
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 16922–16950
November 4-9, 2025 ©2025 Association for Computational Linguistics

MONAQ: Multi-Objective Neural Architecture Querying for Time-Series
Analysis on Resource-Constrained Devices

Patara Trirat
DeepAuto.ai

patara@deepauto.ai

Jae-Gil Lee �
KAIST

jaegil@kaist.ac.kr

Abstract

The growing use of smartphones and IoT de-
vices necessitates efficient time-series analy-
sis on resource-constrained hardware, which
is critical for sensing applications such as hu-
man activity recognition and air quality predic-
tion. Recent efforts in hardware-aware neural
architecture search (NAS) automate architec-
ture discovery for specific platforms; however,
none focus on general time-series analysis with
edge deployment. Leveraging the problem-
solving and reasoning capabilities of large lan-
guage models (LLM), we propose MONAQ, a
novel framework that reformulates NAS into
Multi-Objective Neural Architecture Querying
tasks. MONAQ is equipped with multimodal
query generation for processing multimodal
time-series inputs and hardware constraints,
alongside an LLM agent-based multi-objective
search to achieve deployment-ready models
via code generation. By integrating numerical
data, time-series images, and textual descrip-
tions, MONAQ improves an LLM’s understand-
ing of time-series data. Experiments on fifteen
datasets demonstrate that MONAQ-discovered
models outperform both handcrafted models
and NAS baselines while being more efficient.

1 Introduction

The widespread adoption of smartphones, IoT
devices, and wearables has intensified the de-
mand for efficient time-series analysis on resource-
constrained devices, essential for smart manu-
facturing, personalized healthcare (Samanta et al.,
2024), and so on. These devices, often based on
microcontroller units (MCU), are rapidly prolifer-
ating, with over 250B units worldwide (Lin et al.,
2020, 2021). Deep learning on such affordable,
energy-efficient hardware can democratize AI, en-
abling broad accessibility across diverse sectors.

However, tiny deep learning faces unique chal-
lenges due to stringent memory constraints. Typi-
cal MCUs, with less than 512kB SRAM, and even

higher-end devices like Raspberry Pi 4 struggle to
run conventional deep neural networks (Lin et al.,
2022). Efficient AI inference demands innovative
methods to navigate these limitations. Moreover,
designing optimal network architectures and se-
lecting hyperparameters for such devices is time-
consuming and requires significant manual effort.
Hardware-aware neural architecture search (HW-
NAS) has emerged to automate this process, tailor-
ing architectures to specific tasks and hardware (Li
et al., 2021; Benmeziane et al., 2021a).

While NAS has advanced, it predominantly fo-
cuses on computer vision tasks and lacks generaliz-
ability for time-series analysis (White et al., 2023).
Time-series applications span classification (e.g.,
human activity recognition) (Zhou et al., 2024c),
regression (e.g., environmental monitoring) (Tan
et al., 2021), and anomaly detection (e.g., industrial
systems) (Nam et al., 2023). Existing NAS frame-
works often target narrow use cases and fail to oper-
ate effectively within edge device constraints (Deng
et al., 2022; Trirat and Lee, 2024; Saha et al., 2024).

Furthermore, current HW-NAS frameworks are
frustrated by fixed search spaces and complex inter-
faces, making them less generalizable across tasks
and inaccessible to non-experts. Large language
models (LLM)-based NAS frameworks (Tornede
et al., 2024) aim to address these issues but still
rely on predefined search spaces and require user-
provided initial architectures, limiting flexibility
and usability (Chen et al., 2023; Dong et al., 2023;
Jawahar et al., 2024; Nasir et al., 2024).

In contrast, to eliminate these undesirable
user burdens, we reformulate the NAS problem
as a multi-objective neural architecture query-
ing (NAQ) problem by leveraging LLMs’ advance-
ments in reasoning and problem-solving. Unlike
existing LLM-based NAS frameworks (Figure 1a),
which require users to define a search space or an
initial set of architectures, NAQ only requires natu-
ral language queries from users, decoupling them

16922



User-Defined 
Search Space

LLM

Data
Description

task 
descriptions

User

feedback
(experiment logs)

Run Experiments

Deployable
Model

Time 
Series

(a) Existing LLM-based NAS.

task 
descriptions

User

Data
Description

Time 
Series

Time Series 
Images

Multi-Agent 
LLMs

Deployable
Model

MONAQ

Multimodal Query
Generation

Multimodal Query

(b) Our MONAQ.

Figure 1: Comparison between (a) existing LLM-based NAS and (b) our proposed MONAQ framework.

from the architecture search process. This approach
reduces reliance on human expertise while enhanc-
ing accessibility and flexibility in the model design
process. It allows users to focus on addressing the
actual problems in their datasets, leaving the com-
plex search configurations to the LLM. However,
achieving efficient NAQ poses two key challenges.

(1) How to find high-performing architectures
without user-defined search spaces? Without user-
defined configurations, enhancing the capability
of LLMs to directly design high-performing net-
work architectures becomes crucial. Recent stud-
ies (Hong et al., 2024; Xi et al., 2025) suggest
that multi-agent LLMs improve problem-solving
through collaboration among agents specialized in
different tasks, while mitigating limitations found
in single-agent LLMs, such as bias and halluci-
nation. Building on these insights, we address
this challenge by introducing an LLM agent-based
multi-objective search module (Figure 1b). How-
ever, having multiple agents interact with each
other can incur computational overhead. There-
fore, instead of following the traditional setup in
LLM-based NAS, which searches for architectures
through runtime execution feedback (Figure 1a)—
a process that demands significant training time
and resource consumption—we leverage the pre-
trained knowledge of LLMs during the evaluation
step. As a result, this module enables specialized
LLM agents to autonomously design search spaces
and evaluate candidate models adaptively based on
specific hardware constraints, eliminating the need
for runtime execution. A coding-specialized LLM
subsequently generates deployable architectures,
ensuring low search costs and high flexibility.

(2) How to make LLM agents accurately un-
derstand time-series data and user requirements?
Even though communication between agents can
enhance problem-solving skills, LLMs still have
inherent limitations in understanding time series.
Unlike existing methods that rely solely on tex-

tual descriptions (Figure 1a) , we propose a mul-
timodal query generation module that generates
multimodal queries (Figure 1b) by leveraging both
natural language and raw time series. This module
processes input time series and natural language
queries, including constraints such as hardware
specifications and device names, and outputs multi-
modal data with time-series images that represent
the original user query from both data and model-
ing perspectives. This comprehensive, multimodal
approach enables LLMs to better understand the in-
put time series and user queries (Kong et al., 2025).

By integrating these components, we present
MONAQ, the first multi-agent LLM-based NAQ
framework with an open-ended search space for
time-series analysis on resource-constrained de-
vices. Our contributions are as follows.
• We propose a novel LLM-based NAQ framework

that creates constraint-aware architectures from
user queries and datasets, tailored for time-series
analysis on resource-constrained devices.

• We devise a multimodal query generation module
to improve LLM understanding of time series
through multi-objective queries with time-series
images and introduce a multi-agent LLM module
to reduce search costs via training-free search
with specialized agents.

• Through extensive experiments on on-device
time-series analysis, including classification and
regression, we show that the models found by
MONAQ outperform the second-best baseline by
at least 9% on classification and 6% on regression
tasks with significantly smaller, faster models.

2 Related Work

On-Device Time-Series Analysis Time-series
analysis on resource-constrained devices, such as
IoT and wearables, has gained importance due
to the need for real-time processing with lim-
ited computational and energy resources (Trirat
et al., 2024b). Common approaches include CNNs,

16923



RNNs (e.g., LSTMs), and Transformers (Kara
et al., 2024). While CNNs excel at extracting local
context, they struggle with long-term dependen-
cies (Hussein et al., 2024). RNNs and LSTMs
address these drawbacks but are hindered by se-
quential processing, increasing latency. Transform-
ers (Wen et al., 2023) enable parallel processing
and capture long-term dependencies but are often
unsuitable for edge devices due to high computa-
tional demands. Lightweight models like attention
condensers, CNN-RNN hybrids (e.g., DeepCon-
vLSTM (Ordóñez and Roggen, 2016)), and low-
resource architectures like TinyHAR (Zhou et al.,
2022) and MLP-HAR (Zhou et al., 2024c) balance
performance with resource efficiency.

Hardware-Aware NAS (HW-NAS) Despite
these advancements, HW-NAS for time-series data
remains largely underexplored. MicroNAS (King
et al., 2023) introduces time-series-specific
search spaces for microcontrollers, while TinyT-
NAS (Saha et al., 2024) supports efficient CPU
operations. However, these methods often rely on
fixed search spaces, requiring significant expertise.
Given these challenges, there is a growing need for
NAS frameworks with natural language interfaces,
allowing users to describe their desired architec-
ture in plain language rather than through direct
programming (Tornede et al., 2024). Leveraging
LLMs in this context can make HW-NAS more
user-friendly and adaptable across a wider range
of applications, leading to democratize NAS pro-
cesses for better accessibility and adaptability.

LLMs for NAS LLMs have shown potential in
automating NAS by leveraging pre-trained knowl-
edge to generate diverse, high-performing archi-
tectures (Zheng et al., 2023; Dong et al., 2023;
Wang et al., 2023; Jawahar et al., 2024; Nasir et al.,
2024; Wang et al., 2024a; Zhou et al., 2024b; Chen
et al., 2023; Trirat et al., 2024a). However, cur-
rent LLM-based NAS frameworks face challenges
with time-series data due to their limited under-
standing of raw numerical inputs (Merrill et al.,
2024) and their reliance on runtime feedback and
user-defined search spaces, which are often time-
consuming and require intricate configurations. To
address these issues, we introduce neural architec-
ture querying, enabling users to specify require-
ments directly through natural language prompts
for a given time-series dataset. Our approach re-
moves the need for complex configurations and
simplifies the architecture search process.

3 MONAQ: Multimodal NAQ with LLMs

3.1 Problem Formulation
Let X denote a d-variate time series with obser-
vations (x1, . . . ,xT ) where xt ∈ Rd and Y de-
note target variables. The target variables can be
a set of integer values Y = (y1, . . . , yT ), yt ∈ Z
(e.g., classification) or a set of real values Y =
(y1, . . . , yT ), yt ∈ R (e.g., regression). Let S be
a search space designed by an LLM and M =
{Mi}Ci=1 denote a set of C candidate models sam-
pled from S. Each model Mi is a set of model
configurations, e.g., layer types, number of hid-
den units, and activation functions. Then, let E
denote an LLM responsible for evaluating each
Mi. Finally, given a time series X and user task
description with constraints T , we aim to find the
model M⋆ that satisfies the constraints in T on both
downstream task performance and model complex-
ity metrics using the LLM E .
Neural Architecture Querying: Given a training
time series with its labels {Xtrain,Ytrain} and a nat-
ural language task description with constraints T ,
select the model M⋆ that satisfies all constraints in
T . Formally, we solve

M⋆ = argmax
M∈M

E(T ,Xtrain,ytrain). (1)

Note that the NAQ problem differs from NAS
primarily from the user’s perspective—that is,
whether the user is part of NAS’s components (e.g.,
search space and search method). Existing (LLM-
based) NAS frameworks require users to define a
search space, provide initial architectures, or even
describe how to search, either via code or natu-
ral language, which demands significant technical
expertise. In contrast, NAQ eliminates this require-
ment by allowing users to input high-level, natural
language task descriptions and constraints based
solely on domain- (or data-) specific problems as
a query. This reformulation simplifies the process,
making architecture discovery accessible to non-
experts while maintaining efficiency. Figure 2 il-
lustrates the overview of MONAQ.

3.2 Multimodal Query Generation
In this subsection, we describe how to generate a
multimodal query as the input to an LLM.

Query Rewriting First, we rewrite the user task
description into an organized form, such as a JSON
with specific key-value pairs, representing a multi-
objective query that encompasses both data and

16924



task descriptions

User

Time SeriesData
Description

search space

Design Agent Deployable
Model

Time Series 
Images

(a) Multimodal Query Generation

Numerical Time Series

Textual Description

Time Series Images
Im

ag
e

G
en

er
at

io
n

Q
ue

ry
 R

ew
rit

in
g

Data Aspects

Hardware Constraints

Inference Latency

Performance Metrics

Modeling Aspects

M
ul

tim
od

al
 Q

ue
ry

(b) LLM Agent-Based Multi-Objective Search

candidate 
models

Search Agent

feedback

Evaluation  Agent

selected models

Code Agent

Figure 2: Overall procedure of our framework. MONAQ first receives a user prompt and a time series with
descriptions. It then generates time-series images and processes all required information through the multimodal
query generation module (§3.2) to create an organized multimodal query. This query is subsequently shared across
different specialized agents within the LLM agent-based multi-objective search module (§3.3). Once all agents
successfully complete their tasks, the final model is returned to the user.

modeling aspects, thereby making it easier for
LLMs to understand. This query rewriting pro-
cess is designed to address potentially ambiguous
or ill-structured user queries. The full prompt for
the query rewriting is presented in §C.1.

Data Aspect Query To enhance the LLM’s un-
derstanding of time series, given the limited con-
text window size, we first create a representative
time series from the training set, as providing all
time-series samples is both impractical and unnec-
essarily costly. Specifically, we use one time series
per class for classification tasks and one time series
per range for regression tasks. These representa-
tive time series are then used to construct queries
for the subsequent search process, serving as input
queries for multimodal LLMs.
• Numerical Time Series. As validated by Fons

et al. (2024), we adopt csv formatting with a
fixed length for the representative numerical time
series, as it provides structural information that
helps LLMs better understand numerical values.
Specifically, we compute the timestamp-wise av-
erage of all time series in the training set to gen-
erate the representative numerical time series.

• Textual Descriptions. Since time-series val-
ues alone may not provide sufficient information
about the dataset’s source or the potential sig-
nificance of each observation, we provide both
dataset-level and feature-level descriptions to the
LLMs. These descriptions help the models cap-
ture the context related to the application domain
and the specific setting of the given dataset.

• Time Series Images. As shown in recent stud-
ies (Li et al., 2023; Merrill et al., 2024; Chow
et al., 2024; Zhuang et al., 2024; Cai et al., 2024;
Liu et al., 2024), LLMs demonstrate a better un-
derstanding of time series when it is provided in
the form of images. This is due to the discernible
trends and seasonal patterns in time-series im-

Time Series (Entire Training Set)

class "n"

class "s"

class "t"Image
Generation

Figure 3: Examples of representative time series images
containing two-channel ECG signals.

ages, which LLMs may struggle to capture when
relying solely on limited numerical values. Fol-
lowing Li et al. (2023); Zhuang et al. (2024), we
represent each variable as a line chart and stack
these charts into a single image. Unlike existing
studies, as described earlier, we compute only the
timestamp-wise average of all full-length time
series to generate an image that represents a sam-
ple for each class or label range, along with its
standard deviation. This approach reduces costs
while preserving the key characteristics of each
class or range. Examples of the resulting images
from bivariate time series are shown in Figure 3.

Using numerical time series, textual descriptions,
and time series images, we prompt the LLM to
rewrite queries into the JSON format with keys
name, description, features, context, and
patterns, representing various aspects of the data.

Modeling Aspect Query For the modeling as-
pect, we ask the LLM to rewrite the user query with
a focus on key considerations for building efficient
models in resource-constrained environments.
• Hardware Constraints. The hardware con-

16925



task descriptions

User

Time SeriesData
Description

+
Time Series 

Images

Q
ue

ry
 R

ew
rit

in
g

+

"I have a dataset of ECG records and want to build a classification model to
categorize ECG signals into three types of atrial fibrillation. The model

should be deployable on wearable devices, such as Fitbit trackers."

{..., 'data_aspects': {'name': 'PhysioNet ECG Dataset',
  'description': 'The dataset consists of two-channel ECG recordings
created from data used in the Computers in Cardiology Challenge 2004.
It includes 5-second segments of atrial fibrillation, with each signal
sampled at 128 samples per second.',
  'features': 'The dataset contains two 1-D ECG signals per instance.
The class labels are: n (non-terminating AF), s (self-terminating AF
after at least one minute), and t (terminating immediately within one
second).',
  'context': 'The dataset was part of an open competition aimed at
developing automated methods for predicting spontaneous termination of
atrial fibrillation.',
  'patterns': "The time series plots show distinct patterns for each
class. Class 'n' shows more prolonged irregularities, class 's' shows
moderate irregularities, and class 't' shows quick
stabilization."}, ... }

{...,
{...},
'model_aspects': {

'name': 'ECG Classification Model',
'hardware_specs': {

'device_name': 'Fitbit Tracker',
'ram': '512000',
'flash': '2000000'

},
'MAC': '1000000',
'parameters': '50000',
'latency': '100',
'performance': 'High accuracy for

classification of AF types'}
}

Figure 4: A complete example of multimodal query generation results, showing data and modeling aspects.

straints can be specified directly by the user or
through the name of the target device.

• Inference Latency. Similarly, if the user pro-
vides specific requirements, we instruct the LLM
to adhere to them; otherwise, we instruct the
LLM to rewrite the query to account for possible
latency based on the hardware constraints.

• Model Complexity. Likewise, if the user does
not specify any constraints regarding model size
or complexity, we instruct the LLM to infer po-
tential limitations based on hardware constraints.
The number of parameters corresponds to the
model size in bytes, representing the FLASH
memory required to store the model during de-
ployment. The number of multiply-accumulate
operations (MACs) or floating-point operations
per second (FLOPs) must also be considered, as
they indicate the peak memory (RAM) usage dur-
ing inference on the target device.

• Performance Metrics. As a multi-objective
search, we aim to optimize both task performance
and efficiency for a target device. Users can ei-
ther specify the metric(s), such as accuracy or
root mean squared error, in the query, or the LLM
can infer them from the downstream task.

Similar to the data aspect query, we prompt the
LLM to rewrite queries into a structured JSON
format with the keys name, hardware_specs, MAC,
parameters, latency, and performance, which
represent various aspects of the model design condi-
tions. Figure 4 shows a complete resulting example
of the multimodal query generation process.

3.3 LLM Agent Based Multi-Objective Search

In this module, we leverage the full potential of
LLMs through task specialization and collabora-
tive problem-solving. As multi-agent LLM systems
decompose complex tasks into manageable compo-
nents, they enhance both accuracy and reasoning
capabilities compared to single-agent systems (Guo
et al., 2024b; Wang et al., 2024b). Through itera-
tive communication, agents systematically evaluate
trade-offs, refine architectural designs, and address
challenges. Specifically, MONAQ harnesses multi-

agent collaboration to bypass extensive training,
capitalizing on LLMs’ reasoning abilities for effi-
cient architecture evaluation and selection.

Below, we provide brief descriptions of the
agents built for this module. Full prompts of agent
specifications are presented in §C.2.
Design Agent (Adesign) is responsible for con-
structing and refining the potential search space
based on the extracted multimodal query.
Search Agent (Asearch) is instructed to perform
tasks related to architecture search and model de-
sign. The resulting designs produced by this agent
are sent to the Evaluation Agent for evaluation and
verification against the given multimodal query.
Evaluation Agent (Aeval) is an LLM prompted for
doing performance evaluation tasks (E in Eq. (1))
related to expected model performance, model pro-
filing, and candidate ranking (when multiple mod-
els are suggested by Asearch).
Code Agent (Acode) is an LLM prompted for im-
plementing the solution verified by the Evaluation
Agent. The Code Agent is responsible for writ-
ing effective code for actual runtime execution and
returning the deployable model to the user.

Finally, as presented in Figure 2b, after obtaining
the multimodal query from the multimodal query
generation stage, Adesign takes the organized mul-
timodal query as its input and designs the search
space S for Asearch. Asearch then generates (a set)
of candidate models (M in Eq. (1)) to be evalu-
ated by Aeval. If the suggested candidates pass the
evaluation, based on the given constraints T , the se-
lected network is forwarded to Acode, which writes
the code to produce a deployable model for the
user. Otherwise, MONAQ repeats the process by
informing Asearch with feedback from Aeval un-
til the search budget is exhausted or a satisfactory
model M⋆ is found.

4 Experiments

To verify the effectiveness of MONAQ, we con-
duct extensive experiments on two main on-device
analysis tasks: classification and regression. Addi-
tionally, we perform ablation and hyperparameter

16926



Datasets Length Feature Dims
(# Sensors) # Train # Test # Classes Application Domain Missing Values

Classification (Bagnall et al., 2018; Li et al., 2023)

AtrialFibrillation 640 2 15 15 3 Health Monitoring No
BinaryHeartbeat 18530 1 204 205 2 Health Monitoring No
Cricket 1197 6 108 72 12 Human Activity Recognition No
Fault Detection (A) 5120 1 10912 2728 3 Industrial System Monitoring No
UCI-HAR 206 3 7352 2947 6 Human Activity Recognition No

P12 233 36 9590 2398 2 Health Monitoring Yes
P19 401 34 31042 7761 2 Health Monitoring Yes
PAMAP2 4048 17 4266 1067 8 Human Activity Recognition Yes

Regression (Tan et al., 2021)

AppliancesEnergy 144 24 96 42

N/A

Energy Monitoring No
BenzeneConcentration 240 8 3433 5445 Environment Monitoring Yes
BIDMC32SpO2 4000 2 5550 2399 Health Monitoring No
FloodModeling 266 1 471 202 Environment Monitoring No
LiveFuelMoistureContent 365 7 3493 1510 Environment Monitoring No

HouseholdPowerConsumption1 1440 5 746 694 Energy Monitoring Yes
HouseholdPowerConsumption2 1440 5 746 694 Energy Monitoring Yes

Table 1: Summary of benchmark datasets.

studies. The source code is available at https:
//github.com/kaist-dmlab/MONAQ.

4.1 Setup
Tasks and Datasets As summarized in Table 1,
we select fifteen datasets for two downstream tasks
commonly used in on-device time-series analy-
sis, including classification and regression. These
datasets are publicly available and represent vari-
ous real-world applications, including healthcare,
wearable devices, and environmental IoTs. For
each task, we prepare a set of natural language
task descriptions (see Table 4) as the input to LLM-
based methods to represent user requirements along
with a skeleton script (see §B.1).

Evaluation Metrics In terms of model perfor-
mance, for the classification tasks, we adopt the
accuracy metric, while for the regression tasks, we
use the root mean squared error (RMSE) metric.
For model complexity, we measure model size (i.e.,
FLASH storage size), peak memory usage during
inference (i.e., RAM), the number of MAC op-
erations, and inference latency using the MLTK
library1 as suggested by Saha et al. (2024). Model
complexity results are based on a deterministic sim-
ulation on an EFR32xG24 at 78MHz with 1536kB
of FLASH and 256kB of RAM.

Comparison Baselines As we address the novel
problem of NAQ for time-series analysis on
resource-constrained devices, no existing baselines
are available for direct comparison. Thus, we

1https://siliconlabs.github.io/mltk

compare MONAQ against manually designed mod-
els based on TFLite-supported operations: MLP,
LSTM, and CNN; hand-crafted lightweight mod-
els: temporal convolutional network (Bai et al.,
2018) (TCN), depthwise convolution (D-CNN),
depthwise separable convolution (Zhang et al.,
2017) (DS-CNN), convolutional LSTM (Ordóñez
and Roggen, 2016) (ConvLSTM), and 6-layer
TENet (Li et al., 2020) (TENet(6)); state-of-the-
art HW-NAS for time series: TinyTNAS (Saha
et al., 2024); traditional NAS methods: grid search
and random search (Lindauer and Hutter, 2020)
in TinyTNAS’s search space; and general-purpose
LLMs: GPT-4o-mini and GPT-4o (Achiam et al.,
2023) with zero-shot prompting (see §B.2).

Implementation Details Due to the need
for complex problem-solving and reasoning
skills, unless stated otherwise, we use GPT-
4o (gpt-4o-2024-08-06) as the backbone model
for all agents and LLM-based baselines to ensure
an impartial performance evaluation. All exper-
iments are conducted on an Ubuntu 20.04 LTS
server equipped with an Intel(R) Xeon(R) Gold
6326 CPU @ 2.90GHz. To execute the generated
models, we use the same environment provided by
Guo et al. (2024a), which includes all necessary
libraries in the skeleton scripts. Finally, all models
are converted and quantized using TFLite Micro
before calculating the model complexity metrics.

4.2 Main Results
Overall As in Figures 5 and 6, the models found
by our proposed MONAQ framework, on average,

16927

https://github.com/kaist-dmlab/MONAQ
https://github.com/kaist-dmlab/MONAQ
https://siliconlabs.github.io/mltk


MLP

LSTM

CNN

TCN

D-CNN
DS-CNN

ConvLSTM

TENet(6)

Grid Search Random Search

TinyTNAS

GPT-4o-mini

GPT-4o

MONAQ (Ours)

0.4

0.5

0.6

0.7

0.8

-500 1500 3500 5500 7500

A
cc

u
ra

cy

Latency (ms)

Model Size

500kB
1000kB
2000kB

Figure 5: Performance comparison of our MONAQ and
the baselines in average accuracy, inference latency, and
model complexity (size) for classification tasks.

significantly outperform baselines across multiple
benchmarks. The center of each circle indicates
downstream task performance and latency, while its
diameter indicates model size. Compared to mod-
els with similar performance to MONAQ (such as
CNNs and GPT-4o), the models found by MONAQ
exhibit significantly greater efficiency in terms of
model complexity. These findings demonstrate that
MONAQ achieves a better balance between down-
stream task performance and model complexity.

Classification The full results in Table 5 (Ap-
pendix) demonstrate that the models discovered by
MONAQ achieve improvements over the baselines
ranging from 9.1% to 72.1% in classification tasks,
outperforming strong baselines, such as TinyTNAS,
GPT-4o, and CNNs. In terms of model complexity,
MONAQ significantly reduces memory consump-
tion across tasks compared to DS-CNN and TENet,
while also lowering computational costs (MAC)
and achieving competitive latency on average. This
result highlights its efficiency and effectiveness
across different datasets.

Regression Similarly, Table 6 (Appendix) shows
that the models discovered by MONAQ achieve
an error reduction of 6.3–83.2% compared to the
baselines on regression tasks. On average, MONAQ
outperforms all other methods, including state-of-
the-art approaches, e.g., TinyTNAS, TENet, and
D-CNN. Besides, MONAQ significantly reduces
computational costs, while maintaining accuracy
and offering competitive latency across datasets.

Irregular Time Series To evaluate MONAQ’s
robustness on irregular and noisy time series com-
mon in real-world settings, we test it on five more
datasets. As shown in Table 7 (Appendix), MONAQ
consistently achieves strong performance in both
classification (average accuracy of 0.916) and re-

20

50

100

MLP
LSTM

CNN

TCN

D-CNN

DS-CNN

ConvLSTM

TENet(6)

Grid Search
Random Search

TinyTNAS
GPT-4o-mini

GPT-4o

MONAQ (Ours)
0

10

20

30

40

50

60

70

-500 500 1500 2500 3500

R
M

SE

Latency (ms)

Model Size

20kB
50kB

100kB

Figure 6: Performance comparison of our MONAQ and
the baselines in terms of average RMSE, inference la-
tency, and model complexity (size) for regression tasks.

Variations Classification Regression

Latency (ms) Accuracy FLASH (kB) Latency (ms) RMSE FLASH (kB)

MONAQ 127.260 0.746 257.742 24.729 9.902 10.582

w/o Query Rewriting 206.871 0.651 17.186 14.623 11.994 10.155

w/o Adesign 863.358 0.647 518.762 95.654 13.512 33.243
w/o Aeval 540.411 0.641 4775.661 26.335 12.783 109.627
w/o Aeval & Asearch 601.313 0.643 5907.363 188.123 11.261 665.110
Only Acode 579.876 0.612 4158.205 21.530 12.274 99.638

Table 2: Ablation study results on query rewriting and
various agent combinations.

gression (average RMSE of 102.409) tasks, while
also being highly efficient. It uses significantly less
RAM, energy, and latency than several baselines.

4.3 Ablation Studies
To understand the contribution of each component,
we conduct ablation studies by removing critical el-
ements proposed in MONAQ. Tables 2 and 3 show
the downstream performance and model complex-
ity across different configurations.

Query Rewriting (Table 2) Removing the query
rewriting module results in a significant drop in
classification accuracy (from 0.746 to 0.651) and
an increase in regression RMSE (from 9.902 to
11.994), indicating its critical role in enhancing
predictive performance. Although this variant re-
duces latency and memory usage, the performance
loss confirms that query rewriting is vital for main-
taining output quality.

Agent Contributions (Table 2) The ablation of
individual agents reveals their distinct roles. Ex-
cluding Adesign leads to the higher latency and
FLASH usage, while removing Aeval and Asearch

together results in both degraded accuracy and the
largest model size. The baseline variant using only
Acode performs worst across most metrics, with
accuracy dropping to 0.612 and RMSE rising to
12.274. Despite low latency, its inefficiency in
memory usage and poor predictive quality empha-
size the necessity of agent collaboration.

16928



Agents Query Modality Classification Regression

Numerical Time Series Textual Descriptions Time Series Images Latency (ms) Accuracy FLASH (kB) Latency (ms) RMSE FLASH (kB)

Single
(GPT-4o Backbone)

✓ 519.159 0.679 3349.453 23.797 13.944 125.445
✓ 1017.267 0.665 4126.024 42.779 13.227 134.901

✓ 593.541 0.690 5971.792 35.859 12.562 193.926
✓ ✓ 807.459 0.628 4926.157 40.485 13.556 137.581
✓ ✓ ✓ 557.665 0.629 3871.910 22.726 12.681 90.398

Multiple
(GPT-4o Backbone)

✓ 149.320 0.434 12.066 54.270 12.284 10.611
✓ 170.461 0.440 15.198 110.751 12.084 12.560

✓ 280.198 0.661 15.638 13.661 11.653 7.885
✓ ✓ 205.623 0.517 16.035 28.049 13.207 13.875
✓ ✓ ✓ 127.260 0.746 257.742 24.729 9.902 10.582

Table 3: Ablation study results of multimodal query generation and multi-agent based search components.

9.6
9.8
10
10.2
10.4
10.6

0

0.2

0.4

0.6

0.8

1 3 5 7 9

RM
SE

Ac
cu

ra
cy

# Candidates / Round

Accuracy RMSE

9
9.5
10
10.5
11
11.5

0

0.2

0.4

0.6

0.8

1 2 3 4 5

RM
SE

Ac
cu

ra
cy

Search Budget (# Rounds)

Accuracy RMSE

0

5

10

15

0

0.2

0.4

0.6

0.8
RM

SE

Ac
cu

ra
cy

LLM Backbone

Accuracy RMSE

(a) LLM Backbones.

9.6
9.8
10
10.2
10.4
10.6

0

0.2

0.4

0.6

0.8

1 3 5 7 9

RM
SE

Ac
cu

ra
cy

# Candidates / Round

Accuracy RMSE

9
9.5
10
10.5
11
11.5

0

0.2

0.4

0.6

0.8

1 2 3 4 5
RM

SE

Ac
cu

ra
cy

Search Budget (# Rounds)

Accuracy RMSE

0

5

10

15

0

0.2

0.4

0.6

0.8

RM
SE

Ac
cu

ra
cy

LLM Backbone

Accuracy RMSE

(b) Number of Candidates.

9.6
9.8
10
10.2
10.4
10.6

0

0.2

0.4

0.6

0.8

1 3 5 7 9

RM
SE

Ac
cu

ra
cy

# Candidates / Round

Accuracy RMSE

9
9.5
10
10.5
11
11.5

0

0.2

0.4

0.6

0.8

1 2 3 4 5

RM
SE

Ac
cu

ra
cy

Search Budget (# Rounds)

Accuracy RMSE

0

5

10

15

0

0.2

0.4

0.6

0.8

RM
SE

Ac
cu

ra
cy

LLM Backbone

Accuracy RMSE

(c) Search Budgets.

Figure 7: Comparison between (a) LLM backbones, (b) number of candidates per round, and (c) search budget on
model performance, as measured by accuracy (higher is better) and RMSE (lower is better).

Multimodal Query Generation (Table 3) Com-
bining multiple query modalities improves perfor-
mance across downstream tasks. For classification
tasks, accuracy increases as more modalities are
included. For instance, in the single-agent setup,
accuracy ranges from 0.628 to 0.679, depending
on the modality combination. In regression tasks,
RMSE decreases from 13.944 to 12.681 as query
modalities expand. While multimodal inputs boost
performance, they introduce higher latency and
FLASH usage, especially in the single-agent setup.

Multi-Agent Based Search (Table 3) The multi-
agent architecture significantly outperforms the
single-agent model across all metrics. In classifi-
cation tasks, interaction between agents (i.e., feed-
back) dramatically leads to the reduction in infer-
ence latency (e.g., 519ms in the single-agent model
vs. 149ms in the multi-agent model), while accu-
racy improves due to the combination of modalities.
The accuracy reaches 0.746, surpassing the single-
agent model’s peak value of 0.679. FLASH usage
decreases with multi-agent search, even for com-
plex queries. For regression tasks, the multi-agent
search achieves superior accuracy, with RMSE
values as low as 9.902 compared to the single-
agent model’s range of 12.562–13.944. Latency
and FLASH usage are also significantly reduced.
Consequently, multi-agent search not only reduces
latency and memory usage but also enhances down-
stream performance.

Overall, we notice that multimodal query gener-
ation improves accuracy but increases complexity,

especially in single-agent setups, whereas multi-
agent-based search addresses these challenges by
enhancing both aspects, thereby balancing down-
stream performance and model complexity.

4.4 Hyperparameter Studies
To understand the behavior of our framework under
various settings, we further evaluate MONAQ with
different hyperparameter configurations as follows.

LLM Backbones We evaluate MONAQ using
both closed-source and open-source LLM back-
bones. The results in Figure 7a indicate that
the choice of backbone has a noticeable impact
on performance. Accuracy is higher for GPT-
4o and Gemini-2.0-Flash, while RMSE is lower,
suggesting better overall predictive performance.
This trend underscores the importance of advanced
LLMs in enhancing downstream performance.

Number of Candidates As the number of candi-
dates per round increases, there is a clear upward
trend in accuracy, while RMSE shows a correspond-
ing decrease. Figure 7b suggests that expanding
the candidate pool improves the model’s ability to
identify optimal solutions. However, the gains be-
gin to plateau beyond a certain point, indicating
diminishing returns for very large candidate pools.

Search Budgets Figure 7c shows that as the
search budget increases, both accuracy and RMSE
improve steadily. This trend indicates that addi-
tional iterations allow the search process to con-
verge more effectively on better solutions. How-

16929



0.02

9.66

0.02

11.61

0.02

16.48

0.02

35.02

0.03

43.17

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Money ($)

Time (s)

Query Rewriting Search Space Design Model Search Model Evaluation Code Generation
Cl

as
si

fic
at

io
n

0.02

8.14

0.01

12.72

0.01

17.05

0.02

28.08

0.03

40.45

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Money ($)

Time (s)

Re
gr

es
si

on

Figure 8: Average time and monetary cost breakdown
for classification (upper) and regression (lower) tasks.

ever, the rate of improvement diminishes after a
moderate number of rounds, suggesting that be-
yond a certain budget, the incremental benefit may
not justify the added computational cost.

4.5 Resource Cost
As we use closed-source LLMs, we analyze the
resource costs in terms of time and money. Fig-
ure 8 presents the average time and monetary costs
across different datasets for a single run. On av-
erage, it takes around 200 seconds and costs 0.20
USD (using GPT-4o) to search for a single model
that will be deployable after training. We also dis-
cuss the search cost comparison in §F.

5 Conclusions

This paper proposes a novel NAS framework,
MONAQ, which reformulates NAS problems as
multi-objective neural architecture querying tasks,
using multimodal time-series inputs and hardware
constraints as queries to LLMs. To enhance the
LLM’s understanding of time series, we introduce a
multimodal query generation module and improve
search efficiency via a multi-agent based search.
Extensive experiments on 15 datasets show that the
models discovered by MONAQ outperform hand-
crafted baselines while achieving greater efficiency.

Limitations

While the proposed MONAQ framework demon-
strates significant advancements in resource-
constrained time-series analysis, there are a few
limitations to consider.

First, the reliance on large language models
(LLM) for neural architecture querying introduces
a dependency on the availability of advanced
LLMs, which can incur high computational costs
during the search process. Although MONAQ by-
passes the training of candidate models, the mul-
timodal query generation and multi-agent search
process may still be computationally intensive for

scenarios requiring real-time or low-latency archi-
tecture optimization.

Second, the framework assumes well-defined
user constraints and task descriptions, which may
limit its applicability in ambiguous or ill-structured
deployment scenarios.

Third, MONAQ’s effectiveness in handling
highly noisy or irregular time-series data has not
been extensively validated, which could impact its
performance in applications like industrial anomaly
detection. Future work could focus on expanding
the robustness of the framework across broader
datasets and enhancing the adaptability of its archi-
tecture discovery process to dynamic and uncertain
deployment environments.

Acknowledgments

This research was partly supported by Korea In-
stitute of Science and Technology Information
(KISTI) (No. K25L1M1C1, 50%) and the IITP
(No. RS-2025-25410841, Beyond the Turing Test:
Human-Level Game-Playing Agents with General-
ization and Adaptation, 50%).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Anthony Bagnall, Hoang Anh Dau, Jason Lines,
Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. 2018. The uea
multivariate time series classification archive, 2018.
arXiv:1811.00075.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018.
An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271.

Hadjer Benmeziane and Kaoutar El Maghraoui. 2024.
Are large language models good neural architecture
generators for edge? In IEEE EDGE, pages 162–
165.

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza
Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. 2021a. Hardware-aware neural ar-
chitecture search: Survey and taxonomy. In IJCAI,
pages 4322–4329.

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza
Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. 2021b. A comprehensive survey
on hardware-aware neural architecture search. arXiv
preprint arXiv:2101.09336.

16930



Han Cai, Ligeng Zhu, and Song Han. 2019. Proxyless-
NAS: Direct neural architecture search on target task
and hardware. In ICLR.

Yifu Cai, Arjun Choudhry, Mononito Goswami, and
Artur Dubrawski. 2024. Timeseriesexam: A
time series understanding exam. arXiv preprint
arXiv:2410.14752.

Angelica Chen, David Dohan, and David So. 2023. Evo-
prompting: Language models for code-level neural
architecture search. In NeurIPS.

Winnie Chow, Lauren Gardiner, Haraldur T Hallgríms-
son, Maxwell A Xu, and Shirley You Ren. 2024. To-
wards time series reasoning with llms. arXiv preprint
arXiv:2409.11376.

Difan Deng, Florian Karl, Frank Hutter, Bernd Bischl,
and Marius Lindauer. 2022. Efficient automated deep
learning for time series forecasting. In ECML PKDD.

Haoyuan Dong, Yang Gao, Haishuai Wang, Hong Yang,
and Peng Zhang. 2023. Heterogeneous graph neu-
ral architecture search with gpt-4. arXiv preprint
arXiv:2312.08680.

Elizabeth Fons, Rachneet Kaur, Soham Palande, Zhen
Zeng, Svitlana Vyetrenko, and Tucker Balch. 2024.
Evaluating large language models on time series fea-
ture understanding: A comprehensive taxonomy and
benchmark. In EMNLP.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen,
Yi Chang, and Jun Wang. 2024a. DS-agent: Auto-
mated data science by empowering large language
models with case-based reasoning. In ICML.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2024b. Large language model based
multi-agents: A survey of progress and challenges.
In IJCAI, pages 8048–8057.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. MetaGPT: Meta pro-
gramming for a multi-agent collaborative framework.
In ICLR.

Dina Hussein, Lubah Nelson, and Ganapati Bhat. 2024.
Sensor-aware classifiers for energy-efficient time
series applications on iot devices. arXiv preprint
arXiv:2407.08715.

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS
Lakshmanan, and Dujian Ding. 2024. Llm perfor-
mance predictors are good initializers for architecture
search. In Findings of ACL.

Denizhan Kara, Tomoyoshi Kimura, Shengzhong Liu,
Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang,
Yizhuo Chen, Yigong Hu, and Tarek Abdelzaher.
2024. FreqMAE: Frequency-aware masked autoen-
coder for multi-modal iot sensing. In Proceedings of
the ACM on Web Conference 2024, pages 2795–2806.

Tobias King, Yexu Zhou, Tobias Röddiger, and Michael
Beigl. 2023. Micronas: Memory and latency con-
strained hardware-aware neural architecture search
for time series classification on microcontrollers.
arXiv preprint arXiv:2310.18384.

Yaxuan Kong, Yiyuan Yang, Shiyu Wang, Chenghao
Liu, Yuxuan Liang, Ming Jin, Stefan Zohren, Dan
Pei, Yan Liu, and Qingsong Wen. 2025. Position:
Empowering time series reasoning with multimodal
llms. Preprint, arXiv:2502.01477.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang,
Yang Zhao, Haoran You, Qixuan Yu, Yue Wang,
Cong Hao, and Yingyan Lin. 2021. HW-NAS-Bench:
Hardware-aware neural architecture search bench-
mark. In International Conference on Learning Rep-
resentations.

Ximin Li, Xiaodong Wei, and Xiaowei Qin. 2020.
Small-footprint keyword spotting with multi-scale
temporal convolution. In Interspeech, pages 1987–
1991.

Zekun Li, Shiyang Li, and Xifeng Yan. 2023. Time
series as images: Vision transformer for irregularly
sampled time series. In NeurIPS.

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and
Song Han. 2021. MCUNetV2: Memory-efficient
patch-based inference for tiny deep learning. In
NeurIPS, pages 2346–2358.

Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang
Gan, and Song Han. 2020. MCUNet: Tiny deep
learning on iot devices. In NeurIPS, pages 11711–
11722.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang,
Chuang Gan, and Song Han. 2022. On-device train-
ing under 256kb memory. In NeurIPS, pages 22941–
22954.

Marius Lindauer and Frank Hutter. 2020. Best practices
for scientific research on neural architecture search.
JMLR, 21(243):1–18.

Haoxin Liu, Chenghao Liu, and B Aditya Prakash. 2024.
A picture is worth a thousand numbers: Enabling
llms reason about time series via visualization. arXiv
preprint arXiv:2411.06018.

Mike A Merrill, Mingtian Tan, Vinayak Gupta, Thomas
Hartvigsen, and Tim Althoff. 2024. Language mod-
els still struggle to zero-shot reason about time series.
In Findings of EMNLP, pages 3512–3533.

Youngeun Nam, Patara Trirat, Taeyoon Kim, Youngseop
Lee, and Jae-Gil Lee. 2023. Context-aware deep
time-series decomposition for anomaly detection in
businesses. In ECML PKDD, page 330–345.

Muhammad Umair Nasir, Sam Earle, Julian Togelius,
Steven James, and Christopher Cleghorn. 2024. Ll-
matic: neural architecture search via large lan-
guage models and quality diversity optimization. In
GECCO, pages 1110–1118.

16931

https://arxiv.org/abs/2502.01477
https://arxiv.org/abs/2502.01477
https://arxiv.org/abs/2502.01477
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf


Francisco Javier Ordóñez and Daniel Roggen. 2016.
Deep convolutional and lstm recurrent neural net-
works for multimodal wearable activity recognition.
Sensors, 16(1):115.

Md Hafizur Rahman and Prabuddha Chakraborty. 2024.
Lemo-nade: Multi-parameter neural architecture dis-
covery with llms. arXiv preprint arXiv:2402.18443.

Bidyut Saha, Riya Samanta, Soumya K Ghosh, and
Ram Babu Roy. 2024. Tinytnas: Gpu-free, time-
bound, hardware-aware neural architecture search
for tinyml time series classification. arXiv preprint
arXiv:2408.16535.

Riya Samanta, Bidyut Saha, Soumya K Ghosh, and
Ram Babu Roy. 2024. Optimizing tinyml: The im-
pact of reduced data acquisition rates for time series
classification on microcontrollers. arXiv preprint
arXiv:2409.10942.

Chang Wei Tan, Christoph Bergmeir, Francois Petitjean,
and Geoffrey I Webb. 2021. Time series extrinsic
regression. DMKD, pages 1–29.

Alexander Tornede, Difan Deng, Theresa Eimer, Joseph
Giovanelli, Aditya Mohan, Tim Ruhkopf, Sarah
Segel, Daphne Theodorakopoulos, Tanja Tornede,
Henning Wachsmuth, and Marius Lindauer. 2024.
AutoML in the age of large language models: Current
challenges, future opportunities and risks. TMLR.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang.
2024a. Automl-agent: A multi-agent llm frame-
work for full-pipeline automl. arXiv preprint
arXiv:2410.02958.

Patara Trirat and Jae-Gil Lee. 2024. PASTA: Neural
architecture search for anomaly detection in multi-
variate time series. IEEE Transactions on Emerging
Topics in Computational Intelligence, pages 1–16.

Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun
Nam, Jihye Na, Minyoung Bae, Joeun Kim,
Byunghyun Kim, and Jae-Gil Lee. 2024b. Universal
time-series representation learning: A survey. arXiv
preprint arXiv:2401.03717.

Haishuai Wang, Yang Gao, Xin Zheng, Peng Zhang,
Hongyang Chen, Jiajun Bu, and Philip S Yu. 2023.
Graph neural architecture search with gpt-4. arXiv
preprint arXiv:2310.01436.

Jialiang Wang, Shimin Di, Hanmo Liu, Zhili Wang, Ji-
achuan Wang, Lei Chen, and Xiaofang Zhou. 2024a.
Computation-friendly graph neural network design
by accumulating knowledge on large language mod-
els. arXiv preprint arXiv:2408.06717.

Yanlin Wang, Wanjun Zhong, Yanxian Huang, Ensheng
Shi, Min Yang, Jiachi Chen, Hui Li, Yuchi Ma, Qianx-
iang Wang, and Zibin Zheng. 2024b. Agents in
software engineering: Survey, landscape, and vision.
arXiv preprint arXiv:2409.09030.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen,
Ziqing Ma, Junchi Yan, and Liang Sun. 2023. Trans-
formers in time series: A survey. In IJCAI.

Colin White, Mahmoud Safari, Rhea Sukthanker,
Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. 2023. Neural architecture
search: Insights from 1000 papers. arXiv preprint
arXiv:2301.08727.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yi-
wen Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, and 1 others. 2025. The
rise and potential of large language model based
agents: A survey. Science China Information Sci-
ences, 68(2):121101.

Yundong Zhang, Naveen Suda, Liangzhen Lai, and
Vikas Chandra. 2017. Hello edge: Keyword
spotting on microcontrollers. arXiv preprint
arXiv:1711.07128.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen
Qian, Chang Xu, and Samuel Albanie. 2023. Can
gpt-4 perform neural architecture search? arXiv
preprint arXiv:2304.10970.

Ao Zhou, Jianlei Yang, Yingjie Qi, Tong Qiao, Yumeng
Shi, Cenlin Duan, Weisheng Zhao, and Chunming
Hu. 2024a. Hgnas: Hardware-aware graph neural
architecture search for edge devices. IEEE TC, pages
1–14.

Xun Zhou, Liang Feng, Xingyu Wu, Zhichao Lu, and
Kay Chen Tan. 2024b. Design principle transfer in
neural architecture search via large language models.
arXiv preprint arXiv:2408.11330.

Yexu Zhou, Tobias King, Haibin Zhao, Yiran Huang,
Till Riedel, and Michael Beigl. 2024c. Mlp-har:
Boosting performance and efficiency of har models
on edge devices with purely fully connected layers.
In ISWC, pages 133–139.

Yexu Zhou, Haibin Zhao, Yiran Huang, Till Riedel,
Michael Hefenbrock, and Michael Beigl. 2022. Tiny-
har: A lightweight deep learning model designed for
human activity recognition. In ISWC, page 89–93.

Jiaxin Zhuang, Leon Yan, Zhenwei Zhang, Ruiqi
Wang, Jiawei Zhang, and Yuantao Gu. 2024. See
it, think it, sorted: Large multimodal models are few-
shot time series anomaly analyzers. arXiv preprint
arXiv:2411.02465.

16932

https://doi.org/10.1109/TC.2024.3449108
https://doi.org/10.1109/TC.2024.3449108


A Extended Related Work

A.1 On-Device Time-Series Analysis

Time-series analysis on resource-constrained de-
vices, such as IoT and wearables, has gained im-
portance due to the need for real-time processing
with limited computational and energy resources
(Trirat et al., 2024b). Common approaches include
CNNs, RNNs (e.g., LSTMs), and Transformers
(Kara et al., 2024). While CNNs excel at extracting
local context, they struggle with long-term depen-
dencies (Hussein et al., 2024). RNNs and LSTMs
address these drawbacks but are hindered by se-
quential processing, increasing latency. Transform-
ers (Wen et al., 2023) enable parallel processing
and capture long-term dependencies but are often
unsuitable for edge devices due to high computa-
tional demands. Lightweight models like attention
condensers, CNN-RNN hybrids (e.g., DeepCon-
vLSTM (Ordóñez and Roggen, 2016)), and low-
resource architectures like TinyHAR (Zhou et al.,
2022) and MLP-HAR (Zhou et al., 2024c) balance
performance with resource efficiency.

A.2 Hardware-Aware NAS (HW-NAS)

Optimizing neural networks for hardware con-
straints, such as memory and latency, is challenging
and traditionally required extensive domain exper-
tise. HW-NAS addresses this issue by incorporat-
ing hardware efficiency metrics into the search pro-
cess (Li et al., 2021; Benmeziane et al., 2021b,a).
ProxylessNAS (Cai et al., 2019) optimizes latency
and energy consumption on edge devices, while
the MCUNet family (Lin et al., 2020, 2021, 2022)
enhances efficiency for microcontrollers. More re-
cent methods, e.g., HGNAS (Zhou et al., 2024a),
integrate lookup tables and predictors for resource-
efficient searches.

Despite these advancements, HW-NAS for time-
series data remains largely underexplored. Mi-
croNAS (King et al., 2023) introduces time-series-
specific search spaces for microcontrollers, while
TinyTNAS (Saha et al., 2024) supports efficient
CPU operations. However, these methods often
rely on fixed search spaces, requiring significant ex-
pertise. Given these challenges, there is a growing
need for NAS frameworks with natural language
interfaces, allowing users to describe their desired
architecture in plain language rather than through
direct programming (Tornede et al., 2024). Lever-
aging LLMs in this context can make HW-NAS
more user-friendly and adaptable across a wider

range of applications, leading to democratize NAS
processes for better accessibility and adaptability.

A.3 LLMs for NAS
LLMs have shown potential in automating NAS by
leveraging pre-trained knowledge to generate di-
verse, high-performing architectures (Zheng et al.,
2023; Dong et al., 2023; Wang et al., 2023; Ben-
meziane and El Maghraoui, 2024; Jawahar et al.,
2024; Nasir et al., 2024; Wang et al., 2024a; Zhou
et al., 2024b; Rahman and Chakraborty, 2024;
Chen et al., 2023; Trirat et al., 2024a). GENIUS
(Zheng et al., 2023) improves convolution-based
architectures through feedback, while GPT4GNAS
(Wang et al., 2023) uses GPT-4 to design graph
neural networks. LLMatic (Nasir et al., 2024) com-
bines LLMs with quality-diversity algorithms, gen-
erating architectures that balance diversity and per-
formance across various metrics and thus achieving
competitive results with fewer evaluations. These
frameworks suggest a shift toward using LLMs not
only as code generators but also as sophisticated
tools for automating NAS.

However, current LLM-based NAS frameworks
face challenges with time-series data due to
their limited understanding of raw numerical in-
puts (Merrill et al., 2024; Kong et al., 2025) and
their reliance on runtime feedback and user-defined
search spaces, which are often time-consuming and
require intricate configurations. To address these
issues, we introduce neural architecture query-
ing, enabling users to specify requirements directly
through natural language prompts for a given time-
series dataset. Our approach removes the need for
complex configurations and simplifies the architec-
ture search process.

B Details of Experimental Setup

This section outlines the detailed experimental
setup used in this paper, including the dataset de-
scriptions (Table 1), complete instruction prompts
(Table 4), and full-pipeline skeleton scripts (§B.1)
for experiments.

B.1 Skeleton Code for LLM-based NAS
The following listings show the skeleton codes us-
ing for experiments in §4. The scripts include the
entire pipeline from data loading to model conver-
sion and quantization. Only the modeling parts are
blank for the LLM to fill in.

16933



B.2 Prompt for Zero-Shot LLM Baselines

Prompt for Zero-Shot LLM Baselines

You are a helpful intelligent assistant. Now, please help solve the following time-series {} task by building a Tensorflow/
Keras model.

[Task for '{}' dataset]
{}
[{}.py] ```python
{}
```
Start the python code with "```python". Focus only on completing the get_model() function while returning the remaining parts

of the script exactly as provided.
Ensure the code is complete, error-free, and ready to run without requiring additional modifications.
Note that we only need the actual complete python code without textual explanations.

B.2.1 Code for Classification Task
Skeleton Code for Classification

# import utility packages
import os, sys, gc, warnings, logging, shutil
import json, time, glob, math

# determine GPU number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # hide INFO and WARNING messages

# define paths to model files
MODELS_DIR = "models/"
MODEL_TF = MODELS_DIR + "model.pb"
MODEL_NO_QUANT_TFLITE = MODELS_DIR + "model_no_quant.tflite"
MODEL_TFLITE_MICRO = MODELS_DIR + "model.cc"
SEED = 7

os.makedirs(MODELS_DIR, exist_ok=True)

logging.disable(logging.WARNING)
logging.disable(logging.INFO)
warnings.filterwarnings("ignore")

# import basic libraries
import random

import tensorflow as tf
import pandas as pd
import numpy as np

from tensorflow import keras

# Set a "seed" value, so we get the same random numbers each time we run this notebook for reproducible results.
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)

from utils.data_loader import load_dataset
from utils.data_desc import AVAILABLE_DATASETS, CLS_DATASETS, REG_DATASETS
from utils import quantize_model, brief_profile_model

# Do not change this
from sklearn.metrics import accuracy_score

N_EPOCHS = 100
BATCH_SIZE = 32
task = "classification"

keras.backend.clear_session()

data_name = os.path.basename(__file__).split(".")[0] # or replace with the user given dataset name

# 1. Loading the Target Dataset
X_train, y_train, X_test, y_test, class_names = load_dataset(data_name, task)
print("Experiment on:", data_name, X_train.shape)
seq_length = X_train.shape[1]
n_features = X_train.shape[2]
n_classes = len(class_names) # Number of output classes

# 2. Design the Model
def get_model():

16934



# TODO: Define a Tensorflow/Keras compatible model based on the given configurations
# Note that your model will be converted to a TFLite Micro model
return your_model

model = get_model()
model.compile(

optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
es = keras.callbacks.EarlyStopping(monitor="val_accuracy", mode="max", patience=10, restore_best_weights=True)

# 3. Train the Model
model.fit(X_train, y_train, epochs=N_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[es])

# 4. Evaluate the Model and Save Results (Do not change this)
y_pred = model.predict(X_test)
y_pred = y_pred.argmax(1)
acc = accuracy_score(y_test, y_pred)

# 5. Convert model to TFLite model
quantized_model = quantize_model(model, X_train)
# Save the model to disk
MODEL_TFLITE = MODELS_DIR + f"{model.name}_{task}_{data_name}.tflite"
open(MODEL_TFLITE, "wb").write(quantized_model)

# 6. Profile the converted model with a simulator
print(model.name, data_name)
print(acc)
brief_profile_model(MODEL_TFLITE)

del model
keras.backend.clear_session()
gc.collect()

B.2.2 Code for Regression Task

Skeleton Code for Regression

# import utility packages
import os, sys, gc, warnings, logging, shutil
import json, time, glob, math

# determine GPU number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # hide INFO and WARNING messages

# define paths to model files
MODELS_DIR = "models/"
MODEL_TF = MODELS_DIR + "model.pb"
MODEL_NO_QUANT_TFLITE = MODELS_DIR + "model_no_quant.tflite"
MODEL_TFLITE_MICRO = MODELS_DIR + "model.cc"
SEED = 7

os.makedirs(MODELS_DIR, exist_ok=True)

logging.disable(logging.WARNING)
logging.disable(logging.INFO)
warnings.filterwarnings("ignore")

# import basic libraries
import random

import tensorflow as tf
import pandas as pd
import numpy as np

from tensorflow import keras

# Set a "seed" value, so we get the same random numbers each time we run this notebook for reproducible results.
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)

from utils.data_loader import load_dataset
from utils.data_desc import AVAILABLE_DATASETS, CLS_DATASETS, REG_DATASETS
from utils import quantize_model, brief_profile_model

# Do not change this
from sklearn.metrics import root_mean_squared_error

N_EPOCHS = 100

16935



BATCH_SIZE = 32
task = "regression"

keras.backend.clear_session()

data_name = os.path.basename(__file__).split(".")[0] # or replace with the user given dataset name

# 1. Loading the Target Dataset
X_train, y_train, X_test, y_test = load_dataset(data_name, task)
print("Experiment on:", data_name, X_train.shape)
seq_length = X_train.shape[1]
n_features = X_train.shape[2]

# 2. Design the Model
def get_model():

# TODO: Define a Tensorflow/Keras compatible model based on the given configurations
# Note that your model will be converted to a TFLite Micro model
return your_model

model = get_model()
model.compile(optimizer="adam", loss="mean_squared_error", metrics=keras.metrics.RootMeanSquaredError(name="rmse", dtype=None)

)
es = keras.callbacks.EarlyStopping(monitor="val_rmse", mode="min", patience=10, restore_best_weights=True)

# 3. Train the Model
model.fit(X_train, y_train, epochs=N_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[es])

# 4. Evaluate the Model and Save Results (Do not change this)
y_pred = model.predict(X_test)
rmse = root_mean_squared_error(y_test, y_pred)

# 5. Convert model to TFLite model
quantized_model = quantize_model(model, X_train)
# Save the model to disk
MODEL_TFLITE = MODELS_DIR + f"{model.name}_{task}_{data_name}.tflite"
open(MODEL_TFLITE, "wb").write(quantized_model)

# 6. Profile the converted model with a simulator
print(model.name, data_name)
print(rmse)
brief_profile_model(MODEL_TFLITE)

del model
keras.backend.clear_session()
gc.collect()

C Full Prompts for MONAQ

C.1 Multi-Objective Query Rewriting

Prompt for Multi-Objective Query Rewriting

Please carefully analyze the user's task descriptions based on your understanding of the following input:
[User Input Prompt]
{user_prompt}

After fully understanding the task descriptions and constraints, extract and organize the information in the specified format
below.

Please respond as the following JSON object and make sure your JSON object is in a valid form.
```json
{
"task_description": "", // Clearly describe the user's requirements and the problem they are addressing
"data_aspects": {

"name": "", // Dataset name, if provided
"description": "", // Complete description of the dataset
"features": "", // Details on features, properties, and characteristics of the dataset to consider for model building
"context": "", // Relevant contextual information about the dataset
"patterns": "" // Observed patterns in the dataset to consider for model building, based on any provided numerical data

or images
},

"model_aspects": {
"name": "", // Suggested model name for the task, if provided by the user
"hardware_specs": {

"device_name": "", // Device name, if specified by the user, or inferred from hardware specifications
"ram": "", // Maximum RAM available (in bytes), which affects the model's MAC/FLOPs limit (you can also infer it

from the device name)
"flash": "", // Maximum FLASH storage (in bytes), which affects model size and parameter count (you can also infer

it from the device name)
},

16936



Task Dataset Instruction Prompt

BinaryHeartbeat I need a model to classify heartbeat signals, intended for deployment on an edge device
with 1 MB of storage and 128 KB of RAM. Since this is a critical healthcare task, the
model must be highly accurate while maintaining a very low inference latency of under
100 ms.

AtrialFibrillation I have a dataset of ECG records and want to build a classification model to categorize
ECG signals into three types of atrial fibrillation. The model should be deployable on
wearable devices, such as Fitbit trackers.

Cricket I want a model that can classify cricket umpire signals based on 3-axis accelerometer
data from both hands. Since this model needs to run in real-time on a device during
competitions, it should be as compact as possible while maintaining acceptable accuracy.

Time-Series
Classification

FaultDetection (A) We have a time series dataset collected from an electromechanical drive system. Create
a model for deployment on edge devices to identify types of damage in rolling bearings.

UCI-HAR I have 3-axis body linear acceleration signals collected for human activity recognition. I
need a classifier that can run on wearable devices with 1 MB of RAM and 2 MB of flash
storage. The inference latency should not exceed 500 ms.

P12 I want a model to predict patient mortality, which is a binary classification task, based on
irregularly sampled sensor observations and clinical data. The model should be small
enough for deployment on a smart watch.

P19 We have clinical data and want to predict whether sepsis will occur within the next 6
hours. The dataset includes irregularly sampled sensors, consisting of vital signs and
laboratory values for each patient. The model should be small enough for deployment
on a smart watch.

PAMAP2 Let’s build a model to classify the physical activities of human subjects wearing three
inertial measurement units. The classifier should run on wearable devices with 1 MB of
RAM and 2 MB of flash storage.

AppliancesEnergy I have an IoT device collecting appliance energy data from a house. Please develop
a predictive model to forecast the total energy consumption in kWh for the house.
Additionally, the model should be compact enough to be deployed on a ZigBee wireless
sensor network.

LiveFuelMoistureContent Build a regression model to predict the moisture content in vegetation. The model should
be deployable on a small device with 512 KB of RAM and 1 MB of storage. As this will
be used in a smart farming context, the prediction speed should be under 1000 ms.

BenzeneConcentration We aim to develop a model to predict benzene concentrations in an Italian city based on
air quality measurements. This model will be deployed on IoT sensors using the Arduino
Nano 33 BLE, so it should be compact and achieve a very low error rate, ideally with an
RMSE of 1.00 or lower.

Time-Series
Regression

BIDMC32SpO2 Our company has a project to deploy a predictive model on wearable devices, such as
fitness trackers, to estimate blood oxygen saturation levels using PPG and ECG data.
Please create a lightweight model suitable for deployment on these devices. The model
should use no more than 32KB of RAM and be no larger than 64KB in size.

FloodModeling I have an IoT sensor monitoring rainfall events. Could you develop a model to predict
the maximum water depth for flood modeling? The model should be lightweight enough
to run on the sensor and provide real-time predictions.

HouseholdPowerConsumption1 We have a project to predict total active power consumption in a household. Can you
develop an accurate model that can be deployed on a smart home device to predict total
active power consumption?

HouseholdPowerConsumption2 We have a project to predict total reactive power consumption in a household. Can you
develop an accurate model that can be deployed on a smart home device to predict total
reactive power consumption?

Table 4: User instructions (i.e., task description) for experiments.

"MAC": "", // Maximum MAC (Multiply-Accumulate) operations (or FLOPs) allowed for model compatibility with hardware
constraints

"parameters": "", // Maximum model parameters, in line with hardware constraints
"latency": "", // Desired inference latency in milliseconds (ms), or the maximum latency allowed based on hardware

limitations
"performance": "" // Expected model performance, such as accuracy for classification or RMSE for regression; specify

any target metric values to consider for model building
}

}
```

16937



C.2 Agent Specifications

C.2.1 Manager Agent Prompt

System Message for Manager Agent

You are an experienced senior project manager overseeing on-device time series analysis for resource-constrained devices. Your
primary responsibilities are as follows:

1. Receive requirements and inquiries from users regarding their task descriptions and potential target devices for deployment
.

2. Extract and clarify user requirements from both data and modeling perspectives, organizing these requirements and task-
specific constraints in an easy-to-understand format to enable other team members to execute subsequent processes based
on the information you have gathered.

3. Verify the suggested model whether it meets the user requirements and constraints.

C.2.2 Design Agent Prompt

System Message for Design Agent

You are the world's best data scientist of an on-device time series analysis for resource-constrained devices. You have the
following main responsibilities to complete.

1. Analyze user instructions and requirements.
2. Based on the requirements, design a neural network search space for resource-constrained devices.

C.2.3 Search Agent Prompt

System Message for Search Agent

You are the world's best machine learning research engineer specializing in on-device time series analysis for resource-
constrained devices. Your main responsibilities are as follows:

1. Analyze user instructions and requirements.
2. Understand the specified search space and constraints.
3. Based on your understanding, design optimal TensorFlow/Keras model configurations within the given constraints.

C.2.4 Evaluation Agent Prompt

System Message for Evaluation Agent

You are the world's best machine learning research engineer specializing in on-device time series analysis for resource-
constrained devices. Your main responsibilities are as follows:

1. Analyze user instructions and requirements.
2. Understand the specified model and constraints.
3. Based on your understanding, evaluate and measure the performance of TensorFlow/Keras model configurations under the given

constraints.

C.2.5 Code Agent Prompt

System Message for Code Agent

You are the world's best machine learning engineer specializing in on-device time series analysis for resource-constrained
devices. You have the following main responsibilities to complete.

1. Write accurate Python codes to build model in get_model() function based on the given instruction.
2. Run the model evaluation using the given Python functions and summarize the results for validation against the user's

requirements.

D Examples of Intermediate Results and Interpretability Analysis

To enhance interpretability, our MONAQ not only generates resource-aware architectures but also provides
a structured breakdown of design decisions through its intermediate outputs. These outputs allow
practitioners to trace how specific constraints and dataset features influence architectural choices. In this
section, we present examples of intermediate results from the main steps of our framework, including
multimodal query generation (i.e., query rewriting) and multi-agent LLM responses.

16938



D.1 Classification Tasks
The following shows the intermediate results from the UCI-HAR dataset on the classification task.

Example Results of UCI-HAR Dataset

User Input: I have 3-axis body linear acceleration signals collected for human activity recognition. I
need a classifier that can run on wearable devices with 1 MB of RAM and 2 MB of flash storage. The
inference latency should not exceed 500 ms.

Rewriting Result:
{
'task_description': 'The user needs a classifier for human activity recognition using 3-axis body linear acceleration signals.

The model must run on wearable devices with limited resources: 1 MB of RAM, 2 MB of flash storage, and an inference
latency not exceeding 500 ms.',

'data_aspects': {'name': 'UCR HAR Dataset',
'description': 'The dataset contains 3-axis body linear acceleration signals for human activity recognition, with six

balanced classes: walking, walking upstairs, walking downstairs, sitting, standing, and laying down.',
'features': 'The dataset includes three features: body accelerometer X-axis, Y-axis, and Z-axis. It is preprocessed to focus

on linear acceleration.',
'context': 'Data is collected from 30 healthy volunteers aged 19-48 years. The original dataset has 10299 instances, split

into training (70%) and testing (30%) sets, with separate subjects in each set.',
'patterns': 'The time series plots show distinct patterns for each activity class, with variations in acceleration values

across the X, Y, and Z axes.'},

'model_aspects': {'name': 'HAR Classifier',
'hardware_specs': {'device_name': 'Wearable Device',
'ram': '1048576',
'flash': '2097152'},
'MAC': 'Limited by RAM and flash constraints, exact value depends on model architecture.',
'parameters': 'Limited by RAM and flash constraints, exact value depends on model architecture.',
'latency': '500',
'performance': 'The model should achieve high accuracy in classifying the six activities while adhering to hardware

constraints.'}
}

Design Result:
To design a search space for a neural network suitable for human activity recognition on resource-constrained wearable devices

, we need to consider lightweight architectures that can be efficiently converted to TFLite. Here's a proposed search
space:

```python
{

"layer_type": ["Conv1D", "DepthwiseConv1D", "SeparableConv1D", "LSTM", "Dense"],
"Conv1D_kernel_size": [3, 5],
"Conv1D_filters": [8, 16],
"DepthwiseConv1D_kernel_size": [3, 5],
"SeparableConv1D_kernel_size": [3, 5],
"SeparableConv1D_filters": [8, 16],
"LSTM_units": [16, 32],
"Dense_units": [32, 64],
"activation": ["relu", "tanh"],
"dropout_rate": [0.0, 0.2],
"pooling_type": ["max", "average"],
"pool_size": [2, 3],
"strides": [1, 2],
"batch_normalization": [True, False]

}
```

### Explanation:

- **Layer Types**:
- **Conv1D**: Efficient for extracting features from time-series data.
- **DepthwiseConv1D**: Reduces computation by applying a single convolutional filter per input channel.
- **SeparableConv1D**: Combines depthwise and pointwise convolutions for efficiency.
- **LSTM**: Captures temporal dependencies in time-series data.
- **Dense**: Used for final classification layers.

- **Kernel Sizes and Filters**:
- Smaller kernel sizes (3, 5) and filters (8, 16) are chosen to reduce memory usage and computational cost.

- **LSTM Units**:
- Limited to 16 and 32 to ensure the model fits within RAM constraints.

- **Dense Units**:
- Limited to 32 and 64 to balance complexity and resource usage.

16939



- **Activation Functions**:
- **ReLU** and **tanh** are efficient and commonly used in neural networks.

- **Dropout Rate**:
- Provides regularization to prevent overfitting, with options for no dropout and a small rate (0.2).

- **Pooling Types and Sizes**:
- **Max** and **average pooling** help reduce dimensionality and computation.
- Pool sizes of 2 and 3 are typical for downsampling.

- **Strides**:
- Strides of 1 and 2 allow for control over the downsampling rate.

- **Batch Normalization**:
- Optional to stabilize training and potentially improve convergence.

This search space is designed to explore a variety of architectures while adhering to the constraints of the wearable device.
Each configuration can be implemented using TensorFlow/Keras and converted to TFLite for deployment.

Search Result:
["### Analysis of the Proposed Model\n\n#### Model Characteristics\n\n1. **Computational Complexity**:\n - **Conv1D Layer**: \

n - Parameters: \\(16 \\times (5 \\times 3 + 1) = 256\\)\n - FLOPs: Approximately 256 per time step.\n - **
DepthwiseConv1D Layer**:\n - Parameters: \\(3\\) (since it's depthwise, no additional filters).\n - FLOPs: Minimal, as
it only applies a single filter per input channel.\n - **SeparableConv1D Layer**:\n - Parameters: \\(16 \\times (3 \\
times 3 + 1) + 16 \\times 16 = 304\\)\n - FLOPs: Approximately 304 per time step.\n - **LSTM Layer**:\n - Parameters:
\\(4 \\times (16 \\times (16 + 1) + 16 \\times 16) = 2112\\)\n - FLOPs: High, due to recurrent connections.\n - **Dense
Layers**:\n - First Dense: \\(32 \\times (16 + 1) = 544\\)\n - Output Dense: \\(6 \\times (32 + 1) = 198\\)\n\n2. **
Memory Usage**:\n - Total Parameters: Approximately 3417.\n - Assuming 4 bytes per parameter, the memory usage is about
13.7 KB.\n\n3. **Inference Latency**:\n - The model is designed to achieve inference latency under 500 ms. Given the
lightweight architecture, this is feasible on most modern wearable devices.\n\n4. **Model Size**:\n - With quantization
(e.g., 8-bit), the model size can be reduced significantly, fitting well within the 2 MB flash constraint.\n\n####
Expected Performance\n\n1. **Accuracy**:\n - Based on similar architectures and datasets, an accuracy of around 85-90%
is expected for human activity recognition.\n\n2. **Complexity Metrics**:\n - **FLOPs**: Estimated at around 3-5 MFLOPs
per inference.\n - **Training Time**: Depends on the dataset size and hardware but should be manageable on a standard
GPU.\n - **Inference Speed**: Should be well within the 500 ms constraint on a typical wearable device processor.\n\n
#### Considerations\n\n- **TFLite Compatibility**: The model uses layers compatible with TensorFlow Lite, ensuring
smooth deployment on resource-constrained devices.\n- **Optimization**: Further optimizations such as pruning or
additional quantization can be applied to reduce size and latency further.\n\n### Conclusion\n\nThe proposed model
configuration is well-suited for the task of human activity recognition on wearable devices, balancing performance with
resource constraints effectively. It is expected to deliver high accuracy while adhering to the specified hardware
limitations.",

'### Model Analysis\n\n#### Computational Complexity and Memory Usage\n\n1. **Conv1D Layer**:\n - Parameters: \\(3 \\times 8
+ 8 = 32\\)\n - FLOPs: \\(32 \\times \\text{input length}\\)\n\n2. **SeparableConv1D Layer**:\n - Depthwise: \\(3 \\
times 16 = 48\\)\n - Pointwise: \\(16 \\times 16 = 256\\)\n - Total Parameters: \\(48 + 256 = 304\\)\n - FLOPs: \\(304
\\times \\text{input length}\\)\n\n3. **LSTM Layer**:\n - Parameters: \\(4 \\times ((16 + 1) \\times 16 + 16^2) =
2112\\)\n - FLOPs: Proportional to the sequence length and hidden units.\n\n4. **Dense Layer**:\n - Parameters: \\(16
\\times 32 + 32 = 544\\)\n - FLOPs: \\(544\\)\n\n5. **Final Dense Layer**:\n - Parameters: \\(32 \\times 6 + 6 = 198\\)
\n - FLOPs: \\(198\\)\n\n6. **Total Parameters**: \\(32 + 304 + 2112 + 544 + 198 = 3190\\)\n\n7. **Model Size**:
Assuming 4 bytes per parameter, the total size is approximately \\(3190 \\times 4 = 12,760\\) bytes (~12.5 KB).\n\n####
Inference Latency\n\n- The model is designed to run within a 500 ms constraint. Given the lightweight architecture and
efficient operations, it is expected to meet this requirement on modern wearable devices.\n\n#### Expected Performance

\n\n- **Accuracy**: Based on similar architectures and datasets, the model could achieve around 85-90% accuracy on the
UCR HAR dataset.\n- **Inference Speed**: With the given constraints, inference should be well within 500 ms.\n\n###
Conclusion\n\nThe proposed model is well-suited for deployment on resource-constrained wearable devices due to its
lightweight architecture. It balances computational efficiency with the ability to capture temporal patterns necessary
for human activity recognition. The estimated model size, parameter count, and FLOPs suggest it will fit within the RAM
and flash storage limits while maintaining acceptable inference latency and accuracy.',

"### Model Analysis\n\n#### Computational Complexity\n1. **Conv1D Layer**:\n - Filters: 16, Kernel Size: 3\n - Input Shape:
Assuming input shape is (200, 3) for each axis.\n - Parameters: \\( (3 \\times 3 + 1) \\times 16 = 160 \\)\n - FLOPs:
Approximately \\( 200 \\times 16 \\times 3 = 9600 \\)\n\n2. **DepthwiseConv1D Layer**:\n - Kernel Size: 3\n -
Parameters: \\( 3 \\times 1 = 3 \\) (since it's depthwise)\n - FLOPs: Approximately \\( 100 \\times 3 = 300 \\)\n\n3.
**LSTM Layer**:\n - Units: 32\n - Parameters: \\( 4 \\times ((32 + 1) \\times 32 + 32^2) = 8448 \\)\n - FLOPs:
Approximately \\( 4 \\times 32 \\times (32 + 32) = 8192 \\)\n\n4. **Dense Layers**:\n - First Dense: \\( 32 \\times 32
+ 32 = 1056 \\) parameters\n - Output Dense: \\( 32 \\times 6 + 6 = 198 \\) parameters\n - FLOPs: Approximately \\( 32
\\times 32 + 32 \\times 6 = 1152 \\)\n\n#### Memory Usage\n- **Total Parameters**: \\( 160 + 3 + 8448 + 1056 + 198 =
9865 \\)\n- **Memory for Parameters**: Approximately 39 KB (assuming 4 bytes per parameter)\n- **Fits within 1 MB RAM**:
Yes\n\n#### Inference Latency\n- **Estimated Latency**: The model should comfortably run under 500 ms on a typical

wearable device processor, given its lightweight nature.\n\n#### Model Size\n- **Model Size**: Approximately 39 KB,
well within the 2 MB flash storage limit.\n\n### Expected Performance\n- **Accuracy**: Based on similar architectures,
expect around 90-95% accuracy on the UCR HAR dataset.\n- **Inference Speed**: Expected to be under 500 ms per inference
.\n- **Training Time**: On a typical machine, training might take a few hours depending on the hardware.\n\n###
Conclusion\nThe proposed model is well-suited for the resource-constrained environment of a wearable device. It
balances computational complexity, memory usage, and inference latency while maintaining high classification accuracy
for human activity recognition.",

'### Model Analysis\n\n#### Computational Complexity\n- **Conv1D Layer**: \n - Parameters: \\(3 \\times 8 = 24\\) per filter,
total \\(24 \\times 8 = 192\\).\n- **DepthwiseConv1D Layer**: \n - Parameters: \\(3 \\times 1 = 3\\) per input channel

.\n- **SeparableConv1D Layer**: \n - Depthwise: \\(3 \\times 1 = 3\\) per input channel.\n - Pointwise: \\(1 \\times 16
= 16\\) per filter, total \\(16 \\times 16 = 256\\).\n- **LSTM Layer**: \n - Parameters: \\(4 \\times (32 \\times (32

+ 1) + 32) = 4 \\times 1056 = 4224\\).\n- **Dense Layers**: \n - First Dense: \\(32 \\times 64 = 2048\\).\n - Output
Dense: \\(64 \\times 6 = 384\\).\n\n#### Total Parameters\n- Total parameters: \\(192 + 3 \\times 3 + 3 \\times 16 +
256 + 4224 + 2048 + 384 = 7112\\).\n\n#### Memory Usage\n- **RAM**: \n - Assuming float32 precision, each parameter
requires 4 bytes.\n - Total memory for parameters: \\(7112 \\times 4 \\approx 28.5\\) KB.\n - Additional memory for
activations and intermediate computations will be required, but should fit within the 1 MB RAM constraint.\n- **Flash

16940



Storage**: \n - Model size: \\(28.5\\) KB, well within the 2 MB constraint.\n\n#### Inference Latency\n- Given the
lightweight architecture and efficient operations, inference latency is expected to be well under 500 ms on typical
wearable device hardware.\n\n### Performance Estimation\n\n#### Accuracy\n- Based on similar architectures and datasets,
expected accuracy is around 90-95% for human activity recognition tasks.\n\n#### Complexity Metrics\n- **FLOPs (

Floating Point Operations)**: \n - Estimated to be low due to small filter sizes and efficient layer choices.\n- **
Training Time**: \n - On a standard desktop GPU, training should take a few hours for convergence.\n- **Inference Speed
**: \n - Expected to be fast due to the small model size and efficient architecture.\n\n### Conclusion\nThe proposed
model configuration is well-suited for the given constraints of wearable devices. It balances complexity and
performance, ensuring efficient operation within the hardware limits while maintaining high classification accuracy for
human activity recognition.',

'### Model Analysis\n\n#### Computational Complexity\n- **Conv1D Layer**: \n - Filters: 16, Kernel size: 5\n - Parameters:
\\( (5 \\times 1 + 1) \\times 16 = 96 \\)\n \n- **SeparableConv1D Layer**:\n - Filters: 16, Kernel size: 3\n -
Depthwise parameters: \\( 3 \\times 1 = 3 \\)\n - Pointwise parameters: \\( 16 \\times 1 = 16 \\)\n - Total: \\( 3 + 16
= 19 \\)\n\n- **DepthwiseConv1D Layer**:\n - Kernel size: 3\n - Parameters: \\( 3 \\times 1 = 3 \\)\n\n- **LSTM Layer

**:\n - Units: 16\n - Parameters: \\( 4 \\times 16 \\times (16 + 1) = 1088 \\)\n\n- **Dense Layer**:\n - Units: 64\n -
Parameters: \\( 16 \\times 64 + 64 = 1088 \\)\n\n- **Output Layer**:\n - Units: 6\n - Parameters: \\( 64 \\times 6 + 6
= 390 \\)\n\n#### Total Parameters\n- Total parameters: \\( 96 + 19 + 3 + 1088 + 1088 + 390 = 2684 \\)\n\n#### Memory
Usage\n- **RAM**: \n - Model parameters: ~10.5 KB (assuming 4 bytes per parameter)\n - Intermediate activations and
batch normalization add additional memory usage, but the total should remain well under 1 MB.\n\n- **Flash Storage**:\n
- Model size: ~10.5 KB, easily fitting within 2 MB.\n\n#### Inference Latency\n- The model is designed to be

lightweight, with an expected inference latency well under 500 ms on typical wearable device processors.\n\n####
Performance Metrics\n- **Accuracy**: \n - Based on similar models and datasets, an accuracy of around 85-90% is
expected for the six-class classification task.\n\n- **FLOPs**:\n - Estimated to be low due to the use of lightweight
convolutional layers and a small LSTM.\n\n- **Inference Speed**:\n - Expected to be fast, meeting the 500 ms constraint
.\n\n### Conclusion\nThe proposed model configuration is well-suited for the given constraints of wearable devices. It
balances computational complexity, memory usage, and inference latency while maintaining high classification accuracy.
The use of efficient layers like SeparableConv1D and DepthwiseConv1D ensures that the model remains lightweight and
resource-efficient.']

Evaluation Result:
Based on the user requirements and constraints, the best model configuration for human activity recognition on resource-

constrained wearable devices is **Model Configuration #3**. This model balances computational complexity, memory usage,
and inference latency while maintaining high classification accuracy. It is well-suited for the given constraints of 1
MB RAM, 2 MB flash storage, and an inference latency not exceeding 500 ms.

### Selected Model Configuration

#### Model Configuration

```python
model_configuration = {

"layer_sequence": [
{"layer_type": "Conv1D", "filters": 16, "kernel_size": 3, "activation": "relu", "strides": 1, "batch_normalization":

True},
{"pooling_type": "max", "pool_size": 2},
{"layer_type": "DepthwiseConv1D", "kernel_size": 3, "activation": "relu", "strides": 1, "batch_normalization": True},
{"pooling_type": "average", "pool_size": 2},
{"layer_type": "LSTM", "units": 32, "activation": "tanh", "dropout_rate": 0.2},
{"layer_type": "Dense", "units": 32, "activation": "relu"},
{"layer_type": "Dense", "units": 6, "activation": "softmax"}

]
}
```

### Explanation

- **Conv1D Layer**:
- **Filters**: 16 for sufficient representation capacity.
- **Kernel Size**: 3 for efficient feature extraction.
- **Activation**: ReLU for non-linear representation.
- **Batch Normalization**: True for stable training.
- **Strides**: 1 to preserve spatial resolution.

- **Pooling (MaxPooling)**:
- Reduces the dimensionality while maintaining important features.
- **Pool Size**: 2 for effective down-sampling.

- **Middle Layer (DepthwiseConv1D)**:
- **Kernel Size**: 3 and ReLU activation for efficient computation.

- **Pooling (AveragePooling)**:
- Further reduces features while averaging important patterns.
- **Pool Size**: 2.

- **Recurrent Layer (LSTM)**:
- **Units**: 32 to capture temporal patterns with sufficient granularity.
- **Activation**: Tanh is suitable for recurrent layers.
- **Dropout Rate**: 0.2 for regularization and preventing overfitting.

- **Dense Layer**:
- **Units**: 32 with ReLU for non-linear mapping.

- **Output Layer (Dense)**:

16941



- **Units**: 6 to match the number of classes, with softmax activation for classification.

### Considerations

- **Resource Constraints**: This configuration is designed to fit within RAM and flash storage limits.
- **Latency**: The architecture focuses on being lightweight for quick inference within 500 ms.
- **Conversion to TFLite**: All operations used are supported by TensorFlow Lite.

This model configuration is expected to deliver high accuracy while adhering to the specified hardware limitations, making it
ideal for deployment on wearable devices for human activity recognition.

Code Result:
# import utility packages
import os, sys, gc, warnings, logging, shutil
import json, time, glob, math

# determine GPU number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # hide INFO and WARNING messages

# define paths to model files
MODELS_DIR = "models/"
MODEL_TF = MODELS_DIR + "model.pb"
MODEL_NO_QUANT_TFLITE = MODELS_DIR + "model_no_quant.tflite"
MODEL_TFLITE_MICRO = MODELS_DIR + "model.cc"
SEED = 7

os.makedirs(MODELS_DIR, exist_ok=True)

logging.disable(logging.WARNING)
logging.disable(logging.INFO)
warnings.filterwarnings("ignore")

# import basic libraries
import random

import tensorflow as tf
import pandas as pd
import numpy as np

from tensorflow import keras

# Set a "seed" value, so we get the same random numbers each time we run this notebook for reproducible results.
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)

from utils.data_loader import load_dataset
from utils.data_desc import AVAILABLE_DATASETS, CLS_DATASETS, REG_DATASETS
from utils import quantize_model, brief_profile_model

# Do not change this
from sklearn.metrics import accuracy_score

N_EPOCHS = 100
BATCH_SIZE = 32
task = "classification"

keras.backend.clear_session()

data_name = os.path.basename(__file__).split(".")[0] # or replace with the user given dataset name

# 1. Loading the Target Dataset
X_train, y_train, X_test, y_test, class_names = load_dataset(data_name, task)
print("Experiment on:", data_name, X_train.shape)
seq_length = X_train.shape[1]
n_features = X_train.shape[2]
n_classes = len(class_names) # Number of output classes

# 2. Design the Model
def get_model():

model = keras.Sequential([
keras.layers.Conv1D(filters=16, kernel_size=3, activation='relu', strides=1,

input_shape=(seq_length, n_features)),
keras.layers.BatchNormalization(),
keras.layers.MaxPooling1D(pool_size=2),
keras.layers.DepthwiseConv1D(kernel_size=3, activation='relu', strides=1),
keras.layers.BatchNormalization(),
keras.layers.AveragePooling1D(pool_size=2),
keras.layers.LSTM(units=32, activation='tanh', dropout=0.2, return_sequences=False),

16942



keras.layers.Dense(units=32, activation='relu'),
keras.layers.Dense(units=n_classes, activation='softmax')

])
return model

model = get_model()
model.compile(

optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
es = keras.callbacks.EarlyStopping(monitor="val_accuracy", mode="max", patience=10, restore_best_weights=True)

# 3. Train the Model
model.fit(X_train, y_train, epochs=N_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[es])

# 4. Evaluate the Model and Save Results (Do not change this)
y_pred = model.predict(X_test)
y_pred = y_pred.argmax(1)
acc = accuracy_score(y_test, y_pred)

# 5. Convert model to TFLite model
quantized_model = quantize_model(model, X_train)
# Save the model to disk
MODEL_TFLITE = MODELS_DIR + f"{model.name}_{task}_{data_name}.tflite"
open(MODEL_TFLITE, "wb").write(quantized_model)

# 6. Profile the converted model with a simulator
print(model.name, data_name)
print(acc)
brief_profile_model(MODEL_TFLITE)

del model
keras.backend.clear_session()
gc.collect()

Potential Interpretation In the UCI-HAR case study, the system interprets the user’s hardware and
latency constraints as signals to prioritize lightweight layers such as Conv1D, SeparableConv1D, and
small LSTM units. The generated search space and model configuration are interpretable due to their
modularity and domain alignment: each layer type is associated with a specific functionality (e.g., LSTM
layers to capture temporal patterns in time-series signals). Moreover, the explicit computational analysis
produced during architecture evaluation (e.g., parameter count, FLOPs, and memory usage) provides
actionable insights into trade-offs made during model construction. These details empower users to
make informed decisions about model simplification, hardware adaptation, and runtime behavior, thereby
promoting transparent model deployment in safety-critical settings.

D.2 Regression Tasks
The following shows the intermediate results from the BIDMC32SpO2 dataset on the regression task.

Example Results of BIDMC32SpO2 Dataset

User Input: Our company has a project to deploy a predictive model on wearable devices, such as
fitness trackers, to estimate blood oxygen saturation levels using PPG and ECG data. Please create
a lightweight model suitable for deployment on these devices. The model should use no more than
32KB of RAM and be no larger than 64KB in size.

Rewriting Result:
{
'task_description': 'Develop a lightweight predictive model for wearable devices like fitness trackers to estimate blood

oxygen saturation levels using PPG and ECG data. The model must be optimized for low resource usage, specifically using
no more than 32KB of RAM and 64KB of storage.',

'data_aspects': {'name': 'BIDMC Blood Oxygen Saturation Dataset',
'description': "The dataset aims to estimate blood oxygen saturation levels using PPG and ECG data. It contains 7949 time

series from the Physionet's BIDMC PPG and Respiration dataset, extracted from the MIMIC II waveform database.",
'features': 'The dataset includes PPG and ECG data sampled at 125 Hz over 32-second windows. The label is the SpO2 level,

sampled at 1 Hz.',
'context': 'The dataset is used to estimate blood oxygen saturation levels, crucial for health monitoring in wearable

devices.',
'patterns': 'The time series plots show consistent patterns across different SpO2 ranges, with slight variations in

amplitude and frequency in PPG and ECG signals.'},

16943



'model_aspects': {'name': '',
'hardware_specs': {'device_name': 'Wearable fitness tracker',
'ram': '32768',
'flash': '65536'},
'MAC': '',
'parameters': '',
'latency': '',
'performance': ''}

}

Design Result:
Based on the requirements and constraints for developing a lightweight predictive model for wearable devices, here is a

proposed search space for neural network design using TensorFlow/Keras:

```python
{

"layer_type": ["Conv1D", "DepthwiseConv1D", "LSTM", "Dense"],
"Conv1D_kernel_size": [1, 3],
"Conv1D_filters": [4, 8],
"DepthwiseConv1D_kernel_size": [1, 3],
"LSTM_units": [4, 8],
"Dense_units": [4, 8],
"activation": ["relu", "tanh"],
"optimizer": ["adam", "rmsprop"],
"batch_size": [1, 2],
"dropout_rate": [0.0, 0.1],
"learning_rate": [0.001, 0.01]

}
```

### Explanation:

1. **Layer Types**:
- **Conv1D** and **DepthwiseConv1D**: Useful for extracting features from time-series data.
- **LSTM**: Effective for capturing temporal dependencies in time-series data.
- **Dense**: Used for final output layers or simple transformations.

2. **Kernel Sizes and Filters/Units**:
- Smaller kernel sizes and fewer filters/units are chosen to minimize resource usage while still capturing essential

patterns.

3. **Activation Functions**:
- **ReLU** and **Tanh** are efficient and commonly used in lightweight models.

4. **Optimizers**:
- **Adam** and **RMSprop** are popular choices for efficient training.

5. **Batch Size**:
- Small batch sizes help reduce memory usage.

6. **Dropout Rate**:
- Low dropout rates to maintain model simplicity and reduce overfitting.

7. **Learning Rate**:
- Standard learning rates for effective training convergence.

This search space is designed to ensure that the models can be executed within the given constraints of 32KB RAM and 64KB
storage, while still providing flexibility to find a high-performing model for the task.

Search Result:
["### Model Analysis\n\n#### Computational Complexity and Memory Usage\n\n1. **Conv1D Layer**:\n - **Parameters**: \\( \\text{

filters} \\times (\\text{input channels} \\times \\text{kernel size} + 1) = 4 \\times (2 \\times 3 + 1) = 28 \\)\n - **
Output Shape**: Depends on input length, but generally reduces by kernel size - 1.\n\n2. **LSTM Layer**:\n - **
Parameters**: \\( 4 \\times (\\text{input size} + \\text{units} + 1) \\times \\text{units} = 4 \\times (4 + 4 + 1) \\
times 4 = 160 \\)\n\n3. **Dense Layer**:\n - **Parameters**: \\( \\text{input units} \\times \\text{output units} + \\
text{output units} = 4 \\times 4 + 4 = 20 \\)\n\n4. **Output Layer**:\n - **Parameters**: \\( 4 \\times 1 + 1 = 5 \\)\n\
n5. **Total Parameters**: \\( 28 + 160 + 20 + 5 = 213 \\)\n\n#### Memory and Storage Constraints\n\n- **RAM Usage**: The
model's parameters (213) and activations must fit within 32KB. With minimal parameters and batch size of 1, this is

feasible.\n- **Storage**: 213 parameters with 32-bit precision require approximately 852 bytes, well within the 64KB
limit.\n\n#### Inference Latency\n\n- **FLOPs**: \n - Conv1D: \\( \\approx \\text{input length} \\times \\text{filters}
\\times \\text{kernel size} \\)\n - LSTM: \\( \\approx 4 \\times \\text{units}^2 + 4 \\times \\text{input size} \\times
\\text{units} \\)\n - Dense: \\( \\approx \\text{input units} \\times \\text{output units} \\)\n\n- **Inference Speed**:
With small batch size and lightweight architecture, inference should be quick, suitable for real-time applications on

wearables.\n\n### Expected Performance\n\n- **RMSE**: For time-series regression on SpO2 levels, an RMSE of around 2-3%
is reasonable given the model's simplicity and constraints.\n- **Training Time**: Minimal due to small dataset size and
model complexity, likely a few minutes on a standard CPU.\n- **Inference Speed**: Fast enough for real-time applications,
likely within milliseconds per sample.\n\n### Conclusion\n\nThe proposed model is well-suited for the constraints of

wearable devices, balancing performance and resource usage effectively. It should provide adequate accuracy for SpO2
estimation while maintaining low computational and memory demands.",

"### Model Analysis\n\n#### Computational Complexity\n- **Conv1D Layer**:\n - Parameters: \\(8 \\times (3 \\times \\text{
input channels} + 1)\\)\n - FLOPs: \\(8 \\times (\\text{input length} - 3 + 1) \\times 3\\)\n\n- **DepthwiseConv1D

16944



Layer**:\n - Parameters: \\(\\text{input channels} \\times 3\\)\n - FLOPs: \\(\\text{input channels} \\times (\\text{
input length} - 3 + 1) \\times 3\\)\n\n- **LSTM Layer**:\n - Parameters: \\(4 \\times (4 + \\text{input channels} + 1)
\\)\n - FLOPs: \\(4 \\times (\\text{input length} \\times \\text{input channels} \\times 4)\\)\n\n- **Dense Layer**:\n -
Parameters: \\(4 \\times (\\text{input channels} + 1)\\)\n - FLOPs: \\(4 \\times \\text{input channels}\\)\n\n####

Memory Usage\n- **Total Parameters**: Sum of parameters from all layers.\n- **Model Size**: Total parameters \\(\\times
\\) 4 bytes (for float32).\n\n#### Inference Latency\n- **Expected Latency**: Depends on the number of FLOPs and the
device's processing capability.\n\n### Performance Estimation\n\n#### Quantitative Regression Performance\n- **Expected
RMSE**: Typically ranges between 1-2% for SpO2 estimation, depending on the model's training and validation.\n\n####

Complexity Metrics\n- **Number of Parameters**: Estimated based on the above calculations.\n- **FLOPs**: Total FLOPs
from all layers.\n- **Model Size**: Should be within the 64KB storage constraint.\n- **Training Time**: Depends on
dataset size and computational resources.\n- **Inference Speed**: Should be fast enough for real-time applications on
wearables.\n\n### Conclusion\nThe proposed model configuration is designed to be lightweight, adhering to the
constraints of 32KB RAM and 64KB storage. The use of Conv1D and DepthwiseConv1D layers helps capture spatial features
efficiently, while the LSTM layer captures temporal dependencies. The Dense layer ensures the model's output is
suitable for regression tasks.\n\nOverall, this configuration should provide a good balance between performance and
efficiency, making it suitable for deployment on wearable devices for SpO2 estimation.",

"### Model Analysis\n\n#### Computational Complexity\n- **Conv1D Layer**: \n - Filters: 4, Kernel Size: 3\n - Parameters:
\\(3 \\times \\text{input channels} \\times 4 + 4\\)\n - FLOPs: Minimal due to small filter size and number of filters
.\n\n- **DepthwiseConv1D Layer**:\n - Kernel Size: 3\n - Parameters: \\(3 \\times \\text{input channels}\\)\n - FLOPs:
Reduced due to depthwise operation.\n\n- **LSTM Layer**:\n - Units: 4\n - Parameters: \\(4 \\times (\\text{input size}
+ \\text{units} + 1) \\times \\text{units}\\)\n - FLOPs: Higher than Conv1D but manageable with 4 units.\n\n- **Dense
Layer**:\n - Units: 4\n - Parameters: \\(4 \\times (\\text{input size} + 1)\\)\n - FLOPs: Minimal due to small number
of units.\n\n#### Memory Usage\n- **RAM**: \n - The model is designed to fit within 32KB RAM. The small batch size and
minimal layer sizes help achieve this.\n \n- **Storage**:\n - The total number of parameters should fit within 64KB
storage. Given the small number of layers and units, this is feasible.\n\n#### Inference Latency\n- The model's
simplicity ensures low latency, suitable for real-time applications on wearable devices.\n\n### Expected Performance\n\
n#### Quantitative Regression Performance\n- **RMSE**: Expected to be moderate due to the small model size. Exact
values depend on data variability and model tuning.\n \n#### Complexity Metrics\n- **Number of Parameters**: Estimated
to be under 1000, given the small layer sizes.\n- **FLOPs**: Low, due to the use of lightweight operations.\n- **Model
Size**: Expected to be under 64KB.\n- **Training Time**: Fast, due to the small model size and batch size.\n- **
Inference Speed**: Real-time capable on constrained devices.\n\n### Conclusion\nThe proposed model is well-suited for
deployment on resource-constrained wearable devices. It balances simplicity and performance, fitting within the
specified RAM and storage limits while providing adequate regression performance for estimating blood oxygen saturation
levels. Further tuning and validation on the specific dataset will be necessary to optimize performance metrics like

RMSE.",
'### Model Analysis\n\n#### Computational Complexity\n1. **Conv1D Layer**:\n - Filters: 4, Kernel Size: 3\n - Input size:

Assuming 125 Hz sampling over 32 seconds, the input length is 4000.\n - Parameters: \\(4 \\times (3 \\times \\text{
input channels})\\)\n - FLOPs: Approximately \\(4 \\times 3 \\times 4000\\)\n\n2. **DepthwiseConv1D Layer**:\n - Kernel
Size: 3\n - Parameters: \\(3 \\times \\text{input channels}\\)\n - FLOPs: Approximately \\(3 \\times 4000\\)\n\n3. **

LSTM Layer**:\n - Units: 4\n - Parameters: \\(4 \\times (4 + 1 + \\text{input size})\\)\n - FLOPs: Higher due to
recurrent operations, approximately \\(8 \\times \\text{input size} \\times 4\\)\n\n4. **Dense Layer**:\n - Units: 4\n -
Parameters: \\(4 \\times (\\text{input size} + 1)\\)\n - FLOPs: Approximately \\(4 \\times \\text{input size}\\)\n\n

#### Memory Usage\n- **Parameters**: Total parameters from all layers.\n- **RAM Usage**: Includes parameters and
intermediate activations. Estimated to be within 32KB.\n- **Storage**: Model size should be within 64KB, considering
quantization techniques if necessary.\n\n#### Inference Latency\n- **Batch Size**: 1 for real-time processing.\n- **
Expected Latency**: Low due to small model size and batch processing.\n\n### Performance Estimation\n\n#### Regression
Performance\n- **Expected RMSE**: Based on similar models, RMSE could be around 2-3% for SpO2 estimation.\n\n####
Complexity Metrics\n- **Number of Parameters**: Estimated to be a few hundred, given the small network size.\n- **FLOPs
**: Estimated to be in the low thousands, ensuring fast computation.\n- **Model Size**: Likely under 64KB with
potential quantization.\n- **Training Time**: Minimal due to small dataset size and model complexity.\n- **Inference
Speed**: Fast, suitable for real-time applications on wearables.\n\n### Conclusion\nThe proposed model configuration is
well-suited for the constraints of wearable devices, balancing computational efficiency and predictive performance. It
should fit within the specified RAM and storage limits while providing accurate SpO2 level predictions.',

"To evaluate the proposed model for time-series regression on a wearable device, let's analyze its characteristics,
computational complexity, memory usage, and expected performance.\n\n### Model Characteristics\n\n1. **Layer
Configuration**:\n - **Conv1D Layer**: \n - Filters: 4\n - Kernel Size: 3\n - Activation: ReLU\n - **LSTM Layer**: \n -
Units: 4\n - Activation: Tanh\n - **Dense Layer**: \n - Units: 4\n - Activation: Tanh\n\n2. **Optimizer**:\n - Adam

with a learning rate of 0.001\n\n3. **Training Configuration**:\n - Batch Size: 1\n - Dropout Rate: 0.1\n\n###
Computational Complexity\n\n1. **Number of Parameters**:\n - **Conv1D Layer**: \n - Parameters = (Input Channels *
Kernel Size + 1) * Filters\n - **LSTM Layer**: \n - Parameters = 4 * (Input Size + LSTM Units + 1) * LSTM Units\n - **
Dense Layer**: \n - Parameters = (Input Size + 1) * Units\n\n2. **FLOPs (Floating Point Operations)**:\n - Conv1D and
Dense layers are relatively simple, while LSTM is more complex due to recurrent connections.\n\n3. **Model Size**:\n -
The model needs to fit within 64KB storage, which is feasible given the small number of parameters.\n\n### Memory Usage
\n\n- The model must use no more than 32KB RAM. Given the small batch size and layer sizes, this is achievable.\n\n###
Inference Latency\n\n- With a batch size of 1 and lightweight layers, inference latency should be low, suitable for
real-time applications on wearable devices.\n\n### Expected Performance\n\n1. **Regression Performance**:\n - **RMSE (
Root Mean Square Error)**: \n - Expected to be low due to the model's ability to capture temporal dependencies and
extract features efficiently.\n - Exact RMSE would depend on the specific dataset and training conditions but should be
competitive given the model's design.\n\n2. **Training Time**:\n - Should be relatively short due to the small model

size and batch size.\n\n3. **Inference Speed**:\n - Fast enough for real-time applications, given the model's
simplicity.\n\n### Conclusion\n\nThe proposed model is well-suited for the constraints of a wearable device, balancing
computational efficiency and performance. It is expected to perform well in estimating blood oxygen saturation levels
using PPG and ECG data, with low memory usage and fast inference speed. The model's design allows it to fit within the
specified RAM and storage limits, making it an excellent choice for deployment on resource-constrained devices."]

Evaluation Result:
Based on the user requirements and constraints, the best model configuration to meet the needs of developing a lightweight

predictive model for wearable devices is **Model Configuration #1**. This model is designed to fit within the specified
RAM and storage limits while providing adequate performance for estimating blood oxygen saturation levels using PPG and
ECG data. Here is the complete configuration for the selected model:

### Selected Model Configuration:

16945



- **Layers**:
1. **Conv1D Layer**:

- Filters: 4
- Kernel Size: 3
- Activation: ReLU

2. **LSTM Layer**:
- Units: 4
- Dropout Rate: 0.1

3. **Dense Layer**:
- Units: 4
- Activation: ReLU

4. **Output Layer**:
- Units: 1 (for regression output)
- Activation: Linear

- **Optimizer**:
- Type: Adam
- Learning Rate: 0.001

- **Batch Size**:
- Size: 1

- **Memory and Storage Constraints**:
- RAM Usage: Must fit within 32KB
- Storage: Must fit within 64KB

- **Expected Performance**:
- RMSE: Around 2-3% for SpO2 estimation
- Inference Speed: Fast enough for real-time applications on wearables

This configuration provides a balance between computational efficiency and predictive performance, making it suitable for
deployment on resource-constrained wearable devices.

Code Result:
# import utility packages
import os, sys, gc, warnings, logging, shutil
import json, time, glob, math

# determine GPU number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # hide INFO and WARNING messages

# define paths to model files
MODELS_DIR = "models/"
MODEL_TF = MODELS_DIR + "model.pb"
MODEL_NO_QUANT_TFLITE = MODELS_DIR + "model_no_quant.tflite"
MODEL_TFLITE_MICRO = MODELS_DIR + "model.cc"
SEED = 7

os.makedirs(MODELS_DIR, exist_ok=True)

logging.disable(logging.WARNING)
logging.disable(logging.INFO)
warnings.filterwarnings("ignore")

# import basic libraries
import random

import tensorflow as tf
import pandas as pd
import numpy as np

from tensorflow import keras

# Set a "seed" value, so we get the same random numbers each time we run this notebook for reproducible results.
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)

from utils.data_loader import load_dataset
from utils.data_desc import AVAILABLE_DATASETS, CLS_DATASETS, REG_DATASETS
from utils import quantize_model, brief_profile_model

# Do not change this
from sklearn.metrics import root_mean_squared_error

N_EPOCHS = 100
BATCH_SIZE = 32
task = "regression"

keras.backend.clear_session()

16946



data_name = os.path.basename(__file__).split(".")[0] # or replace with the user given dataset name

# 1. Loading the Target Dataset
X_train, y_train, X_test, y_test = load_dataset(data_name, task)
print("Experiment on:", data_name, X_train.shape)
seq_length = X_train.shape[1]
n_features = X_train.shape[2]

# 2. Design the Model
def get_model():

model = keras.Sequential([
keras.layers.Conv1D(filters=4, kernel_size=3, activation='relu', input_shape=(seq_length, n_features)),
keras.layers.LSTM(units=4, dropout=0.1, return_sequences=False),
keras.layers.Dense(units=4, activation='relu'),
keras.layers.Dense(units=1, activation='linear')

])
return model

model = get_model()
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mean_squared_error", metrics=keras.metrics.

RootMeanSquaredError(name="rmse", dtype=None))
es = keras.callbacks.EarlyStopping(monitor="val_rmse", mode="min", patience=10, restore_best_weights=True)

# 3. Train the Model
model.fit(X_train, y_train, epochs=N_EPOCHS, batch_size=BATCH_SIZE, validation_split=0.1, callbacks=[es])

# 4. Evaluate the Model and Save Results (Do not change this)
y_pred = model.predict(X_test)
rmse = root_mean_squared_error(y_test, y_pred)

# 5. Convert model to TFLite model
quantized_model = quantize_model(model, X_train)
# Save the model to disk
MODEL_TFLITE = MODELS_DIR + f"{model.name}_{task}_{data_name}.tflite"
open(MODEL_TFLITE, "wb").write(quantized_model)

# 6. Profile the converted model with a simulator
print(model.name, data_name)
print(rmse)
brief_profile_model(MODEL_TFLITE)

del model
keras.backend.clear_session()
gc.collect()

Potential Interpretation In the case study on the BIDMC32SpO2 dataset, the framework translates
high-level user constraints, such as hardware limitations and physiological signal types, into explicit
model design decisions (e.g., use of Conv1D and LSTM layers). First, the intermediate outputs from the
multimodal query generation and model design stages reveal the alignment between user requirements
and architectural choices. For instance, the use of LSTM layers is justified based on the temporal nature of
physiological data, while lightweight convolutional layers are selected for edge deployment efficiency.
These design decisions are accompanied by detailed computational and memory analysis, enabling users
to audit trade-offs between performance and deployment feasibility. Second, the generated search space
itself is interpretable. Each dimension (e.g., kernel size, activation, and optimizer) directly corresponds to
meaningful architectural decisions, making the space semantically rich. The choices are not arbitrary;
they are grounded in hardware specifications, dataset characteristics, and task constraints, facilitating
both expert validation and human-in-the-loop adjustments. Finally, the analysis of multiple model
candidates, including FLOPs, parameter counts, RMSE estimates, and memory usage, serves as a concrete
interpretability mechanism. These metrics expose how changes in layer composition affect efficiency
and accuracy, enabling stakeholders—especially in sensitive domains like healthcare—to make informed
decisions regarding trade-offs and model trustworthiness.

16947



Datasets Metrics MLP LSTM CNN TCN D-CNN DS-CNN ConvLSTM TENet(6) Grid Search Random Search TinyTNAS GPT-4o-mini GPT-4o MONAQ

AtrialFibrillation

Accuracy 0.200 0.400 0.333 0.333 0.467 0.333 0.400 0.267 0.333 0.333 0.400 0.333 0.333 0.467
FLASH 45.120 8.824 14.024 34.640 7.192 15.600 10.864 165.296 13.136 17.976 6.808 669.600 661.416 14.976
RAM 3.868 18.448 33.880 30.976 4.696 44.680 43.700 364.564 10.652 12.188 11.508 43.868 43.740 23.504
MAC 41,624 24 2,051,840 1,392,664 18,240 540,160 122,648 11,755,808 55,596 25,716 42,115 2,744,512 2,717,504 62,560

Energy 1.17E-06 3.40E-08 1.73E-03 2.92E-03 9.45E-05 9.93E-04 2.31E-04 2.06E-02 2.25E-04 3.28E-04 1.46E-04 1.41E-03 1.36E-03 2.45E-04
Latency 1.886 0.064 128.190 244.950 8.765 84.754 31.931 1536.669 20.845 16.870 21.621 120.508 117.157 18.417

BinaryHeartbeat

Accuracy 0.659 0.727 0.732 0.449 0.732 0.732 0.732 0.732 0.732 0.727 0.732 0.732 0.732 0.732
FLASH 597.104 8.752 84.072 34.592 15.384 85.800 10.752 170.840 12.680 7.760 11.152 9494.408 9494.408 9.360
RAM 38.300 447.888 892.616 746.608 39.256 1189.736 1188.628 9524.084 152.352 77.384 152.480 595.404 595.404 299.528
MAC 593,616 16 55,219,392 39,728,336 259,419 14,879,582 1,778,832 340,379,296 1,130,543 301,138 1,130,543 24,606,944 24,606,944 204,080

Energy 3.33E-06 3.40E-08 3.43E-02 1.75E-01 1.09E-03 1.60E-02 4.15E-03 3.70E-01 5.30E-03 2.03E-03 5.30E-03 1.89E-02 1.89E-02 1.32E-02
Latency 5.570 0.061 2106.132 10783.571 90.710 1052.569 268.145 21462.749 419.023 191.470 419.023 1191.453 1191.453 177.662

Cricket

Accuracy 0.125 0.069 0.556 0.097 0.569 0.208 0.069 0.125 0.083 0.083 0.167 0.500 0.528 0.625
FLASH 234.088 9.192 39.824 34.872 28.192 40.768 11.352 171.784 13.056 15.080 11.520 2465.664 621.344 1229.520
RAM 15.644 31.888 60.632 53.376 16.728 80.392 79.412 650.116 18.592 20.168 18.720 79.452 40.796 39.988
MAC 230,560 96 4,931,424 2,757,984 118,476 1,218,434 688,544 22,015,424 115,261 65,860 115,261 6,814,528 1,876,384 1,568,608

Energy 3.33E-06 3.40E-08 3.88E-03 4.25E-03 4.05E-04 2.41E-03 9.76E-04 6.44E-02 3.76E-04 4.38E-04 3.76E-04 3.18E-03 9.83E-04 9.33E-04
Latency 5.631 0.121 270.929 373.199 32.402 176.782 70.096 4310.810 37.793 29.876 37.793 228.040 85.385 63.480

FaultDetectionA

Accuracy 0.713 0.622 0.978 0.746 0.602 0.966 0.804 0.999 0.983 0.990 0.989 0.989 0.985 1.000
FLASH 168.000 8.968 40.680 34.608 9.960 42.416 10.768 170.984 17.120 18.592 11.176 10500.352 8193.600 20.680
RAM 11.548 126.096 248.920 210.176 12.376 331.400 330.420 2658.244 56.432 47.176 45.216 330.588 330.460 167.948
MAC 164,504 24 15,267,840 10,977,304 72,960 4,121,600 491,480 94,044,352 521,465 499,382 312,624 26,706,304 24,381,036 2,211,680

Energy 3.33E-06 3.40E-08 2.05E-02 2.83E-02 4.24E-04 1.07E-02 3.50E-03 2.42E-01 1.83E-03 1.58E-03 1.37E-03 1.62E-02 1.62E-02 8.49E-03
Latency 5.574 0.064 1299.218 1857.094 34.409 708.650 227.471 14647.130 168.597 147.271 132.681 1048.406 1047.739 358.068

UCI-HAR

Accuracy 0.781 0.348 0.819 0.813 0.627 0.822 0.348 0.904 0.783 0.805 0.858 0.814 0.817 0.908
FLASH 23.968 9.128 12.872 34.704 7.256 14.288 10.992 171.280 18.800 18.104 25.128 223.432 110.848 14.176
RAM 2.460 8.208 13.016 13.696 3.800 16.904 15.924 142.228 11.080 12.188 11.816 16.092 9.052 10.508
MAC 20,464 48 707,792 454,896 9,261 183,110 58,928 3,796,960 23,700 9,583 160,134 901,440 285,760 53,936

Energy 6.24E-07 3.40E-08 3.24E-04 1.10E-03 3.77E-05 3.35E-04 8.99E-05 5.49E-03 2.45E-04 2.87E-04 1.85E-04 4.59E-04 2.21E-04 2.73E-04
Latency 1.151 0.086 49.271 81.811 4.513 30.229 16.282 494.159 11.759 11.021 22.373 57.644 26.284 18.675

Average

Accuracy 0.496 0.433 0.684 0.488 0.599 0.612 0.471 0.605 0.583 0.588 0.629 0.674 0.679 0.746
FLASH 213.656 8.973 38.294 34.683 13.597 39.774 10.946 170.037 14.958 15.502 13.157 4670.691 3816.323 257.742
RAM 14.364 126.506 249.813 210.966 15.371 332.622 331.617 2667.847 49.822 33.821 47.948 213.081 203.890 108.295
MAC 210,153 41 15,635,657 11,062,236 95671 4,188,577 628,086 94,398,368 369,313 180,335 352,135 12,354,745 10,773,525 820,172

Energy 2.35E-06 3.40E-08 1.22E-02 4.23E-02 4.10E-04 6.09E-03 1.79E-03 1.40E-01 1.59E-03 9.32E-04 1.47E-03 8.04E-03 7.54E-03 4.62E-03
Latency 3.963 0.079 770.748 2668.125 34.160 410.597 122.785 8490.304 131.603 79.302 126.698 529.210 493.604 127.260

Table 5: Full experimental results on time-series classification tasks comparing downstream task accuracy and
model complexity metrics.

Datasets Metrics MLP LSTM CNN TCN D-CNN DS-CNN ConvLSTM TENet(6) Grid Search Random Search TinyTNAS GPT-4o-mini GPT-4o MONAQ

AppliancesEnergy

RMSE 3.610 9.345 4.104 9.606 3.541 3.720 10.532 6.573 3.682 3.624 3.756 3.537 4.026 3.607
FLASH 114.376 10.192 14.824 27.536 8.088 11.936 12.648 166.736 20.880 36.168 13.056 44.864 226.064 8.112
RAM 8.136 8.892 11.268 12.336 9.860 13.112 11.872 110.528 12.968 16.092 11.216 11.400 8.076 8.088
MAC 111,240 8 1,170,720 414,728 47,520 244,512 327,304 2,647,328 78,357 48,206 32,234 468,032 223,264 544

Energy 3.31E-06 1.75E-08 5.44E-04 1.07E-03 1.98E-04 2.99E-04 2.52E-04 4.26E-03 2.42E-04 3.60E-04 2.04E-04 2.91E-04 5.05E-06 9.03E-05
Latency 5.521 0.011 45.537 61.912 16.722 27.735 20.712 361.481 15.459 16.729 11.063 27.002 8.383 0.070

BenzeneConcentration

RMSE 2.884 6.087 2.739 46.666 2.181 2.231 8.107 3.226 3.365 5.268 3.453 4.022 11.858 1.847
FLASH 65.224 9.168 11.432 24.448 6.120 11.056 11.112 170.376 9.088 9.912 43.600 40.592 127.760 8.816
RAM 5.064 8.892 14.596 15.548 6.148 19.128 18.016 159.552 7.288 7.296 20.048 26.616 5.004 10.480
MAC 62,088 8 1,091,040 552,968 26,400 257,760 182,920 4,409,120 34,826 51,153 573,765 1,056 124,960 91,464

Energy 1.22E-06 1.75E-08 6.48E-04 9.65E-04 9.04E-05 4.03E-04 1.97E-04 6.62E-03 1.61E-04 1.57E-04 4.51E-04 3.96E-08 1.25E-03 1.13E-04
Latency 2.171 0.011 55.659 90.251 11.711 38.473 19.111 571.345 12.188 13.935 52.972 0.090 5.382 15.559

BIDMC32SpO2

RMSE 16.682 4.808 5.884 5.156 4.773 5.092 4.789 4.879 4.974 4.961 5.716 5.200 5.649 4.670
FLASH 259.784 8.784 17.608 26.832 7.048 18.176 10.536 164.664 32.704 157.784 10.944 134.088 133.680 8.624
RAM 17.224 99.132 195.076 165.420 18.180 259.764 258.656 2084.752 71.036 78.972 36.172 130.184 66.184 66.984
MAC 256,648 8 12,808,000 8,704,008 110,000 3,360,000 767,752 73,472,224 1,460,740 2,662,864 272,266 2,048,016 1,088,008 88,100

Energy 3.31E-06 1.75E-08 1.55E-02 2.39E-02 4.85E-04 9.40E-03 3.26E-03 2.05E-01 2.67E-03 3.21E-03 1.06E-03 3.42E-03 1.87E-03 3.36E-04
Latency 5.521 0.011 992.415 1579.982 40.737 628.213 209.449 12286.802 240.532 288.318 104.746 231.939 136.535 82.258

FloodModeling

RMSE 0.117 0.023 0.019 1.494 0.020 0.014 0.020 0.018 0.007 0.019 0.008 0.032 0.047 0.019
FLASH 12.296 8.720 9.912 26.800 5.008 10.632 10.440 169.704 16.584 91.840 17.728 41.464 20.720 14.672
RAM 1.992 9.532 15.876 16.044 3.716 20.788 19.680 172.864 9.500 19.496 11.340 19.336 10.092 19.736
MAC 9,160 8 792,144 570,312 3,657 213,062 25,480 4,906,112 41,554 117,224 113,919 263,648 29,576 25,776

Energy 2.73E-07 1.75E-08 4.04E-04 1.20E-03 4.80E-05 4.56E-04 7.95E-05 8.20E-03 2.15E-04 3.72E-04 1.88E-04 1.94E-04 1.14E-04 3.99E-05
Latency 0.530 0.011 57.769 111.068 4.326 37.563 18.619 657.498 14.081 23.218 20.308 31.807 16.405 17.243

LiveFuelMoistureContent

RMSE 43.157 53.006 49.777 231.972 42.301 42.527 41.723 42.176 42.715 43.567 40.803 45.470 47.836 39.369
FLASH 85.544 8.960 11.456 26.672 6.176 11.104 10.872 170.344 11.528 10.744 23.160 190.352 168.400 12.688
RAM 6.344 11.836 20.612 20.012 7.428 27.188 25.952 223.936 9.416 10.996 16.980 13.960 6.284 15.424
MAC 82,408 8 1,577,336 852,648 35,119 377,685 244,072 6,732,992 46,273 100,859 309,140 579,248 165,600 61,120

Energy 3.17E-06 1.75E-08 8.68E-04 1.66E-03 6.68E-05 5.94E-04 2.61E-04 1.23E-02 2.13E-04 1.91E-04 2.79E-04 3.89E-04 4.35E-06 9.51E-05
Latency 5.103 0.011 75.181 134.888 14.228 57.358 23.025 968.620 15.924 22.647 40.198 43.769 7.191 8.516

Average

RMSE 13.290 14.654 12.505 58.979 10.563 10.717 13.034 11.374 10.948 11.488 10.747 11.652 13.883 9.902
FLASH 107.445 9.165 13.046 26.458 6.488 12.581 11.122 168.365 18.157 61.290 21.698 90.272 135.325 10.582
RAM 7.752 27.657 51.486 45.872 9.066 67.996 66.835 550.326 22.042 26.570 19.151 40.299 19.128 24.142
MAC 104,308 8 3,487,848 2,218,932 44,539 890,603 309,505 18,433,555 332,350 596,061 260,264 672,000 326,281 53,400

Energy 2.26E-06 1.75E-08 3.60E-03 5.75E-03 1.78E-04 2.23E-03 8.10E-04 4.73E-02 7.00E-04 8.58E-04 4.36E-04 8.58E-04 6.50E-04 1.35E-04
Latency 3.769 0.011 245.312 395.620 17.545 157.868 58.183 2969.149 59.637 72.970 45.857 66.921 34.779 24.729

Table 6: Full experimental results on time-series regression tasks comparing downstream task error (RMSE) and
model complexity metrics.

16948



Datasets Metrics MLP LSTM CNN TCN D-CNN DS-CNN ConvLSTM TENet(6) Grid Search Random Search TinyTNAS GPT-4o-mini GPT-4o MONAQ

P12

Accuracy 0.850 0.859 0.855 0.854 0.862 0.852 0.860 0.860 0.862 0.861 0.862 0.859 0.853 0.862
FLASH 251.824 11.192 18.648 35.712 13.400 14.880 14.112 174.304 24.392 15.872 12.376 36.096 118.328 15.520
RAM 16.796 14.480 18.136 20.868 18.904 19.724 18.356 147.348 22.732 21.708 20.260 18.012 18.428 18.228
MAC 248,336 16 2,326,096 701,776 108,252 466,020 736,272 3,967,936 110,421 44,118 65,877 554,464 634,432 368,592

Energy 3.33E-06 3.40E-08 1.01E-03 1.17E-03 3.98E-04 5.56E-04 5.27E-04 6.07E-03 4.08E-04 4.05E-04 3.23E-04 3.14E-04 4.57E-04 2.00E-04
Latency 5.570 0.061 76.829 88.827 32.468 49.898 37.155 529.373 24.170 19.607 19.162 33.114 43.708 19.024

P19

Accuracy 0.974 0.973 0.974 0.974 0.974 0.974 0.975 0.975 0.974 0.975 0.973 0.974 0.974 0.976
FLASH 69.424 11.064 17.592 35.648 10.416 14.144 13.920 174.112 13.488 9.552 15.552 24.608 40.376 9.888
RAM 5.404 6.288 7.384 9.728 7.512 8.328 7.220 67.476 8.988 7.884 9.124 6.876 6.620 7.264
MAC 65,936 16 622,320 192,016 28,560 125,400 189,456 1,112,832 25,270 16,583 34,760 244,224 174,848 81,680

Energy 1.23E-06 3.40E-08 3.97E-04 1.03E-03 4.57E-05 1.44E-04 1.12E-04 1.54E-03 1.69E-04 1.31E-04 1.69E-04 1.51E-04 7.77E-05 8.71E-05
Latency 2.167 0.061 32.520 26.039 10.691 15.555 10.739 162.068 8.169 6.564 8.700 13.116 9.440 5.633

PAMAP2

Accuracy 0.201 0.521 0.739 0.149 0.839 0.831 0.248 0.901 0.895 0.104 0.752 0.672 0.789 0.912
FLASH 330.616 10.048 23.168 35.176 28.128 22.384 12.360 172.504 24.096 57.192 11.848 312.360 1245.584 14.528
RAM 21.660 23.056 32.344 34.176 23.256 42.248 41.140 343.956 27.464 31.688 24.864 22.876 41.308 23.316
MAC 327,104 64 3,945,600 1,593,664 158,100 863,400 976,128 11,022,688 204,073 174,016 104,199 1,247,776 4,052,224 488,480

Energy 3.33E-06 3.40E-08 2.00E-03 2.64E-03 6.25E-04 1.35E-03 6.48E-04 1.96E-02 4.82E-04 5.91E-04 3.95E-04 6.46E-04 1.69E-03 3.20E-04
Latency 5.614 0.104 140.920 235.823 47.499 101.277 44.612 1489.623 37.915 37.992 29.631 59.565 133.391 25.559

Average ↑

Accuracy 0.675 0.785 0.856 0.659 0.891 0.886 0.695 0.912 0.910 0.647 0.862 0.835 0.872 0.916
FLASH 217.288 10.768 19.803 35.512 17.315 17.136 13.464 173.640 20.659 27.539 13.259 124.355 468.096 13.312
RAM 14.620 14.608 19.288 21.591 16.557 23.433 22.239 186.260 19.728 20.427 18.083 15.921 22.119 16.269
MAC 213,792 32 2,298,005 829,152 98,304 484,940 633,952 5,367,819 113,255 78,239 68,279 682,155 1,620,501 312,917

Energy 2.63E-06 3.40E-08 1.14E-03 1.62E-03 3.56E-04 6.83E-04 4.29E-04 9.08E-03 3.53E-04 3.76E-04 2.96E-04 3.70E-04 7.41E-04 2.03E-04
Latency 4.450 0.075 83.423 116.896 30.219 55.576 30.835 727.021 23.418 21.388 19.164 35.265 62.180 16.739

HouseholdPowerConsumption1

RMSE 154.118 1587.395 163.577 419.708 321.482 159.706 1424.762 920.171 157.645 148.238 156.421 528.786 156.914 152.468
FLASH 234.184 8.976 13.160 26.888 7.136 13.256 10.824 170.088 18.128 11.984 11.048 39.232 2968.512 14.240
RAM 15.688 37.692 72.196 63.020 16.644 95.924 94.816 773.936 25.756 19.232 18.636 141.816 187.528 24.212
MAC 231,048 8 5,578,560 3,271,688 99,000 1,378,080 690,376 26,450,432 342,766 65,290 128,426 528 21,934,272 184,064

Energy 3.31E-06 1.75E-08 5.00E-03 4.30E-03 4.13E-04 2.64E-03 9.85E-04 7.98E-02 6.68E-04 4.14E-04 3.93E-04 3.50E-08 1.06E-02 2.55E-04
Latency 5.521 0.011 342.462 429.557 31.991 199.602 70.924 5128.256 71.745 31.542 42.347 0.057 677.695 26.393

HouseholdPowerConsumption2

RMSE 50.930 172.072 50.086 54.395 57.065 53.406 64.535 184.172 54.538 59.565 54.566 55.732 55.729 52.349
FLASH 234.184 8.976 13.160 26.888 7.136 13.256 10.824 164.952 16.488 55.552 11.048 39.232 39.232 381.328
RAM 15.688 37.692 72.196 63.020 16.644 95.924 94.816 774.064 22.684 25.332 18.636 141.816 141.816 50.092
MAC 231,048 8 5,578,560 3,271,688 99,000 1,378,080 690,376 26,450,432 274,188 282,567 128,426 528 528 2,787,856

Energy 3.31E-06 1.75E-08 5.00E-03 4.30E-03 4.13E-04 2.64E-03 9.85E-04 7.98E-02 6.02E-04 5.98E-04 3.93E-04 3.50E-08 3.50E-08 2.85E-03
Latency 5.521 0.011 342.462 429.557 31.991 199.602 70.924 5128.256 60.644 52.580 42.347 0.057 0.057 242.887

Average ↓

RMSE 102.524 879.733 106.832 237.051 189.274 106.556 744.649 552.171 106.092 103.902 105.494 292.259 106.322 102.409
FLASH 234.184 8.976 13.160 26.888 7.136 13.256 10.824 167.520 17.308 33.768 11.048 39.232 1503.872 197.784
RAM 15.688 37.692 72.196 63.020 16.644 95.924 94.816 774.000 24.220 22.282 18.636 141.816 164.672 37.152
MAC 231,048 8 5,578,560 3,271,688 99,000 1,378,080 690,376 26,450,432 308,477 173,929 128,426 528 10,967,400 1,485,960

Energy 3.31E-06 1.75E-08 5.00E-03 4.30E-03 4.13E-04 2.64E-03 9.85E-04 7.98E-02 6.35E-04 5.06E-04 3.93E-04 3.50E-08 5.30E-03 1.55E-03
Latency 5.521 0.011 342.462 429.557 31.991 199.602 70.924 5128.256 66.194 42.061 42.347 0.057 338.876 134.640

Table 7: Full experimental results on noisy and irregular time-series classification and regression tasks, comparing
downstream error (RMSE), accuracy, and model complexity metrics.

16949



Datasets Grid Search Random Search TinyTNAS MONAQ

AppliancesEnergy 1,195.44 691.18 151.72 332.53
BIDMC32SpO2 489.21 605.25 156.31 178.19

BenzeneConcentration 1,156.71 718.81 424.27 324.53
FloodModeling 4,385.44 3,872.19 241.79 151.85

LiveFuelMoistureContent 347.17 1,891.60 265.96 175.51

AtrialFibrillation 1,145.92 3,249.92 215.81 165.50
BinaryHeartbeat 155.91 185.56 217.73 170.40

Cricket 128.87 153.04 176.87 300.68
FaultDetectionA 1,018.39 2,190.53 122.50 216.64

UCIHAR 3,544.73 3,573.73 240.68 279.88

Average 1,356.78 1,713.18 221.36 229.57

Table 8: Search cost (in seconds) comparison between
traditional NAS methods and MONAQ.

E Full Experimental Results

In Tables 5 and 6, we present the full results for
classification and regression tasks, respectively.
The model performance metric for classification
is accuracy and for regression is RMSE. The model
complexity metrics extensively include FLASH,
RAM, MAC, Latency, and Energy Consumption.
In addition, Table 7 presents the complete results
for irregular and noisy time-series datasets.

F Resource Cost Comparison

To quantify MONAQ’s relative efficiency, we
compare the resource cost—specifically, the run-
time—for the main results presented in Tables 5
and 6. The results are reported in Table 8. For grid
search and random search, we set the number of
rounds and the number of candidates per round to
be the same as in MONAQ, i.e., B = 3 and C = 5.
Thus, we have 15 candidates in total and select
the best one based on validation performance. For
TinyTNAS, we set the permissible search time to be
twice the average time of MONAQ, i.e., 8 minutes.

According to the results, MONAQ consistently
achieves significantly lower search costs compared
to traditional NAS methods such as grid search
and random search. On average, MONAQ takes
only 229.57 seconds (including image generation
in the multimodal query generation preprocessing
time), whereas grid search and random search take
1,356.78 and 1,713.18 seconds, respectively. Even
compared to the efficient TinyTNAS, which aver-
ages 221.36 seconds, MONAQ performs compara-
bly while maintaining or improving performance,
especially across various classification and regres-
sion datasets. This result highlights the practical
efficiency and scalability of MONAQ.

16950


