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Abstract

Large Language Models (LLMs)-based Multi-
Agent Systems (MAS) exhibit remarkable
problem-solving and task planning capabili-
ties across diverse domains due to their special-
ized agentic roles and collaborative interactions.
However, this also amplifies the severity of se-
curity risks under MAS attacks. To address
this, we introduce MASTER, a novel secu-
rity research framework for MAS, focusing on
diverse Role configurations and Topological
structures across various scenarios. MASTER
offers an automated construction process for
different MAS setups and an information-flow-
based interaction paradigm. To tackle MAS
security challenges in varied scenarios, we de-
sign a scenario-adaptive, extensible attack strat-
egy utilizing role and topological information,
which dynamically allocates targeted, domain-
specific attack tasks for collaborative agent exe-
cution. Our experiments demonstrate that such
an attack, leveraging role and topological infor-
mation, exhibits significant destructive poten-
tial across most models. Additionally, we pro-
pose corresponding defense strategies, substan-
tially enhancing MAS resilience across diverse
scenarios. We anticipate that our framework
and findings will provide valuable insights for
future research into MAS security challenges.

1 Introduction

Recent advancements in large language model
(LLM) technology have positioned LLM-based
agents (Luo and Yang, 2024; Team et al., 2024) as
a focal point in AI research. These agents (Xi et al.,
2025; Muthusamy et al., 2023; Wang et al., 2024;
Shen et al., 2023) demonstrate human-like reason-
ing abilities and can autonomously tackle com-
plex, diverse tasks. By combining multiple special-
ized agents into Multi-Agent Systems (MAS), re-
searchers have achieved enhanced problem-solving
and task planning capabilities for sophisticated
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Figure 1: Top Left. Jailbreak failed for a single LLM. Top
Right. Successfully jailbreak a single LLM using the jailbreak
template. Down. MASTER is the first MAS security research
framework that comprehensively considers different scenarios
of roles and topological structures in MAS. Attacks using role
configuration and topological structure information may cause
more far-reaching damage to MAS.

challenges (Liang et al., 2023; Wang et al.; Du
et al., 2023). Within these systems, agents assume
distinct roles within structured interaction frame-
works, facilitating effective collaboration and in-
dependent decision-making processes. MAS ap-
proaches have shown particular promise in critical
domains such as education (Zhang et al., 2024b,
2025) and healthcare (Wu et al., 2025), with ongo-
ing research continually expanding their potential
applications across various fields (Ma et al., 2023).

Studies have demonstrated the feasibility of in-
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ducing “jailbreak” behaviors in LLMs through
prompt-based attacks (Li et al., 2023b; Peng et al.,
2024; Ren, 2024). Due to their open-ended natural
language capabilities and complex reasoning mech-
anisms, LLM-based agents present unique secu-
rity challenges. Compared to single-agent systems,
multi-agent architectures face heightened security
risks due to role heterogeneity and frequent inter-
agent collaboration. The diversity in agent roles
and permissions increases the attack surface (Lee
and Tiwari, 2024), while vulnerabilities in a sin-
gle agent can propagate rapidly across the network
(Yu et al., 2024), leading to systemic compromise.
Moreover, in adversarial settings, agents may col-
laborate, based on their roles and topology, to ex-
ecute harmful tasks more effectively and express
malicious content more comprehensively. These
risks highlight the urgent need for security frame-
works tailored to multi-agent systems, accounting
for role configuration, topology structures, and co-
operative behaviors under adversarial influence.

Existing research on the security of multi-agent
systems is primarily grounded in areas such as
the psychological safety (Zhang et al., 2024a) of
agents, the security of communication (Ju et al.,
2024; Amayuelas et al., 2024) and memory storage
(Mao et al., 2025) within the system, and the robust-
ness of the MAS’s topological structure (Yu et al.,
2024), among others. In this work, we focus on
two fundamental distinctions between single-agent
and multi-agent systems:

• The specialized role assignments among
agents in multi-agent systems that enable var-
ious system configurations.

• The different topological structures that con-
nect agents, each representing distinct interac-
tion and collaboration patterns.

Building on prior insights, we introduce MAS-
TER, the first comprehensive framework for secu-
rity research in Multi-Agent Systems focusing on
diverse role configurations and topological struc-
tures. MASTER features a stream-based infor-
mation interaction mechanism adaptable to var-
ied MAS scenarios with heterogeneous roles and
complex topologies. We also develop an auto-
mated pipeline for constructing structurally diverse
MAS instances efficiently. Unlike existing MAS
security research, which often applies single-agent
attack methods without considering system-wide
topology or scenario context (Chern et al., 2024;

Amayuelas et al., 2024), or targets communica-
tion and memory modules while overlooking role
heterogeneity (Yu et al., 2024; Mao et al., 2025),
MASTER proposes a scenario-adaptive, extensible
attack strategy utilizing role and topological infor-
mation. This strategy includes three key stages: (1)
collecting system information to build a detailed
scenario profile reflecting role and topology; (2) in-
jecting targeted adversarial traits using predefined
attack strategies; and (3) activating and enhancing
agents based on designated roles and collaborative
network relationships. Additionally, MASTER in-
corporates tailored defense mechanisms, including
prompt leakage detection for identifying potential
prompt leakage, hierarchical monitoring based on
agent criticality levels, and scenario-aware preemp-
tive defenses to anticipate vulnerabilities, enabling
comprehensive security research for complex, role-
differentiated, and topologically diverse MAS.

Our experiments demonstrate that most mod-
els are highly vulnerable to role- and topology-
based attack strategies in MAS. Role and topo-
logical information significantly enhances adver-
sarial role consistency, team cooperation, and At-
tack Success Rate (ASR), amplifying attack sever-
ity. Our proposed defense strategies effectively
mitigate these attacks, reducing ASR below 20%
with high efficiency. As attack propagation in-
creases, ASR rises, but inter-agent cooperation
slightly declines. Model sensitivity to topologies
varies, with the Chain topology yielding the low-
est ASR. Among domains, data management MAS
exhibits the highest attack risks, while education
MAS shows greater resilience. These insights will
guide the development of safer, more robust MAS.

Our contribution can be summarized as follows:

• MASTER Framework. We present MASTER, a
pioneering MAS security framework supporting
diverse roles and topologies, laying the founda-
tion for structured MAS security research.

• MAS-Tailored Attack and Defense. We design
scenario-adaptive attacks and defenses leverag-
ing role and topological information inherent in
MAS, both achieving strong performance across
models.

• Empirical Findings. Our experiments uncover
novel attack phenomena across multiple dimen-
sions in MAS, guiding the design of safer MAS.
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2 Related Work

Multi-Agent Systems (MAS). Recent advance-
ments in Large Language Models (Minaee et al.,
2024; Achiam et al., 2023) have spurred significant
interest in LLM-based Multi-Agent Systems. Un-
like single-agent systems, MAS leverage topolog-
ical interactions and specialized roles to enhance
capabilities (Talebirad and Nadiri, 2023; Wu et al.,
2023; Chen et al., 2023a,b; Li et al., 2023a; Qin
et al., 2023; Surís et al., 2023; Qian et al., 2023).
Recent studies highlight MAS versatility across di-
verse domains (Wang et al., 2023; Xu et al., 2023;
Aher et al., 2023; Zhang et al., 2023; Zhao et al.;
Hua et al., 2023). For example, SimClass (Zhang
et al., 2024b) simulates classroom interactions, im-
proving user experience, while (Xu et al., 2024)
enhances educational efficiency through automated
error correction. Applications also extend to urban
planning (Zhou et al., 2024), mental health diagnos-
tics (Wu et al., 2025), and collaborative reasoning
(Du et al., 2023; Liang et al., 2023; Qian et al.,
2024; Lu et al., 2024; Wang et al., 2025). And
works like (Li et al., 2023a; Hong et al., 2023; Wu
et al., 2023) improve collaboration through stan-
dardized workflows and role specialization.

Security in MAS. The emergence of LLM-based
MAS has heightened security risks due to their
complex interactions among agents with distinct
roles and predefined protocols, yet systematic MAS
security research remains scarce (Gu et al., 2024;
Chern et al., 2024; Peigne-Lefebvre et al., 2025;
Zhou et al., 2025). Existing attack strategies, such
as Evil Geniuses (Tian et al., 2023), employ ad-
versarial role specialization, while PsySafe (Zhang
et al., 2024a) induces harmful behaviors through
dark trait injection. Other approaches manipulate
knowledge propagation via persuasiveness injec-
tion (Ju et al., 2024; Amayuelas et al., 2024). How-
ever, these methods often require direct system
modifications or trait injections, limiting their appli-
cability to black-box MAS. Prompt Infection (Lee
and Tiwari, 2024) focuses on task allocation with-
out addressing role or topology configurations. De-
fensively, NetSafe (Yu et al., 2024) assesses topo-
logical safety but overlooks role heterogeneity,
while AgentSafe (Mao et al., 2025) enhances secu-
rity through hierarchical information management.
Current research has yet to systematically explore
MAS security in scenarios defined by role configu-
rations and topological relationships.

3 Methodology

3.1 Preliminaries

MAS as Topology-Governed Role Coordination.
In MAS, LLM-based agents are modeled as role-
specialized nodes in a networked framework. Let
M denote the set of LLMs. The MAS is repre-
sented as a directed graph G = (V,E), where
V = {vi | vi 2 M, 1  i  |V |} corresponds
to LLMs, with each vi representing an agent with
distinct role. The set E ✓ V ⇥V includes directed
edges eij = (vi, vj), indicating output transmission
from agent vi to vj . The network topology is quan-
tified using an adjacency matrix A = [Aij ]|V |⇥|V |:

Aij =

(
1, if (vi, vj) 2 E,

0, otherwise.
(1)

Here, Aij = 1 indicates a direct communication
link from vi to vj , and Aij = 0 otherwise.

3.2 MASTER

3.2.1 Overview
To fully exploit the role and topology character-
istics of MAS for security purposes, we present
MASTER (Figure 2), comprising five components:
MAS Automatic Constructor, Interaction Mecha-
nism, Attack Strategies, Defense Strategies, and
Evaluation Methods.

3.2.2 MAS Automatic Constructor
To explore MAS security across diverse roles and
topologies, we propose the MAS Automatic Con-
structor, featuring two phases: Topology Selec-
tion and Role Assignment. In the Topology Selec-
tion Phase, an LLM-based selector evaluates a user
request—detailing MAS description and tasks—to
select an optimal topology from a predefined pool,
as outlined in Table 6 in Appendix. In the Role As-
signment Phase, an LLM-based assigner processes
the request and chosen topology to allocate roles
and configurations to each node, guided by MAS
requirements and node attributes, with each node
vi defined by a system prompt Si.

3.2.3 MAS Interaction Mechanism
To emulate realistic MAS interaction patterns, we
propose an information-flow, multi-round interac-
tion framework. Unlike NetSafe (Yu et al., 2024),
which engages all agents simultaneously in a topic
discussion, MASTER adopts a progressively acti-
vated task-execution paradigm reflecting real-world
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Figure 2: Overview of MASTER. MASTER consists of five parts. “Constructor” refers to the construction process of different
MASs. “Interaction” refers to the unified information flow interaction method for the agents in MAS, and the agents in MAS are
built based on LLM. “Attack” refers to our adaptive attack method, which consists of three stages: information detection, trait
injection, and attack activation. “Defense” refers to our proposed defense strategy, including prompt word leakage, hierarchical
monitoring, and scenario prevention defense mechanisms. “Evaluation” represents our evaluation technology, including the
evaluation of attack success rate, black role consistency, and harmful teamwork.

workflows, enabling multiple user-MAS interac-
tions. In MASTER, the MAS produces a dialogue
set R based on a task T over n rounds:

R = F(T, n). (2)

The interaction process can be divided into two
stages: Task Input and Internal Propagation.

Task Input. In the Task Input stage, for a given
MAS, the initial response is generated by select-
ing a starting agent vs within the corresponding
topology graph G of the MAS.

R(0)
s = (e(0)s , a(0)s , r(0)s ) = vs(Ss, T ), (3)

where Ss represents the system prompt for the start-
ing agent vs, while T denotes the task provided to
the MAS as the initial input. The initial response of
vs, denoted as R(0)

s , consists of three components:
e(0)s (the expressed viewpoint), a(0)s (the action),
and r(0)s (the result). During this phase, the user
inputs the task to the starting agent, triggering its
activation and the generation of an initial response.
Subsequently, the initial response R(0)

s from vs is
transmitted to other agents within the MAS, thereby
activating the entire system.

Internal Propagation. The Internal Propagation
stage can be further divided into two steps: Input
Construction and Response Generation.

Input Construction. For the i-th agent:

O(t)
i =

[

j 6=i,Aji=1

R(t)
j , (4)

P(t)
i  T [O(t�1)

i [R(t�1)
i [M (t�1)

i . (5)
Let O(t)

i denote the response set from agents
adjacent to agent vi, R

(t)
j represent agent vj’s re-

sponse, A signify the MAS topology’s adjacency
matrix, and M (t�1)

i indicate agent vi’s memory
module. Agent vi collects responses from adjacent
agents as input. If O(t)

i is empty, vi remains dor-
mant, producing no response. If O(t)

i is non-empty,
the task T , the responses from other agents O(t)

i ,
the previous round’s response R(t�1)

i , and the mem-
ory M (t�1)

i are combined to construct the input for
the next round of agent vi.

Response Generation. Upon obtaining the input
for agent vi, the response is generated, and the
memory module is subsequently updated:

R(t)
i = (a(t)i , r(t)i ,m(t)

i ) = vi(Si,P(t)
i ), (6)

M (t)
i = U(M (t�1)

i , R(t)
i ), (7)
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where Si denotes agent vi’s role-specific system
prompt used with inputs to generate response R(t)

i .
The agent’s memory is updated by integrating cur-
rent memory with this response via an LLM-based
updater, completing one propagation cycle. Follow-
ing initial input to the starting agent, this process
iterates for a specified number of rounds, enabling
multi-agent interaction. The framework supports
multiple user-MAS dialogue rounds. The detailed
interaction algorithm is presented in Algorithm 1
in Appendix.
3.2.4 Attack Strategy
In this section, we focus on MAS security risks
from role and topology exploitation, proposing a
scenario-adaptive attack strategy in three stages: 1)
probing, 2) trait injection, and 3) activation.

Probing Stage. This stage focuses on informa-
tion probing of the given MAS, using a self-
introduction template as task Tintro to enable itera-
tive self-introductions and updates on neighboring
agent information within the MAS.

R = F(Tintro, n). (8)

After n rounds of saturated information ex-
change, each agent accurately outputs its role and
neighboring agent information. Integrating these
data yields the role information for each MAS
agent and the MAS topology, providing an overall
sketch for subsequent stages.

Adaptive Trait Injection Stage. In this stage,
adaptive trait injection is performed on the agents
within the Multi-Agent System.

Ttraits = Y(CLLM(I)), (9)

R = F(Ttemplate + Ttraits, n), (10)

where CLLM is an LLM-based domain-specific
multi-classifier, Y denotes a predefined trait injec-
tion strategy, and Ttraits represents the customized
trait set for a MAS. The process starts with CLLM
classifying domains from MAS information. Dark
traits are assigned per Y and embedded into a tem-
plate prompt with a backdoor activation component,
inspired by (Li et al., 2023b), to form a scenario-
adaptive injection prompt, integrated via routine
interactions. The strategy Y targets seven scenar-
ios: information dissemination, production, data
management, education, research, healthcare, and
financial services, with details in the Table 7 in
Appendix. The proposed trait injection strategy

is designed to be both extensible and flexible, en-
abling modifications or additions to the scenarios
and traits as required. This ensures targeted and
adaptive compatibility with MASs composed of
diverse roles and topological structures across vari-
ous scenarios.

Activation Stage. In this stage, the targeted traits
are activated within the MAS.

Tact = Ttriger + Tnormal + Trole + Ttopo, (11)

R⇤ = F(Tact, n). (12)

Ttrigger denotes the specific activation trigger,
Tnormal represents normal task. We use the obtained
MAS information I to embed role and topological
data into templates, yielding {Trole, Ttopo} = E(I),
enhancing agent traits for role consistency and team
cooperation. These components form the final ac-
tivation prompt, yielding a harmful dialogue set
R⇤. During activation, the prompt triggers the
backdoor, directing agents toward injected trait-
aligned tasks. System information reinforces these
traits by integrating with original role configura-
tions and enhancing malicious inter-agent collabo-
ration, enabling effective attack execution during
interactions. The specific attack prompt settings
are detailed in Appendix E.

3.2.5 Defense Strategy
To address MAS security vulnerabilities, we pro-
pose three defense strategies: prompt leakage de-
tection, criticality-based hierarchical monitoring,
and scenario-aware preemptive defense. Detailed
descriptions are provided in Appendix B.4.

Prompt Leakage Defense Based on Detection.
To counter the issue of system prompt leakage dur-
ing the probing stage of the attack strategy, we
propose detection-based prompt leakage defense
method. This approach involves real-time monitor-
ing of interaction content to identify and prevent
system prompt leakage.

Hierarchical Monitoring Based on Criticality.
In a MAS, the importance of each agent varies sig-
nificantly depending on its assigned role and its
position within the system’s topology. To optimize
efficiency, we stratify agents based on their roles
and topological positions according to their impor-
tance. During interactions, supervisory agents are
introduced to conduct hierarchical monitoring of
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Table 1: Attack Results on Different Models. In this table, we report the security evaluation results of MAS composed of
different LLMs. Closed-source refers to API-based models, and Open-source refers to open-source models. Details are shown in
Section 4.2. The table shows the evaluation results of the 1st, 3rd, 5th, 7th, and 8th rounds in the interaction. Best results are
bolded and second best are underlined1.

Model Turn 1 Turn 3 Turn 5 Turn 7 Turn 8
ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor"

Closed-source

GPT-4 Turbo 18.8% 93.1 90.4 82.6% 90.7 59.8 90.0% 91.7 61.1 91.2% 92.4 60.4 91.2% 92.3 60.7
GPT-4o 19.7% 93.4 85.7 74.8% 77.5 63.5 77.3% 77.6 64.0 78.5% 79.4 63.7 77.1% 78.2 64.3
Claude-3.7-Sonnet 5.0% 42.1 39.2 26.0% 57.9 49.6 28.2% 61.2 53.1 27.0% 59.6 53.7 28.2% 60.4 55.2
Gemini-2.5-Pro 19.8% 95.3 90.2 93.8% 95.7 84.1 99.8% 96.8 91.2 99.9% 97.4 92.1 99.9% 97.4 93.6

Open-source

Qwen2.5-32b-Instruct 20.0% 94.9 84.6 93.2% 94.9 69.4 99.0% 95.1 72.9 98.0% 94.9 75.1 97.6% 94.9 74.5
Llama3.3-70b-Instruct 8.1% 61.1 80.6 33.1% 62.1 79.7 36.2% 64.4 79.8 36.9% 64.9 81.5 36.6% 64.3 81.2
Llama3-70b-Instruct 15.0% 83.9 82.3 64.0% 85.9 68.8 77.0% 87.2 63.4 77.0% 85.9 65.2 79.0% 87.4 68.5
DeepSeek-V3 15.3% 73.5 74.4 47.1% 64.1 54.6 45.3% 65.9 52.1 45.0% 68.5 49.2 44.5% 68.6 47.5

Table 2: Result of Ablation Experiment. Ours represents our role and topology adaptive attack method. w/o Role denotes
eliminating role information from the attack method. w/o Topo denotes eliminating topology information from the attack method.
DeepInception presenting directly using the jailbreak hint template to attack MAS.

Module Turn 1 Turn 3 Turn 5 Turn 7 Turn 8
ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor"

Ours 19.7% 95.4 97.2 91.9% 95.2 78.7 98.0% 95.4 85.2 97.1% 95.2 88.1 96.4% 94.9 87.2
w/o Role 20.0% 67.2 71.9 94.0% 80.1 76.3 99.7% 81.6 81.6 99.5% 82.0 80.0 99.5% 82.3 80.7
w/o Topo 20.0% 94.1 55.2 92.3% 95.1 40.6 95.9% 95.0 40.8 96.4% 94.7 41.0 96.4% 95.0 41.0
DeepInception 14.6% 70.0 25.1 82.4% 86.0 47.1 90.6% 89.3 49.4 92.4% 89.0 49.8 92.2% 89.3 51.2

the interactions. Agents with higher importance re-
ceive more frequent interaction monitoring, thereby
enhancing the interaction security of the MAS.

Preemptive Defense Based on Scenario. Given
the diverse roles and topological structures forming
complex MAS scenarios with unique security vul-
nerabilities, we propose an adaptive scenario-based
preemptive defense mechanism. By analyzing the
MAS’s description, role distribution, and topologi-
cal configuration, we identify high-risk aspects of
specific scenarios, enabling preventive measures in
the MAS configuration before deployment.

3.2.6 Evaluation Methods
Traditional LLM security research typically uses
Attack Success Rate (ASR) to evaluate attack re-
sistance. We adopt ASR to assess MAS resilience,
but MAS differ from single LLMs due to their
diverse roles and collaborative functionality, am-
plifying harm upon successful attacks. Drawing
from role-play research, we introduce blackened
role consistency and harmful teamwork metrics to
model agent blackened role consistency and harm-
ful collaboration. These metrics indirectly reflect
the severity of attack impacts, as compromised
agents leverage their roles and collaboration to ex-
ecute harmful tasks. Detailed definitions of these
metrics are provided in Appendix B.5.

4 Experiment

To thoroughly investigate security issues in MAS
concerning roles and topological structures, we de-

1Same in the following tables.

signed and conducted our experiments by focusing
on several critical research questions:

• RQ1: How effective are the attack strategies of
MASTER in MAS, and what influence do role
assignments and topological structures have on
their performance?

• RQ2: Are the defense strategies of MASTER
effective in enhancing the security of MAS?

• RQ3: What are the varying impacts of different
attack propagation levels in MAS?

• RQ4: What phenomena regarding the security
and robustness of MAS can be observed across
different dimensions?

4.1 Experimental Setups
Datasets. Previous datasets focused on security
issues of individual LLMs or MAS for specific
tasks, overlooking diverse, complex MAS scenar-
ios from variations in agent roles and topologies.
To address this gap, we employed an MAS Auto-
matic Constructor to build MAS instances across
scenarios. We first created initial MAS scenario
descriptions for 25 subdomains, designing 10 cor-
responding initial descriptions per subdomain, in-
cluding MAS details and tasks. Our MAS Auto-
matic Constructor then instantiated these scenarios,
yielding a comprehensive MAS dataset.

Models and Metrics. To comprehensively
evaluate the performance of MASTER across
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(a) ASR (b) Role (c) Coor

Figure 3: Performance Across Varying Attack Degrees. Comparison of different attack propagation degrees across interaction
rounds showing: (left) attack success rates, (middle) blackened role consistency, and (right) harmful team collaboration.

Figure 4: Results of Different Domain. This figure illustrates, from left to right, the ASR, adversarial role consistency, and
cooperative harmful behavior across seven domains under attack.

various LLMs, we utilized the following mod-
els: closed-source models, including GPT-4o,
GPT-4-turbo, Gemini-2.5-Pro, and
Claude-3.7-Sonnet; and open-source
models, including Qwen2.5-32B-Instruct,
DeepSeek-V3, Llama3.3-70B-Instruct,
and Llama3-70B-Instruct. For open-source
model deployment, we employ the LLM inference
framework vLLM (Kwon et al., 2023). For our
evaluation metrics, we adopted the Attack Success
Rate (ASR), calculated as the ratio of successful
attack dialogues to the total number of dialogues,
using LLM-based judgments as the evaluation
criterion. Additionally, we introduced, for the first
time, a suite of evaluation metrics for assessing
the harmfulness of attacks in MAS: Harmful Role
Consistency, Harmful Team Cooperativeness.

Parameter Settings. We configure each MAS
with 5 agents. In attack experiments, we conduct
8 interaction rounds across the probing, injection,
and activation stages, with the starting node consis-
tently set as the agent with index 0. The defense
experiments, ablation studies, and subsequent ob-
servation experiments maintain the same settings
as the attack experiments.

4.2 Attack and Ablation Results (RQ1)

Table 1 presents the safety of MAS across model
configurations over multiple rounds. Among open-
source models, Qwen2.5-32B-Instruct MAS shows
severe vulnerabilities, generating harmful con-
tent under scenario-adaptive attacks. In contrast,
Llama3.3-70B-Instruct MAS exhibits strong re-
silience, with low Attack Success Rate (ASR) and
adversarial role consistency, achieving top safety
performance. DeepSeek-V3 MAS offers moder-
ate safety, with an ASR near 50% but low adver-
sarial role and cooperation scores, limiting harm.
Other models face significant jailbreaking risks un-
der MAS-adaptive attacks.

Among closed-source models, the MAS com-
posed of Claude-3.7-Sonnet exhibits the strongest
safety performance, leading in attack resistance
with low adversarial role consistency and team
harm cooperation scores. Conversely, Gemini-2.5-
Pro shows the highest vulnerability, nearly fully
jailbreaking in the final rounds, with elevated ad-
versarial role consistency and team harm scores,
likely due to its strong instruction-following ca-
pability. Other closed-source models also display
significant security weaknesses.
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Table 3: Result of Different Defense. w/o Defense denotes MAS facing attacks without employing any defense strategies.
Leakage Defense refers to use prompt detection strategy to evaluate the attack success rate of prompt word leakage. Hierarchical
Defense indicates the application of a hierarchical monitoring defense strategy during attacks. Preemptive Defense signifies the
use of a scenario-preventive defense strategy to counter attacks.

Defense Method Turn 1 Turn 3 Turn 5 Turn 7 Turn 8
ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor"

w/o Defense 19.7% 93.4 85.7 74.8% 77.5 63.5 77.3% 77.6 64.0 78.5% 79.4 63.7 77.1% 78.2 64.3
Leakage Defense 0.0% - - 2.8% - - 11.4% - - 14.3% - - 8.6% - -
Hierarchical Defense 6.6% 39.6 34.8 13.8% 33.1 51.9 12.3% 32.1 53.4 8.5% 29.9 50.6 9.0% 29.5 52.4
Preemptive Defense 6.1% 43.9 44.6 7.8% 29.0 54.1 5.8% 27.6 55.3 6.3% 27.7 54.4 6.5% 27.8 56.4

Table 4: Efficiency of Hierarchical Defense under Different Inspection Probabilities. We vary the inspection probabilities
for each tier of the hierarchical defense and report the resulting metrics across multiple turns. The final column shows the average
number of inspections required per round, highlighting the trade-off between defense performance and computational cost.

Probability Turn 1 Turn 3 Turn 5 Turn 7 Turn 8 Avg Inspection
Count"ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor" ASR" Role" Coor"

[0.3, 0.5, 0.8] 6.6% 39.6 34.8 13.8% 33.1 51.9 12.3% 32.1 53.4 8.5% 29.9 50.6 9.0% 29.5 52.4 13.2
[0.6, 0.7, 0.8] 6.7% 48.2 50.0 4.6% 12.8 44.7 2.8% 11.5 47.0 3.2% 11.4 50.7 2.8% 12.7 49.7 22.1
[1.0, 1.0, 1.0] 7.5% 53.5 61.8 3.0% 11.5 42.7 2.5% 10.0 45.3 1.5% 12.4 47.2 3.5% 16.1 56.2 32.4

Table 2 examines the impact of role and topo-
logical information on MAS safety. Ablation ex-
periments show both factors enhance adversarial
role consistency and cooperative harmful behavior
under attack. Disabling role information reduces
consistency, while removing topological informa-
tion decreases harmful cooperation. Compared to a
baseline using direct trait injection via DeepIncep-
tion (Li et al., 2023b) without role or topology data,
our results highlight their role in intensifying MAS
jailbreaking risks, amplifying severity. Moreover,
to confirm our evaluations’ validity, we conducted
a user study, with results supporting our findings,
detailed in Appendix F.

4.3 Defense Results Analysis (RQ2)
Table 3 presents the evaluation of our defense mech-
anisms. Leakage Defense effectively detects and
prevents prompt leakage in MAS. Hierarchical De-
fense, an online method, and Preemptive Defense,
an offline method, were tested during scenario-
adaptive attacks. Both significantly reduce Attack
Success Rate (ASR), adversarial role consistency,
and cooperative harmful behavior, confirming the
robust effectiveness of our proposed defenses.

To analyze the efficiency of our hierarchical de-
fense, we evaluate its performance under varying
tiers of inspection probabilities, as detailed in Ta-
ble 4. Our analysis reveals a clear trade-off between
detection rigor and computational cost. Increasing
the inspection probabilities from a low-tier setting
of [0.3, 0.5, 0.8] to a mid-tier of [0.6, 0.7, 0.8]
yields a significant reduction in the Attack Suc-
cess Rate (ASR), the Blackened Role Consistency
(SRole), and the Harmful Teamwork Score (SCoor).
However, intensifying the probabilities further to
[1.0, 1.0, 1.0]—representing a full inspection at

every tier—results in diminishing returns, with
only marginal improvements in the defense metrics.
This marginal gain comes at a substantial cost, as
the average inspection count per round escalates
from 13.2 to 22.1, and finally to 32.4. The mid-tier
setting [0.6, 0.7, 0.8] strikes an effective balance,
achieving robust defense performance while reduc-
ing the average inspection count by 31.8% com-
pared to the full-inspection setting. This validates
the efficiency of the hierarchical approach.

This principle of hierarchical efficiency can be
extended. For instance, a leakage defense could
adopt a similar hierarchical detection mechanism.

4.4 Attack Propagation Analysis (RQ3)
To study the effect of attack propagation on MAS,
we tested five propagation levels (1 to 5), targeting
increasing numbers of agents. Results, shown in
Figure 3, indicate a strong positive correlation be-
tween propagation level and ASR, with faster ASR
growth in early rounds at higher levels. Adversar-
ial role consistency also rises significantly, driven
by more compromised agents aligning with adver-
sarial traits. However, agent cooperation slightly
declines as propagation increases.

This trend culminates in the convergence of both
ASR and SRole scores towards an upper threshold
at higher propagation levels, a result that aligns
with theoretical expectations. This phenomenon
is a direct consequence of the metrics’ definitions;
as the proportion of targeted agents with high in-
dividual scores increases, the system-wide aver-
age is naturally elevated. The Harmful Teamwork
score (SCoor), however, shows limited sensitivity to
the propagation level. We hypothesize that this
is due to a phenomenon of contagious harmful
cooperation, wherein the malicious behavior of
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Figure 5: ASR Results of Different Topologies. This figure
presents ASR of various models under different topological
structures when subjected to attacks.

targeted agents induces a degree of harmful col-
laboration even among initially benign, untargeted
agents. This secondary effect establishes a baseline
of harmful cooperation across the system, thereby
desensitizing the average score to the direct in-
crease in the number of initially targeted agents.

4.5 Phenomena Observed Across Different
Dimensions (RQ4)

Figure 5 compares the ASR of models across MAS
topologies. Hierarchical topology yields the high-
est average ASR, followed by Complete, while
Chain topology shows the lowest ASR, suggesting
greater attack resistance due to lower connectivity.
Attacks on GPT-4o and Gemini-2.5-Pro exhibit low
topology sensitivity, while Qwen2.5-32B-Instruct
maintains consistently high ASR across topologies,
indicating significant and persistent vulnerabilities.
Conversely, Llama3-70B-Instruct shows high topol-
ogy sensitivity, with attack performance strongly
influenced by topological structure.

Figure 4 shows that, among seven domains, data
management MAS exhibits the highest ASR, indi-
cating significant safety vulnerability. Conversely,
the education domain records the lowest ASR, ad-
versarial role consistency, and team cooperation
scores, demonstrating stronger attack resilience
compared to other domains.

4.6 Discussion on Cost and Scalability

To evaluate our framework’s performance, we con-
ducted a comparative analysis against the NetSafe
baseline. The quantitative metrics for an 8-round,
5-agent MAS dialogue are summarized in Table 5.
While our framework utilizes more computational
resources, this is a direct trade-off for its signifi-

Table 5: Comparison of efficiency and cost between our frame-
work (MASTER) and NetSafe. Results are averaged over an
8-round dialogue with a 5-agent MAS.

Framework Token Time Role Info Application Domain

MASTER 104,120 2.5 min X Task-oriented Multiple

NetSafe 54,726 0.5 min ⇥ Discussion-oriented Single

cantly expanded simulation capabilities, crucial for
conducting in-depth and realistic security analyses.

Unlike existing approaches, our framework pro-
vides native support for agents with specific role in-
formation, enabling the simulation of nuanced inter-
actions essential for modern security investigations.
Moreover, its core design for task-oriented applica-
tions makes it applicable across multiple domains,
offering far greater versatility than single-domain,
discussion-oriented models like NetSafe. This com-
bination of role-awareness and multi-domain appli-
cability establishes our framework as a more pow-
erful and generalizable tool for addressing complex
security challenges in real-world deployments.

5 Conclusion

In this work, we introduce MASTER, the first com-
prehensive framework for MAS security research
addressing diverse scenarios composed of varying
roles and topological structures. Our experiments
reveal specific vulnerabilities in MAS under diverse
scenarios composed of varying roles and topologi-
cal structures, with the use of role and topological
information amplifying the severity of attack out-
comes and exposing significant safety risks. Gener-
alized security research for diverse MAS is urgently
needed, and the MASTER framework paves the
way for future studies to enhance the generalized
safety of MAS across varied scenarios.

Limitations

The security research framework developed in this
study primarily focuses on simulating modeling
for MAS across diverse scenarios characterized by
varying role configurations and topological struc-
tures. However, research on MAS capable of inter-
acting with real-world environments remains lim-
ited. Such environment-interactive MAS enables
agents to perform specific actions by invoking des-
ignated APIs or executing predefined functions. Fu-
ture work should explore the security performance
of these environment-interactive MAS, considering
diverse roles and topological configurations.
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This research, centered on security vulnerabilities
and defense mechanisms in role- and topology-
diverse multi-agent systems, aims to advance the
safety and resilience of collaborative intelligent
systems. We acknowledge the sensitive nature of
this research and affirm that all aspects of this work
strictly adhere to legal and ethical standards.

All experiments involving adversarial attacks
and defense evaluations were conducted in rigor-
ously isolated simulation environments, ensuring
no real-world systems or third-party platforms were
exposed to harm. The MASTER framework’s auto-
mated construction process and scenario-specific
attack strategies were designed exclusively for con-
trolled academic investigation. Data used in this
study, including MAS construction requests and
MAS instances with different settings, were syn-
thetically generated or anonymized to eliminate
risks of exposing sensitive information.

We recognize the critical responsibility associ-
ated with disclosing vulnerabilities amplified by
role and topological structure in MAS. We have
established rigorous defense mechanisms to min-
imize potential adverse impacts. This includes
promptly and responsibly notifying relevant stake-
holders of identified issues, ensuring they can
swiftly implement effective mitigation measures.

As advocates for ethical AI development, we em-
phasize that the attack methodologies in this work
serve solely to expose systemic weaknesses and in-
form robust defenses. The MASTER framework is
designed to empower researchers in preemptively
addressing generalized security challenges rather
than enabling malicious applications. We com-
mit to advancing this work through peer-reviewed
collaboration, ensuring its contributions remain
aligned with the responsible advancement of safe
MASs.
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A Definition of Terminology

Trait Injection Trait Injection refers to the adver-
sarial technique of embedding harmful or "black-
ened" trait prompts into an agent’s role settings or
interaction inputs. This method, a common attack
vector in MAS security, is designed to manipulate
agents into exhibiting malicious behaviors. Unlike
conventional approaches that utilize fixed prompts,
our framework employs a dynamic probing mech-
anism. This mechanism assesses internal MAS
information to autonomously select and inject the
most effective traits in a targeted manner during
interactions.

Information-flow-based Interaction Framework
An Information-flow-based Interaction Framework
defines a sequential mode of operation where a
Multi-Agent System (MAS) is progressively acti-
vated to complete a task. The process initiates with
information being passed to a primary agent, which
then propagates tasks and coordinates with other
agents until the objective is achieved. This sequen-
tial, task-driven model contrasts with simultaneous,
discussion-based frameworks. Our adoption of this
paradigm is motivated by its closer alignment with
established, real-world MAS applications that rely
on coordinated information cascades.

Trait Activation Trait Activation is a stealth
mechanism used to control the expression of in-
jected adversarial traits. By embedding specific
backdoor triggers (e.g., textual cues like “hey,
buddy”) within the trait templates, the malicious
behavior remains dormant during normal opera-
tions. The agent functions as a benign entity until
it receives an input containing the predefined trig-
ger. Upon detection of the trigger, the injected trait
is activated, causing the agent to execute harmful
actions.

Prompt Leakage Prompt Leakage is a security
vulnerability where an attacker successfully obtains
or infers the underlying system prompts that guide
an agent’s behavior during task execution. The ex-
posure of these prompts constitutes a significant
security risk, as they may contain sensitive opera-
tional logic, proprietary data, or business rules that
can be exploited to orchestrate more sophisticated
attacks.

Propagation Level The Propagation Level is a
parameter that quantifies the extent of an attack’s
initial foothold within a MAS. It is defined as the

number or proportion of agents that receive injected
"blackened" traits during the attack’s initialization
phase. By systematically varying the propagation
level, we can analyze its impact on system-wide
metrics, such as the Attack Success Rate (ASR),
and thereby assess the overall robustness of the
MAS against the diffusion of adversarial influence.

B Framework Details

B.1 Topological Structure Pool
In the MAS construction phase, we initially analyze
the user’s MAS construction request and employ
an LLM to select the most suitable topology from
a predefined topology pool. Here, we present a
detailed overview of the structures within this pool
along with their specific interpretations in Table 6.

B.2 MAS Interaction Method
In MASTER, we propose an information-flow-
based interaction framework for MAS. Initially,
the task is input to the starting agent within the
MAS to activate it, generating an initial response.
In subsequent interactions, each agent checks for
incoming transmissions from neighboring agents;
if present, it collects all responses, combines them
with the task, the previous response, and memory
to generate a new input, produces an output, and
updates its memory module. This mechanism sup-
ports multiple user-MAS interactions, with the de-
tailed algorithmic process outlined in Algorithm 1.

B.3 MAS Scenario Field and Corresponding
Traits

In our constructed MAS scenarios, we categorize
application domains into seven types: information
dissemination, production and life, data manage-
ment, education and teaching, research and devel-
opment, healthcare, and financial services. Each
domain faces distinct targeted vulnerabilities. In
MASTER, attacks exploit MAS information prob-
ing to devise targeted strategies, injecting specific
traits into MAS agents. Table 7 provides detailed
definitions of these domains and the corresponding
injected traits used in the attack strategies.

B.4 Defense Strategy Details
Leakage Defense. In our detection-based prompt
leakage defense, we aim to prevent prompt leakage
attacks, where attackers probe the system prompts
of agents in the MAS to extract sensitive informa-
tion, enabling adaptive strategies for greater harm.
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Our defense employs an LLM-based detector D
to analyze agent responses for potential prompt
leakage. If detected, a warning Pw is issued to the
agent:

Rt+1 =

(
v(S,P(t) + Pw), if D(Rt) = 1

v(S,P(t)), if D(Rt) = 0
.

(13)

Hierarchical Defense. Our insights stem from
the varying importance of agents in a Multi-Agent
System (MAS), driven by their distinct role as-
signments and positions within the system, lead-
ing to differing levels of priority. In our role- and
topology-based monitoring defense strategy, for
efficiency, we first employ an LLM-based impor-
tance classifier Li = H(vi) to rank agents, assign-
ing each a monitoring frequency pi. Agents with
higher importance receive more frequent interac-
tion monitoring. During interactions, a monitor-
ing agent oversees the process, issuing warnings if
sensitive information or risky behavior is detected.
This defense method achieves a trade-off between
efficiency and security.

Preemptive Defense. Given that diverse roles
and topologies can form complex MAS scenar-
ios, each with potential sensitive security issues,
we analyze the overall MAS information, includ-
ing descriptions, roles, and topological structures.
Drawing from the attack strategy’s adaptive trait
selection, we employ the same domain classifier
CLLM to categorize the MAS. Based on this classi-
fication, akin to predefined adaptive attack entries
in the attack strategy, we establish corresponding
predefined defense entries Ydefense. By using these
adaptive defense strategies to configure the system
prompts S for agents, we enable early warning and
defense during MAS operation. Since this offline
defense method requires no additional agents or
detectors for real-time judgment, it offers higher
efficiency and lower cost compared to the previous
two online approaches.

Tdefense = Ydefense(CLLM(I)), (14)

S = S + Tdefense. (15)

B.5 Mathematical Definition of Metrics
To evaluate the system’s susceptibility to adver-
sarial attacks and agent behavioral integrity, we
introduce three core metrics.

Attack Success Rate(ASR). First, drawing upon
established evaluation frameworks, we define the
Attack Success Rate (ASR) to quantify the proba-
bility of a successful attack on the system. For each
interaction round, ASR is calculated as the fraction
of agents that produce harmful outputs, formulated
as:

ASR =
1

N

NX

i=1

f(ai) (16)

where N is the total number of agents and f(ai)
is an LLM-based binary evaluation function for
agent ai, which returns 1 if the agent’s output is
deemed harmful (a successful attack) and 0 other-
wise.

Blackened Role Consistency (SRole). To as-
sess agent behavior, we employ two specialized
LLM-based scores. The first is the Blackened
Role Consistency, which evaluates the consis-
tency of an agent ai with its assigned black-
ened role. This is calculated as SRole(ai) =
LLMRole(Oi, CRole, CSystem, CDark), where Oi is
the agent’s output, while CRole, CSystem, and CDark
are the original role, system, and blackened traits
settings, respectively. The system-wide score is the
average over all agents:

SRole =
1

N

NX

i=1

SRole(ai) (17)

Harmful Teamwork Score (SCoor). The
second score is the Harmful Teamwork Score,
which measures harmful cooperation. For an
agent ai, this score, SCoor(ai), is determined by
LLMCoor(Oi, CRole, CSurrounding, CSystem, CDark),
where CSurrounding represents the settings of adja-
cent roles. The overall system score is computed
as:

SCoor =
1

N

NX

i=1

SCoor(ai) (18)

Detailed evaluation prompts for these LLM evalua-
tors are provided in the Appendix E.

C Dataset Analysis

To investigate the security and robustness of MAS
across diverse scenarios, we designed an automated
MAS construction process in MASTER. We mod-
eled 25 common scenarios, generating 10 corre-
sponding MAS construction requests per scenario.
These MAS span one or more of seven application
domains. Here, we perform a statistical analysis of
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the constructed MAS dataset. Figure 7 illustrates
the dataset distribution across domains, revealing a
higher representation of data management scenar-
ios compared to others, with healthcare and finan-
cial services scenarios being the least represented.
Figures 8 to 14 sequentially present the distribution
of specific scenarios within the seven domains.

D User Study

To validate the rationality of our evaluation metrics,
we conducted a user study to assess the experimen-
tal results, presenting in Figure 6. In the user study,
we compare the agent responses generated by our
attack strategy with those from an attack lacking
role and topological information, corresponding to
the ablation study in the main text comparing our
attack strategy against the baseline. The results
demonstrate that our evaluation metrics effectively
reflect the agents’ adherence to their original role
characteristics and their team collaboration capa-
bilities when executing harmful tasks.

Additionally, we find that the agents’ adherence
to their original roles and their collaboration with
other agents in the Multi-Agent System (MAS)
indirectly indicate the extent of harm caused post-
attack. We attribute this to the diverse role con-
figurations, which lead to varying expertise and
permissions among among agents. An agent that
better retains its role characteristics after an attack
can more effectively exploit its expertise and per-
missions, resulting in more significant harm. Sim-
ilarly, effective team collaboration enables agents
to execute harmful tasks more efficiently through
coordinated division of labor.

Figure 6: Comparison of the MASTER Attack Strategy
with Baseline: User Study.

E Prompt

Here, we elaborate on the prompts utilized within
our framework modules. Figures 15 and 16 present
the prompts for topology selection and role assign-

Figure 7: Distribution of Different Domains.

ment, respectively, in the MAS automated construc-
tion process. Figures 17 to 19 correspond to the
prompts for the probing, injection, and activation
stages of the attack strategy, respectively. Figure 20
illustrates the prompt for domain classification of
MAS across different scenarios, which is utilized
in both attack and defense strategies. Addition-
ally, Figures 21, 22, and 23 depict the evaluation
prompts for Attack Success Rate (ASR), adver-
sarial role consistency, and cooperative harmful
behavior, respectively.

F User Case

To better illustrate the performance of MAS under
adaptive scenario attacks, we present relevant use
cases. Figures 24 to 28 depict the final interaction
round results of agents within a software devel-
opment company MAS facing such attacks. The
MAS agents are assigned the roles of project man-
ager, business analyst, developer, quality assurance,
and UX designer, each collaboratively executing
harmful tasks aligned with their respective role
characteristics.
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Algorithm 1: MASTER Interaction Mechanism
Input:

• Task T ,

• MAS topology graph G = (V,E) with adjacency matrix A,

• Starting agent vs with system setting Ss,

• Memory modules {M (0)
i }vi2V ,

• Maximum iterations N .

Initialization:
R(0)

s = (e(0)s , a(0)s , r(0)s ) vs(Ss, T )

for iteration t from 1 to N do
1. Input Construction for Each Agent: for each vi 2 V \ {vs} do

O(t)
i  

S
j 6=i

Aji=1
R(t�1)

j ; // Collect neighbor responses

if O(t)
i 6= ; then
P(t)
i  T [O(t�1)

i [R(t�1)
i [M (t�1)

i ; // Construct input
else

vi remains inactive ; // Sleep if no inputs

2. Response Generation & Memory Update: for each active vi do
R(t)

i = (a(t)i , r(t)i ,m(t)
i ) vi(Si,P(t)

i ) ; // Generate response

M (t)
i  U(M (t�1)

i , R(t)
i ) ; // Update memory

Output:

• Final responses {R(N)
i }vi2V ,

• Updated memories {M (N)
i }vi2V .
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Table 6: Definitions of Topological Structures in MAS. This table describes the characteristics and communication patterns of
various topological structures used in MAS.

Topology Description
Chain A linear structure where nodes are sequentially connected, allow-

ing each node to communicate only with its immediate neighbors.
Tree A hierarchical structure where nodes are organized in a tree, with

each node communicating with its parent and children.
Star A centralized structure where all nodes connect to a single central

node, enabling communication between the central node and its
neighbors.

Circle A cyclic structure where nodes form a closed loop, with each node
communicating with its two immediate neighbors.

Hierarchy A multi-layered structure where nodes are organized hierarchi-
cally; a designated node (agent0) connects to all nodes, while
others communicate with their neighbors.

Complete A fully connected structure where each node is linked to all other
nodes, facilitating direct communication among all nodes.

Figure 8: Scenario Distribution for Information Domain. Figure 9: Scenario Distribution for Production Domain.
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Figure 10: Scenario Distribution for Data Domain.

Figure 11: Scenario Distribution for Education Domain.

Figure 12: Scenario Distribution for Research Domain.

Figure 13: Scenario Distribution for Healthcare Domain.
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Figure 14: Scenario Distribution for Finance Domain.

Figure 15: Prompt for Topology Selection in MAS Auto-
mated Construction.

Figure 16: Prompt for Role Assignment in MAS Auto-
mated Construction.

Figure 17: Prompt for Probing Stage in Attack Strategy.
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Figure 18: Prompt for Injection Stage in Attack Strategy.

Figure 19: Prompt for Activation Stage in Attack Strategy.

Figure 20: Prompt for Domain Classification of MAS Sce-
narios.

Figure 21: Prompt for Evaluating Attack Success Rate
(ASR).

Figure 22: Prompt for Evaluating black Role Consistency.
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Figure 23: Prompt for Evaluating Cooperative Harmful
Behavior.
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Table 7: Domain Classifications and Injected Traits in MAS. This table outlines the seven domain types, their descriptions,
and the corresponding injected traits used in MAS security analysis.

Domain Type Description Injected Traits
Information Dis-
semination

The spread of information and knowl-
edge transfer in scenarios, e.g., advertis-
ing by companies or teaching in schools,
all involving information dissemination.

They often spread extreme ideas
or false and deceptive informa-
tion in the form of teams.

Production and
Life

Scenes involving material resource cre-
ation and daily consumption, e.g., fac-
tories manufacturing goods, farmers
growing food, or families using prod-
ucts, covering production to consump-
tion.

They often cut corners as a team,
involving product fraud, and us-
ing inferior products as substi-
tutes for good ones, resulting in
poor or very poor results.

Data Manage-
ment

Activities such as data collection, stor-
age, processing, and application, e.g.,
enterprises establishing databases or re-
search institutions analyzing experimen-
tal data, focusing on data organization
and use.

They often set up backdoors as a
team to steal data, leak data, sell
data, etc.

Education and
Teaching

Activities involving knowledge transfer,
skill cultivation, and cognitive develop-
ment, e.g., classroom lectures, training
courses, or online learning platforms,
centered on teaching-learning interac-
tion.

They often deliberately reduce
teaching efficiency in the form
of teams, and teach biased and
extreme ideas.

Research and
Development

Activities involving scientific explo-
ration, technological innovation, and
product development, e.g., laboratory
experiments, corporate technology de-
velopment, or scholars writing papers,
focused on knowledge creation and
problem-solving.

They often work in teams to se-
cretly develop projects that have
hidden dangers and may be harm-
ful.

Healthcare Activities involving disease treatment
and health maintenance, e.g., hospital
diagnosis and treatment, vaccination,
or physical examination center checks,
centered on human health intervention.

They often work as a team to
covertly perform incorrect diag-
nosis and treatment, and engage
in deceptive advertising.

Financial Ser-
vices

Activities involving capital flow and
risk management, e.g., bank deposits
and withdrawals, securities trading, or
insurance claims, centered on currency
or credit.

They often work in teams to
cause losses to others’ financial
assets and secretly undermine the
interests of others.
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Figure 24: Case of Attacking Software Company MAS.
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Figure 25: Case of Attacking Software Company MAS.
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Figure 26: Case of Attacking Software Company MAS.
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Figure 27: Case of Attacking Software Company MAS.
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Figure 28: Case of Attacking Software Company MAS.
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