are not stable across dif-
ferent datasets. This is mainly because Gaussian
noise does not change the spatial structure or se-
mantic content of images but introduces mild, uni-
form pixel-level variations. In contrast, rotation
and cropping introduce geometric transformations
and partial information loss, while flipping can al-
ter the visual orientation of asymmetric objects,
thus reducing the consistency of model predictions
and weakening the effectiveness of PC-MMIA.

How does the length of answer text affect PC-
MMIA? We further evaluate the impact of answer
text length in the fine-tuning data on the perfor-
mance of PC-MMIA. Since the PixMo dataset ex-

10-20 40-50 80-100 150-200
Answer Text Length (tokens)

0.75

0.76

0.77

0.78

AU
C

LLaVa CogVLM

Figure 6: Impact of answer length on PC-MMIA in the
PixMo dataset.

hibits a wide range of answer lengths, we conduct
our experiments on this dataset. We divide the text
lengths into four groups: 10–20 tokens, 40–50 to-
kens, 80–100 tokens, and 150–200 tokens, with
each group containing 100 samples. As shown in
Figure 6, the AUC scores exhibit a slight upward
trend as the text length increases. This may be
because longer texts are more likely to contain in-
formation memorized by the target model, making
it easier to distinguish member texts from unseen
texts. Notably, several studies on membership in-
ference attacks against LLMs have demonstrated
that text length significantly influences attack per-
formance (Zhang et al., 2024b). In contrast, in
multimodal scenarios, this impact appears to be
less pronounced. This is primarily because the
presence of image embeddings effectively serves
as a longer prefix of tokens, compensating for the
information loss caused by shorter texts.

5 Conclusion

Conventional MIA overlook the intrinsic complex-
ity of samples, prompting an increasing number
of studies to introduce various difficulty calibra-
tion methods. However, these approaches focus
solely on calibrating text tokens, neglecting the
rich semantics brought by image embeddings. To
address this, we introduced PC-MMIA, a black-box
membership inference attack method specifically
tailored for multimodal large language models. It
captures tokens in the text that better reflect training
traces through perturbation of image embeddings,
assigning different weights to achieve difficulty cal-
ibration. Experiments demonstrate that PC-MMIA
outperforms all black-box access baselines. We
believe our work lays the groundwork for advanc-
ing MIA technology, thereby enhancing privacy
preservation in multimodal large language models.
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6 Limitations

Current research on membership inference attacks
predominantly emphasizes empirical methodolo-
gies, with a notable scarcity of systematic theoreti-
cal analyses and rigorous proofs concerning their
effectiveness. This gap is particularly evident in
the context of large-scale models, where the inter-
play between interpretability, memorization, and
generalization remains insufficiently explored.

Our proposed method also relies on certain
heuristic assumptions. For instance, Section 3.2
interprets the underlying principles from the per-
spective of data manifolds and local smoothness
within the input space. Due to the inherent com-
plexity and opaque nature of large model training
processes, it is challenging to rigorously validate
these assumptions mathematically or to construct a
formal theoretical derivation of the entire method.
This challenge underscores the potential for future
research in enhancing model interpretability and
theoretical modeling.

Furthermore, the performance of all existing
MIA methods on closed-source models still can-
not be accurately quantified. This is because we
lack access to the training data of these black-box
commercial models and are unaware of their de-
ployment details, making it impossible to conduct
precise testing on these models. In the domain of
membership inference attacks against multimodal
large language models, we operate based on a com-
mon assumption: methods that perform better on
open-source models are more likely to be effective
on closed-source commercial models. Building on
this reasoning established by previous studies, we
conducted a series of experiments on open-source
models to validate the superiority of our method.
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A Datasets

To comprehensively evaluate the robustness of PC-
MMIA in various scenarios, we conducted ex-
periments on three representative datasets: No-
Caps (Agrawal et al., 2019), Flickr30k (Young
et al., 2014), and PixMo (Deitke et al., 2024).
PixMo is a newly released open visual instruction
fine-tuning dataset from the Allen Institute for AI,
featuring diverse problem settings and a wide dis-
tribution of answer text lengths. In our experiment,
we select 5000 data samples from this dataset. No-
Caps and Flickr30k are widely used high-quality
caption datasets. We use the first caption provided
for each image and convert it into instruction fine-
tuning format according to the method by Liu et al.
(2023). We select 5000 samples from Flickr30k for
the experiment. Since the test set of NoCaps is not
publicly available, we utilize the validation set of
NoCaps. As shown in Table 4, each dataset is ran-
domly divided, labeling samples as members and
non-members to ensure consistency in data distri-
bution between member and non-member samples.

B Baseline Details

Below are the baselines compared to our method.
We modify some methods aimed at LLMs to make
them applicable to MLLMs:

• Loss: (Yeom et al., 2018) The Loss method
uses the loss calculated by the model on the
target sample as the membership score. The
intuition is that data points (members) seen
during training will have lower loss values,
while unseen data points (non-members) will
have higher loss values. We apply Loss to the
answer text in visual instruction fine-tuning
data.

• Neighbor: (Mattern et al., 2023) The Neigh-
bor attack baseline determines membership by
comparing the target sample’s loss with the
average loss of its perturbed neighbors. Fol-
lowing Wang’s setup, we generate 20 neighbor
samples for each data point through keyword
replacement in answer text of the visual in-
struction fine-tuning data.

• Min-K% Prob: (Shi et al., 2024b) The Min-
K% baseline uses the average log-likelihood
of the k% lowest probability tokens to calcu-
late membership scores. We apply it to answer
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Table 4: Details of the datasets used for the experiments. Each dataset is divided into member and non-member
samples to ensure consistent data distribution.

Dataset Total Samples Member Non-Member

NoCaps 4500 2250 2250
Flickr30k 5,000 2,500 2,500
PixMo 5,000 2,500 2,500

text in visual instruction fine-tuning data and
set K to 20.

• Min-K%++ Prob: (Zhang et al., 2025b) Min-
K%++ Prob is an extension of Min-K%, cal-
ibrated using the mean and standard devia-
tion of log-likelihood for all candidate tokens.
Note that this is a gray-box method because
it requires access to logits. We apply it to an-
swer text in visual instruction fine-tuning data
and set K to 20.

• DC-PDD: (Zhang et al., 2024b) DC-PDD cali-
brates using text frequency from an additional
text database. We apply it to answer text in vi-
sual instruction fine-tuning data and calibrate
using the C4 database provided in the paper.

• NormAC: (Zade et al., 2025) This method
mitigates high false positive rates and the need
for reference models by using a tunable tem-
perature to calibrate output probabilities, in-
spired by maximum likelihood estimation dur-
ing pre-training.

• MaxRényi-K%: (Li et al., 2024) This method
is based on the assumption that the model
should have more confidence in member sam-
ples, introducing Rényi entropy to measure
the model’s confidence in answer text. We set
the hyperparameter K to 10 and α to 1.

C Additional Implementation Details

To ensure the reproducibility of experiments and
the reliability of MIA evaluation, we explain im-
plementation details and evaluation metrics.

C.1 Training Setup
We conduct visual instruction fine-tuning on
LLaVA-1.5-7b (Liu et al., 2023) and CogVLM-
17b (Wang et al., 2024c) with fully open-sourced
training data. All experiments are initialized based
on the officially released pretrained checkpoint
weights. On the basis of the original instruction

fine-tuning data, we mix in the member samples
divided in our experiments to construct the final
dataset used for fine-tuning. The hyperparameter
settings in the experiments remain consistent with
the original fine-tuning settings, and we maintain
a consistent total batch size through gradient accu-
mulation.

C.2 Area Under the ROC Curve (AUC)

The Area Under the ROC Curve (AUC) is a widely
used metric for evaluating the performance of bi-
nary classification models, including membership
inference attacks. The ROC curve plots the true
positive rate (TPR) against the false positive rate
(FPR) at different decision thresholds. TPR, also
known as sensitivity or recall, is the ratio of actual
positive samples (i.e., member samples) correctly
identified as positive. FPR is the ratio of actual neg-
ative samples (i.e., non-member samples) wrongly
identified as positive. AUC ranges from 0 to 1,
where a value of 0.5 represents a random classi-
fier and a value of 1 signifies a perfect classifier.
In the context of membership inference attacks, a
higher AUC indicates the attack can better distin-
guish member and non-member samples across all
possible decision thresholds.

C.3 True Positive Rate at Low False Positive
Rate (TPR@low%FPR)

While AUC provides an overall measure of mem-
bership inference attack performance, it may not
be the most suitable metric in practical applica-
tions. In many situations, the cost of false positives
(i.e., wrongly identifying non-member samples as
members) can be significantly higher than the cost
of false negatives (i.e., wrongly identifying mem-
ber samples as non-members). Particularly in real-
world scenarios, the proportion of member and non-
member samples is not the same, with non-member
samples being much more prevalent. This metric
provides a more stringent evaluation of member-
ship inference attack performance, emphasizing its
ability to correctly identify member samples while
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Table 5: Performance comparison of PC-MMIA and
baselines on VizWiz-VQA.

Method AUC TPR@5F TPR@1F

Loss 0.648 0.289 0.115
Min-K% Prob 0.662 0.297 0.139
DC-PDD 0.673 0.305 0.128
Min-K%++ Prob 0.721 0.332 0.134
MaxRényi-K% 0.693 0.309 0.122

PC-MMIA 0.739 0.342 0.145

maintaining a low false positive rate.

D Additional Experiments

To further validate the effectiveness of PC-MMIA,
we conducted experiments on the VizWiz-VQA
dataset using the LLaVA-1.5-7b model. Table 5
shows that PC-MMIA achieves the best perfor-
mance compared to baseline methods, with an
AUC of 0.739 and improvements in TPR@5F and
TPR@1F by 3.0% and 2.2%, respectively, over
the strongest baseline (Min-K%++ Prob). This
highlights its robustness and broad applicability to
diverse datasets.

E Ethics Statement

Our primary aim in developing the PC-MMIA
method is to enhance the understanding and de-
tection of privacy leakage risks associated with
MLLMs, particularly those involving unauthorized
use or disclosure of sensitive information. We ac-
knowledge that the techniques designed for iden-
tifying membership could potentially be misused
if applied maliciously, leading to privacy infringe-
ments or exploitation of proprietary data. There-
fore, it is crucial to apply our research responsibly
and ethically, ensuring it serves to strengthen data
protection mechanisms and safeguard against pri-
vacy violations.

All experiments in this work are conducted on
publicly available or synthetic datasets that do not
contain personally identifiable information. No
human subjects were involved in data collection
or annotation, and no private data from proprietary
models was used. We encourage future researchers
to further explore membership inference attacks
under appropriate ethical safeguards.
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