
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 17099–17123
November 4-9, 2025 ©2025 Association for Computational Linguistics

ConciseRL: Conciseness-Guided Reinforcement Learning for Efficient
Reasoning Models

Razvan-Gabriel Dumitru
University of Arizona

ServiceNow AI
razvandumm@gmail.com

Darius Peteleaza
MultiversX

Lucian Blaga University of Sibiu
peteleaza.darius@gmail.com

Vikas Yadav
ServiceNow AI

Liangming Pan
University of Arizona

Abstract
Large language models excel at complex tasks
by breaking down problems into structured rea-
soning steps. However, reasoning traces often
extend beyond reaching a correct answer, caus-
ing wasted computation, reduced readability,
and hallucinations. To address this, we intro-
duce a novel hyperparameter-free conciseness
score used as a reward signal within a rein-
forcement learning framework to guide models
toward generating correct and concise reason-
ing traces. This score is evaluated by a large
language model acting as a judge, enabling dy-
namic, context-aware feedback beyond simple
token length. Our method achieves state-of-
the-art efficiency–accuracy trade-offs on the
MATH dataset, reducing token usage by up to
31× on simple problems while improving ac-
curacy by 7%, and on the hardest problems, it
outperforms full reasoning by +7.5% accuracy
with up to 3.6× fewer tokens. On TheoremQA,
our method improves accuracy by +2.2% using
12.5× fewer tokens. We also conduct ablation
studies on the judge model, reward composi-
tion, and problem difficulty, showing that our
method dynamically adapts reasoning length
based on problem difficulty and benefits sig-
nificantly from stronger judges. The code,
model weights, and datasets are open-sourced
at https://github.com/RazvanDu/ConciseRL.

1 Introduction

Large language models (LLMs) have recently made
significant progress in solving complex multi-step
tasks, such as mathematics, code generation, and
symbolic reasoning. Reasoning models such as
o1 (OpenAI, 2024b), DeepSeek-R1 (DeepSeek-AI
et al., 2025), and S1 (Muennighoff et al., 2025)
are trained to reason explicitly through intermedi-
ate steps, often using reinforcement learning (RL)
to optimize for correctness and structural fidelity.
While this explicit reasoning improves accuracy
and interpretability, it also introduces a major chal-
lenge: reasoning traces tend to be excessively long

(Chen et al., 2025; Team et al., 2025). These mod-
els frequently continue reasoning well past the
point where the correct answer is reached, result-
ing in wasted computation, degraded readability,
and sometimes even contradictions or hallucinated
steps. Addressing this problem is essential for re-
ducing inference costs and improving the usability
of LLM reasoning in real-world applications.

In this work, we propose a novel approach to
reduce excessive reasoning in LLMs by teaching
them to generate answers that are both correct and
concise. Our method introduces a semantically in-
formed conciseness score as a reward function for
training reasoning models and an LLM as a judge
to evaluate the conciseness of the reasoning trace.
One key insight is that while accuracy can often be
judged deterministically (e.g., matching answers or
symbolic execution), conciseness is inherently sub-
jective and better suited for LLM-based evaluation.

Previous work has explored LLM-as-a-judge se-
tups for evaluating factual accuracy, style, and help-
fulness (Li et al., 2025; Zheng et al., 2023), but
existing methods for controlling reasoning length
rely on token count or static heuristics, which fail
to capture semantic efficiency. Our method goes
beyond simple token count: concise traces are of-
ten short, but short traces are not always concise,
therefore, the reward targets conciseness directly,
and a shorter length appears only as a side effect.
As illustrated in Figure 2, all three examples use
the same number of tokens, yet the first is the most
concise, receiving the highest reward. The sec-
ond and third are progressively less concise, result-
ing in lower rewards. Unlike static length penal-
ties, our LLM-based conciseness score is dynamic
and context-aware, enabling better generalization
across problem types and difficulty levels while
improving explainability. Additionally, our method
can be combined with correctness-based rewards,
offering a flexible trade-off between conciseness
and robustness.

17099

Concise
RL (Separated)

Concise
RL

Eff. R
easoning =0.1

Cosine Reward

Full Reasoning
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Level 1

Concise
RL (Separated)

Concise
RL

Eff. R
easoning =0.1

Cosine Reward

Full Reasoning
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Level 2

Concise
RL (Separated)

Concise
RL

Eff. R
easoning =0.1

Cosine Reward

Full Reasoning
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Level 3

Concise
RL (Separated)

Concise
RL

Eff. R
easoning =0.1

Cosine Reward

Full Reasoning
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Level 4

Concise
RL (Separated)

Concise
RL

Eff. R
easoning =0.1

Cosine Reward

Full Reasoning
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Level 5

Concise
RL (Separated)

Concise
RL

Eff. R
easoning =0.1

Cosine Reward

Full Reasoning
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Average

0

1000

2000

3000

4000

To
ke

ns

0

1500

3000

4500

To
ke

ns

0

2500

5000

7500

10000

To
ke

ns

0

2500

5000

7500

10000
To

ke
ns

0

4000

8000

12000

16000

To
ke

ns

0

2000

4000

6000

8000

To
ke

ns

Figure 1: MATH500 histogram by difficulty level. We report both accuracy (blue, left axis) and average token
length (green, right axis) for each method. All methods are based on DeepSeek-R1-Distill-Qwen-1.5B. For our
method ("ConciseRL" and "ConciseRL (Separated)"), we use GPT-4.1 mini as the judge. The exact values shown in
the histogram are reported in Table 4.

Our main contributions are as follows:

• We introduce a novel conciseness score and
the first method that leverages an LLM to
evaluate and provide a reward score based on
the conciseness of reasoning traces. Unlike
prior token-level heuristics that require careful
hyperparameter tuning, our method captures
the semantic compactness of reasoning in a
context-sensitive and dynamic way, with no
additional hyperparameters.

• Our method enables adaptive reasoning by
adjusting response length based on problem
difficulty. As shown in Figure 1 and Table 4,
it allocates more tokens to harder MATH500
problems while using 31× fewer tokens on
easier ones and improving accuracy by 7%.
On the hardest questions, it outperforms full
reasoning by 7.5% accuracy with 3.6× fewer
tokens. On TheoremQA, our method achieves
2.2% higher accuracy using 12.5× fewer
tokens than the full reasoning model. These
results highlight a level of length-efficiency
control not achieved by any static heuristic or
prior method.

• We perform extensive experiments and abla-
tions across multiple benchmarks, including

conciseness-only and accuracy-combined re-
wards, conditioning on problem difficulty, and
analyzing how different judge models affect
training dynamics, reward signals, and reason-
ing quality.

2 Related Work

Chain-of-Thought (CoT) (Wei et al., 2022) en-
hances LLM reasoning by prompting explicit in-
termediate steps, improving both performance and
interpretability in complex tasks (Snell et al., 2025;
Ouyang et al., 2022). Variants such as Tree-of-
Thought (Yao et al., 2023) and Graph-of-Thought
(Besta et al., 2024) extend the CoT paradigm
through structured search and iterative refinement.
Self-Consistency prompting (Wang et al., 2023)
improves robustness by sampling and aggregating
multiple reasoning paths but at the cost of increased
computational overhead from longer traces.

Recent advances in reasoning models such as
o1 (OpenAI, 2024b), o3 (OpenAI, 2025b), o4-
mini (OpenAI, 2025b), DeepSeek-R1 (DeepSeek-
AI et al., 2025), S1 (Muennighoff et al., 2025),
and QwQ-32B (Team, 2025a) show strong reason-
ing through internal capabilities, without inference-
time prompting. Some methods adopt tree-based
search strategies (Yao et al., 2024), while others,

17100

REASONING TRACE 1

REASONING TRACE 2

REASONING TRACE 3

C1 = 8

INPUT PROMPT
The local pond is partially frozen,

and temperatures have dropped
below freezing. Should we provide

food for the ducks?

Pond surface frozen, insects scarce; to
prevent energy loss, we scatter 200 g

cracked corn for the ducks.

Given assorted environmental
circumstances, we might decide giving
local ducks some food could help, like

200 g of cracked corn.

When evaluating whether supplemental feeding is warranted,
we review recent barometric readings, frost indices, daylight
duration, and anecdotal observations of quacking frequency.

Field guides debate natural foraging versus human intervention,
citing ecological balance and dependency risks. Yet with pond
ice thickening and caloric demands rising, distributing roughly

200 grams of cracked corn appears judicious.

C2 = 5

C3 = 2

R1 = 0.8

R2 = 0.5
R3 = 0.2

Figure 2: Given an input prompt, an LLM generates multiple reasoning traces that are evaluated by an LLM-based
judge who scores each trace based on conciseness. Trace 1 is concise and receives the highest reward, Trace 2 has
an equal length (24 tokens) but lower conciseness, while Trace 3 is the longest (71 tokens) and least concise. These
rewards then guide a policy gradient update.

like DeepSeek-R1 (DeepSeek-AI et al., 2025; Shao
et al., 2024), combine supervised fine-tuning with
RL. Despite their performance, these methods are
prone to generating verbose reasoning traces, a
phenomenon known as the overthinking problem
(Chen et al., 2025; Team et al., 2025).

Overthinking occurs when a model continues
generating redundant reasoning steps after reach-
ing the correct answer. This behavior wastes infer-
ence compute and risks introducing inconsistencies
and logic errors (Chen et al., 2025). This issue is
amplified by training objectives that reward long
reasoning sequences (DeepSeek-AI et al., 2025),
creating a misalignment between performance and
efficiency.

To address these issues, several approaches have
been proposed for CoT compression and length
control. These include both reward-shaping strate-
gies and optimization objectives designed to en-
courage shortness without compromising accuracy.
Methods like O1-Pruner (Luo et al., 2025a) use
Proximal Policy Optimization (PPO) (Schulman
et al., 2017) with a length-harmonizing reward that
penalizes deviations from a target length relative
to a reference model. Another work (Yeo et al.,
2025) applies a two-branch PPO strategy with co-
sine penalties based on the prediction’s proximity
to a maximum acceptable length. L1 (Aggarwal
and Welleck, 2025), whose aim is an exact token
budget, impractical when problem difficulty is un-
known, employs Grouped Reinforcement Policy
Optimization (GRPO) (Shao et al., 2024), explic-
itly conditioning the model to "think for N tokens"

and penalizing outputs exceeding learned optimal
lengths. Simple Preference Optimization (SimPO)-
based (Meng et al., 2024) approaches like DAST
(Shen et al., 2025) use data constructed from user
or synthetic feedback to learn token-length pref-
erences, bypassing reliance on reference models.
Other traditional (Han et al., 2025) and policy gra-
dient (PG) methods (Arora and Zanette, 2025) have
also been tried in this context, such as those includ-
ing early fine-tuning with correctness-weighted
penalties on output length.

Output length control, while previously a pe-
ripheral concern, has become central in reasoning
LLMs (Sui et al., 2025; Fatemi et al., 2025; Liu
et al., 2025; Zhu and Li, 2025). Earlier works
used architectural tweaks or static training signals,
which lacked the flexibility to handle diverse infer-
ence scenarios. However, recent RL-based models
(Butcher et al., 2024; Jie et al., 2023; Hou et al.,
2025) achieve better control by continuously adapt-
ing the reasoning length based on the learned re-
ward signals. Yet many still rely on token count
or heuristics as proxies for conciseness (Sui et al.,
2025). Models such as C3oT (Kang et al., 2025)
use LLMs as compressors to post-process reason-
ing traces, while continuous token methods like
CCoT (Cheng and Durme, 2024) and latent-space
approaches like COCONUT (Hao et al., 2024) re-
duce token-level redundancy by replacing explicit
steps abstract representations. Although effective
at shortening outputs, these approaches operate
post hoc or rely on static heuristics that limit adapt-
ability across tasks.

17101

To address these challenges, we propose a novel
approach that uses an LLM as a judge to evaluate
the conciseness of reasoning traces. While LLMs
have been widely used as evaluators for factuality,
summarization, coherence, and style (Zheng et al.,
2023; Li et al., 2025; Gu et al., 2025), leveraging
them to assess reasoning conciseness remains un-
explored. Our method introduces a semantically
aware, dynamic reward function that goes beyond
token count or static heuristics. This enables mod-
els to generate reasoning that is not only correct
but also efficient and interpretable, bridging the gap
between performance and inference cost.

3 Method

We build on pre-trained multi-step reasoning mod-
els, improving them to generate correct answers
using the minimum semantic effort through more
concise outputs. Instead of penalizing length, we
reward conciseness: the ability to justify an answer
with the fewest necessary and non-redundant steps.
Concise traces are often short, but short traces
are not always concise, therefore the reward tar-
gets conciseness directly, and a shorter length
appears only as a side effect.

3.1 Conciseness and Accuracy Rewards
Given an input prompt x and a reasoning trace y =
(t1, . . . , t|y|) sampled from the model pθ(· | x),
we compute a conciseness score C(y) ∈ [0, 1] by
querying an external LLM judge J , which receives
the reasoning trace and evaluates it according to a
custom system prompt (Appendix A.3). The sys-
tem prompt instructs the judge to assign a discrete
conciseness score s from 1 (overly verbose) to 10
(clear reasoning), disregarding correctness. The
discrete score s ∈ {1, . . . , 10} is then normalized
as: C(y) = s

10 ∈ [0, 1].

Accuracy Signal. Let y⋆(x) denote the
ground-truth answer to prompt x, and let Ans(y)
be the final answer extracted from the reasoning
trace (e.g. \boxed{Ans(y)}). The accuracy is then:

A(y, x) =




1, if Ans(y) = y⋆(x),

0, otherwise.
(1)

3.2 Reward variants
We employ two reward formulations:

1. Pure conciseness

Rc(y, x) = C(y). (2)

2. Accuracy-gated conciseness (used to avoid
judge calls when a trace is already wrong)

Rac(y, x) = A(y, x) · C(y). (3)

Rac is cheaper in terms of API calls because the
judge is queried only when A(y, x) = 1. On 1.5B
models, Rac costs < $9 per training run, and there
is virtually no increase in training time. The cost
of prompting the model stays constant relative to
the size of the training data. The judge is not used
during inference, so our method has no additional
cost or overhead during deployment. In the experi-
ments, we denote the Accuracy-gated reward as
”ConciseRL” and the Pure conciseness reward
as ”ConciseRL (Separated)”. ConciseRL uses
only the gated conciseness as a reward, and the
Separated variant includes both conciseness and
accuracy as rewards during training.

3.3 Optimization with PPO
Let ρ denote the distribution over prompts. Our
objective is to maximize:

J (θ) = Ex∼ρ Ey∼pθ(·|x)
[
R(y, x)

]
. (4)

where R is a reward variant. Since expectation
y is taken over sequences sampled autoregressively
from pθ, J is not differentiable. Thus, we apply
PPO (Shao et al., 2024) with a sequence-level ob-
jective.

3.4 Leave-One-Out Advantage
Based on (Arora and Zanette, 2025), for each
prompt we sample n candidate traces {yi}ni=1

and compute the trajectory return R(yi, x). The
sequence-level advantage is estimated with a Rein-
forced Leave-One-Out baseline:

A(yi, x) = R(yi, x)−
1

n− 1

∑

j ̸=i

R(yj , x). (5)

Using Equation (5), the clipped PPO loss is:

L(θ) = Ex, y

[
wi · log pθ(y |x)

]
, (6)

wi = clip
(

pθ(yi|x)
pθold (yi|x)

, 1−ϵ, 1+ϵ
)
A(yi, x). (7)

where ϵ is the PPO clipping threshold and pθold

is the policy prior to the update.

17102

4 Experiments and Results

4.1 Experimental Setup

We begin with two publicly available reason-
ing models as our foundation: DeepSeek-R1-
Distill-Qwen-1.5B (DeepSeek-AI et al., 2025),
and STILL-3-1.5B-preview (Team, 2025b; Min
et al., 2024), conducting all ablations on the former
with GPT-4.1 mini (OpenAI, 2025a) as the LLM
judge. The judge’s system prompt is shown in Fig-
ure 8. Our RL setup follows Efficient Reasoning
(Arora and Zanette, 2025; LI et al., 2024), includ-
ing a learning rate of 5×10−6, Kullback–Leibler
(KL) divergence coefficient of 10−3, PPO clip-
ping threshold of 0.2, and a maximum context
window of 32K tokens, 8 rollouts per prompt,
and a global batch of 128 (32 prompts). All
plots are smoothed using a Gaussian kernel of
width 9 for visual clarity. The Cosine Reward
baseline uses hyperparameters from the Demys-
tifying paper (Yeo et al., 2025): Lmax=14336,
rc0=2.0, rcL=1.0, rw0=−10.0, rwL=0.0, and
rexceed=−10.0. The Efficient Reasoning base-
line uses the same hyperparameters defined above,
α ∈ 0.1, 0.2, 0.4, 0.6, 0.9, and is implemented in
vLLM (Kwon et al., 2023). We do not compare
with methods that are not open-source or not repro-
ducible. For instance, the method (Fatemi et al.,
2025) is similar to ours, but their reward is based
on shortening traces rather than conciseness, and
their code is not publicly available. We also didn’t
include L1 (Aggarwal and Welleck, 2025) since it
requires fixing the output length in advance, a fun-
damentally different setup that limits adaptability
and can’t learn dynamic conciseness.

Training is conducted on 4×NVIDIA A100
80GB GPUs. A complete run on the 1.5B model
takes ∼ 20 GPU-hours. We evaluate model per-
formance across multiple benchmarks: GSM8K
(Cobbe et al., 2021), MATH500 (Hendrycks et al.,
2021), TheoremQA (Chen et al., 2023), GPQA-
main (Rein et al., 2024), and MMLU-Pro-1k (Wang
et al., 2024).

4.2 Dynamic vs Static Rewards

We compare our method to strong baselines across
five benchmarks. Baselines include Efficient Rea-
soning (Arora and Zanette, 2025), which introduces
a length penalty modulated by a hyperparameter
α ∈ [0, 1). Higher values of α increase the penalty
for longer generations, leading to shorter reason-
ing but compromising accuracy. We also compare

against Cosine Reward (Yeo et al., 2025), which
assigns rewards using a cosine function that fa-
vors correct answers, modulating reward magni-
tude based on CoT length, and DeepScaleR (Luo
et al., 2025b). The full reasoning baseline corre-
sponds to the model’s default generation without
additional training to shorten the reasoning traces.
The "Separated" baseline is missing from Table 2
due to substantial training costs given our budget
constraints. Unlike these methods, our approach
is hyperparameter-free, making it more robust and
easier to deploy.

As shown in Table 1, we group methods by their
average reasoning lengths and compare their accu-
racy to assess the efficiency–accuracy trade-offs.
For our method, ConciseRL, the text in parenthe-
ses specifies the judge model used. Our strongest
setting is ConciseRL (Gemini 2.5 Flash (Gem-
ini Team, 2025)), which reaches 46.7% average
accuracy at only 12.4% of the full reasoning length.
On TheoremQA, it shortens traces to only 5.0%
of the length and increases accuracy from 26.3%
to 33.3%. Relative to Efficient Reasoning with
α=0.9, ConciseRL (Gemini 2.5 Flash) achieves
+23.5% in average accuracy while using fewer to-
kens, and it delivers large per-dataset gains such as
+61.2% accuracy on GSM8K. The ConciseRL (Sep-
arated) variant remains highly compact at 16.0%
length with 44.0% average accuracy, outperform-
ing α=0.9 by +20.8% points on average at compa-
rable length and reaching improvements of up to
+56.4% on GSM8K and +35.0% on MATH500. In
the mid-length comparison, ConciseRL (GPT-4.1
mini) achieves 49.3% average accuracy at 34.4%
length and improves over Efficient Reasoning with
α=0.6 by 5.8% points on average at a similar
budget (34.6%), while also reducing tokens by
65.6% relative to Full Reasoning and increasing
average accuracy by 4.0% points. With somewhat
longer outputs, ConciseRL (Gemini 2.5 Flash-Lite)
reaches the best average in its group at 49.7% with
44.1% length, surpassing Efficient Reasoning with
α=0.2 by 6.0% points on average at similar length,
and leading on GSM8K and MATH500. Among
long-trace baselines, DeepScaleR achieves 52.4%
average accuracy but at 117.7% length, and Co-
sine Reward expands traces further to 133.8% with
47.7% average accuracy.

This pattern also appears in Table 2, evaluat-
ing STILL-3-1.5B-preview. ConciseRL delivers
the best overall balance, consistently maintaining
strong average accuracy with low reasoning length.

17103

GSM8K MATH500 MMLU-Pro-1k GPQA-main TheoremQA Average

Technique Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%)

ConciseRL (Gemini 2.5 Flash) 77.3 16.4 73.6 9.3 18.9 15.7 30.4 15.8 33.3 5.0 46.7 12.4
ConciseRL (Separated) 72.5 16.4 68.6 16.3 19.2 19.5 31.0 19.7 28.5 8.0 44.0 16.0
Eff. Reasoning α=0.9 16.1 1.2 33.6 21.0 18.2 11.6 27.9 26.2 20.4 9.7 23.2 13.9

ConciseRL (GPT-4.1 mini) 80.9 35.8 78.0 30.8 24.5 38.5 30.4 45.9 32.5 21.0 49.3 34.4
Eff. Reasoning α=0.6 55.9 23.9 64.4 26.2 27.8 44.2 35.0 55.0 34.3 23.5 43.5 34.6

ConciseRL (Gemini 2.5 Flash-Lite) 84.2 45.4 80.6 33.7 20.2 49.9 28.6 64.6 34.9 26.8 49.7 44.1
Eff. Reasoning α=0.2 79.8 43.4 79.6 32.8 22.2 38.6 29.9 62.0 34.9 41.7 49.3 43.7

Eff. Reasoning α=0.4 74.7 41.9 76.8 32.4 21.8 45.2 31.5 52.1 33.3 31.2 47.6 40.6
Eff. Reasoning α=0.1 82.5 63.7 78.4 43.9 21.6 42.6 32.1 56.9 34.5 43.0 49.8 50.0
Cosine Reward 80.4 310.8 77.0 79.9 19.8 93.8 32.1 91.3 29.4 93.2 47.7 133.8
DeepScaleR 80.7 332.7 82.6 60.0 31.5 67.7 32.6 71.3 34.8 57.0 52.4 117.7
Full Reasoning 76.3 100.0 71.4 100.0 25.8 100.0 26.6 100.0 26.3 100.0 45.3 100.0

Table 1: Comparison of accuracy (higher is better) and token length (as % of Full Reasoning; lower is better) across
datasets for DeepSeek-R1-Distill-Qwen-1.5B. We group our methods with baselines that reach similar average
reasoning-trace length, and bold the best accuracy within each such group. This highlights that our methods
achieve stronger performance at similar trace length.

GSM8K MATH500 MMLU-Pro-1k GPQA-main TheoremQA Average

Technique Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%)

ConciseRL 78.5 11.0 77.2 33.7 19.9 32.3 28.3 34.3 29.6 20.6 46.7 26.4
Eff. Reasoning α=0.4 60.9 4.9 68.0 27.8 18.8 31.0 31.5 36.1 33.1 20.1 42.5 24.0

Eff. Reasoning α=0.9 14.6 0.4 18.8 2.0 14.6 0.1 27.7 0.2 16.5 0.1 18.4 0.6
Eff. Reasoning α=0.6 81.3 17.9 77.6 44.1 24.3 56.3 31.2 53.9 34.1 45.5 49.7 43.5
Eff. Reasoning α=0.2 81.3 17.9 77.6 44.1 24.3 56.3 31.2 53.9 34.1 45.5 49.7 43.5
Eff. Reasoning α=0.1 85.0 34.6 82.0 56.6 20.4 68.5 30.4 82.2 36.1 52.6 50.8 58.9
Cosine Reward 43.6 598.7 44.4 298.8 17.8 216.2 28.8 138.5 13.6 199.9 29.6 290.4
DeepScaleR 80.7 138.0 82.6 82.5 31.5 75.7 32.6 72.1 34.8 80.6 52.4 89.8
Full Reasoning 83.1 100.0 78.8 100.0 32.0 100.0 31.0 100.0 29.8 100.0 50.9 100.0

Table 2: Comparison of accuracy (higher is better) and token length (as % of Full Reasoning; lower is better) across
datasets for STILL-3-1.5B-preview. We group our methods with baselines that reach similar average reasoning-trace
length, and bold the best accuracy within each such group. This highlights that our methods achieve stronger
performance at similar trace length.

At comparable length, our method outperforms Ef-
ficient Reasoning α=0.4 by 4.2% in average accu-
racy. In contrast, Efficient Reasoning displays un-
stable performance across α values: while α=0.1,
α=0.2, and α=0.6 retain high accuracy but pro-
duce moderately long traces, aggressive settings
like α=0.9 sharply reduce length but cause severe
performance drops. Hence, the Efficient Reasoning
method displays noticeable hyperparameter sen-
sitivity and requires considerable fine-tuning to
achieve favorable performance-length trade-offs.
Our ConciseRL method avoids this issue by not
relying on additional hyperparameters or manual
tuning. For examples of reasoning traces from dif-
ferent methods, see Section A.4.

During training, our model follows a similar ac-
curacy trajectory as Efficient Reasoning α = 0.2
but converges to response lengths comparable to α
= 0.4 as can be seen in Figure 3, thus achieving the
benefits of both ends of the trade-off curve. Addi-

tionally, Figure 7 shows that our separated variant
achieves the shortest reasoning traces among all
methods, with an accuracy above the α = 0.6 base-
line. The conciseness signal from our semantic
reward enables this fine-grained control, in contrast
to static heuristics that uniformly penalize length.
This adaptivity is also reflected in the performance
across the other datasets: our method achieves the
shortest reasoning traces in all benchmarks among
methods with similar accuracy. These results indi-
cate that conciseness-aware optimization offers a
more efficient path to high-quality reasoning than
static length constraints or cosine penalties.

Overall, static length penalties require careful
tuning, and small changes often push methods to
either sacrifice accuracy or use many more tokens
during inference. In contrast, our dynamic concise-
ness reward has no additional hyperparameters and
consistently yields stronger accuracy at substan-
tially lower token budgets across all settings.

17104

0 20 40 60 80 100
Step

0.56

0.58

0.60

0.62

0.64

Ac
cu

ra
cy

Train Accuracy

0 20 40 60 80 100
Step

3000

3500

4000

4500

5000

5500

6000

Re
sp

on
se

 L
en

gt
h

Train Response Length

ConciseRL (GPT-4.1 mini) Eff. Reasoning =0.4 Eff. Reasoning =0.2 Eff. Reasoning =0.1

Figure 3: Training metrics across steps using DeepSeek-R1-Distill-Qwen-1.5B as the base model. The Y-axes show
accuracy (higher is better) and response length in tokens (lower is better).

GSM8K MATH500 MMLU-Pro-1k GPQA-main TheoremQA Average

Technique Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%) Acc. Len.(%)

ConciseRL (Gemini 2.5 Flash-Lite) 84.2 45.4 80.6 33.7 20.2 49.9 28.6 64.6 34.9 26.8 49.7 44.1
ConciseRL (Gemini 2.5 Flash) 77.3 16.4 73.6 9.3 18.9 15.7 30.4 15.8 33.3 5.0 46.7 12.4
ConciseRL (GPT-4.1 mini) 80.9 35.8 78.0 30.8 24.5 38.5 30.4 45.9 32.5 21.0 49.3 34.4
ConciseRL (GPT-4o mini) 82.8 34.0 77.4 28.5 19.1 28.5 28.6 36.4 34.8 17.9 48.5 29.1
ConciseRL (GPT-4.1 nano) 83.6 190.0 75.6 76.6 17.5 58.7 30.6 65.8 29.3 85.8 47.3 95.4
Full Reasoning 76.3 100.0 71.4 100.0 25.8 100.0 26.6 100.0 26.3 100.0 45.3 100.0

Table 3: Comparison of accuracy (higher is better) and token length (as % of Full Reasoning; lower is better) across
datasets for DeepSeek-R1-Distill-Qwen-1.5B when using different judge models.

4.3 Judge Model Comparison

The quality of the LLM judge used to assess con-
ciseness has a significant influence on the final
model’s behavior. Figure 6 (appendix) shows that
a more capable judge enables more effective op-
timization. GPT-4.1 mini (OpenAI, 2025a) and
GPT-4o mini (OpenAI, 2024a) yield models that
significantly reduce response length during train-
ing while maintaining or improving accuracy. In
contrast, GPT-4.1 nano (OpenAI, 2025a), despite
producing slightly higher training accuracy in the
end, does not meaningfully shorten the reasoning
traces, likely because the score has more "noise".
We highlight that the accuracy curve is not neces-
sarily indicative of final model performance: accu-
racy rises early as the model learns the dataset, but
later decreases when the reward begins favoring
conciseness more strongly and the traces become
shorter.

Tables 1 and 3 show the efficiency–accuracy
trade-offs introduced by each judge. ConciseRL
with the Gemini 2.5 Flash-Lite judge achieves
the highest average accuracy at 49.7%, utilizing
44.1% of the full reasoning tokens, and leads on
GSM8K, MATH500, TheoremQA, and the overall
average. ConciseRL with the Gemini 2.5 Flash
judge provides the strongest compression, reach-

ing 46.7% average accuracy at only 12.4% of the
length and improving TheoremQA from 26.3% to
33.3% while reducing the trace to 5.0%. GPT-4o
mini reaches 48.5% accuracy at 29.1% length, sub-
stantially below the 100% length of Full Reasoning
at 45.3% accuracy. GPT-4.1 mini delivers a strong
efficiency–accuracy trade-off, matching the aver-
age accuracy of Efficient Reasoning at α = 0.2
(49.3%) while producing 65.6% shorter reasoning
traces. On the other hand, GPT-4.1 nano offers lim-
ited trace compression (95.4% of full reasoning)
despite comparable accuracy (47.3%), validating
the earlier observation that noisier reward signals
make optimization harder.

4.4 The Behavior of the Rewards

In Figure 4a, we compare reward values across
different judges. Despite starting with the lowest
average reward, the model trained with GPT-4.1
mini ends with the highest, indicating that the re-
ward, though initially strict, was more learnable
and resulted in effective policy improvement. This
contrasts with GPT-4.1 nano, which yields higher
early rewards but fails to produce meaningful short-
ening, likely due to its noisy and less discrimina-
tive signal. Notably, these values represent final
reward outputs: a score of zero is assigned if the

17105

Technique Level 1 Level 2 Level 3 Level 4 Level 5 Average

Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len.

ConciseRL (Separated) 95.35 118.40 77.78 159.95 80.95 476.69 64.84 1470.79 47.78 4431.25 73.34 1331.42
ConciseRL 95.35 265.58 87.77 453.94 87.62 2073.16 75.78 2738.97 57.46 8029.31 80.80 2712.19
Eff. Reasoning α=0.1 93.02 1285.63 88.88 1102.38 88.57 3355.63 74.22 4536.74 62.69 9004.73 81.48 3857.02
Full Reasoning 88.37 3686.48 85.56 5100.22 77.14 9949.32 73.44 10890.66 50.00 16156.81 74.90 9156.70

Table 4: Comparison of accuracy (higher is better) and token length (lower is better) by difficulty level on MATH500,
using DeepSeek-R1-Distill-Qwen-1.5B. For ConciseRL, we use GPT-4.1 mini as the conciseness judge. Bold
indicates the shortest reasoning traces.

0 20 40 60 80 100
Step

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

Le
ar

ne
d

Re
wa

rd
 S

co
re

Rewards
ConciseRL (GPT-4.1 mini)
ConciseRL (GPT-4.1 nano)
ConciseRL (GPT-4o mini)

(a) GPTs Rewards

0 20 40 60 80 100
Step

4.5

5.0

5.5

6.0

6.5

7.0

GP
T-

4.
1

m
in

i P
re

fe
re

nc
e

Sc
or

e

GPT Score
ConciseRL Separated (GPT-4.1 mini)
Eff. Reasoning =0.1

(b) GPT Score

Figure 4: Training metrics across steps using different
models as the judge. The Y-axes show reward values
and conciseness scores assigned by the judge.

model’s answer is incorrect (Equation 1), meaning
the curves are also influenced by accuracy.

In Figure 4b, we isolate conciseness from cor-
rectness using our separated reward configura-
tion. The resulting GPT score, evaluated solely on
reasoning quality, improves almost linearly from
roughly 4.5 to 7.5 out of 10 over the course of train-
ing. Compared to Efficient Reasoning α=0.1, we
observe that although it successfully reduces trace
length to nearly half (Table 2), its corresponding
conciseness score only increases from 4.75 to 5.5.
In contrast, our method boosts the score from 4.5
to 7.1. This shows that shorter traces are not neces-
sarily more concise, reinforcing our argument that

brevity should be a learned outcome of semantic
compactness, not a heuristic target.

4.5 Performance by Problem Difficulty
Figure 1 and Table 4 show MATH500 performance
across five difficulty levels. ConciseRL (Separated)
achieves up to 31× fewer tokens than the Full Rea-
soning baseline on Level 1 (118 vs. 3686 tokens)
while improving accuracy by 7%. For the hardest
problems (Level 5), our method outperforms the
Full Reasoning baseline using 3.6× fewer tokens
(4431 vs. 16156 tokens). Our method exhibits a
strong correlation between problem difficulty and
reasoning length: easier problems are solved with
fewer tokens, while harder ones elicit longer rea-
soning. This adaptive behavior aligns with human
intuition and is a desirable trait in reasoning models.
In contrast, other techniques like Efficient Reason-
ing (α = 0.1), Cosine Reward, or Full Reasoning
either under-adapt (e.g., generating long traces even
for trivial problems) or show no clear correlation.

Furthermore, as shown in Table 1, on the The-
oremQA benchmark, our method achieves 2.2%
higher accuracy while using 12.5× fewer tokens
compared to the Full Reasoning model. These re-
sults suggest that our semantically guided reward
encourages selective elaboration, producing con-
cise reasoning where appropriate and expanding
only when necessary. Also, our method produces
more explainable and compressed reasoning traces,
see Appendix A.4 for examples and analysis.

4.6 Kullback–Leibler Divergence
Figure 5 shows that our method (ConciseRL) in-
duces a KL divergence profile comparable to Ef-
ficient Reasoning with α=0.4, suggesting that
our method modifies the policy to a similar
degree while achieving significantly better effi-
ciency–accuracy trade-offs. Also, ConciseRL re-
sults in far less KL shift than α=0.6, which ex-
hibits early instability and overshooting. Efficient
Reasoning with α=0.9 produces similarly short

17106

0 20 40 60 80 100
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KL
 D

iv
er

ge
nc

e
KL Divergence

ConciseRL (GPT-4.1 mini)
ConciseRL Separated (GPT-4.1 mini)
Eff. Reasoning =0.9

Eff. Reasoning =0.6
Eff. Reasoning =0.4

Eff. Reasoning =0.2
Eff. Reasoning =0.1

Figure 5: Kullback–Leibler divergence between the up-
dated policy and the initial models throughout training.

reasoning traces but incurs a much higher KL di-
vergence, around 7× of our method, showing in-
efficient and unstable updates. In contrast, our
ConciseRL (Separated) variant maintains low KL
divergence throughout training, further reinforcing
the benefits of our semantic reward and highlight-
ing that trace length alone does not imply effective
or stable policy learning.

5 Conclusion

In this work, we introduce a novel, hyperparameter-
free conciseness score used as a reward signal
within any reinforcement learning framework and
evaluated by an LLM judge to encourage mod-
els to generate correct and concise reasoning
traces. Our approach improves semantic density
without sacrificing accuracy, yielding strong effi-
ciency–accuracy trade-offs. At equal token length,
our traces are more informative, interpretable, and
explainable than those from static length-penalized
baselines due to fewer filler steps and tighter logic.
Overall, our results highlight the value of semantic
rewards and LLM-based judges for guiding concise
and correct reasoning.

In future work, we plan to evaluate our method
across a wider range of model sizes to better under-
stand how conciseness rewards scale. Additionally,
while we hypothesize that using more advanced
judges like GPT-4o or GPT-4.5 could further en-
hance performance, we could not evaluate this due
to our budget limitations and API-associated costs.
We are also interested in combining our concise-
ness optimization with orthogonal methods, such
as structure-aware search or explicit length condi-
tioning, to enhance reasoning quality and efficiency.
Unlike other methods, ours is orthogonal and inte-
grates well with approaches like L1 (Aggarwal and
Welleck, 2025) (see A.2).

Limitations

Despite the strong empirical results, our study has
several limitations. Due to limited hardware re-
sources, including access to only 4×NVIDIA A100
80GB GPUs, we could not evaluate larger models,
test our approach at scale, or fully compare against
all relevant baselines. Training with reinforcement
learning is particularly resource-intensive, which
further constrained the scope of our experiments.
We were also only able to partially explore combi-
nations of our method with other recent techniques.
Finally, we restricted our use of LLMs-as-judges to
smaller models because of the cost of using larger
models, specifically, the higher cost for long rea-
soning traces.

Ethical Considerations

Regarding impact, we believe that our method has
positive implications for reducing the computa-
tional cost of reasoning at inference time, partic-
ularly for models deployed in environments with
constrained compute budgets or latency require-
ments. By shifting the optimization target from
token length to conciseness, we aim to improve
efficiency and interpretability without sacrificing
correctness.

However, we acknowledge several potential eth-
ical risks. Using LLMs as evaluators introduces
potential biases, which may reflect or amplify ar-
tifacts from their training data. If the LLM judge
favors certain styles of explanation over others, this
may steer the trained model toward narrow pat-
terns of reasoning. Additionally, there is a risk that
optimizing for conciseness could suppress contex-
tually relevant reasoning steps, leading to overly
truncated outputs. We mitigate these concerns by
evaluating correctness alongside conciseness and
analyzing behavior across problem difficulties and
prompt variants. We also ensure that the LLM
judge is only used during training, not at inference
time, thus avoiding deployment dependencies.

Regarding safeguards, since our method builds
upon publicly available pre-trained models without
introducing new high-risk capabilities, we assess
the risk of misuse to be low. Nevertheless, to sup-
port responsible usage, we commit to open-source
the code, model weights, and datasets under a re-
search license with clear documentation.

17107

References
Pranjal Aggarwal and Sean Welleck. 2025. L1: Con-

trolling how long a reasoning model thinks with re-
inforcement learning. In Second Conference on Lan-
guage Modeling.

Daman Arora and Andrea Zanette. 2025. Training
language models to reason efficiently. Preprint,
arXiv:2502.04463.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph
of thoughts: Solving elaborate problems with large
language models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(16):17682–17690.

Bradley Butcher, Michael O’Keefe, and James Titch-
ener. 2024. Precise length control in large language
models. Preprint, arXiv:2412.11937.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. 2023. TheoremQA: A theorem-driven question
answering dataset. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7889–7901, Singapore. Associa-
tion for Computational Linguistics.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang,
Zhaopeng Tu, Haitao Mi, and Dong Yu. 2025. Do
NOT think that much for 2+3=? on the overthinking
of long reasoning models. In Forty-second Interna-
tional Conference on Machine Learning.

Jeffrey Cheng and Benjamin Van Durme. 2024. Com-
pressed chain of thought: Efficient reasoning through
dense representations. Preprint, arXiv:2412.13171.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and
Kartik Talamadupula. 2025. Concise reasoning via
reinforcement learning. Preprint, arXiv:2504.05185.

Google Gemini Team. 2025. Gemini 2.5: Pushing
the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities.
Preprint, arXiv:2507.06261.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun
Zhang, Yuanzhuo Wang, Wen Gao, Lionel Ni,
and Jian Guo. 2025. A survey on llm-as-a-judge.
Preprint, arXiv:2411.15594.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu
Zhao, Shiqing Ma, and Zhenyu Chen. 2025. Token-
budget-aware LLM reasoning. In Findings of the As-
sociation for Computational Linguistics: ACL 2025,
pages 24842–24855, Vienna, Austria. Association
for Computational Linguistics.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. Preprint, arXiv:2412.06769.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu,
Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
2025. Thinkprune: Pruning long chain-of-thought
of llms via reinforcement learning. Preprint,
arXiv:2504.01296.

Renlong Jie, Xiaojun Meng, Lifeng Shang, Xin Jiang,
and Qun Liu. 2023. Prompt-based length controlled
generation with reinforcement learning. Preprint,
arXiv:2308.12030.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou.
2025. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. Proceedings
of the AAAI Conference on Artificial Intelligence,
39(23):24312–24320.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611–626, New York, NY, USA. Association
for Computing Machinery.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,
Kai Shu, Lu Cheng, and Huan Liu. 2025. From gen-
eration to judgment: Opportunities and challenges of
llm-as-a-judge. Preprint, arXiv:2411.16594.

Jia LI, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https:

17108

https://openreview.net/forum?id=4jdIxXBNve
https://openreview.net/forum?id=4jdIxXBNve
https://openreview.net/forum?id=4jdIxXBNve
https://arxiv.org/abs/2502.04463
https://arxiv.org/abs/2502.04463
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2412.11937
https://arxiv.org/abs/2412.11937
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://openreview.net/forum?id=MSbU3L7V00
https://openreview.net/forum?id=MSbU3L7V00
https://openreview.net/forum?id=MSbU3L7V00
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2504.05185
https://arxiv.org/abs/2504.05185
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2411.15594
https://doi.org/10.18653/v1/2025.findings-acl.1274
https://doi.org/10.18653/v1/2025.findings-acl.1274
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2504.01296
https://arxiv.org/abs/2504.01296
https://arxiv.org/abs/2308.12030
https://arxiv.org/abs/2308.12030
https://doi.org/10.1609/aaai.v39i23.34608
https://doi.org/10.1609/aaai.v39i23.34608
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

//github.com/project-numina/
aimo-progress-prize/blob/main/
report/numina_dataset.pdf).

Yue Liu, Jiaying Wu, Yufei He, Ruihan Gong, Jun
Xia, Liang Li, Hongcheng Gao, Hongyu Chen, Bao-
long Bi, Jiaheng Zhang, Zhiqi Huang, Bryan Hooi,
Stan Z. Li, and Keqin Li. 2025. Efficient inference
for large reasoning models: A survey. Preprint,
arXiv:2503.23077.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. 2025a. O1-pruner: Length-
harmonizing fine-tuning for o1-like reasoning prun-
ing. In 2nd AI for Math Workshop @ ICML 2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Tang, Manan Roongta, Colin Cai, Jeffrey
Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa,
and Ion Stoica. 2025b. Deepscaler: Surpassing o1-
preview with a 1.5b model by scaling rl. Notion
Blog.

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. In Advances in Neural In-
formation Processing Systems, volume 37, pages
124198–124235. Curran Associates, Inc.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen,
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang,
Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao,
Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen.
2024. Imitate, explore, and self-improve: A repro-
duction report on slow-thinking reasoning systems.
arXiv preprint arXiv:2412.09413.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. In Workshop on Reasoning and Planning for
Large Language Models.

OpenAI. 2024a. Openai gpt-4o system card.

OpenAI. 2024b. Openai o1 system card.

OpenAI. 2025a. Introducing gpt-4.1 in the api.

OpenAI. 2025b. Openai o3 and o4-mini system card.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wen-
jing Zhang, Jiangze Yan, Ning Wang, Kai Wang,
and Shiguo Lian. 2025. Dast: Difficulty-adaptive
slow-thinking for large reasoning models. Preprint,
arXiv:2503.04472.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling LLM test-time compute
optimally can be more effective than scaling param-
eters for reasoning. In The Thirteenth International
Conference on Learning Representations.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Shaochen Zhong, Na Zou, Hanjie Chen,
and Xia Hu. 2025. Stop overthinking: A survey on
efficient reasoning for large language models. Trans-
actions on Machine Learning Research.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning
Tang, Congcong Wang, Dehao Zhang, Enming Yuan,
Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda
Wei, Guokun Lai, and 75 others. 2025. Kimi k1.5:
Scaling reinforcement learning with llms. Preprint,
arXiv:2501.12599.

Qwen Team. 2025a. Qwq-32b: Embracing the power
of reinforcement learning.

RUCAIBox STILL Team. 2025b. Still-3-1.5b-preview:
Enhancing slow thinking abilities of small models
through reinforcement learning.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,
and Wenhu Chen. 2024. Mmlu-pro: A more robust
and challenging multi-task language understanding

17109

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2503.23077
https://arxiv.org/abs/2503.23077
https://openreview.net/forum?id=ioYybCRcyW
https://openreview.net/forum?id=ioYybCRcyW
https://openreview.net/forum?id=ioYybCRcyW
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://proceedings.neurips.cc/paper_files/paper/2024/file/e099c1c9699814af0be873a175361713-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e099c1c9699814af0be873a175361713-Paper-Conference.pdf
https://openreview.net/forum?id=LdH0vrgAHm
https://openreview.net/forum?id=LdH0vrgAHm
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/o1-system-card-20241205.pdf
https://openai.com/index/gpt-4-1/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2503.04472
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=HvoG8SxggZ
https://openreview.net/forum?id=HvoG8SxggZ
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf

benchmark. In Advances in Neural Information Pro-
cessing Systems, volume 37, pages 95266–95290.
Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang,
Yibo Wang, Shunyu Liu, Yingjie Wang, Yuxin Song,
Haocheng Feng, Li Shen, and Dacheng Tao. 2024.
Mulberry: Empowering mllm with o1-like reasoning
and reflection via collective monte carlo tree search.
Preprint, arXiv:2412.18319.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural
Information Processing Systems, volume 36, pages
11809–11822. Curran Associates, Inc.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham
Neubig, and Xiang Yue. 2025. Demystifying
long chain-of-thought reasoning in llms. Preprint,
arXiv:2502.03373.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

Jason Zhu and Hongyu Li. 2025. Towards concise and
adaptive thinking in large reasoning models: A sur-
vey. Preprint, arXiv:2507.09662.

A Appendix

A.1 Extended Results
As a supplement to our main findings, we provide
additional results that reinforce the effectiveness
and generality of our approach. Figure 6 compares
training dynamics under different LLM judges,
showing that stronger judges like GPT-4.1 mini and
GPT-4o mini enable more effective reasoning com-
pression while preserving or improving accuracy.
In contrast, GPT-4.1 nano yields higher variance
and fails to consistently reduce reasoning length.
These trends confirm that the reliability of the con-
ciseness signal strongly depends on the evaluator’s
capability (OpenAI, 2025a).

Figure 7 extends out comparison with static base-
lines such as Efficient Reasoning (DeepSeek-AI

et al., 2025) display a trade-off between brevity
and correctness, with aggressive penalties reducing
token usage but at the cost of sharp accuracy drops.
Our method, ConciseRL, follows a more desirable
trajectory: it achieves the conciseness of the most
efficient baselines while maintaining high accuracy,
effectively tracing out the Pareto frontier.

Table 5 presents raw token counts on the
DeepSeek-R1-Distill-Qwen-1.5B model across all
benchmarks. The separated reward variant (Con-
ciseRL Separated) yields the most compact rea-
soning traces, while ConciseRL strikes a strong
efficiency–accuracy balance. Notably, both out-
perform static methods like Cosine Reward and
Efficient Reasoning across all datasets.

Finally, Table 6 replicates this comparison on the
STILL-3-1.5B-preview model (Team, 2025b; Min
et al., 2024), further supporting the generalizability
of our framework. The same trends persist: seman-
tic conciseness rewards outperform length-based
baselines, both in efficiency and accuracy. These
results confirm that our approach is robust across
architectures, training signals, and judge variants.

A.2 Future Work Discussion
Although our method rewards semantic concise-
ness, L1 uses explicit length-based RL objectives
to precisely control token-level output length. This
difference in objectives means that the two ap-
proaches could complement each other, enabling
simultaneous control of the token budget and se-
mantic efficiency without interference. Length-
based scoring approaches, however, inherently
conflict with L1’s exact or maximum length con-
straints since they introduce competing reward sig-
nals focused solely on token minimization rather
than strict adherence to specified token budgets.
Therefore, integrating length-based scoring directly
alongside L1 is impractical, highlighting the value
of our conciseness approach as a complementary
strategy to optimize reasoning efficiency and perfor-
mance. Unfortunately, running such experiments
requires significant compute, at least 8×NVIDIA
A100 80GB GPUs even for a 1.5B model, which
we do not have access to.

A.3 Conciseness Evaluation Prompt
To evaluate the conciseness of reasoning traces,
we use an LLM-based judge that assigns a score
between 1 (overly verbose) and 10 (maximally
concise), independent of correctness. The system
prompt provided to the judge is designed to guide it

17110

https://proceedings.neurips.cc/paper_files/paper/2024/file/ad236edc564f3e3156e1b2feafb99a24-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2412.18319
https://arxiv.org/abs/2412.18319
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2507.09662
https://arxiv.org/abs/2507.09662
https://arxiv.org/abs/2507.09662

0 20 40 60 80 100
Step

0.54

0.56

0.58

0.60

0.62

0.64

Ac
cu

ra
cy

Train Accuracy

0 20 40 60 80 100
Step

2000

3000

4000

5000

6000

Re
sp

on
se

 L
en

gt
h

Train Response Length

GPT-4.1 mini GPT-4.1 mini (Separated) GPT-4.1 nano GPT-4o mini

Figure 6: Training metrics across steps using DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025) as the
base model and different models as the judge. The Y-axes show accuracy (higher is better; left) and response length
in tokens (lower is better; right). The X-axis in both cases shows the training step.

0 20 40 60 80 100
Step

0.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Train Accuracy

0 20 40 60 80 100
Step

2000

3000

4000

5000

6000
Re

sp
on

se
 L

en
gt

h

Train Response Length

Eff. Reasoning =0.9
Eff. Reasoning =0.6

Eff. Reasoning =0.2
Eff. Reasoning =0.1

Cosine Reward
ConciseRL (GPT-4.1 mini)

ConciseRL Separated (GPT-4.1 mini)

Figure 7: Training metrics across steps using DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025) as the
base model and GPT-4.1 mini (OpenAI, 2025a) as the judge. The Y-axes show accuracy (higher is better; left) and
response length in tokens (lower is better; right). The X-axis in both cases shows the training step.

toward assessing semantic compactness rather than
surface-level brevity. The exact prompt we used
can be seen in Figure 8.

A.4 Reasoning Trace Examples

To better illustrate the differences between reward
strategies, we provide representative reasoning
traces from ConciseRL, ConciseRL (Separated),
and Efficient Reasoning with α = 0.4. We selected
α = 0.4 because it achieves accuracy compara-
ble to ConciseRL on MATH500, making it a fair
baseline for direct comparison. We focus on ex-
amples where all methods correctly solve the prob-
lem to ensure the comparison of conciseness is not
confounded by correctness. For more aggressive
penalty settings like α = 0.6 or α = 0.9, it was
difficult to find consistent examples across all lev-
els that resulted in correct answers, so they were
excluded.

The conciseness judge rewards semantic density:
a trace must enumerate every logically necessary

step while avoiding rhetorical or computational
detours. Because the reward is assigned by a large-
model evaluator, it is sensitive to redundancy that
naive length penalties overlook, yet agnostic to cor-
rectness, which we enforce separately. This design
choice underlies all the gains discussed below.

Level-1 Example (Figure 9–Figure 10). Our
CONCISERL trace solves the parity-of-students
puzzle in 237 tokens, with the gated variant using
only 170. Efficient-Reasoning (α = 0.4) needs 257,
while Cosine-Reward expands to 1278. Most of the
extra tokens in the baselines are meta-commentary
or reintroductions of already stated variables; our
trace states the constraints once, enumerates the
only two admissible multiples of 13, and dismisses
the invalid option in a single inequality check, yield-
ing length savings without omitting any logical
step.

Level-2 Example (Figure 11–Figure 12). For
the “roots of unity” problem, CONCISERL finishes

17111

GSM8K MATH500 MMLU-Pro-1k GPQA-main TheoremQA Average

Technique Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len.

ConciseRL (Separated) 72.5 248 68.6 1703 19.2 2904 31.0 4913 28.5 1534 43.96 2260
ConciseRL 80.9 543 78.0 3221 24.5 5732 30.4 11429 32.5 4034 49.26 4992
ConciseRL (GPT-4o mini) 82.8 515 77.4 2971 19.1 4240 28.6 9045 34.8 3439 48.54 4042
ConciseRL (GPT-4.1 nano) 83.6 2880 75.6 7994 17.5 8738 30.6 16363 29.3 16510 47.32 10497
Eff. Reasoning α=0.9 16.1 19 33.6 2195 18.2 1723 27.9 6509 20.4 1872 23.24 2463
Eff. Reasoning α=0.6 55.9 362 64.4 2735 27.8 6583 35.0 13675 34.3 4533 43.48 5578
Eff. Reasoning α=0.4 74.7 635 76.8 3382 21.8 6730 31.5 12973 33.3 6009 47.62 5946
Eff. Reasoning α=0.2 79.8 658 79.6 3428 22.2 5746 29.9 15415 34.9 8029 49.28 6655
Eff. Reasoning α=0.1 82.5 966 78.4 4588 21.6 6347 32.1 14157 34.5 8271 49.82 6866
Cosine Reward 80.4 4711 77.0 8348 19.8 13962 32.1 22708 29.4 17933 47.74 13532
DeepScaleR 80.7 5044 82.6 6160 31.5 10071 32.6 17742 34.8 10970 52.4 9997.4
Full Reasoning 76.3 1516 71.4 10442 25.8 14886 26.6 24880 26.3 19251 45.28 14195

Table 5: Comparison of accuracy (higher is better) and token length (lower is better) across datasets for DeepSeek-
R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025). For ConciseRL, we use GPT-4.1 mini (OpenAI, 2025a) as the
conciseness judge.

GSM8K MATH500 MMLU-Pro-1k GPQA-main TheoremQA Average

Technique Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len.

ConciseRL 78.5 403 77.2 2519 19.9 4299 28.3 7670 29.6 3141 46.7 3606.4
Eff. Reasoning α=0.9 14.6 15 18.8 151 14.6 18 27.7 40 16.5 19 18.4 48.6
Eff. Reasoning α=0.6 81.3 655 77.6 676 24.3 1354 31.2 1252 34.1 214 49.7 727.8
Eff. Reasoning α=0.4 60.9 178 68.0 2080 18.8 4126 31.5 8082 33.1 3056 42.5 3504.4
Eff. Reasoning α=0.2 81.3 655 77.6 3291 24.3 7498 31.2 12078 34.1 6924 49.7 6089.2
Eff. Reasoning α=0.1 85.0 1266 82.0 4226 20.4 9117 30.4 18408 36.1 7997 50.8 8202.8
Cosine Reward 43.6 21887 44.4 22320 17.8 28788 28.8 31027 13.6 30430 29.6 26890.4
DeepScaleR 80.7 5044 82.6 6160 31.5 10071 32.6 17742 34.8 10970 52.4 9997.4
Full Reasoning 83.1 3656 78.8 7470 32.0 13310 31.0 22398 29.8 15219 50.9 12410.6

Table 6: Comparison of accuracy (higher is better) and token length (raw token count; lower is better) across datasets
for STILL-3-1.5B-preview (Team, 2025b; Min et al., 2024). For ConciseRL, we use GPT-4.1 mini (OpenAI, 2025a)
as the conciseness judge.

in 331 tokens (and 217 for the separated reward),
whereas Efficient-Reasoning α = 0.4 requires 842.
The baselines repeatedly paraphrase the factorisa-
tion z6 − 1 = (z2 − 1)(z4 + z2 + 1), reformu-
late roots of unity three times, and speculate about
smaller n; our model invokes the factorisation ex-
actly once, recognises that the remaining roots are
primitive sixth roots, and concludes immediately.
This trims the narrative overhead while keeping the
algebra explicit.

Level-3 example (Figure 13–Figure 14). In the
handshake-counting puzzle, CONCISERL com-
presses the reasoning to 115 tokens (or 69 in
the separated variant) versus 535 for Efficient-
Reasoning and 3035 for Cosine-Reward. The base-
lines re-read the prompt, rehearse elementary com-
binatorics, and pepper in “thinking-aloud” asides;
our trace states the bipartite handshake structure in
one declarative sentence and performs the 6× 10
multiplication once, making the combinatorial in-

sight transparent.

Level-4 Example (Figure 15–Figure 16). When
converting repeating decimals to fractions, CON-
CISERL requires only 130 tokens, while Efficient-
Reasoning consumes 863 and Cosine-Reward 1467.
All three traces apply identical fraction conver-
sions; our model simply avoids restating intermedi-
ate results and deletes free-form reflections such as
“Hmm, repeating decimals can be tricky,” leading
to reduction in length with no loss of clarity.

Level-5 Example (Figure 17–Figure 18). For
the leaking-bucket problem, CONCISERL uses 192
tokens (or 76 separated) versus 437 for Efficient-
Reasoning, 5 086 for Cosine-Reward, and 1139
for full reasoning. Baselines repeatedly explain
geometric decay and rewrite the same power of
2
3 ; our trace articulates the multiplicative factor
once and streams three intermediate states inline,
preserving every quantitative step while cutting the

17112

System prompt:

You are an expert evaluator tasked with scoring the conciseness of a reasoning trace from an AI
model.

Conciseness means providing clear, precise, and direct reasoning.
- High-scoring reasoning (8–10) is brief yet explicitly demonstrates the logical steps or thought
processes clearly.
- Medium-scoring reasoning (5–7) might have minor redundancy, slight verbosity, or slightly unclear
phrasing.
- Low-scoring reasoning (1–4) is either overly verbose, repetitive, vague, contains placeholders,
or is too brief.

Do NOT reward extremely short traces that only state the final answer without reasoning.
Tags like <think>, </think>, <answer>, </answer> are acceptable and should NOT affect scoring.

Evaluate ONLY conciseness. Ignore correctness or accuracy entirely.

Provide ONLY a single integer from 1 (least concise) to 10 (most concise). Do NOT include
explanations or any additional text.

Reasoning Trace:

\{response_text\}

Conciseness Score (1-10):

Figure 8: System propmpt used for the LLM conciseness judge.

filler.

Emergent Pattern across Difficulty Levels.
Across Levels 1–5, CONCISERL consistently re-
moves filler phrases, nested restatements, and spec-
ulative digressions, leaving only the algebraic core.
The percentage of tokens saved grows with prob-
lem difficulty, because long chains of identical
transformations are where verbosity compounds.
Importantly, the resulting traces are more read-
able: each symbol is introduced once, variables
are reused consistently, and the final boxed answer
is reached without back-tracking. The concision
gain does not come at the expense of policy stabil-
ity; Appendix 4.6 shows that our KL-divergence
curve mirrors that of Efficient-Reasoning α = 0.4
while producing far shorter traces and higher aver-
age accuracy.

Why Our Model is Better. The qualitative evi-
dence above corroborates the quantitative results
from the paper: by optimising a semantic concise-
ness reward, CONCISERL (i) achieves higher ac-
curacy at matched or lower token budgets, because
unnecessary tokens often accompany spurious log-
ical branches that hurt correctness; (ii) offers su-
perior interpretability, as every surviving token
carries deductible mathematical purpose, enabling
rapid human or downstream-model verification;
and (iii) incurs lower inference cost—up to 31x
fewer generated tokens on easy problems—without

extra hyper-parameters or dataset-specific tuning.
In short, our reward converts verbosity into sig-
nal, aligning the policy with human preferences for
clear, economical argumentation.

17113

MATH500 - Level 1 Question: Thirty-five students attend a math club meeting. The number of girls at
the meeting is a multiple of 13, and there are more girls than boys attending the meeting. How many boys
are at the meeting?

Reasoning Trace - ConciseRL - 237 tokens:

First, let \(b \) represent the number of boys and \(g \) represent the number of girls. We
know:
1. \(b + g = 35 \)
2. \(g \) is a multiple of 13.
3. \(g > b \).

Since \(g \) is a multiple of 13 and \(g \leq 35 \), possible values for \(g \) are 13, 26, or
39 (but 39 exceeds 35, so only 13 and 26).

Check \(g = 26 \):
- Then \(b = 35 - 26 = 9 \).
- \(g > b \) since 26 > 9. This works.

Check \(g = 13 \):
- Then \(b = 35 - 13 = 22 \).
- \(g > b \) since 13 < 22. This does not work.

Thus, the only valid solution is \(b = 9 \).

Reasoning Trace - ConciseRL (Separated) - 170 tokens:

Given that the total number of students is 35, and the number of girls is a multiple of 13, let's
denote the number of girls as 13k, where k is a positive integer. Then, the number of boys would
be 35 - 13k.

Since there are more girls than boys, we have:
13k > 35 - 13k
26k > 35
k > 35/26 ≈ 1.346

Thus, k must be at least 2. Substituting k=2:
Number of girls = 26
Number of boys = 35 - 26 = 9

Therefore, there are 9 boys at the meeting.

Answer: 9

Figure 9: Example reasoning traces generated by our methods ("ConciseRL" and "ConciseRL (Separated)") on a
Level 1 MATH500 (Hendrycks et al., 2021) question.

17114

MATH500 - Level 1 Question: Thirty-five students attend a math club meeting. The number of girls at
the meeting is a multiple of 13, and there are more girls than boys attending the meeting. How many boys
are at the meeting?

Reasoning Trace - Efficient Reasoning α = 0.4 - 257 tokens:

Let \(G \) be the number of girls and \(B \) be the number of boys. We know:

1. \(G + B = 35 \)
2. \(G \) is a multiple of 13, so \(G = 13k \) where \(k \) is an integer.
3. \(G > B \)

Substituting \(G = 13k \) into the first equation:

\(13k + B = 35 \)
\(B = 35 - 13k \)

Since \(G > B \):

\(13k > 35 - 13k \)
\(26k > 35 \)
\(k > \frac{35}{26} \)
\(k \geq 2 \)

Testing \(k = 2 \):

\(G = 26 \), \(B = 9 \). Check \(G > B \): 26 > 9, which is true.

Thus, the number of boys is \(\boxed{9} \).

Reasoning Trace - Cosine Reward - 1278 tokens:

Okay, so I have this problem here: There are 35 students at a math club meeting. The number of
girls is a multiple of 13, and there are more girls than boys. I need to find out how many boys
are at the meeting. Hmm, let me try to break this down step by step.

First, let me note down the key information:

1. Total students: 35
2. Number of girls is a multiple of 13.
3. Number of girls is more than the number of boys.

[...]

The number of boys at the meeting is \boxed{9}.

Reasoning Trace - Full Reasoning - 1689 tokens:

Okay, so I have this problem here: There are 35 students at a math club meeting. The number of
girls is a multiple of 13, and there are more girls than boys. I need to find out how many boys
are at the meeting. Hmm, let me think about how to approach this.

First, let's break down the information given. There are 35 students in total. Let me denote the
number of girls as G and the number of boys as B. So, G + B = 35.

[...]

Thus, the number of boys at the meeting is \(\boxed{9}\).

Answer: 9

Figure 10: Example reasoning traces for a Level 1 MATH500 (Hendrycks et al., 2021) question across different
methods. We show Efficient Reasoning (Arora and Zanette, 2025) with α = 0.4 since it achieves the best accuracy-
length trade-off for their method. The Cosine Reward (Yeo et al., 2025) and Full Reasoning (DeepSeek-AI et al.,
2025) outputs are considerably longer, so traces are partially truncated with [...] due to space. The full reasoning
traces are available at https://github.com/RazvanDu/ConciseRL.

17115

MATH500 - Level 2 Question: What is the smallest positive integer n such that all the roots of $z^4
+ z^2 + 1 = 0$ are n^{th} roots of unity?

Reasoning Trace - ConciseRL - 331 tokens:

First, we start with the equation \(z^4 + z^2 + 1 = 0 \). We need to find the smallest positive
integer \(n \) such that all roots of this equation are \(n \)-th roots of unity.

First, let's factor the equation. Notice that \(z^4 + z^2 + 1 \) can be rewritten as \(z^4 + z^2
+ 1 = \frac{z^6 - 1}{z^2 - 1} \), since \(z^6 - 1 = (z^2)^3 - 1 = (z^2 - 1)(z^4 + z^2 + 1) \).
Therefore, the roots of \(z^4 + z^2 + 1 = 0 \) are the 6th roots of unity excluding the square
roots of unity, i.e., \(z^6 = 1 \) but \(z^2 \neq 1 \).

So, the roots are \(e^{2\pi i k/6} \) for \(k = 1, 2, 4, 5 \). These are the primitive 6th roots
of unity.

Now, we need to find the smallest \(n \) such that all these roots are \(n \)-th roots of unity.
Since the primitive 6th roots of unity are already 6th roots of unity, the minimal \(n \) is 6.

Final Answer
The smallest positive integer \(n \) is \boxed{6}.

Reasoning Trace - ConciseRL (Separated) - 217 tokens:

To find the smallest positive integer \(n \) such that all roots of \(z^4 + z^2 + 1 = 0 \) are
\(n \)-th roots of unity, we start by factoring the equation. Notice that \(z^4 + z^2 + 1 \) can
be rewritten as \(\frac{z^6 - 1}{z^2 - 1} \), which simplifies to \(z^4 + z^2 + 1 \). This
implies that the roots are the 6th roots of unity, excluding the square roots of unity (i.e., \(z
\neq 1 \) and \(z \neq -1 \)).

Therefore, the roots are the primitive 6th roots of unity. This means that each root is a solution
to \(z^6 = 1 \), so the smallest \(n \) for which all roots are \(n \)-th roots of unity is \(
n = 6 \).

\boxed{6}

Answer: 6

Figure 11: Example reasoning traces generated by our methods ("ConciseRL" and "ConciseRL (Separated)") on a
Level 2 MATH500 (Hendrycks et al., 2021) question.

17116

MATH500 - Level 2 Question: What is the smallest positive integer n such that all the roots of $z^4
+ z^2 + 1 = 0$ are n^{th} roots of unity?

Reasoning Trace - Efficient Reasoning α = 0.4 - 842 tokens:

Okay, so I need to find the smallest positive integer \(n \) such that all the roots of the
polynomial \(z^4 + z^2 + 1 = 0 \) are \(n \)-th roots of unity. Hmm, let's break this down step
by step.

First, I remember that the \(n \)-th roots of unity are the solutions to the equation \(z^n = 1
\). They are evenly spaced around the unit circle in the complex plane. So, if all the roots of \(
z^4 + z^2 + 1 = 0 \) are \(n \)-th roots of unity, then each root must satisfy \(z^n = 1 \).

[...]

Wait, but let me make sure. Is there a smaller \(n \) where all these roots are included? Let's
see. The roots are primitive 6th roots, so their order is 6. So, the minimal \(n \) is 6.

Therefore, the answer should be \(\boxed{6} \).

Reasoning Trace - Cosine Reward - 3256 tokens:

Okay, so I need to find the smallest positive integer \(n \) such that all the roots of the
polynomial \(z^4 + z^2 + 1 = 0 \) are \(n \)-th roots of unity. Hmm, let me think about how to
approach this.

First, I remember that roots of unity are complex numbers that satisfy \(z^n = 1 \) for some
positive integer \(n \). So, essentially, I need to find the smallest \(n \) where all the roots
of \(z^4 + z^2 + 1 = 0 \) lie on the unit circle in the complex plane and are evenly spaced
around it.

[...]

These roots correspond to angles that are multiples of \(\frac{\pi}{3} \). The smallest \(n \)
such that all these roots are \(n \)-th roots of unity is 6, as the angles are multiples of \(
\frac{\pi}{3} \) and \(\frac{2\pi}{3} \), which are fractions of \(2\pi \) with denominator 6.

Final Answer
The smallest positive integer \(n \) is \boxed{6}.

Reasoning Trace - Full Reasoning - 6079 tokens:

Okay, so I have this problem: I need to find the smallest positive integer \(n \) such that all
the roots of the equation \(z^4 + z^2 + 1 = 0 \) are \(n^{\text{th}} \) roots of unity. Hmm,
okay. Let me think about how to approach this.

First, I remember that roots of unity are complex numbers that satisfy the equation \(z^n = 1 \).
So, if all the roots of \(z^4 + z^2 + 1 = 0 \) are \(n^{\text{th}} \) roots of unity, that means
each root \(z \) must satisfy \(z^n = 1 \) for some \(n \). But I need the smallest such \(n
\) that works for all roots.

[...]

Each of these roots is a 6th root of unity because they can be written as \(e^{i \cdot \frac{2\pi
k}{6}} \) for \(k = 1, 2, 4, 5 \). Therefore, each root is a 6th root of unity, and the minimal
\(n \) such that all roots are \(n^{\text{th}} \) roots of unity is 6.

Thus, the smallest positive integer \(n \) is \(\boxed{6}\).

Answer: 6

Figure 12: Example reasoning traces for a Level 2 MATH500 (Hendrycks et al., 2021) question across different
methods. We show Efficient Reasoning (Arora and Zanette, 2025) with α = 0.4 since it achieves the best accuracy-
length trade-off for their method. The Efficient Reasoning (Arora and Zanette, 2025), Cosine Reward (Yeo et al.,
2025) and Full Reasoning (DeepSeek-AI et al., 2025) outputs are considerably longer, so traces are partially truncated
with [...] due to space. The full reasoning traces are available at https://github.com/RazvanDu/ConciseRL.

17117

MATH500 - Level 3 Question: Six witches and ten sorcerers are at an arcane mixer. The witches have
decided to shake hands with each of the sorcerers. None of the witches bothered to shake each other's
hands, since they are all good friends already, and the sorcerers all sort of hate each other and did not
shake hands with other sorcerers. How many handshakes took place at the mixer?

Reasoning Trace - ConciseRL - 115 tokens:

First, identify the groups: 6 witches and 10 sorcerers. Witches only shake hands with sorcerers,
not among themselves. Sorcerers don't shake hands with others, only with each other, but since
they don't shake hands at all, that group contributes nothing.

Each witch shakes hands with each sorcerer. So, the total number of handshakes is the product of
the number of witches and sorcerers: \(6 \times 10 = 60\).

Answer: \boxed{60}

Reasoning Trace - ConciseRL (Separated) - 69 tokens:

The number of handshakes is determined by the number of ways a witch can shake hands with a
sorcerer. Since each of the 6 witches shakes hands with each of the 10 sorcerers, the total number
of handshakes is 6 multiplied by 10, which equals 60.

\boxed{60}

Answer: 60

Figure 13: Example reasoning traces generated by our methods ("ConciseRL" and "ConciseRL (Separated)") on a
Level 3 MATH500 (Hendrycks et al., 2021) question.

17118

MATH500 - Level 3 Question: Six witches and ten sorcerers are at an arcane mixer. The witches have
decided to shake hands with each of the sorcerers. None of the witches bothered to shake each other's
hands, since they are all good friends already, and the sorcerers all sort of hate each other and did not
shake hands with other sorcerers. How many handshakes took place at the mixer?

Reasoning Trace - Efficient Reasoning α = 0.4 - 535 tokens:

Okay, so I need to figure out how many handshakes happened at the mixer. Let me read the problem
again to make sure I understand it.

There are six witches and ten sorcerers at the mixer. The witches are shaking hands with each of
the sorcerers. The witches don't shake hands with each other, and the sorcerers don't shake hands
with each other either. So, only the witches are shaking hands with the sorcerers.

[...]

\[
6 \times 10 = 60
\]

Thus, the total number of handshakes that took place at the mixer is \(\boxed{60}\).

Reasoning Trace - Cosine Reward - 3035 tokens:

Okay, so I have this problem here: there are six witches and ten sorcerers at an arcane mixer. The
witches are going to shake hands with each of the sorcerers. But the witches don't shake hands
with each other at all—they’re all good friends already. On the other hand, the sorcerers don't
shake hands with each other either; they all hate each other and don't want to be around each
other. The question is, how many handshakes took place at the mixer?

[...]

\[
6 \text{ witches} \times 10 \text{ sorcerers} = 60 \text{ handshakes}
\]

Thus, the total number of handshakes that took place at the mixer is \(\boxed{60}\).

Reasoning Trace - Full Reasoning - 1484 tokens:

Okay, so I have this problem here about witches and sorcerers at an arcane mixer. Let me try to
understand it step by step.

First, there are six witches and ten sorcerers. The witches are going to shake hands with each of
the sorcerers. But wait, the problem says that none of the witches bothered to shake each other's
hands because they're all good friends already. So, that means the witches are not shaking hands
with each other. But they are shaking hands with the sorcerers.

[...]

Each of the 6 witches shakes hands with each of the 10 sorcerers. Thus, the total number of
handshakes is calculated by multiplying the number of witches by the number of sorcerers:

\[
6 \text{ witches} \times 10 \text{ sorcerers} = 60 \text{ handshakes}
\]

Therefore, the total number of handshakes that took place at the mixer is \boxed{60}.

Answer: 60

Figure 14: Example reasoning traces for a Level 3 MATH500 (Hendrycks et al., 2021) question across different
methods. We show Efficient Reasoning (Arora and Zanette, 2025) with α = 0.4 since it achieves the best accuracy-
length trade-off for their method. The Efficient Reasoning (Arora and Zanette, 2025), Cosine Reward (Yeo et al.,
2025) and Full Reasoning (DeepSeek-AI et al., 2025) outputs are considerably longer, so traces are partially truncated
with [...] due to space. The full reasoning traces are available at https://github.com/RazvanDu/ConciseRL.

17119

MATH500 - Level 4 Question: Compute: $0.\overline{7}-0.\overline{4}+0.\overline{2}$. Express
your answer as a common fraction.

Reasoning Trace - ConciseRL - 130 tokens:

First, convert each repeating decimal to a fraction:
- \(0.\overline{7} = \frac{7}{9}\)
- \(0.\overline{4} = \frac{4}{9}\)
- \(0.\overline{2} = \frac{2}{9}\)

Now, compute:
\[
\frac{7}{9} - \frac{4}{9} + \frac{2}{9} = \frac{7 - 4 + 2}{9} = \frac{5}{9}
\]

\boxed{\dfrac{5}{9}}

Reasoning Trace - ConciseRL (Separated) - 152 tokens:

First, convert each repeating decimal to a fraction:
- \(0.\overline{7} = \frac{7}{9}\)
- \(0.\overline{4} = \frac{4}{9}\)
- \(0.\overline{2} = \frac{2}{9}\)

Now, substitute these into the expression:
\(\frac{7}{9} - \frac{4}{9} + \frac{2}{9}\)

Combine the numerators:
\(\frac{7 - 4 + 2}{9} = \frac{5}{9}\)

So, the answer is \(\frac{5}{9}\).

\boxed{\dfrac{5}{9}}

Answer: \frac{5}{9}

Figure 15: Example reasoning traces generated by our methods ("ConciseRL" and "ConciseRL (Separated)") on a
Level 4 MATH500 (Hendrycks et al., 2021) question.

17120

MATH500 - Level 4 Question: Compute: $0.\overline{7}-0.\overline{4}+0.\overline{2}$. Express
your answer as a common fraction.

Reasoning Trace - Efficient Reasoning α = 0.4 - 863 tokens:

Okay, so I need to compute 0.\overline{7} minus 0.\overline{4} plus 0.\overline{2}. Hmm, repeating
decimals. I remember that repeating decimals can be converted into fractions by using some
algebra. Let me try to recall the exact method.

First, let's take 0.\overline{7}. Let me call this x. So, x = 0.7777... If I multiply both sides
by 10, I get 10x = 7.7777... Then, subtract the original equation: 10x - x = 7.7777... - 0.7777...
That gives 9x = 7, so x = 7/9. Okay, so 0.\overline{7} is 7/9.

[...]

Now, compute \(0.\overline{7} - 0.\overline{4} + 0.\overline{2} \):

\[
\frac{7}{9} - \frac{4}{9} + \frac{2}{9} = \frac{7 - 4 + 2}{9} = \frac{5}{9}
\]

\(\boxed{\dfrac{5}{9}}\)

Reasoning Trace - Cosine Reward - 1467 tokens:

Okay, so I need to compute \(0.\overline{7} - 0.\overline{4} + 0.\overline{2}\) and express the
answer as a common fraction. Hmm, repeating decimals can be converted into fractions by using some
algebra. Let me recall how that works.

First, I remember that a repeating decimal like \(0.\overline{a}\) can be written as
\(\frac{a}{9}\). So, for example, \(0.\overline{7}\) would be \(\frac{7}{9}\), \(0.\overline{4}\)
would be \(\frac{4}{9}\), and \(0.\overline{2}\) would be \(\frac{2}{9}\). Let me verify that.

[...]

4. Verify by converting back to a decimal and performing the operations, which also results in
\(0.\overline{5} = \frac{5}{9}\).

Thus, the result of the computation is \(\boxed{\dfrac{5}{9}}\).

Reasoning Trace - Full Reasoning - 1673 tokens:

Okay, so I need to compute 0.\overline{7} minus 0.\overline{4} plus 0.\overline{2}, and express
the answer as a common fraction. Hmm, repeating decimals can sometimes be tricky, but I remember
there's a method to convert them into fractions. Let me try to recall how that works.

First, I think I need to convert each repeating decimal into a fraction separately. Once I have
all three fractions, I can perform the arithmetic operations: subtraction and addition. Then, I'll
add them up and simplify the result to get the final answer as a common fraction.

[...]

Now, we substitute these fractions into the original expression:
\[0.\overline{7} - 0.\overline{4} + 0.\overline{2} = \frac{7}{9} - \frac{4}{9} + \frac{2}{9}\]

Combine the fractions:
\[\frac{7}{9} - \frac{4}{9} + \frac{2}{9} = \frac{7 - 4 + 2}{9} = \frac{5}{9}\]

Thus, the result of the computation is \(\boxed{\dfrac{5}{9}}\).

Answer: \frac{5}{9}

Figure 16: Example reasoning traces for a Level 4 MATH500 (Hendrycks et al., 2021) question across different
methods. We show Efficient Reasoning (Arora and Zanette, 2025) with α = 0.4 since it achieves the best accuracy-
length trade-off for their method. The Efficient Reasoning (Arora and Zanette, 2025), Cosine Reward (Yeo et al.,
2025) and Full Reasoning (DeepSeek-AI et al., 2025) outputs are considerably longer, so traces are partially truncated
with [...] due to space. The full reasoning traces are available at https://github.com/RazvanDu/ConciseRL.

17121

MATH500 - Level 5 Question: Sam is carrying a 2 gallon bucket of milk to his house from the barn,
which is 3 miles away from his house. However, the bucket has a leak in it. For each mile he walks, there
is $\frac{2}{3}$ as much milk in the bucket as at the beginning of the mile. How many gallons of milk
will be in the bucket when Sam gets home?

Reasoning Trace - ConciseRL - 192 tokens:

First, identify the initial amount of milk in the bucket, which is 2 gallons.

For each mile, the amount of milk decreases by a factor of \(\frac{2}{3}\). Since Sam walks 3
miles, we need to apply this factor three times.

After 1 mile: \(2 \times \frac{2}{3} = \frac{4}{3}\) gallons.

After 2 miles: \(\frac{4}{3} \times \frac{2}{3} = \frac{8}{9}\) gallons.

After 3 miles: \(\frac{8}{9} \times \frac{2}{3} = \frac{16}{27}\) gallons.

Thus, when Sam gets home, there will be \(\frac{16}{27}\) gallons of milk left.

\boxed{\dfrac{16}{27}}

Reasoning Trace - ConciseRL (Separated) - 76 tokens:

The bucket starts with 2 gallons. For each mile, the amount of milk is multiplied by 2/3. After 3
miles, the milk remaining is 2 * (2/3)^3 = 2 * (8/27) = 16/27 gallons.

\boxed{\dfrac{16}{27}}

Answer: \frac{16}{27}

Figure 17: Example reasoning traces generated by our methods ("ConciseRL" and "ConciseRL (Separated)") on a
Level 5 MATH500 (Hendrycks et al., 2021) question.

17122

MATH500 - Level 5 Question: Sam is carrying a 2 gallon bucket of milk to his house from the barn,
which is 3 miles away from his house. However, the bucket has a leak in it. For each mile he walks, there
is $\frac{2}{3}$ as much milk in the bucket as at the beginning of the mile. How many gallons of milk
will be in the bucket when Sam gets home?

Reasoning Trace - Efficient Reasoning α = 0.4 - 437 tokens:

Okay, so Sam is carrying a 2-gallon bucket of milk to his house, which is 3 miles away. But
there's a leak in the bucket. For each mile he walks, the amount of milk decreases to two-thirds
of what it was at the beginning of that mile. I need to figure out how much milk will be left when
he gets home.

Hmm, let's break this down. It seems like each mile, the milk is multiplied by 2/3. So, starting
with 2 gallons, after the first mile, it should be 2*(2/3). Then, after the second mile, it would
be (2*(2/3))*(2/3) = 2*(2/3)^2. And after the third mile, it would be 2*(2/3)^3.

[...]

\[2 \times \left(\frac{2}{3} \right)^3 = 2 \times \frac{8}{27} = \frac{16}{27} \]

\boxed{\dfrac{16}{27}}

Reasoning Trace - Cosine Reward - 5086 tokens:

Okay, so I have this problem where Sam is carrying a 2-gallon bucket of milk to his house, which
is 3 miles away. But here's the catch: the bucket has a leak. For each mile he walks, the amount
of milk left in the bucket is two-thirds of what it was at the start of that mile. I need to
figure out how much milk will be left when he gets home. Hmm, okay, let me break this down.

First, let me visualize the situation. Sam starts at the barn, which is 3 miles away from his
house. He's carrying a 2-gallon bucket, and as he walks each mile, the milk decreases by a factor
of 2/3. So, for each mile, the amount of milk is multiplied by 2/3. That sounds like a geometric
sequence problem where each term is 2/3 of the previous one.

[...]

Thus, the amount of milk in the bucket when Sam gets home is \(\boxed{\dfrac{16}{27}}\) gallons.

Reasoning Trace - Full Reasoning - 1139 tokens:

Okay, so Sam is carrying a 2-gallon bucket of milk to his house, which is 3 miles away. But here's
the catch: the bucket has a leak. For each mile he walks, the amount of milk left in the bucket is
two-thirds of what it was at the start of that mile. Hmm, I need to figure out how much milk will
be left when he gets home.

Let me break this down. Sam starts with 2 gallons. Every mile, the milk reduces to two-thirds of
its previous amount. So, it's like a geometric sequence where each term is two-thirds of the
previous one. Since he's walking 3 miles, I need to apply this reduction three times.

[...]

Thus, the amount of milk when Sam gets home is:

\[2 \times \frac{8}{27} = \frac{16}{27} \]

The amount of milk in the bucket when Sam gets home is \(\boxed{\dfrac{16}{27}}\) gallons.

Answer: \frac{16}{27}

Figure 18: Example reasoning traces for a Level 5 MATH500 (Hendrycks et al., 2021) question across different
methods. We show Efficient Reasoning (Arora and Zanette, 2025) with α = 0.4 since it achieves the best accuracy-
length trade-off for their method. The Efficient Reasoning (Arora and Zanette, 2025), Cosine Reward (Yeo et al.,
2025) and Full Reasoning (DeepSeek-AI et al., 2025) outputs are considerably longer, so traces are partially truncated
with [...] due to space. The full reasoning traces are available at https://github.com/RazvanDu/ConciseRL.

17123

