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Abstract

Despite significant progress in multimodal
language models (LMs), it remains unclear
whether visual grounding enhances their un-
derstanding of embodied knowledge compared
to text-only models. To address this question,
we propose a novel embodied knowledge un-
derstanding benchmark based on the percep-
tual theory from psychology, encompassing vi-
sual, auditory, tactile, gustatory, olfactory ex-
ternal senses, and interoception. The bench-
mark assesses the models’ perceptual abilities
across different sensory modalities through vec-
tor comparison and question-answering tasks
with over 1,700 questions. By comparing 30
state-of-the-art LMs, we surprisingly find that
vision-language models (VLMs) do not outper-
form text-only models in either task. More-
over, the models perform significantly worse
in the visual dimension compared to other sen-
sory dimensions. Further analysis reveals that
the vector representations are easily influenced
by word form and frequency, and the models
struggle to answer questions involving spatial
perception and reasoning. Our findings under-
score the need for more effective integration of
embodied knowledge in LMs to enhance their
understanding of the physical world'.

1 Introduction

Embodied knowledge is acquired through expe-
rience and contextualized in relation to the body
(Castree et al., 2013). It is inherently sensory, en-
compassing sights, sounds, smells, touch, and taste
(Ellingson, 2008). Humans rely on both sensory
experiences and language experience to represent
knowledge (Vinaya et al., 2024; Jones and Bergen,
2024; Jones et al., 2024; Andrews et al., 2014,
2009; Bi, 2021; Giinther et al., 2019; Davis and
Yee, 2021; Kim et al., 2019). Similarly, embodied
Tsponding author.

!Our dataset and code are available at https://github.
com/ererdewubudesi/embodied_knowledge_2025.

Prompt & Predicted Words

Hummingbirds are the [MASK] birds in the world.
largest (0.47), smallest (0.13), fastest (0.11), only (0.04)

The trophy doesn’t fit into the brown suitcase because
the trophy is too [MASK].
small (0.25), big (0.23), heavy (0.17), large (0.17)

The trophy doesn’t fit into the brown suitcase because

the suitcase is too [MASK].
big (0.28), small (0.22), large (0.17), heavy (0.16)

Table 1: Word prediction examples by BERT-base.

knowledge is crucial for Al to bridge the gap be-
tween the digital and physical world (Lungarella
et al., 2007; Liu et al., 2024d).

However, LMs have traditionally relied on train-
ing on massive textual data to understand the world,
following the Distributional Hypothesis (Harris,
1954). Although they can memorize knowledge
from the data and learn to utilize statistical pat-
terns to demonstrate language understanding and
generation abilities, they often make mistakes on
questions related to the real world due to a lack of
grounding (Bender and Koller, 2020a; Merrill et al.,
2021). As shown in Table 1, the text-only model
BERT incorrectly identifies hummingbirds as the
largest birds in the world and is confused about the
relative sizes of objects, indicating that the model
struggles to differentiate between antonyms with
distinct sensory contrasts, such as small-big. There-
fore, increasing work has advocated for grounded
language learning through the integration of percep-
tual information and interaction with the physical
and social world (Bisk et al., 2020; Bender and
Koller, 2020b; Ma et al., 2023; Shi et al., 2025).

In recent years, large language models (LLMs)
have demonstrated significantly enhanced intelli-
gence (Du et al., 2022). Notably, multimodal LLMs
that associate natural language with visual infor-
mation exhibit robust visual question-answering
capabilities (Yin et al., 2023). This observation
naturally raises an intriguing question: does visual
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1 SensoryVec

{little, small, big}

She has a little box.
Shehasa box.

She has a big box. input :

Thereis a little dog in the yard.
Thereisa dog in the yard.
Thereisa big dog in the yard.
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Interoceptive
Gustatory olfactory D. When a person rotates their upper body to the 00

Perceptual Systems

2 PerceptualQA

When a person stands and rotates their upper
body to the right, which shoulder is more forward,
the left or the right?

A. Right shoulder

B. Not necessarily

C. Insufficient information to determine

D. Left shoulder

@ Auditory

right, their left shoulder naturally moves forward
while their right shoulder moves backward. Thisis
due to the basic biomechanics of torso rotation,
where the shoulders move in opposite directions
during the twisting motion.

(The answer is from Claude3.5-Sonnet.)

Figure 1: The two tasks in our embodied knowledge understanding benchmark.

grounding improve the models’ understanding
of embodied knowledge, thereby enabling them
to better perceive and comprehend the real world?

To address this question, we propose an embod-
ied knowledge understanding benchmark consist-
ing of two tasks: SensoryVec and PerceptualQA,
which evaluate the model’s capability to repre-
sent sensory information in vector form and an-
swer perception-related questions, respectively. As
shown in Figure 1, both tasks are systematically
designed based on the perceptual system frame-
work from psychology (Gerrig et al., 2015), encom-
passing experiential knowledge from visual, audi-
tory, tactile, gustatory, and olfactory modalities that
complement language-derived representations (Bi,
2021). In SensoryVec, we concentrate on the five
aforementioned external sensory modalities and
interoception, constructing a sensory adjective lex-
icon with 349 word triples and 1,047 sentences
reflecting natural contexts. By comparing the co-
sine similarities between sensory words and their
synonyms versus antonyms, we assess the model’s
vector representations. For PerceptualQA, we con-
struct a QA dataset comprising 9 tasks and 1,400
questions across five external sensory modalities.
Considering the complexity of the visual modal-
ity (Gerrig et al., 2015), we design 5 visual sub-
tasks: color attributes, colors in nature, geometry
and transformations, symbols, and body.

We evaluate a wide range of state-of-the-art LMs,
specifically selecting VLMs and text-only LMs
with multiple comparable pairs, such as Qwen-VL
and Qwen, LLaVA-Mistral and Mistral, where the
former is directly built upon the latter. We have
three main findings: (1) Current models exhibit
suboptimal performance in understanding embod-
ied knowledge, with the best-performing models

achieving only around 70% accuracy on both tasks,
far below human performance. (2) VLMs initial-
ized with text model parameters demonstrate no
clear advantage over their language model counter-
parts on either task. (3) Nearly all models perform
significantly worse on visual tasks compared to
other modalities, particularly on questions involv-
ing spatial understanding and reasoning in cate-
gories such as symbols, geometry, and body. These
results suggest that multimodal learning has not
yet fully capitalized on its potential to capture
and leverage embodied knowledge. As embod-
ied Al research actively integrates LLMs and vi-
sion large language models (VLLMs) into decision-
making (Liu et al., 2024d), the models’ limitations
in understanding and reasoning about embodied
knowledge may become a significant obstacle or
concern. In summary, this paper presents a system-
atic, comprehensive benchmark for evaluating mod-
els’ embodied knowledge across different modal-
ities, which is valuable for model analysis and di-
agnosis. Moreover, the resource construction ap-
proach outlined in this paper can serve as a refer-
ence for more comprehensive model evaluation.

2 Related Work
2.1 Comparing VLMs and text-only LMs

The emergence of multimodal LMs has sparked
interest in the differences between VLMs and text-
only LMs. A series of studies have compared
these two types of models based on vector repre-
sentations, involving tasks such as word similarity,
semantic probing, and measuring correlations be-
tween vectors and fMRI data.

Pezzelle et al. (2021) investigated the vector rep-
resentation differences between multimodal mod-
els (e.g. VILBERT and VisualBERT) and the
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text-only model BERT on existing word similar-
ity benchmarks. They discovered that multimodal
models surpass BERT on concrete words. Yun
et al. (2021) compared the embedding differences
between VLMs (VideoBERT and VisualBERT)
and their text-only variants using a series of prob-
ing tasks covering physical commonsense QA,
coreference resolution, semantic role labeling, and
adjective-noun composition. They found that the
multimodal models fail to significantly outperform
the text-only variants. Bavaresco et al. (2024) com-
pared word embedding alignment to brain activity
using the fMRI dataset by Pereira et al. (2018).
Representational similarity analysis revealed sub-
stantial differences among VLMs, with some ex-
hibiting higher brain response correlations than
unimodal models.

Tikhonov et al. (2023) further explored the fac-
tors influencing differences in word vector simi-
larities. They calculated word similarity data for
13,000 word pairs based on multimodal LMs (CLIP,
OpenCLIP, Multilingual CLIP) and text-only mod-
els (FastText, mBERT, XLLM-RoBerta). Using 46
semantic features, they conducted regression anal-
ysis to predict vector similarity differences. The
results showed that concreteness and taxonomic
features from WordNet were significant predictors.
However, a considerable portion of the embedding
space differences remained unexplained.

In summary, existing research has investigated
the differences between multimodal LMs and text-
only LMs. However, these studies focused only
on vector representations and relied on existing
evaluation datasets, which prevented them from
comprehensively and specifically diagnosing dif-
ferences between the two types of models, leading
to somewhat contradictory conclusions (Pezzelle
et al., 2021; Yun et al., 2021; Bavaresco et al.,
2024). Moreover, these works mainly focused on
early multimodal and text-only LMs and have not
yet considered the perceptual capabilities of LLMs.

2.2 Multimodal reasoning benchmarks

Numerous visual reasoning benchmarks, such as
CLEVR (Johnson et al., 2016), MMMU (Yue et al.,
2024), and MMBench (Liu et al., 2023c¢), have been
proposed to evaluate VLMs. These benchmarks
typically emphasize reasoning over domain knowl-
edge, object attributes and relationships, as well as
scene understanding and prediction. Structured as
visual question answering tasks, their reliance on
visual input at inference time makes it difficult to

directly compare the performance of text-only and
vision-language models.

2.3 Embodied AI

Embodied Al is essential for achieving Artificial
General Intelligence (AGI) and connecting the dig-
ital and physical worlds (Liu et al., 2024d). For
tasks such as 3D Visual Grounding and Embod-
ied Question Answering, traditional methods of-
ten struggle with complex queries and require ex-
tensive labeled data. Recent studies (Yang et al.,
2024c; Yuan et al., 2024; Majumdar et al., 2024; Pa-
tel et al., 2024) show that (multimodal) LLMs can
effectively handle diverse queries while reducing
data dependencies, often achieving strong perfor-
mance even without task-specific fine-tuning.

Meanwhile, embodied data has been leveraged
to enhance LLM capabilities. Recent studies (Yang
et al., 2024b; Fu et al., 2024; Yu et al., 2024) have
integrated tactile data with visual and linguistic
modalities through contrastive learning and fine-
tuning, enabling LL.Ms to better understand cross-
modal embodied knowledge.

While multimodal LLMs are expected to serve
as the brain of embodied agents (Liu et al., 2024d),
bridging the gap to human-level performance re-
mains challenging. Real-world applications such
as autonomous driving and human-computer inter-
action require sophisticated object understanding,
spatial reasoning, and geometric inference capabil-
ities. Continuous assessment and improvement in
these areas is essential for robust and generalizable
embodied Al systems.

3 Method

This paper proposes an embodied knowledge un-
derstanding benchmark consisting of two tasks:
SensoryVec and PerceptualQA, which evaluate
the model’s capability to represent sensory informa-
tion in vector form and answer perception-related
questions, respectively.

3.1 SensoryVec Task

Given LMs face difficulty in distinguishing
antonyms with sensory contrasts (see examples in
Table 1), we evaluated the models’ vector represen-
tations specifically for sensory adjectives. By com-
paring the similarities between each word and its
synonym versus its antonym, we examined whether
models assign higher similarity to the synonymous
term, as illustrated in Figure 1. A detailed motiva-
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Task

Question Perspectives

Visual-Color Attributes

Hue, brightness, saturation

Visual-Colors in Nature

Hue, saturation, warm and cool tones

Visual-Geometry and Transformations

Quantity, shape, direction, size relation, position relation

Visual-Symbols

Quantity, shape, direction, size relation, position relation

Visual-Body

Shape, direction, distance, speed, position relation

Auditory Volume, pitch
Tactile Smoothness, elasticity, hardness, weight, thickness, stickiness, temperature
Gustatory Sourness, sweetness, bitterness, saltiness, spiciness
Olfactory Fragrance, stench, specific odors
Table 2: Overview of subtasks in PerceptualQA.
Task Question

Visual-Color Attributes

Compared to red, what is the hue of burgundy?

A. More orangish B. More purplish C. More bluish D. More greenish

Visual-Colors in Nature
A. Jellyfish B. Raw eel

Which of these foods has the highest color saturation?
C. Raw catfish  D. Cooked shrimp

Visual-Geometry and Transformations
A. Rectangle

When a rectangle is folded so that its top and bottom edges coincide, what shape is formed?
B. Isosceles triangle

C. Rhombus D. Square

Visual-Symbols

When the number [7] is rotated 45 degrees counterclockwise, which direction does its opening face?

A.Left B.Up C.Down D.Right
Visual-Body When standing with hands behind the back, are the elbows higher or lower than the hips?
A. Higher B.Lower C. Atthe same height D. It varies
Auditory Which sound is usually louder: the sound of frying fish or the sound of steaming fish?
A. Steaming fish B. Frying fish C. Almost the same  D. It depends
Tactile Which fruit has the roughest skin?
A.Persimmon B.Banana C.Pear D. Pineapple
Gustatory Which food is least likely to have a bitter taste?
A. Coffee  B. Bitter gourd C.Corn D. Green tea
Olfactory Which of the following things has the most distinct fragrance?

A.Eggplant B. Rose tea

C. Carrot

D. Potato

Table 3: Sample questions from PerceptualQA (correct answers highlighted in bold).

tion for designing SensoryVec task can be seen in
Appendix A.1.

First, we collected candidate sensory adjectives
from three high-quality datasets (Lievers, 2015; Ly-
nott and Connell, 2009; Lynott et al., 2019). Refer-
ring to the perceptual system framework from psy-
chology (Gerrig et al., 2015), we selected sensory
words related to visual, auditory, tactile, gustatory,
olfactory, and interoceptive senses, and annotate
their attributes. To ensure representativeness, we
retained words with sensory ratings above 4 from
the datasets constructed by Lynott and Connell
(2009) and Lynott et al. (2019). Subsequently, we
reviewed and cleaned the data (e.g., by removing
duplicate words), as detailed in Appendix B.1.1.

Next, synonyms and antonyms are identified
with reference to WordNet (Fellbaum, 1998) and a
thesaurus (Random House, 2001). For words with-
out strict antonyms, such as color terms, seman-
tically distant counterparts are used. In this way,
we constructed sensory triples like small-little-big.
Furthermore, we curated three natural contextual
sentences for each triple, generated by LLMs and
then refined through human review (details in Ap-

pendix B.1.2). Finally, we obtained 349 groups of
sensory adjectives and 1047 sentences, systemat-
ically covering a wide range of attributes across
different sensory dimensions:

* Visual: color, shape, size, depth, distance,

orientation, displacement, speed, etc.

* Auditory: pitch, loudness, rhythm, etc.

e Tactile: texture, cold, warm, etc.

* Gustatory: sour, sweet, bitter, spicy, salty,

specific food flavors, etc.

* Olfactory: fragrant, odorous, pungent, etc.

* Interoceptive: hunger, satiety, etc.

In the evaluation, for contextualized models, we
use sentences as input and obtain average token
vectors from the last hidden layer, then compute
the mean vector across the three sentences. For
other models (such as Word2vec and GloVe), we
directly utilize standalone word vectors.

3.2 PerceptualQA Task

Considering that question-answering is the most
natural interaction mode for LLMs, we introduce
the PerceptualQA task to comprehensively eval-
uate a model’s embodied knowledge. Consistent
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with the SensoryVec task, we design questions re-
ferring to perceptual systems from psychological
theory (Gerrig et al., 2015), covering visual, au-
ditory, tactile, gustatory, and olfactory modalities.
Given the complexity of vision and the emphasis
on visual training in most existing multimodal mod-
els, we design five subtasks for the visual modality:
color attributes, colors in nature, geometry and
transformations, symbols, and body.

As shown in Table 2, questions for each modal-
ity are designed from multiple perspectives. They
are intended to be easily answerable by humans
through embodied imagination and reasoning.> For
geometry, symbol, and body-related questions, we
consider not only the original shapes of objects but
also their transformed states (e.g., after rotation).
Table 3 presents examples for each task. The full
question frameworks are provided in Table 9 (see
Appendix B.2.1).

We used an LLM (Claude-3.5-Sonnet) as a brain-
storming tool to generate candidate questions for
human annotators. Each question has four op-
tions with one correct answer. Most PerceptualQA
items were manually filtered; the remaining items
were further revised by annotators according to rig-
orous design criteria. Ultimately, the Perceptual QA
task consists of 1,400 multiple-choice questions,
with 200 questions per visual subtask and 100 ques-
tions per other perceptual understanding task. See
details of dataset construction in Appendix B.2.2.

4 [Experiments

4.1 Models and Settings

We systematically evaluated an extensive range of
state-of-the-art VLMs and text-only models, span-
ning diverse architectures, model sizes, and avail-
ability (open-source vs. closed-source). Models
assessed include CLIP, Word2Vec, GloVe, BERT,
Mistral, Vicuna, LLaMA, Gemma, Qwen, LLaVA,
GPT, Gemini, and Claude series. See Appendix C
for details of models and parameters.

The selected models include 6 groups of compa-
rable model pairs, where a vision-language model
is built upon a text-only language model, enabling
direct exploration of the impact of visual ground-
ing. These include VisualBERT & BERT, LLaVA-
1.6-Vicuna-7B & Vicuna-7B, LLaVA-1.6-Mistral-
7B & Mistral-7B, Qwen-VL-Chat & Qwen-7B,
Qwen2-VL-7B-Instruct & Qwen2-7B, and Qwen2-

2A detailed motivation for designing PerceptualQA task
can be seen in Appendix A.2.

Model All Sensory Visual Non-Visual
Word2Vec 67.64 65.00 71.33
GloVe 62.50 57.81 69.12
BERT 72.21 70.44 74.66
VisualBERT 64.18 65.52 62.33
GPT-2 50.43 47.78 54.11
Qwen-7B 61.32 54.68 70.55
Qwen-VL 58.74 53.69 65.75
Qwen-VL-Chat 61.60 55.17 70.55
Qwen2-7B 63.32 58.62 69.86
Qwen2-7B-Instruct 66.19 61.58 72.60
Qwen2-VL-7B-Instruct 63.04 58.62 69.18
Mistral-7B 67.05 63.55 71.92
LLaVA1.6-Mistral-7B 66.76 65.02 69.18
Vicuna-7B 57.59 58.62 56.16
LLaVA1.6-Vicuna-7B 58.45 59.61 56.85
CLIP 71.06 75.37 65.07

Table 4: Results on SensoryVec for static embeddings,
bidirectional, generative, and contrastive learning mod-
els (top to bottom). VLMs are underlined. Comparable
models within each group share the same background
color, with the LMs above the VLMs. Bolded values
denote the highest accuracy per sensory modality.

VL-72B-Instruct & Qwen2-72B (Li et al., 2019a;
Liu et al., 2024c,a; Bai et al., 2023b; Wang et al.,
2024a).

For SensoryVec, we evaluated the accuracy
based on cosine similarity judgments for each
triple.3 For PerceptualQA, we reported average
accuracy across two trials for reliability.*

4.2 Results
4.2.1 SensoryVec Task

Table 4 demonstrates the results on SensoryVec.
All models perform suboptimally on this task, with
accuracy ranging from 50% to 70%. Moreover,
VLMs perform comparably or worse than their cor-
responding text-only models, consistent with Yun
et al. (2021)’s findings. This reveals that perceiv-
ing sensory contrasts remains an important chal-
lenge for both text-only and multimodal models.
Furthermore, across different modalities, we find
that for most models, visual word representations
are notably inferior to those of non-visual sensory
words. Even VLLMs like Qwen2-VL-7B-Instruct
and LLaVA1.6-Mistral-7B struggle to bridge this
gap. Moreover, VLMs show no significant im-
provement over their text-only counterparts.
Surprisingly, the text-only language model
BERT achieves the best overall accuracy at 72.21%.

3Triples containing words that are not in Word2Vec and
GloVe vocabulary are excluded from total count.

*Evaluation prompts are in Appendix C.2, with correct
answer distributions shown in Table 10.
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This indicates that even without explicit visual in-
put, models can capture a significant amount of
sensory-related information from large-scale tex-
tual data, although substantial gaps remain. These
results echo findings from psychological studies
showing that language can convey certain aspects
of perceptual knowledge. For example, previous re-
search has demonstrated that congenitally blind in-
dividuals can acquire some knowledge about visual
properties such as shape, texture, or size through
linguistic descriptions and conceptual inference, de-
spite not having direct visual experience (Bi, 2021;
Kim et al., 2019). It is important to note that, un-
like language models, blind individuals have ac-
cess to other sensory modalities (e.g., touch and
hearing), providing them with richer embodied ex-
periences. Nevertheless, the absence of sensory ex-
perience still hinders understanding of some vision-
dependent attributes, such as color. In Kim et al.
(2019), blind participants exhibited significant diffi-
culty grouping and sorting animal colors compared
to sighted controls.

Our detailed analysis of SensoryVec results sug-
gests that the models’ suboptimal performance is
primarily due to an over-reliance on distributional
semantics during training, as well as insufficient
representation of form-similar and low-frequency
terms. Section 5 and Table 6 illustrate these issues
with detailed examples.

4.2.2 PerceptualQA Task

Table 5 presents the results for the PerceptualQA
task. All models continue to perform poorly (see
Appendix D.4 for complete results). The best
model, Claude3.5-Sonnet, achieves an accuracy
of 69.04%, significantly lower than human perfor-
mance (86.00%).”

Across four comparable model groups, VLLMs
(LLaVA1.6-Vicuna-7B, 41.64%; LLaVAl.6-
Mistral-7B, 45.64%; Qwen2-VL-7B-Instruct,
51.00%; Qwen2-VL-72B-Instruct, 63.89%) show
no clear advantage over their LLM counterparts
(Vicuna-7B, 38.25%; Mistral-7B, 42.96%; Qwen2-
7B, 49.36%; Qwen2-72B-Instruct, 62.32%), with
an average accuracy gain of only 2.32%. This

3To establish a human baseline for model evaluation, we
recruited seven native-speaking graduate students from the
university community. Each question received two indepen-
dent responses, yielding a Cohen’s Kappa of 0.69. Participants
completed the tasks individually using Wenjuanxing, an on-
line survey platform with functionality comparable to Amazon
Mechanical Turk. All participants reported good health and
no relevant impairments. Further details are provided in Ap-
pendix D.6.

Model All Sensory Visual Non-Visual
Human Baseline 86.00 85.20 88.00
Llama3.2-3B-Instruct 47.71 38.25 71.38
Vicuna-7B 38.25 32.60 52.38
LLaVA1.6-Vicuna-7B 41.64 35.25 57.63
Mistral-7B 42.96 31.40 71.88
LLaVA1.6-Mistral-7B 45.64 35.90 70.00
Qwen2-7B 49.36 39.85 73.13
Qwen2-7B-Instruct 47.82 35.80 77.88
Qwen2-VL-7B-Instruct 51.00 41.70 74.25
Llama3.1-8B 48.54 39.05 72.25
Gemma2-9B 51.89 40.65 80.00
Gemma2-27B 55.39 44.90 81.63
Llama3.1-70B 59.71 49.85 84.38
Qwen2-72B-Instruct 62.32 52.75 86.25
Qwen2-VL-72B-Instruct 63.89 54.45 87.50
Llama3.1-405B 63.46 54.55 85.75
GPT-3.5 50.46 39.50 77.88
Qwen-Max 68.71 61.05 87.88
GPT-40-Mini 57.18 46.35 84.25
Geminil.5-Flash-8B 54.39 44.55 79.00
Geminil.5-Flash 56.07 45.20 83.25
GPT-40 68.46 59.45 91.00
Geminil.5-Pro 65.21 56.55 86.88
Claude3.5-Sonnet 69.04 60.00 91.63
Qwen-VL-Max 64.68 55.30 88.13

Table 5: Results on PerceptualQA for open-source
models, closed-source LLMs, and closed-source
VLLMs (top to bottom). VLLMs are underlined. Com-
parable models within each group share the same back-
ground color, with LLMs above VLLMs. Bolded values
denote the highest accuracy per sensory modality.

indicates that incorporating visual information
does not substantially enhance model performance
on these tasks. Furthermore, these findings
exhibit cross-language generalizability (see
Appendix D.2).

Similar to SensoryVec, Table 5 reveals that all
models perform substantially worse on visual tasks
compared to other tasks. However, for humans, the
difficulty gap between visual (85.20%) and non-
visual (88.00%) tasks is minimal. This comparison
suggests that models, unlike humans, face greater
difficulty in certain sensory dimensions. The best
model performance on visual tasks (61.05%) falls
significantly short of human performance (85.20%).
Additionally, we analyzed the influence of poten-
tial confounding variables (see Appendix D.3). In
Section 5, we further discuss the performances of
the different subtasks.

5 Discussion

Experimental results on both datasets demonstrate
that existing models perform poorly in representing
and applying embodied knowledge, with no clear or
systematic improvements observed in VLMs over
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Figure 2: Box plots of accuracy on SensoryVec (a) and PerceptualQA (b) subtasks. PerceptualQA subtasks
include Visual-Color Attributes(V-CA), Visual-Colors in Nature(V-CN), Visual-Geometry and Transformations(V-
GT), Visual-Symbols(V-S), Visual-Body(V-B), Auditory(A), Tactile(T), Gustatory(G), and Olfactory(O). Red

dashed lines indicate human performance.

Category Triple (word, synonym, antonym) Context

Tactile (dry, waterless, wet) The towel was completely (dry, waterless, wet) now.
Tactile (sharp, honed, blunt) The knife is (sharp, honed, blunt).

Gustatory (sugarless, unsweetened, sugary) She prefers (sugarless, unsweetened, sugary) drinks.
Gustatory (salty, brackish, flavorless) The soup tasted (salty, brackish, flavorless).

(concave, hollow, convex)
(loose, baggy, tight)
(unwrinkled, smooth, wrinkled)
(open, unclosed, closed)

Visual-Shape
Visual-Shape
Visual-Shape
Visual-Shape

The sculpture’s surface was (concave, hollow, convex).
She prefers her jeans to be (loose, baggy, tight).

The surface feels (unwrinkled, smooth, wrinkled).

The gate was left (open, unclosed, closed).

Visual-Color
Visual-Color
Visual-Color
Visual-Color

(black, sable, white)
(brown, chestnut, blue)
(green, verdant, red)
(undimmed, bright, dim)

The walls of the room were painted (black, sable, white).
Her hair is (brown, chestnut, blue).

She wore a pair of (green, verdant, red) socks.

The stars in the night sky were (undimmed, bright, dim).

Table 6: Examples of models’ prediction failures

text-only LMs. We further analyzed the models’
performance across different question categories
to investigate the specific aspects where models
struggle most.

As shown in Figure 2a, on SensoryVec, mod-
els perform poorly on tactile and gustatory cat-
egories in the non-visual domain. In the visual
domain, where overall performance is relatively
weaker, models particularly struggle with color and
shape. Table 6 shows some failure examples.® It
can be seen that sensory words judged more similar
to their antonyms often exhibit greater similarity in
form (e.g., sugarless-sugary, unwrinkled-wrinkled,
undimmed-dim) or frequency (e.g., dry-wet, sharp-
blunt, open-closed, green-red), highlighting the
limitations of distributed semantic representations
in capturing semantic similarity.

On PerceptualQA (Figure 2b), the symbol task
poses the greatest challenge, followed by the body

SCLIP answers half correctly; GloVe, Word2Vec, and
Qwen-7B each solve one; others fail all.

on SensoryVec, with Simantonym > S1Msynonym.

task, and the geometry and transformations task,
while color-related tasks show comparatively better
performance. We further examined the questions
in the three most challenging visual understanding
subtasks and list several difficult examples that no
model could answer correctly in Table 7.7 We ob-
served that models’ errors are not tied to specific
shapes (e.g., triangles), symbol types (e.g., num-
bers), body parts (e.g., arms), transformation types
(e.g., rotation), or question targets (e.g., positional
relationships). This observation suggests a sys-
temic deficiency in spatial reasoning, rather than a
lack of specific visual or conceptual knowledge.
Additionally, a potential explanation for why
some visual tasks are more difficult is that reason-
ing about an object’s transformed states often re-
quires more complex inference than reasoning over
comparative attributes of multiple entities. The de-
sign intention behind PerceptualQA is that both

"Results reflect only the models’ first attempt out of two.
Additional examples are provided in Appendix D.5.
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Question & Options & Answers and Rationales from Claude3.5-Sonnet

[V-GT] If a rectangle has long sides on the top and bottom, and short sides on the left and right, and it is flipped around its left
short side, where is the original bottom edge now positioned?
A.Bottom B.Top C.Right zhe geD. Left

= B. When a rectangle is flipped around its left short side (like a door hinge), the bottom edge will rotate 180 degrees upward,

ending up at the top position. This is similar to how a door swings open, with the hinge being the left side in this case.

[V-S] If the number 3 is horizontally cut in half, which direction does the opening of the bottom part face?

A.Up B.Left C.Down D.Right

= A. When a number 3 is cut horizontally in half, the bottom part resembles a curved line with the opening facing upward,

similar to the bottom half of a sideways heart shape.

[V-B] During the lower limb whipping motion, what is the trend of distance change between the knee and the hip?

A. Decreases

B. Remains essentially unchanged C. Increases

D. Decreases first, then increases

LN During a lower limb whipping motion, the knee moves closer to the hip as the leg flexes through the whipping action,

resulting in a decrease in the distance between these two joints.

Table 7: Examples of models’ PerceptualQA prediction failures and answers from Claude3.5-Sonnet. Task types

are shown in brackets. Correct answers in bold.

All Sensory Visual V-CA V-CN V-GT V-S V-B  Non-Visual A T G (0]
Human Baseline ~ 86.00 8520 66.00 88.00 89.00 93.00 90.00 88.00 88.00 88.00 86.00 90.00
GPT-40-Mini 58.21 5096 57.14 7143 4286 3721 47.83 79.17 75.00 80.00 92.86 72.22
GPT-40-Mini-FT  79.29 7596  100.00 83.33 71.43 65.12 6522 88.89 85.00 95.00 92.86 83.33

Table 8: Accuracy of GPT-40-Mini on PerceptualQA subtasks before and after fine-tuning.

visual and non-visual questions require reasoning
over a set of properties, as opposed to relying on
shallow lexical associations. Specifically, when a
question involves only a single target concept, we
introduce transformations to elicit reasoning over
derived attributes. For example, in the geometry
and transformations task, we ask what shape is
formed when a rectangle is folded along the line
connecting the midpoints of its shorter sides. This
requires understanding the geometric transforma-
tion of folding, as well as the shape of the object be-
fore and after the transformation. When the target
concept involves multiple entities, the attribute set
arises more directly. For instance, in the gustatory
task, we ask how a set of foods should be grouped
based on their taste. This involves identifying and
comparing gustatory attributes and performing cat-
egorization.

To investigate whether fine-tuning could di-
rectly improve models’ understanding of embodied
knowledge, we utilized the PerceptualQA dataset
to fine-tune GPT-40-Mini and Qwen2 series mod-
els. The results of GPT-40-Mini are presented
in Table 8. After supervised fine-tuning (SFT),
the performance of GPT-40-Mini improved from
58.21% to 79.29%, but still lagged behind human
performance (86.00%). This gap is primarily ob-
served in the visual dimension, particularly in the
three most challenging subtasks (V-GT, V-S, V-B)
related to spatial perception and reasoning, where
the fine-tuned model achieves an average accuracy

of 67.26% compared to 90.67% of human perfor-
mance. In addition, no significant performance
improvements were observed in the Qwen2 series
models. These results indicate that understanding
embodied knowledge, especially spatial perception
knowledge, remains a fundamental challenge for
current models. Detailed experimental settings and
results are presented in Appendix D.1.

VLLMs’ limited improvement over LLMs in em-
bodied knowledge understanding stems from their
training mechanisms. Our questions are intention-
ally designed to require sensory experience rather
than factual knowledge, making them challenging
for models because answering them relies on em-
bodied imagination and reasoning rarely conveyed
in natural language. VLLMs are typically trained
on static image-text pairs that capture surface-level
visual features. Due to the high cost of ground-
ing annotations, it remains impractical to compre-
hensively label the knowledge about the physical
world (Ma et al., 2023). Consequently, even mod-
els like Qwen2-VL (Wang et al., 2024a), which
adopt multi-stage training to improve image-text
alignment, do not necessarily achieve better em-
bodied understanding.® While multimodal LLMs
are increasingly central to embodied Al research,
their current limitations in perceiving and reason-

8The three stages include: (1) training the vision encoder
on image-text pairs, (2) leveraging larger-scale fine-grained
datasets to refine visual-textual alignment, and (3) instruction
tuning with multimodal and text-based dialogue data.
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ing about embodied knowledge pose significant
challenges to their effectiveness as the cognitive
core of embodied agents. Our experimental results
and analysis suggest that existing training tasks and
datasets may be insufficient for fostering meaning-
ful advances in this area.

6 Conclusion

In this paper, we investigate how visual ground-
ing influences models’ understanding of embod-
ied knowledge. To this end, we introduce a
benchmark grounded in the psychological frame-
work of the perceptual system, covering ex-
ternal senses (visual, auditory, tactile, gusta-
tory, olfactory) as well as interoception. Our
benchmark comprises two tasks—SensoryVec and
PerceptualQA—with over 1,700 questions de-
signed to systematically evaluate the models.

Our findings reveal that existing models perform
suboptimally in embodied knowledge understand-
ing, with vision-language models showing no sig-
nificant advantage over text-only models. This sug-
gests that current visual grounding approaches do
not effectively enhance embodied knowledge com-
prehension. Further analysis shows that models’
vector representations are susceptible to surface
form and frequency bias, and they struggle with
spatial perception and reasoning tasks. These in-
sights underscore the importance of continued ad-
vancement in embodied knowledge understanding
for AGI development.

Future research should explore developing di-
verse forms of training data, novel training
tasks and architectures that better integrate mul-
timodal perceptual information to advance embod-
ied knowledge understanding. Specifically, in ad-
dition to text and image data, several categories
of multimodal information may need to be incor-
porated, including dynamic sensory data such as
video sequences, perception-related brain neural
data, and feedback signals from non-human sensors
such as haptic sensors and motion capture systems.
These diverse data modalities may be essential to
fully support the acquisition of comprehensive em-
bodied knowledge. Furthermore, future models
may require joint training with embodied agents on
foundational tasks that involve interaction with sim-
ulated or real-world environments, which would
enable them to actively explore, ground concepts
through experiential learning, and acquire causal
understanding beyond statistical correlations.

Limitations

The primary objective of our research was to di-
agnose the current models’ understanding of em-
bodied knowledge, rather than proposing meth-
ods to directly enhance model performance on
this task. Although fine-tuning GPT-40-Mini on
PerceptualQA dataset yielded improved results,
we have not yet fully explored the potential of
purely textual data. Future work will aim to expand
the size and diversity of the dataset, investigating
its capacity to further boost model performance.
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A Motivation Behind Task Design

A.1 SensoryVec Task

For pretrained language models, word vectors are
learned based on the Distributional Semantic Hy-
pothesis: words that occur in similar contexts tend
to have similar meanings (Harris, 1954). Since
text-only models rely exclusively on contextual co-
occurrences, they struggle to distinguish antonyms
without incorporating additional mechanisms, such
as contrastive mapping (Samenko et al., 2021) or se-
mantic information from thesauri (Li et al., 2020).

Specifically, regarding antonyms, their frequent
co-occurrence in similar contexts (e.g., "this is a big
ball" versus "this is a small ball") naturally leads to
similarity in vector space. Therefore, antonyms rep-
resent a special case where terms share numerous
semantic properties while differing primarily along
a single dimension. These key dimensions often
involve sensory attributes like size (big—small) or
temperature (cold—warm), which are precisely the
types of distinctions that text-only models strug-
gle to differentiate due to their fundamentally non-
perceptual architecture.

Visual data potentially introduces sensory infor-
mation such as color, shape, and size, which may
help differentiate concepts that appear in similar
linguistic contexts but represent opposite meanings.

By employing vector similarity, our approach
provides a targeted evaluation of whether multi-
modal models can encode sensory knowledge that
distinguishes antonyms, a form of knowledge that
is largely inaccessible to text-only models. This
task is motivated by the need to assess whether
visual grounding can overcome the fundamental
limitations of text-based representations, thereby
offering a meaningful strategy for evaluating per-
ceptual grounding in model representation spaces.

A.2 PerceptualQA Task

When designing questions for SensoryVec task,
we aimed for the question-answer pairs to rely
on human sensory experiences rather than factual
background knowledge (e.g., "What color is an
apple?"). Each question is intended to be easily
answerable by humans through embodied imagina-
tion and reasoning, but is rarely expressed in natu-
ral language. This introduces significant challenges
for both text-only and multimodal models as the
answers cannot be directly learned from training
corpora through statistical co-occurrence patterns.
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B Data Construction Details

B.1 SensoryVec Task
B.1.1 Word Data Cleaning Principles

For data that satisfied both sensory categorization
and scoring criteria across multiple datasets, we
performed the following filtering steps:

1. Removed duplicate words within the same
sensory category.

2. Excluded words lacking documented syn-
onyms or antonyms.

3. Removed words absent from the established
word embedding vocabulary.

4. Excluded words for which it was difficult to
construct natural contextual sentences that
align with the principles outlined in Sec-
tion B.1.2.

B.1.2 Sentence Data Construction

Following the establishment of sensory triples (e.g.,
small-little-big), we curated three naturalistic con-
textual sentences for each triple according to the
following procedure:

1. First, we prompted GPT-40 to generate can-
didate sentences based on three criteria: (1)
grammatical correctness, (2) semantic ap-
propriateness, and (3) contextual alignment,
which refers to the correspondence between
each polysemous word’s meaning and its pri-
mary sensory modality.

For sensory triples across diverse modalities,
modality-specific prompts were developed.
The following exemplifies a prompt employed
for candidate generation:

Make English sentences so that any of
the three adjectives {small, little, big}
in the blank are grammatically cor-
rect and reasonable sentences. In addi-
tion, contextual information makes the
meaning of these three words express
what is perceived by the human eye.
Give me ten sentences with spaces and
no other information.

. J

2. Then, we reviewed and modified the generated
sentences according to the aforementioned
criteria. In instances where a sensory triple

lacked sufficient valid sentences, supplemen-
tary sentences were manually constructed ad-
hering to identical criteria.

B.2 PerceptualQA Task

B.2.1 Question Frameworks

For the PerceptualQA task, we adopt a high-level
question design framework that formulates ques-
tions from multiple perspectives targeting a specific
sensory dimension of the concept being examined.
Each subtask follows its own question construction
methodology tailored to the characteristics of that
sensory domain. Comprehensive question frame-
works are presented in Table 9.

B.2.2 QA Data Construction

The construction of the PerceptualQA dataset ad-
hered to the following procedures:

1. We first prompted Claude-3.5-Sonnet as a
brainstorming aid to generate candidate ques-
tions based on the question framework shown
in Section B.2.1 to support human annotators.
The majority of PerceptualQA items are man-
ually crafted to meet rigorous design criteria,
as most model-generated questions are dis-
carded due to lacking a correct or unique an-
swer, or being simply infeasible to answer.
A small subset of questions originating from
the model are manually screened and refined
according to the same criteria. The design
criteria are as follows:

(1) Questions and corresponding answers
should rely primarily on human sensory expe-
rience rather than factual background knowl-
edge.

(2) Questions should be readily answerable by
humans through embodied imagination and
reasoning, yet rarely expressed in natural lan-
guage.

(3) Each question should be objective, with
a singular correct response among four pro-
vided options.

(4) Incorrect options should be plausible, not
obviously incorrect, thereby ensuring appro-
priate task difficulty.

(5) All questions and answers should be clear,
natural, and grammatically well-formed.

For each task, multiple prompts were devel-
oped based on the established question frame-
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Task

Target Concepts

Question Perspectives

Visual-Color At-
tributes

Objectively and subjectively described colors (e.g.,
red, cherry red)

Hue, brightness, saturation

Visual-Colors in
Nature

Edible animals (e.g., chicken), other animals (e.g.,
giraffe), ornamental plants (e.g., lucky bamboo), veg-
etables (e.g., carrot), fruits (e.g., banana), edible
fungi (e.g., mushroom)

Hue, saturation, warm and cool tones

Visual-
Geometry

and Transforma-
tions

Lines, triangles, quadrilaterals, polygons, circles,
composite shapes; may undergo translation, rotation,
flipping, compression, stretching, folding, cutting,
combination

Quantity, shape, direction, size relation,
position relation

Visual-Symbols

Numbers (e.g., 6), letters (e.g., A), Chinese char-
acters; may undergo translation, rotation, flipping,
cutting, combination

Quantity, shape, direction, size relation,
position relation

Visual-Body

External body parts (e.g., head) in static postures or
dynamic movements

Shape, distance, direction, speed, posi-
tion relation

Auditory Sounds produced by objects or object interactions  Volume, pitch
(e.g., baby crying, apple slicing)
Tactile Food, objects (e.g., shuttlecock), human body parts Smoothness, elasticity, hardness,
(e.g., neck) weight, thickness, stickiness, tempera-
ture
Gustatory Food Sourness, sweetness, bitterness, salti-
ness, spiciness
Olfactory Food (vegetables, fruits, dishes, seasonings), other Fragrance, stench, specific odors

items (e.g., lucky bamboo), environments (e.g., hos-
pital)

Table 9: Question frameworks including target concepts and question perspectives in each PerceptualQA subtask.

work. The following exemplifies a prompt
utilized for candidate generation:

7

lying.

Construct 10 questions about the posi-
tion relationships of body parts while

External body parts: head, shoulders,
arms, hands, knees, feet, etc.

lationship",
{”A": H”’ HBH: Hll’ HCH: llll’ HD": Hll}}

question": "", "options":

2. Then, we reviewed and modified the generated
questions according to the aforementioned cri-
teria. In instances where the task exhibited
insufficient question quantity, supplementary
questions were manually formulated adhering

Requirements: Answers should be ob-
jective choices. Return questions and
options in JSON format.

Example: {"posture dimension": "ly-
ing", "question target": "position re-
lationship”, "question": "When ly-
ing flat, is the knee typically higher
or lower than the hip when viewed
from the side?", "options": {"A":
"Higher", "B": "Lower", "C": "Uncer-
tain", "D": "Insufficient information to
determine" } }

Format: {"posture dimension": "ly-
ing", "question target": "position re-

C

et
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to identical criteria.

Models and Experimental Settings
Details

C.1 SensoryVec Task

We evaluated 16 models. For text-only models,
we evaluated Word2Vec (Mikolov, 2013; Mikolov

al., 2013), GloVe (Pennington et al., 2014),

Bert-base-uncased (BERT) (Devlin, 2018), Qwen-
7B (Bai et al., 2023a), Qwen2-7B (Yang et al.,
2024a), Qwen2-7B-Instruct (Yang et al., 2024a),
Mistral-7B-Instruct-v0.2 (Mistral-7B) (Jiang et al.,
2023), Vicuna-7b-v1.5 (Vicuna-7B) (Zheng et al.,
J 2023), and GPT-2 (Radford et al., 2019).

For



VLMs, we evaluated VisualBERT (Li et al., 2019b),
Qwen-VL (Bai et al., 2023b), Qwen-VL-Chat (Bai
et al., 2023b), Qwen2-VL-7B-Instruct (Wang et al.,
2024b; Bai et al., 2023b), LLaVA-v1.6-Mistral-
7B (LLaVA1.6-Mistral-7B) (Liu et al., 2024b,
2023a,b), LLaVA-v1.6-Vicuna-7B (LLaVAl.6-
Vicuna-7B) (Liu et al., 2024b, 2023a,b), and
CLIP (Radford et al., 2021).

C.2 PerceptualQA Task

We evaluated 24 models. For open-source LL.Ms,
we evaluated Llama3.2-3b-instruct (LLlama3.2-
3B) (Touvron et al., 2023), Vicuna-7B, Mistral-
7B, Qwen2-7B, Qwen2-7B-Instruct, Llama3.1-
8b-instruct (Llama3.1-8B) (Touvron et al., 2023),
Gemma?2-9b-it (Gemma2-9B) (Team, 2024),
Gemma2-27b-it (Gemma2-27B) (Team, 2024),
Llama3.1-70b-instruct (Llama3.1-70B) (Touvron
et al., 2023), Qwen2-72B-Instruct (Yang et al.,
2024a), and Llama3.1-405b-instruct (Llama3.1-
405B) (Touvron et al.,, 2023). For closed-
source LL.Ms, we evaluated OpenAI’s GPT-3.5-
Turbo-0125 (GPT-3.5) and Alibaba Cloud’s Qwen-
Max-2024-09-19 (Qwen-Max). For open-source
VLLMs, we evaluated LLaVA1.6-Vicuna-7B,
LLaVA1l.6-Mistral-7B, Qwen2-VL-7B-Instruct,
and Qwen-VL-Max-2024-08-09 (Qwen2-VL-72B-
Instruct) (Wang et al., 2024b; Bai et al,
2023b).  For closed-source VLMs, we eval-
uated Alibaba Cloud’s Qwen-VL-Max-2024-
11-19 (Qwen-VL-Max), Google’s Gemini-1.5-
Flash-8B-001 (Geminil.5-Flash-8B) (Team et al.,
2024), OpenAl’s GPT-40-Mini-2024-07-18 (GPT-
40-Mini) (Hurst et al., 2024), Google’s Gemini-1.5-
Flash-002 (Geminil.5-Flash) (Team et al., 2024),
OpenAl’'s GPT-40-2024-11-20 (GPT-40) (Hurst
et al.,, 2024), Google’s Gemini-1.5-Pro-002
(Geminil.5-Pro) (Team et al., 2024), and An-
thropic’s Claude-3.5-Sonnet-20241022 (Claude3.5-
Sonnet).

In our evaluation, each question is asked indepen-
dently with a corresponding prompt, eliminating
the influence of historical context. The example of
the prompt and question used in the evaluation is
as follows:

Prompt: Based on the example provided,
answer the question by selecting the most
appropriate choice. Return your answer and
rationale strictly in JSON format.

Correct Option A B C D

Trial 1
Trial 2

338 371 325 366
323 353 357 367

Table 10: Distribution of correct options across trials.

##tExample Input: { "index": 000001,
"question": "What color is the Fuji apple?",
"options": { "A": "Yellow", "B": "Green",
"C": "Red", "D": "Blue" } }

##HtExample Output: { "index": 000001,
"answer": "C", "rationale": "Different apple
varieties come in different colors, and Fuji
apples are typically red." }

###Question: { "index": 4064, "question":
"How many triangles are there in the upper-
case letter [A]?", "options": { "A": "2", "B":
"3" "C": "0, "D "1 ) )

Return only the JSON.

J

To ensure experiment reproducibility, the decod-
ing temperature was set to 0.

To enhance the reliability of evaluation results
and mitigate potential positional biases in model
responses, we conducted two independent exper-
iments for each model across the entire dataset.
Each question was presented twice with randomly
shuffled answer choices. Different random seeds
were employed in each experiment to determine
the position of the correct answer. The distribution
of correct answers across these two experiments is
presented in Table 10.

D Result Details

D.1 Fine-Tuning on PerceptualQA Dataset

We further investigated the feasibility of directly
utilizing the PerceptualQA dataset as training data
for fine-tuning models, with the explicit aim of en-
hancing their embodied knowledge comprehension.
Table 11 presents comparative accuracies before
and after the fine-tuning process.

Model Method Before After
GPT-40-Mini SFT 58.21 79.29
Qwen2-7B LoRA 47.50 45.00
Qwen2-7B-Instruct LoRA 46.43 4643
Qwen2-VL-7B LoRA 47.86 48.21

Table 11: Accuracy of GPT-40-Mini and Qwen?2 series
models on PerceptualQA before and after fine-tuning.

For our experimental design, we randomly shuf-
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fled the PerceptualQA dataset and allocated 80%
for training and the remaining 20% for testing.
The training data comprised 1,120 question-answer
pairs, stored in JSON format. Notably, since the
Qwen2-7B series models demonstrated suboptimal
performance in generating structured outputs after
fine-tuning, we configured these models to output
only the correct answer option. In contrast, for
GPT-40-Mini, we implemented a more compre-
hensive output format including both the correct
option and its specific content. This distinction
in output requirements may partially account for
performance differentials between models. We con-
ducted supervised fine-tuning (SFT) on the GPT-40-
Mini model, while employing Low-Rank Adapta-
tion (LoRA) tuning (Hu et al., 2021) for the Qwen2
series models due to computational resource con-
straints.

The precise experimental configurations were
as follows: The GPT-40-Mini model underwent
fine-tuning for 3 epochs with a batch size of 2
and a learning rate multiplier of 1.8. To ensure
reproducibility, we established a seed value of
656770515 for the fine-tuning procedure. We fine-
tuned three models from the Qwen?2 series using the
LLaMA Factory framework (Zheng et al., 2024):
Qwen2-7B, Qwen2-7B-Instruct, and Qwen2-VL-
7B-Instruct. We employ the Low-Rank Adaptation
(LoRA) (Hu et al., 2021) method for parameter-
efficient fine-tuning, targeting the query and value
projection matrices in the attention layers. For
Qwen2-7B, we implemented the Alpaca template
for instruction tuning, while Qwen2-7B-Instruct
and Qwen2-VL-7B-Instruct utilized the Qwen and
Qwen2-VL templates, respectively. All models
underwent fine-tuning for 3 epochs with a batch
size of 4 and a learning rate of 5e-6, utilizing the
cosine learning rate scheduler. We applied gra-
dient accumulation every 4 steps and conducted
evaluations at 1,000-step intervals. The maximum
sequence length was configured at 4,096 tokens,
with weight decay set to 0.1 and a warm-up period
of 100 steps. Training was conducted using 16-bit
bfloat16 precision, with each model allocated to a
separate NVIDIA GeForce RTX 4090 GPU.

Fine-tuning data examples for both GPT-4o-
Mini and Qwen2 series models are presented
herein. During the inference phase, we employed
identical data formatting as used in the fine-tuning
process, with the "answer" field information re-
moved to serve as the prompt.

Fine-tuning Data Sample for GPT-40-Mini:

{"messages": [{"role": "system", "content":
"Based on the example provided, please
answer the question by selecting the
most appropriate choice. Provide your
answer in JSON format, and return only
the JSON.##Example Input{"question":
"What color is the Fuji apple?","options":
{"A" "Yellow","B": "Green","C":
"Red","D": "Blue"}}###Example Out-
put{"answer": "C.Red"}###Question"},
{"role": "user", "content": "{"question":
"How many triangles are there in the
uppercase letter [A]?", "options": {"A":
"2 "B 3, "C "0, "D "1} JReturn
only the JSON."}, {"role": "assistant",
"content": "{"answer": "D.1"}"}]}

Fine-tuning Data Sample for Qwen?2 series:

{"instruction": "Based on the example
provided, please answer the question by
selecting the most appropriate choice.
Provide your answer in JSON format,
and return only the JSON.###Example
Input{"question": "What color is the
Fuji apple?","options":  {"A": "Yel-
low","B":  "Green","C":  "Red","D":
"Blue"} }###Example Output{"answer":
"C" }###Question{ "question": "How many
triangles are there in the uppercase letter
[A]?", "options": {"A": "2", "B": "3","C":
"0", "D": "1"}}Return only the JSON.",
"input": "", "output": "D"}

D.2 Cross-Language Generalization on
PerceptualQA Task

In order to validate the cross-language general-
izability of our findings, we assessed the perfor-
mance of the Qwen2 series models on the Chinese
PerceptualQA. As illustrated in Table 12, the re-
sults indicate that VLMs do not exhibit a significant
improvement compared to the text-only models.
Furthermore, comparative analysis of model per-
formance across both Chinese and English versions
of PerceptualQA reveals consistent overall perfor-
mance, confirming the reliability of our evaluation
approach across these two languages. Both En-
glish and Chinese versions of the dataset are made
available.
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Model All Sensory Visual V-CA V-CN V-GT V-§ V-B  Non-Visual A T G o
English

Qwen2-7B 49.36 39.85 42.00 5875 35.00 28.75 34.75 73.13 68.50 62.00 83.00 79.00

Qwen2-7B-Instruct 47.82 3580 41.00 59.75 26.75 22.00 29.50 77.88 73.50 68.00 82.50 87.50

Qwen2-VL-7B-Instruct 51.00 41.70 4375 59.75 3825 31.00 35.75 74.25 69.50 64.00 86.00 77.50
Chinese

Qwen2-7B 51.72 4195 4750 6475 3475 2250 40.25 76.13 62.50 70.50 87.00 84.50

Qwen2-7B-Instruct 51.54 39.90 46.50 60.00 33.25 24.00 35.75 80.63 72.50 73.00 86.50 90.50

Qwen2-VL-7B-Instruct 52.54 41.65 5275 58.00 37.50 25.75 34.25 79.75 71.00 71.50 88.50 83.00

Table 12: Accuracy of PerceptualQA in English and Chinese.The full task names are Visual-Color Attributes(V-
CA), Visual-Colors in Nature(V-CN), Visual-Geometry and Transformations(V-GT), Visual-Symbols(V-S), Visual-
Body(V-B), Auditory(A), Tactile(T), Gustatory(G), and Olfactory(O).

D.3 Potential Confounding Variables in
Perceptual QA Task

We analyzed all questions in the PerceptualQA
dataset for length, average word frequency, and
average Age of Acquisition (AoA) scores, and then
conducted several analyses.

D.3.1 Method

We computed question length based on token count
including all options. Word frequency was calcu-
lated using the wordfreq Python library. Average
AoA scores were derived for each question and its
four answer options using Kuperman et al.’s (2012)
established ratings, excluding words absent from
the Kuperman dataset.

D.3.2 Results across tasks

We calculated the mean and standard deviation of
three metrics for each task. Our analysis revealed
that the V-S, V-GT, and V-B questions, which
demonstrated the lowest performance, did not ex-
hibit significantly higher or lower values in sen-
tence length or AoA scores. However, these ques-
tion types displayed slightly higher word frequen-
cies compared to other types. This likely stems
from their focus on basic geometric shapes, num-
bers, and body-related nouns, in contrast to other
types that involved animal and plant names. Based
on these three linguistic metrics, we concluded that
question type itself exerts a more substantial im-
pact on model performance than these potential
confounding variables.

D.3.3 Comparison between correctly and
incorrectly answered questions

We further conducted statistical analyses compar-
ing questions answered correctly versus incorrectly
by 24 models.

Regarding question length, most models showed
similar length distributions between both question

Task Length Average word frequency Average AoA scores

V-CA 18.50(2.38) 5.34(0.17) 5.55(0.71)
V-CN 54.58 (24.87) 4.76 (0.22) 6.07 (0.75)
V-GT 33.45(11.74) 5.50(0.31) 5.77 (0.58)
V-S 23.02 (7.45) 5.60 (0.31) 5.30 (0.45)
V-B 30.23 (5.54) 5.70 (0.18) 5.25(0.40)
A 30.29 (10.62) 5.47(0.32) 4.79 (0.41)
T 13.96 (3.84) 4.85(0.29) 5.81(0.85)
G 26.75 (19.20) 5.22(0.20) 5.29 (0.52)
o 16.84 (5.43) 5.07 (0.38) 5.89 (0.64)

Table 13: Statistical properties of questions across tasks.
Values are presented as mean (standard deviation).

sets, with typical differences of only 1-3 words.
However, Mann-Whitney U tests revealed incor-
rectly answered questions were significantly longer.
For most models, incorrectly answered questions
had significantly higher average word frequencies.
No significant differences in AoA metrics were
observed between the two question sets for most
models. This analysis suggests that question length
and average word frequency may influence model
performance if we don’t take task type into consid-
eration.

D.4 Detailed Results on PerceptualQA Task

We present the results of all models across each
subtask, with detailed results shown in Table 14.

D.S More Examples of models’ Perceptual QA
prediction failures

We present additional examples of models’
PerceptualQA prediction failures in Table 15.

D.6 Human Baseline Details for
PerceptualQA Task

For PerceptualQA, we established a human base-
line with native speakers to provide a reference for
evaluating model performance.

Specifically, we recruited seven graduate stu-
dents, with each question receiving responses from
two different participants. We randomly selected
25% of the questions from each of the nine tasks,
shuffled them, and divided them into seven sets of
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Model All Sensory Visual V-CA V-CN V-GT V-S V-B  Non-Visual A T G o

Human Baseline 86.00 8520 66.00 88.00 89.00 93.00 90.00 88.00 88.00 88.00 86.00 90.00
Llama3.2-3B-Instruct 47.71 3825 4750 46.75 31.75 27.75 37.50 71.38 67.00 61.50 82.00 75.00
Vicuna-7B 38.25 32,60 30.50 33.00 3525 3025 3400 52.38 48.50 38.00 65.00 58.00
LlaVal.6-Vicuna-7B 41.64 3525 3750 37.25 30.50 31.75 39.25 57.63 49.50 49.00 70.50 61.50
Mistral-7B 42.96 3140 4250 3550 2625 2425 2850 71.88 67.00 6550 78.50 76.50
Llaval.6-Mistral-7B 45.64 3590 45.00 40.00 30.75 25.00 38.75 70.00 71.00 66.50 70.50 72.00
Qwen2-7B 49.36 39.85 42.00 58.75 35.00 28.75 3475 73.13 68.50 62.00 83.00 79.00
Qwen2-7B-Instruct 47.82 3580 41.00 59.75 26.75 22.00 29.50 77.88 73.50 68.00 82.50 87.50
Qwen2-VL-7B-Instruct ~ 51.00 4170 4375 59.75 3825 31.00 35.75 7425 69.50 64.00 86.00 77.50
Llama3.1-8B 48.54 39.05 46.00 49.25 3350 27.50 39.00 72.25 70.50 61.00 82.00 75.50
Gemma2-9B 51.89 40.65 4550 55.50 38.00 28.25 36.00 80.00 81.50 72.50 83.00 83.00
Gemma2-27B 55.39 4490 5150 61.25 4375 30.75 3725 81.63 81.50 73.50 85.00 86.50
Llama3.1-70B 59.71 49.85 6550 63.25 47775 3225 40.50 84.38 84.00 77.50 89.00 87.00
Qwen2-72B-Instruct 62.32 5275 6975 69.75 4525 3500 44.00 86.25 84.50 84.00 88.00 88.50
Qwen2-VL-72B-Instruct  63.89 5445 6875 73.00 51.00 32.75 46.75 87.50 83.00 86.50 89.50 91.00
Llama3.1-405B 63.46 5455 69.75 7200 47.50 37.00 46.50 85.75 83.50 80.50 90.00 89.00
GPT-3.5 50.46 39.50 40.50 4250 43775 2925 4150 77.88 73.00 69.50 84.50 84.50
Qwen-Max 68.71 61.05 85.00 7450 5725 4425 4425 87.88 87.00 84.50 91.00 89.00
GPT-40-Mini 57.18 4635 5725 6225 4125 31.50 39.50 84.25 84.50 78.50 86.00 88.00
Geminil.5-Flash-8B 54.39 4455 5675 59.50 4250 28.50 35.50 79.00 82.00 67.50 85.00 81.50
Geminil.5-Flash 56.07 4520 65775 4825 4275 31.25 38.00 83.25 81.00 76.50 88.50 87.00
GPT-40 68.46 5945 70.00 77.50 51.25 4450 54.00 91.00 92.50 86.00 91.00 94.50
Geminil.5-Pro 65.21 56.55 70.00 70.50 54.00 39.00 49.25 86.88 82.50 83.50 89.50 92.00
Claude3.5-Sonnet 69.04 60.00 70.25 7525 57.00 44.75 5275 91.63 92.00 90.00 92.00 92.50
Qwen-VL-Max 64.68 5530 68.75 79.25 50.00 3425 4425 88.13 84.50 87.00 90.50 90.50

Table 14: Detailed Results on PerceptualQA. The full task names are Visual-Color Attributes(V-CA), Visual-
Colors in Nature(V-CN), Visual-Geometry and Transformations(V-GT), Visual-Symbols(V-S), Visual-Body(V-B),

Auditory(A), Tactile(T), Gustatory(G), and Olfactory(O).

Question & Options & Answers and Rationales from Claude3.5-Sonnet

[V-GT] If a rectangle has long sides on the top and bottom, and short sides on the left and right, and it is flipped around its left
short side, where is the original bottom edge now positioned?
A.Bottom B.Top C.Right D.Left

@ B. When a rectangle is flipped around its left short side (like a door hinge), the bottom edge will rotate 180 degrees upward,
ending up at the top position. This is similar to how a door swings open, with the hinge being the left side in this case.

[V-S] If the number 3 is horizontally cut in half, which direction does the opening of the bottom part face?

A.Up B.Left C.Down D.Right

@@=/ A. When a number 3 is cut horizontally in half, the bottom part resembles a curved line with the opening facing upward,
similar to the bottom half of a sideways heart shape.

[V-B] When standing and bending one leg backward at the knee, which is higher: the ankle of the raised leg or the knee of the
supporting leg?

A.Itdepends B. They are at the same height C. The knee of the supporting leg D. The ankle of the raised leg

@ D. When bending one leg backward at the knee while standing, the ankle of the raised leg typically rises above the knee
level of the supporting leg. This is due to the natural biomechanics of the leg and the way the knee joint bends, allowing the foot
and ankle to be lifted higher than the stationary knee of the supporting leg.

Table 15: More Examples of models’ PerceptualQA prediction failures and answers from Claude3.5-Sonnet. Task
types are shown in brackets. The correct answers are shown in bold.

50 questions each, ensuring proportional represen-
tation of all nine subtasks across sets. Each par-
ticipant completed two sets (100 questions total),
following a fixed task order within each set. This
design minimizes individual participant influence
on task-level accuracy and establishes a reliable
human performance benchmark. For each subtask,
the human baseline was computed as the average
accuracy of the two responses.

All participants reported good physical health
with no relevant impairments (e.g., color blindness).
Screening was conducted during recruitment based
on self-reported information to confirm participants
met the health criteria and could complete the as-

sessment within the designated timeframe. Partic-
ipants completed the tasks independently via an
online survey platform. The use of LLM tools was
prohibited. On average, participants required 37.32
minutes to complete the assigned questions. Re-
cruitment occurred through announcements within
graduate student communities at our institution.
Participants were explicitly informed that their re-
sponses would be used for research purposes. No
personally identifiable information was retained in
association with participant responses. Each partic-
ipant received compensation of 50 RMB, equiva-
lent to 0.5 RMB per question.
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