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Figure 1: “Compute-optimal” does not necessarily translate to “latency-optimal” for test-time scaling. Left: Previous works
measure test-time scaling by #token budget, indicating sequential scaling shows superior token efficiency than parallel scaling
(majority voting for instance). Right: When considering latency as budget, parallel scaling can be 1.6x faster to achieve the
same accuracy than sequential scaling. Experiments are performed using s1.1-32B (Muennighoff et al., 2025) on MATH-
500 (Hendrycks et al., 2021). The red curve corresponds to sequential scaling with sequence length varying in {1024, 2048,
4096, 8192}, via budget forcing. The blue curve represents parallel scaling by majority voting with a fixed sequence length.

Abstract

Test-Time Scaling (TTS) has proven effective
in improving the performance of Large Lan-
guage Models (LLMs) during inference. How-
ever, existing research has overlooked the ef-
ficiency of TTS from a latency-sensitive per-
spective. Through a latency-aware evaluation
of representative TTS methods, we demon-
strate that a compute-optimal TTS does not
always result in the lowest latency in scenar-
ios where latency is critical. To address this
gap and achieve latency-optimal TTS, we pro-
pose two key approaches by optimizing the con-
currency configurations: (1) branch-wise par-
allelism, which leverages multiple concurrent
inference branches, and (2) sequence-wise par-
allelism, enabled by speculative decoding. By
integrating these two approaches and allocating
computational resources properly to each, our
latency-optimal TTS enables a 32B model to
reach 82.3% accuracy on MATH-500 within
1 minute and a smaller 3B model to achieve
72.4% within 10 seconds. Our work empha-
sizes the importance of latency-aware TTS and
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demonstrates its ability to deliver both speed
and accuracy in latency-sensitive scenarios.

1 Introduction

Test-Time Scaling (TTS) is an effective approach
to improve the performance of Large Language
Models (LLMs) at the cost of additional inference-
time computations (Snell et al., 2024; Brown et al.,
2024). TTS can be realized by two basic ap-
proaches: sequential scaling and parallel scaling.
Sequential scaling requires the model to produce an
extended reasoning process in a single pass (Muen-
nighoff et al., 2025). In contrast, parallel scal-
ing generates multiple solutions in parallel and
selects the final answer, usually through majority
voting (Wang et al., 2022; Liu et al., 2025). Hybrid
approaches can be constructed on top of the two
basic ones (Guan et al., 2025; Wang et al., 2024b).

With the number of generated tokens (#tokens)
as budget, many existing studies (Snell et al., 2024;
Setlur et al., 2025; Yang et al., 2025; Liu et al.,
2025; Shi and Jin, 2025; Zhang et al., 2024) have
examined compute-optimal strategies that enhance
average performance gain per token, a metric we
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Figure 2: Latency-aware test-time scaling on MATH-500 with different model types, with sequential scaling in red

and parallel scaling in blue.

refer to as token efficiency. However, in latency-
sensitive scenarios where small batch sizes are em-
ployed, e.g., personal computer, small-scale com-
mercial deployment and edge device, “compute-
optimal” does not necessarily translate to “latency-
optimal”. This discrepancy is because the perfor-
mance achieved within a limited time is determined
by token efficiency as well as the throughput (i.e.,
average number of output tokens per second). As
shown in Figure 1, for s1.1-32B (Muennighoff
et al., 2025) model, although sequential scaling
has a better token efficiency, achieving a similar
performance with 9x fewer tokens compared to
parallel scaling, it turns out that parallel scaling
achieves 1.6x lower latency. In fact, under small
batch sizes, the time of an LLM autoregressive de-
coding step is dominated by the memory access of
the parameters. Therefore, a moderately increased
number of parallel branches incurs little additional
latency, allowing a much higher throughput almost
for free, as shown in Figure 3.

We then ask how we can achieve latency-optimal
test-time scaling. One lesson from the observa-
tion above is that, in addition to optimizing token
efficiency, attention must be given to improving
the generation concurrency to chase a through-
put. There are two approaches to improving con-
currency: (1) branch-wise parallelism, which in-
creases the number of parallel branches B, and (2)
sequence-wise parallelism, which generates mul-
tiple successive tokens for a sequence in a single
forward pass with speculative decoding (Leviathan
et al., 2023; Chen et al., 2023). However, current
research lacks a thorough analysis of how to allo-

cate computational power to these two resource-
competing approaches and to what extent they can
be improved.

To bridge the gap, we examine the impact
of concurrency configuration for latency-aware
test-time scaling in this study. Specifically, we
conduct experiments on representative datasets
including MATH-500 (Hendrycks et al., 2021),
AIME24 (AoPS, 2024), AIME25 (AoPS, 2025),
and GPQA-Diamond (Rein et al., 2024) across
model sizes from 3B to 32B and under varied
concurrency configurations. Revealed by our ex-
periments and analyses, the latency-optimal con-
currency depends on the comparative advantage
of token efficiency in sequential scaling and par-
allel scaling. For models with higher token ef-
ficiency with parallel scaling (e.g., LLaMa-3.1-
8B-Instruct (Meta, 2024)), one should prioritize
branch-wise parallelism. Otherwise (e.g., for QwQ-
32B (Team, 2025)) sequence-wise parallelism takes
priority. To determine the latency-optimal config-
uration, we propose a simple yet effective greedy
search algorithm with less searching steps. Un-
der 1 minute latency constraint, an optimal concur-
rency configuration can provide up to 7.3% better
performance than baselines where only a single
parallelism is applied.

Our contributions can be summarized as follows:

1. We introduce latency-aware test-time scaling,
which considers the performance scaling un-
der latency constraints. Unlike existing works
that prominently only focus on token effi-
ciency, we discover the necessity of taking
systemic throughput into consideration for a
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Figure 3: System state, latency, and throughput of s1.1-32B. Left: The roofline model with s1.1-32B. Increasing computational
demand shifts execution from memory-bound to compute-bound. Middle: Throughput scales linearly with batch size before
saturating at peak FLOPS. Right: The latency per forward pass under varying batch sizes.

better latency-performance trade-off.

2. We provide a unified view for parallel
branches and speculative decoding from the
perspective of generation concurrency. This
allows us to frame latency-optimal test-time
scaling as a resource allocation problem. A
greedy search algorithm is proposed to search
the latency-optimal configuration.

3. Through extensive experiments, we explore
the optimal concurrency configuration for
latency-aware test-time scaling. Our experi-
ments reveal that for s1.1-32B, an optimal con-
currency configuration can improve the accu-
racy by 7.3% while reducing latency by 1.7,
reaching 82.3% on MATH-500 in 1 minute.

2 Related Work

Test-time scaling Scaling the compute at infer-
ence time has been proven to be a prominent
approach to improve LLM performance. Gen-
erally, test-time scaling methods fall into two
main categories: sequential and parallel scal-
ing. For the former, sequential scaling methods,
represented by OpenAI’s ol (OpenAl, September
2024), DeepSeek-R1 (Guo et al., 2025), and Qwen
QwQ (Team, 2025), enforce the model to generate
longer solutions with a detailed reasoning chain.
Such an ability can be incentivized with supervised
training (Nye et al., 2021; Lee et al., 2025; Muen-
nighoff et al., 2025) or reinforcement learning (Guo
et al., 2025). Another main category is parallel
scaling. This method first generates multiple re-
sponse candidates in parallel, then applies a selec-
tion criterion to identify the best output. Recent
research primarily uses token count as a metric to
measure the budget of test-time scaling (Snell et al.,
2024; Setlur et al., 2025; Yang et al., 2025). Re-
cent work (Singhi et al., 2025) shows that majority

voting outperforms verifier-based methods under
low/medium token budgets. Notably, low latency
necessitates limited token usage, where majority
voting is superior. Thus, our work employs ma-
jority voting for parallel scaling. Different from
previous works, our work points out that compute-
optimal does not necessarily translate to latency-
optimal. We introduce latency-aware test-time scal-
ing and figure out the concurrency configuration to
latency-optimal TTS.

Speculative decoding Speculative decoding uses
a small draft model to generate several draft to-
kens autoregressively, and the target model to ver-
ify them in parallel while ensuring a lossless ac-
celeration (Leviathan et al., 2023; Chen et al.,
2023). Many studies focus on improving accel-
eration. EAGLE-series (Li et al., 2024b,a, 2025),
Medusa (Cai et al., 2024), and Hydra (Ankner et al.,
2024) employ features from the target model for
better draft acceptance rate. HASS (Zhang et al.,
2025) mitigates the inconsistency between train-
ing and inference by simulating the multi-step draft
generation in the training phase. Hierarchical Draft-
ing (Cho et al., 2025) improves the acceptance
rate by regarding the hierarchical drafting strategy
based on temporal locality. MoESD (Huang et al.,
2025) shows that at medium batch sizes, MoE mod-
els with speculative decoding can surpass dense
models. Our work demonstrates the feasibility of
latency-aware TTS optimization through specula-
tive decoding, presenting it as one viable approach
to latency-optimal TTS.

3 Rethinking Test-Time Scaling with
Latency

Previous works measure the budget of LLM test-
time scaling by #tokens. However, it provides an in-
complete evaluation, particularly when considering
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real-world deployment constraints. Our investiga-
tion reveals the necessity to consider latency-aware
TTS in latency-sensitive scenarios.

3.1 Latency-Aware Test-time Scaling

The inference of LLMs on modern accelerators
is a memory-bound process, constrained by mem-
ory bandwidth. Nowadays, LLMs have billions
of parameters (Bai et al., 2023; Yang et al., 2024;
Team, 2025; Guo et al., 2025; Meta, 2024). In the
autoregressive decoding, parameters (weights &
KV caches) are loaded from memory (e.g., HBM
on a GPU) into the compute units (e.g., SMs on
a GPU) for matrix multiplication and other arith-
metic operations. The runtime paid for the iteration
is dominated by memory access. This is called the
memory-bound nature of LLM. Under memory-
bound constraints, slightly increasing the computa-
tion overhead does not affect the inference latency,
but can increase throughput, as shown in Figure 3.

To characterize latency-aware test-time scaling
under the memory-bound scenario, we explicitly
consider two key factors:

Token efficiency is the ratio of task-specific ac-
curacy improvement per token generated by the
LLM, measured by %/token. A high token effi-
ciency indicates that each token contributes sig-
nificantly to achieving the accuracy. Prior work’s
approach to determining compute-optimal TTS us-
ing #token as budget fundamentally represents a
search for maximal token efficiency.

Throughput is the number of output tokens gen-
erated per wall-clock time, measured by token/s.
Note that the throughput may vary as the sequence
length grows. A high throughput indicates efficient
use of hardware resources and the system’s capac-
ity to quickly handle a large volume of tokens.

Consider s1.1-32B (Muennighoff et al., 2025)
as an example. Figure 1 compares the accuracy-
#token and accuracy-latency curves of sequential
and parallel scaling. Sequential scaling achieves
higher token efficiency (83.3%/2'3toks) than par-
allel scaling (83.3%/2'*4toks), but Figure 3 reveals
its throughput is 16 x lower. Consequently, sequen-
tial scaling requires 1.6 X more time to attain com-
parable accuracy. This suggests that while sequen-
tial scaling improves token efficiency, its inferior
throughput hinders better accuracy in limited time.
Thus, test-time scaling budgets must consider both
token efficiency and throughput to achieve high
accuracy with low latency.

3.2 How to Improve Latency-Aware TTS? A
Concurrency Perspective

To improve latency-aware TTS, the key insight
is to improve generation concurrency to increase
throughput. To this end, there exist two approaches
from the perspective of concurrency:

Branch-wise Parallelism. One approach is em-
ploying multiple concurrent branches B for the
question, as shown in Figure 4 (b). For instance,
when a 2048-token response fails to yield a cor-
rect answer, users can infer more branches to gen-
erate multiple responses of the same length and
determine the final answer through majority vot-
ing. This approach harnesses more underutilized
memory-bound computational resources, introduc-
ing almost no extra latency. Employing multiple
branches to explore diverse reasoning paths brings
further improvements of TTS performance.

Sequence-wise Parallelism Another effective ap-
proach is speculative decoding (Leviathan et al.,
2023; Chen et al., 2023), as shown in Figure 4 (c).
SD accelerates by verifying multiple draft tokens
concurrently, leveraging underutilized memory-
bound computational resources to mitigate the
memory access burden in sequential generation
with lossless performance. With SD, LLM can
generate longer responses within a limited time,
thereby enhancing TTS performance.

The combination of the two approaches is illus-
trated in Figure 4 (d). Branch-wise parallelism
enhances performance without increasing latency,
elevating the scaling curve. Sequence-wise paral-
lelism reduces latency without compromising per-
formance, causing the scaling curve to shift left-
ward. Their combined effect moves the scaling
curve toward the upper-left quadrant.

3.3 Latency-Optimal Test-Time Scaling

The joint application of both approaches increases
the overall concurrency and introduces additional
computational overhead. When this overhead sur-
passes memory access overhead, the system tran-
sitions into a compute-bound state, leading to
more latency. Besides, branch-wise parallelism
exhibits diminishing improvement with increas-
ing branches, while sequence-wise parallelism’s
acceleration reaches a maximum threshold. Con-
sequently, an optimal boundary curve represents
the latency-optimal test-time scaling, as shown by
the green curve in Figure 4 (d). This curve defines
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where neither latency nor accuracy can be further
improved without concurrency trade-offs.

We aim to determine the latency-optimal TTS
strategy by allocating concurrency resources with
parallel branches B and draft length ~. Let
Target(0, T, x) be the output distribution over prob-
lem x produced by the LLM with test-time compute
hyperparameter ¢ and time limitation 7". The set-
tings of branches and draft length are included by
{B,~} C 6. The latency-optimal test-time scaling
is given by:

ez,y* (z) (T) =

arg max (B tuge0.7.0) [Ly=yr@)]) - ()
where y*(z) indicates the groundtruth of corre-
sponding problem z, and 6 . (@) (T') represents the
test-time latency-optimal scaling strategy for prob-
lem z with time T'. Finding the optimal 6 . ., (T)
is also the way to find optimal branches B* and
draft length v*.

Finding (B*,~*) requires to search the config-
uration space. Although grid search can find the
optimal configuration, it brings a significant cost
to search the entire configuration space. Therefore,
we introduce a simple yet effective greedy search
algorithm, as shown by Algorithm 1.

In practice, B takes values in powers of 2 (B =
2F), while ~ increments in steps of 1. The basic
grid search evaluates every (B, ), with complexity

Algorithm 1 Greedy Search for Latency-Optimal
TTS

Require: tts_task: TTS evaluation. 7: latency budget.
(B, ~): configuration; acc: accuracy

I: B+1

2: v+ 0

3: acc  tts_task(B,v,T)

4: end < False

5

6

7

> Baseline accuracy

: while not end do
accy + tts_task(2B,~,T) > Expand branch-wise
accy < tts_task(B,v+1,T) > Expand
sequence-wise
8: if accy, > accy then
9: Bnew, Ynew, ACCnew — QB> 7Y, ACCp
10: else
11: Brew; Ynew, CCnew < B,y 4+ 1,accy
12: end if
13: if accpew > acc then
14: B, v, acc < Brew,; Ynew, ACCnew
15: else
16: end < True
17: end if
18: end while
19: return (B,7), acc

of O((log Baz +1) X Yimaz)- With greedy search,
the complexity reduces to O((log B* + 1) + v*),
where B* and «v* denote the optimal configuration.

4 Experiments and Discussion

4.1 Experimental Setup

Tasks. Representative challenging tasks as bench-
marks to measure the scaling property are selected:
MATH-500 (Hendrycks et al., 2021) is a popu-
lar math benchmark comprising 500 high-school
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Figure 5: Latency-aware test-time scaling with different branches on s1.1-32B, LLama-3.1-8B-Instruct and s1.1-3B.
Speculative decoding is not implemented. Each picture shows the scaling curve with varying branch numbers.
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Figure 6: Latency-aware test-time scaling with specula-
tive decoding of different draft length v on MATH-500.
Number of branch is fixed to 1. Draft model: DeepSeek-
R1-Distill-Qwen-7B. Target model: QwQ-32B.

competition problems. AIME24 (AoPS, 2024) and
AIME25 (AoPS, 2025) each consist of 30 math
problems from the 2024 and 2025 American Invita-
tional Mathematics Examination (AIME). GPQA.-
Diamond (Rein et al., 2024) consists of 198 science
QA problems encompassing PhD-level physics,
chemistry, and biology.

Models. We choose models with parameter sizes
suitable for device-side deployment. Also, to imple-
ment speculative decoding, we select model types
with draft models available. Therefore, considering
its scalability, we employ s1.1-32B as our test-time
scaling baseline. s1.1-7B is used as its draft model
for speculative decoding. Also, we conduct rele-
vant experiments on LLaMa-3.1-8B-Instruct (Meta,
2024) with Eagle3 (Li et al., 2025) as the draft
model. For RL-based thinking model, we employ
DeepSeek-R1-Distill-Qwen-32B (Guo et al., 2025)
and QwQ-32B (Team, 2025) for their superior rea-
soning ability. The DeepSeek-R1-Distill-Qwen-7B
is used as their draft model. We employ s1.1-3B
for small-sized LLM for its outstanding model size
and excellent performance with Qwen2.5-0.5B-
Instruct (Bai et al., 2023) as the draft model. To

better control the output sequence length, we em-
ploy budget forcing (Muennighoff et al., 2025) as
an appropriate method to enforce the model to gen-
erate longer CoT. We use majority voting (Wang
et al., 2022) to select the answer. Experiments are
conducted on the codebase of OpenR (Wang et al.,
2024a).

4.2 Sequential and Parallel Scaling under
Latency-Aware TTS

Sequential scaling suffer from low throughput.
As shown in Figure 2, sequential scaling achieves
superior performance across most model types.
However, its impact is less pronounced for mod-
els not explicitly trained for long CoT reasoning,
such as LLaMa-3.1-8B-Instruct (Meta, 2024). Con-
versely, Figure 3 reveals that sequential scaling ex-
hibits lower throughput. For instance, the s1.1-32B
model processes only 22.7 tokens/s, translating to
approximately 1,000 tokens per minute. While
sequential scaling demonstrates better token effi-
ciency, its lower throughput makes it less effective
than parallel scaling under time constraints. Con-
sequently, sequential scaling struggles to generate
sufficient tokens to attain high accuracy.

Parallel scaling improves fast, but limited. In
Figure 2, parallel scaling shows lower token ef-
ficiency than sequential scaling for most models
except LLaMa-3.1-8B-Instruct. However, from
Figure 3, increasing the branches of LLM inference
hardly requires extra latency. Specifically, when
increasing branches from 1 to 16, s1.1-32B gains
nearly 10% improvement on MATH-500 at almost
no extra latency cost. This can be attributed to the
fact that the computation resources are fully uti-
lized. By inference in branches, one autoregressive
decoding procedure would generate the branches’
tokens, but the latency cost of developing one to-
ken by sequential scaling is the same. So parallel
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Figure 8: Latency-aware test-time scaling curves of QwQ-32B and DeepSeek-R1-Distill-Qwen-32B under latency
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scaling can reach a larger #token faster. When the
branches are increased to 64, the performance gain
becomes slight, and the latency slightly grows be-
cause of the large amount of KV cache. Overall,
parallel scaling maximizes hardware parallelism
and scales output tokens simultaneously. But, par-
allel scaling often yields suboptimal accuracy due
to branch redundancy and limited scalability.

Mostly, parallel scaling can surpass sequential
scaling within limited time period. As shown
in Figure 2, merely employing parallel scaling can
surpass sequential scaling within a shorter, limited
time. However, the extent of performance improve-
ment varies depending on the model type. Specifi-
cally, for reasoning models like QwQ-32B, parallel
scaling reaches 80.1% accuracy on the MATH-500
dataset within 30 seconds, but sequential scaling
requires 1.4 x more time to achieve the comparable
performance. Sequential scaling shows a slight per-
formance gain for LLaMa-3.1-8B-Instruct, which
is not designed for long CoT reasoning. While par-
allel scaling is still effective on MATH-500 since
it explores more diverse solution paths, it shows
obvious token efficiency, and sequential scaling
cannot surpass it. Overall, parallel scaling can sur-
pass sequential scaling w.r.t. latency, reaching a
comparable accuracy within a relatively short time.

4.3 The Impact of Branch-wise Parallelism
for Latency-Aware TTS

We conduct experiments on sequential scaling with
varying branch sizes. In these configurations, we
implement sequential scaling in parallel, with all
parallel branches aggregated through majority vot-
ing. As shown in Figure 5, s1.1-32B demonstrates
an initial upward trend in the TTS curve as the
number of branches increases, indicating effective
performance improvements. However, when the
branch size grows excessively, the performance
gains diminish, and latency increases slightly due
to the non-negligible overhead of KV cache. In
contrast, LLaMa-3.1-8B-Instruct exhibits minimal
sequential scaling effects, resulting in a flatter curve
compared to s1.1-32B and QwQ. Nevertheless, par-
allel scaling proves impactful, yielding an accuracy
improvement that elevates the curve.

4.4 The Impact of Sequence-wise Parallelism
for Latency-Aware TTS

Speculative decoding can accelerate model infer-
ence to some extent while preserving accuracy. As
shown in Figure 6, most scaling curves with specu-
lative decoding are on the left side of the baseline
curve. As the speed-up ratio grows, the left-shifted
trend becomes more obvious. However, when the
draft length v becomes large, the speed-up ratio
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Baseline 96.2:102  75.0406 157.9+05 83.4112  280.6:05 84.9+15 419.5107 85.4+09
Bnh-wise 96.7:02  79.4107 159.2+08 86.2+11  284.5:03 88.3x15 428.0x06  89.6+10
Seq-wise 55.5i04 75.0+03  91.1x03 834119 1619103 849114 2419408  85.4+0.
Lat-Opt. 572104 823+18  959+03  859+07 179.1x04 91.7413 283.1x06 92.7+03
Improve 1.7x 7.3+ 1.6x 2.5+ 1.6 6.8+ 1.5% 7.3+

Table 1: Results of baseline, branch-wise parallelism, sequence-wise parallelism and latency-optimal TTS with
different sequence lengths on MATH-500 of s1.1-32B. Lat.: Latency. Acc.: Accuracy. Bnh-wise: Branch-wise
parallelism. Seq-wise: Sequence-wise parallelism. Lat-Opt.: Latency-Optimal. Improve is reported between
Baseline and Lat-Opt. Results are obtained from 3 repeated experiments with mean and standard deviation reported.
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Figure 9: Latency-aware TTS curves of s1.1-32B on MATH-500, AIME24, AIME25 and GPQA-Diamond.

—-e- Sequential scaling —-e—- With branch-wise parallelism With sequence-wise parallelism —*- Latenct-Optimal scaling

MATH-500 GPQA-Diamond AIME24 AIME25
80 e * * » ok
_ e 15 , 6 7 / s "
o - /7 . / ’ ’
& *” - 7 e / / /s -
.70 ol PO e " .,/" N / / 6 / lo"’
9 e o _e 10 Lt 48 4 s / Ve /
© * / - P ¢ 4 Soy PO 4 / 4
, _- , v / ¥ e-——d E 4
3 60 v - ¢ - R - N R * 7
Q o //. 5 _# 8 ’ , L3 o -=Dg-___o 2 L3 S
< L e i * P e S
e v’ i - S
50 . * ¢ 0 e .
22 23 24 25 22 23 24 25 22 23 24 25 22 23 24 25

Figure 10: Latency-aware TTS curves of s1.1-3B on MATH-500, AIME24, AIME25 and GPQA-Diamond.

would decay, slowing down the overall speed. In
our experiments, QwQ-32B is the target model,
while DeepSeek-R1-Distill-Qwen-7B as the draft
model, achieving a maximum speed-up ratio of
1.64 x. Therefore, the scaling curve moves to the
left first and then to the right. Sequential scaling
with speculative decoding can achieve 7.5% higher
accuracy than the baseline curve for a limited time.
These results demonstrate that employing a proper
draft length + can push the inference speed to an
optimal stage, enabling further sequential scaling
within a limited time.

4.5 Latency-Optimal TTS with Branch-wise
and Sequence-wise Parallelism

We conduct comprehensive experiments with vari-
ous parallel branches and draft lengths to identify
the concurrency configuration to achieve latency-
optimal TTS. The results are shown in Figure 7

and 8. For LLMs that benefit primarily from se-
quential scaling, speculative decoding emerges as
the dominant factor in the latency-optimal configu-
ration. Conversely, for LLMs hat exhibit improve-
ments from branches, increasing the number of
branches yields huge performance gains. This dif-
ference stems from the different token efficiency.
For reasoning models like QwQ, accuracy improve-
ments are achieved through long CoT, making bet-
ter SD acceleration more advantageous within lim-
ited time. In contrast, models like LLaMA-3.1-8B-
Instruct, which do not benefit from long CoT, using
more branches to expand the search paths is more
efficient. See appendix for detailed configurations.

S5 Results under Latency-Optimal TTS
5.1 Can LLM Solve the Problem in 1 minute?

Achieving as high accuracy as possible within a
limited time holds significant practical value. We
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Model Grid Search | Greedy Search
(B*,~") Accuracy Steps|(B*,~") Accuracy Steps
s1.1-32B (16,5) 823% 56 | (16,5) 823% 10
s1.1-3B (32,5) 724% 56 | (32,5) T724% 11
DS-32B  (16,4) 622% 56 | (16,4) 622% 9
QwWQ32B (4,5) 94.5% 56 | (4,5) 945% 8

Table 2: Comparison of Grid Search and Greedy Search
for Different Models. DS-32B: DeepSeek-Distill-32B.

aim to find out how TTS can improve the accuracy
individually on the device side within a relatively
short time limitation, like 1 minute. To this end, we
comprehensively evaluate s1.1-32B and s1.1-3B
w.r.t. latency and record their inference latency.
From Figures 9 and 10, we derive the follow-
ing observations: (1) Large model like s1.1-32B,
achieves relatively high accuracy within just 1
minute, which is unattainable by the baseline. (2)
Smaller model (s1.1-3B) attains notable accuracy
in merely 10 seconds, showing significant potential.
This trend persists across datasets spanning diverse
domains, suggesting that popular models can be
optimized using the latency-optimal TTS strategy.

5.2 How Can Latency-Optimal Improve
Compared with Baseline?

Based on previous findings of latency-optimal
TTS with different model types, branches, and
draft lengths, we summarize the results in Ta-
ble 1. For s1.1-32B on MATH-500, we find that
latency-optimal TTS can achieve 6% accuracy im-
provement on average than merely using sequence-
wise parallelism, and 1.6 on average faster than
branch-wise parallelism. Latency-optimal TTS out-
performs the baseline in both accuracy and latency
to a noticeable degree. However, increased branch
and draft length causes LLMs to enter a compute-
bound regime, where computational overhead ex-
ceeds memory access overhead. This eliminates
the benefits of parallelism, leading to increased la-
tency and sometimes even worse than the baseline.
This suggests that a latency-optimal TTS strategy
requires extremely fine-grained parameter tuning.

5.3 Effectiveness of Greedy Search

To validate the effectiveness of our proposed greedy
search algorithm, extensive experiments are con-
ducted across various models on MATH-500. The
results in Table 2 show that our greedy search
achieves the same optimal configuration as grid
search, while significantly reducing searching steps

(8-10 vs 56). These results show the practical effi-
ciency of our greedy search algorithm.

1024 2048 4096 8192
Acc. (%) Acc. (%) Acc. (%) Acc. (%)

823118 859107 91.7+13 92.7+03
792416 82.2+15 88.6x14 90.1+13
Confidence avg-max 81.2+14 83.2+14 90.6:03 91.1+12
Confidence min-vote 82.4+13 85.2+15 91.5+16 92.7+04
Confidence avg-vote 83.0+:1> 86.3:113 92.3+12 93.540s8

Aggregation Method

Majority Voting
Confidence min-max

Table 3: Performance comparison of majority voting
and different confidence-based strategies. Acc.: Accu-
racy. Results are obtained from 3 repeated experiments
with mean and standard deviation reported.

5.4 Different Aggregation Strategies

We conduct additional ablation experiments with
s1.1-32B on MATH-500 comparing majority vot-
ing (self-consistency) with confidence-based ag-
gregation strategies (Liu et al., 2025): first weight
the answers by minimum (min) or average (avg)
confidence, then select the answer with highest
confidence (max) or accumulates the scores of all
identical answers and then selects the answer with
the highest score (vote). Results are shown in Ta-
ble 3. Note that confidence-based strategies do not
affect the latency. The results show that using con-
fidence scores can indeed slightly improve output
quality over simple majority voting.

6 Conclusion

In this paper, we propose to rethink test-time scal-
ing in latency-sensitive scenarios. We show that
compute-optimal does not always result in latency-
optimal under such conditions due to memory-
bound constraint. To address this, we propose to
improve TTS on generation concurrency to maxi-
mize throughput from a unified view. Specifically,
we present two approaches: (1) branch-wise paral-
lelism via multiple branches and (2) sequence-wise
parallelism by speculative decoding, along with
their combinations. Furthermore, we investigate
the concurrency allocation strategy to balance these
approaches for latency-optimal TTS. A simple yet
effective greedy search algorithm is proposed to
determine the optimal configuration. Experimental
results show that latency-optimal TTS enables 32B
model to achieve 82.3% accuracy on MATH-500
within 1 minute, while 3B model attains notable ac-
curacy within just 10 seconds, showing significant
improvements in both speed and accuracy.
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7 Limitations

Workload The basic concept of this paper is that
the inference of LLM is a memory-bound process.
However, this concept holds on small (like mobile
phones, personal computers) or medium (like work
stations) scale hardware. For large-scale servers,
which deals with hundreds or thousands of requests
at one time, the main bottleneck of inference is
computation, and the budget of inference can be
measured by #tokens. However, the studies on
small and medium scale hardware still hold signif-
icant meaning, as the practical budget measured
on these platforms is often under memory-bound
scenarios.

8 Potential Risks

While our work shows test-time scaling under la-
tency budget and our methods can significantly
reduce inference latency, it introduces several risks.
For instance, TTS could sometimes degrade perfor-
mance on underrepresented data domains, exacer-
bating fairness issues. Scaled models may become
more susceptible to adversarial prompts that exploit
simplified decision pathways.

9 License For Artifacts

The artifacts utilized in this study, including
datasets, codebase, and pre-trained models, are
sourced from publicly available repositories under
permissive licenses. All datasets adhere to open-
access licenses (MIT License), ensuring compli-
ance with redistribution and modification terms.
Codebase adheres to open-access licenses (MIT
License). For pre-trained models, we verify com-
patibility with Apache License 2.0. This alignment
guarantees ethical reuse while maintaining trans-
parency in our methodology.

10 Information About Use of Al
Assistants

In the preparation of this work, we employ Al as-
sistants to assist with refining academic language,
and debugging code segments. The Al tools were
used solely for improving clarity, grammatical cor-
rectness, and syntactic efficiency—tasks analogous
to those performed by a human editor or linter. All
conceptual contributions, technical claims, and crit-
ical analysis remain the authors’ own.
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A Appendix

A.1 Why does the parallel scaling curve
exhibit a steeper slope than the sequential
scaling?

This result can be attributed to the heavy model
weights of LLM under the measurement of mem-
ory access. For instance, Qwen2.5-32B-Instruct
has 32 billion parameters, so the model weights is
64GB. While the total KV cache at sequence length
1024 and batch size 1 is 0.25GB. Under this condi-
tion, KV cache only accounts for a small portion of
memory access. When parallel scaling can easily
extend branches with a small budget by 0.25GB per
branch with 1024 length, sequential scaling tries
hard to load the whole model weights of the entire
64GB just for 1 more extended token. This extreme
imbalance on memory access makes parallel scal-
ing significantly advantageous regarding memory
access. In contrast, sequential scaling suffers from
high memory access costs.

A.2 Additional Results

We present additional experimental results. The
results on the influence of branch-wise parallelism
is shown in Figure 11. The results of the influence
of branch-wise parallelism under different specula-
tive decoding configurations is shown in Figure 12.
The results of sequence-wise parallelism under dif-
ferent branch counts are shown in Figure 13..

The acceptance rate « of the speculative decod-
ing we employ is reported below: Target: sl.1-
32B, draft: s1.1-7B, «a: 0.831. Target: DeepSeek-
R1-Distill-Qwen-32B, draft: DeepSeek-R1-Distill-
Qwen-7B, a: 0.897. Target: QwQ-32B, draft:
DeepSeek-R1-Distill-Qwen-7B, a: 0.781. Target:
LLaMa-3.1-8B-Instruct, draft: Eagle3, a: 0.904.
Target: s1.1-3B, draft: Qwen2.5-0.5B-Instruct, a:
0.701.

The latency-optimal configurations shown in Fig-
ure 7, 8, 9 and 10 are reported below: Figure 7:
Left: B=16, v=5. Right: B=32, v=3. Right: B=32,
~=5. Figure 8: AIME24 with QwQ-32B: B=16,
v=4. AIME24 with DeepSeek-R1-Distill-Qwen-
32B: B=32, y=4. AIME25 with QwQ-32B: B=16,
v=4. AIME24 with DeepSeek-R1-Distill-Qwen-
32B: B=32, v=5. Figure 9: MATH-500: B=16,
v=5. GPQA-Diamond: B=32, v=5. AIME24:
B=32, y=4. AIME25: B=32, v=5. Figure 10:
MATH-500: B=32, v=5. GPQA-Diamond: B=16,
v=5. AIME24: B=8, v=5. AIME25: B=16, y=5.

A.3 Discussion on prefill phase

The whole inference time of LLM is composed of
prefilling and decoding. While prefill time is in-
deed an important overhead of the overall inference,
it is not the dominant factor in our case. For ex-
ample, we have analyzed MATH-500 and find that
the question length distribution is highly skewed
towards shorter inputs: 88% of questions contain
fewer than 360 tokens, and 99% contain fewer than
800 tokens. In contrast, our model generates re-
sponses up to 8,192 tokens in length. On modern
GPUs, the prefill phase is significantly faster than
the autoregressive decoding phase. Given the ra-
tio of input and output lengths in our dataset, the
prefill time is negligible of the total latency.
Therefore, while prefill time is technically part
of the inference process, its contribution is small.
Excluding it does not affect the conclusions.

A.4 Discussion on large batch, multi-requests
scenario

We show the experiments as number of branches
grows in the table below. The first column: model
configuration. The second column: Accuracy.
#Req: number of requests. Each cell contains the
latency. With more requests, the workload tran-
sitions to a compute-bound state. At this point,
latency depends on the FLOPs, which is directly
proportional to the token count. Consequently, for
our latency-aware strategy, once the workload tran-
sitions from memory-bound to compute-bound, the
trade-off strategies can be directly informed by pre-
vious token count strategy.
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Figure 11: More results of the influence of the number of branches from branch-wise parallelism.

Models Configuration  Accuracy #Req

1 4 16
s1.1-32B B=1,v=5 82.3% 90.5s  91.2s 92.9s
s1.1-32B B=4,~v=5 85.6% 913s 93.1s 156.8s
s1.1-32B B=16,vy=5 83.8% 90.5s 142.7s 576.8s
s1.1-32B B=64,v=5 83.0% 159.8s 602.8s 2621.8s

Llama-3.1-8B-Instruct B =1,7v=14 42.3% 7.6s 7.6s 8.2s

Llama-3.1-8B-Instruct B =4,v=4 47.6% 7.6s 8.3s 26.4s
Llama-3.1-8B-Instruct B =16,7v=4  63.1% 8.1s 25.8s 95.8s
Llama-3.1-8B-Instruct B =64,y =4  64.9% 244s  91.2s  374.5s

Table 4: Latency under different configurations and number of requests (#Req). Memory-bound workloads are
marked with gray. As the number of computed tokens per forward grows, the system transits from memory-bound
to compute-bound. The latency of the latter can be measured by #tokens.
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Figure 12: More results of the influence of the number of branches from branch-wise parallelism under different
sequence-wise configurations. The draft lengths of speculative decoding varies among {2, 4, 5}.
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Figure 13: More results of the influence of draft length from sequence-wise parallelism under different branch-wise
configurations. The number of branches varies among {1, 4, 16, 64}.
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