Dynamic Injection of Entity Knowledge into Dense Retrievers
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Abstract

Dense retrievers often struggle with queries
involving less-frequent entities due to their
limited entity knowledge. We propose the
Knowledgeable Passage Retriever (KPR), a
BERT-based retriever enhanced with a context-
entity attention layer and dynamically updat-
able entity embeddings. This design enables
KPR to incorporate external entity knowl-
edge without retraining. Experiments on
three datasets demonstrate that KPR consis-
tently improves retrieval accuracy, with par-
ticularly large gains on the EntityQuestions
dataset. When built on the off-the-shelf bge-
base retriever, KPR achieves state-of-the-art
performance among similarly sized models on
two datasets. Models and code are released
at github.com/knowledgeable-embedding/
knowledgeable-embedding.

1 Introduction

Language models (LMs) struggle to capture less-
frequent or up-to-date entity knowledge (Kandpal
et al., 2023; Mallen et al., 2023), often resulting
in hallucinations (Shuster et al., 2021). Retrieval-
augmented generation (RAG), which enhances
LMs by leveraging external knowledge retrieval, is
a promising approach to mitigate this issue. Dense
retrievers are commonly employed for this purpose;
however, because they also rely on LMs, they like-
wise struggle with queries involving less-frequent
entities (Sciavolino et al., 2021) and often fail to
retrieve such knowledge effectively.

In this paper, we address this problem by
proposing a simple extension to dense retrievers
that dynamically injects entity knowledge into
their embeddings. Specifically, we introduce the
Knowledgeable Passage Retriever (KPR), a BERT-
based dense retriever (Karpukhin et al., 2020) that
integrates entity embeddings adaptable at inference
time (see Figure 1). KPR is intentionally designed
with a simple architecture and is trained to attend to
entity knowledge based on the context of the input
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Figure 1: Architecture of KPR, a dense retriever with
a context-entity attention layer that incorporates entity
knowledge, given a query as input. Entity embeddings
are obtained via BERT inference, and both the embed-
dings and the entity linker can be updated without re-
training. Relevance is scored by the dot product of query
and passage embeddings, both produced by KPR.

text, through a context-entity attention layer placed
on top of BERT. Entity embeddings are obtained
via single-pass BERT inference on texts referring
to the entity and are kept frozen during training.
KPR detects entities in the input text using a sim-
ple dictionary-based entity linker. Since both the
entity embeddings and the linker can be modified
after training, new entity knowledge can be easily
added or updated without retraining.

To evaluate KPR, we use the EntityQuestions
(EQ) dataset (Sciavolino et al., 2021), which in-
cludes many queries with less-frequent entities, as
well as the Natural Questions (NQ) (Kwiatkowski
et al., 2019) and TriviaQA (TQA) (Joshi et al.,
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2017) datasets. KPR achieves a substantial 12.6%
gain in top 20 accuracy on EQ over the model
without KPR extensions and consistently improves
performance on the other two datasets. We further
build KPR on top of the off-the-shelf bge-base re-
triever, achieving state-of-the-art results on EQ and
TQA compared to other retrievers of similar size.

2 Method

KPR is built upon DPR (Karpukhin et al., 2020), a
widely used BERT-based dense retriever. We add
an attention layer on top of DPR to incorporate
entity knowledge from a knowledge base (KB) (see
Figure 1). We use Wikipedia as the target KB.

DPR. DPR encodes a query or passage into a D-
dimensional embedding, obtained from the output
embedding of BERT’s [CLS] token. Relevance
between a query and a passage is scored as the
dot product of their embeddings. The model is
fine-tuned on datasets containing queries paired
with positive and negative passages, using a cross-
entropy loss with the dot product scores as logits.
See Appendix A for further details.

Input entity representation. KPR uses the fol-
lowing two D-dimensional input embeddings:

» Entity embedding, assigned to each entity in
the KB, represents the entity itself.

» Entity position embedding, assigned to each
position in the input tokens, encodes positional
information.

KPR takes the input tokens and a set of entities
E =eq,...,en detected from the text using an en-
tity linker. The input representation of each entity
is computed by summing its entity embedding and
entity position embedding based on its position in
the input token sequence. If an entity spans multi-
ple tokens, its position embedding is computed as
the average of the embeddings of the corresponding
positions (Yamada et al., 2020b). To prevent the en-
tity sequence from being empty, a D-dimensional
no-op embedding is appended to the sequence of
input entity representations.

Context-entity attention layer. KPR adopts a
single-head key-query-value attention mechanism
(Vaswani et al., 2017). The query matrix Q is com-
puted based on the output embedding of BERT’s
[CLS] token (denoted by Hrc 57 € RY™P). The
key and value matrices, K and V, are computed

based on the input entity representations denoted
by U € RVNF1XD;

Q=Hps1X,, K=UX,, V=UX,,

where X, € RP*D X, e RP*P and X, €
RP*D are weight matrices. We aim for the atten-
tion mechanism to attend to useful entities based
on the context by using entity embeddings as the
key and the embedding of the [CLS] token, which
encodes the context of the input text, as the query.

KPR computes the output embedding Z €
RIXD as:

+

Y = activation <QK> Vv,
VD

Z = In (dropout (Y) + Hrersy)

where activation(+), In(-), and dropout(-) denote
the activation, layer normalization, and dropout
functions, respectively. We use the sigmoid func-
tion with a length-based bias, sigmoid(z —log N +
1) (Ramapuram et al., 2025), as the activation.

Entity embedder. We compute entity embed-
dings based on BERT inference over Wikipedia
passages that refer to the corresponding entity (Ye
et al., 2022). Specifically, for each passage con-
taining an anchor link to the entity, we replace the
entity name with BERT’s [MASK] token, extract the
output embedding of the [MASK] token, and aver-
age the resulting embeddings across passages. The
final embeddings are then normalized to match the
average norm of BERT’s input token embeddings.

Entity linker. We use dictionary-based string
matching to detect entities mentioned in the text.
The dictionary comprises anchor names and their
possible referent entities, obtained from Wikipedia
hyperlinks. For ambiguous names (e.g., “Apple,”
which can refer to Apple Inc. and Apple (food)), we
do not disambiguate to a single entity, but instead
input all possible candidates to maintain recall.

Training. The parameters in our attention layer,
entity position embeddings, and no-op embedding
are initialized randomly. Entity embeddings are
kept frozen during training, enabling them to be
added or updated dynamically after training. The
dropout probability in the attention layer is set to
match that of the other layers. We follow DPR
(Karpukhin et al., 2020) for the remaining train-
ing settings including the loss function. Note that
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entities can be dynamically updated in KPR with-
out retraining, since KPR relies on entity embed-
dings computed via BERT inference, which are
kept frozen during training, and on a dictionary-
based entity linker, whose entries can be modified.

Computational overhead. KPR adds entity em-
beddings to BERT, requiring additional storage.
However, since the embeddings are used only as
input features, they can be implemented as a sparse
lookup table and stored not only in GPU memory
but also in CPU memory or even on disk, with
minimal impact on speed (Yu et al., 2025). Fur-
thermore, KPR introduces only a small overhead
in total FLOPs, as discussed in Appendix B.

3 Experiments

Entity set. We use 7.2M English Wikipedia enti-
ties to construct our entity embeddings and linker.

Datasets and metrics. We train our model on
the dataset proposed by Karpukhin et al. (2020),
which is based on NQ, TQA, WebQuestions (Be-
rant et al., 2013), and CuratedTREC (Baudis and
Sedivy, 2015). We evaluate the models on the EQ,
NQ, and TQA datasets. Following Sciavolino et al.
(2021), we report top 20 retrieval accuracy. Top
100 accuracies are also provided in Appendix D.
We use the 21M Wikipedia passages released by
Karpukhin et al. (2020) as the target passages.

Baselines. We use vanilla DPR and conventional
BM25, which performs robustly on queries with
less frequent entities (Sciavolino et al., 2021).

Base models. We use base-sized BERT and
RetroMAE (Xiao et al., 2022), a state-of-the-art
BERT-based model pretrained for retrieval. For
DPR, we also adopt PELT (Ye et al., 2022), a
BERT-based model that injects entity knowledge by
inserting each entity embedding, placed between
the token embeddings of parentheses, immediately
after the corresponding entity token. While PELT
introduces entity knowledge through input augmen-
tation, KPR incorporates it via a dedicated attention
layer. Unlike KPR, PELT requires each input entity
name to be disambiguated to a single entity, which
incurs additional computational complexity.

Entity embeddings. We use the same entity em-
beddings, derived from base-sized BERT inference
(§2), for both PELT and all KPR models.

Base Entity
Model Model Linker EQ NQ TQA Avg
BM25 - | - 712 91 669 660
o | wer |- BE R
KPRBERT BERT Dictionary Gig—oi —Si%z 719071 76.6

+04 £02  £0.1

R 1. 1.2
DPRReroMaE | RetroMAE _ 1%2 i 02 8i 12 777

KPRRetroMaE | RetroMAE | Dictionary % % %

Table 1: Top 20 accuracies of KPR and baseline mod-
els. For clarity, models are grouped by their base pre-
trained models and entity linkers. We report mean accu-
racy and 95% confidence intervals based on Student’s
t-distribution over 5 training runs with different random
seeds. The best overall mean scores are in bold; the best
within each group are underlined. Top 100 accuracies
are provided in Table 5.

Model | EQ NQ TQA Avg

Entity embeddings:
Random initialization 649 803 79.0 747
Wikipedia2Vec 659 804 792 752
BERT intermediate layer #3 66.2 803 794 753
BERT intermediate layer #6 66.8 803 794 755
BERT intermediate layer #9 67.8 804 796 759
BERT last layer (KPRpgrT) 69.3 80.6 79.7 765

Activation functions:
Softmax function 663 805 795 754
Sigmoid function with length bias | 69.3 80.6 79.7 76.5

Table 2: Top 20 accuracy of KPRggrr with different
entity embeddings and activation functions. Unlike Ta-
ble 1, the results are based on a single training run. The
best score in each group is underlined.

Entity linker. By default, we use our dictionary-
based linker (§2) and additionally employ the state-
of-the-art ReFinED linker (Ayoola et al., 2022). We
select ReFinED over other off-the-shelf systems
such as BLINK (Wu et al., 2020), GENRE (Cao
et al., 2021), and LUKE (Yamada et al., 2022) due
to its superior performance.

We refer to KPR based on BERT as KPRgggrT
and name the other models accordingly. Further
details are provided in Appendix C.

3.1 Results and Analysis

Main results. Table 1 shows that KPR signif-
icantly outperforms all baselines across datasets
and base models. KPRggrr surpasses DPRpgrt
by 12.6% on EQ and 4.9% on average. Using
the same ReFinED linker, KPRggrt consistently
outperforms DPRpgrr, with a 5.2% gain on EQ,
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Figure 2: Top 20 retrieval accuracy of KPRpggr,
DPRPELT» DPRBERT9 and BM25 on EQ, grouped into
10 bins based on entity frequency in Wikipedia.

Model | EQ NQ TQA Avg
contriever (Izacard et al., 2022) | 63.0 67.9 739 683
gte-base (Li et al., 2023) 70.8 77.0 766 747

e5-base (Wang et al., 2022) 724 86.2 814 80.0
bge-base (Xiao et al., 2024) 71.0 823 800 77.8
KPRpge-base 76.8 824 81.5 80.2

Table 3: Top 20 accuracies of KPR based on bge-base
and off-the-shelf retrievers on EQ, NQ, and TQA. Top
100 accuracies are provided in Table 6.

suggesting that the entity knowledge injected by
PELT is partially lost within BERT and highlight-
ing the benefit of KPR’s attention layer placed on
top. KPRgewomaEr achieves the best performance
across all datasets, demonstrating its effectiveness
even with a strong pretrained model. The gain is
notably larger on EQ in all settings, as it includes
many queries involving less-frequent entities. Fur-
ther analysis of the EQ results is provided below.

Additional results on the MS MARCO dataset
are presented in Appendix E.

Effects of entity linker. Table 1 also shows that
KPRggrr With the dictionary-based linker outper-
forms its ReFinED-based variant on average. This
is somewhat surprising, as the dictionary linker sim-
ply applies string matching without disambiguation
(§2) and may detect incorrect or noisy entities. We
attribute this to ReFinED’s slightly lower recall,
as it extracts entities only when confident. For ex-
ample, ReFinED detects 0.93 entities per query on
average in EQ, compared to 0.97 with the dictio-
nary linker. These results also suggest that KPR
is robust to noise, likely due to its attention mech-
anism’s ability to focus on contextually relevant
entities. See Appendix F for further analysis.

How do entity embeddings affect perfor-
mance? We evaluate two baselines for comput-
ing entity embeddings: random initialization and
Wikipedia2Vec embeddings (Yamada et al., 2020a),
both based on the same Wikipedia dump as our
entity embeddings. We also test embeddings ex-

tracted from an intermediate BERT layer, moti-
vated by prior work suggesting that entity knowl-
edge is well captured there (Meng et al., 2022).

Table 2 shows that BERT-based embeddings con-
sistently outperform the alternatives. Notably, us-
ing the last layer yields the best performance across
all datasets. This is likely because H¢ 57, used in
our context-entity attention layer, is also taken from
the last layer, which may help the model better cap-
ture relevance between context and entities.

Sigmoid vs. softmax. We evaluate the effect of
replacing the sigmoid activation in our attention
layer with the softmax function, which is com-
monly used in attention mechanisms. Table 2
shows that sigmoid consistently outperforms soft-
max across all datasets. We attribute this to the
fact that sigmoid allows the model to assess each
entity’s relevance independently, without being in-
fluenced by the presence of other relevant entities.

Analysis of EQ results. To examine whether
KPR’s improvement stems from incorporating
knowledge of less-frequent entities, we divide the
EQ examples into 10 bins based on the frequency of
the entity in each query and measure performance
within each bin. This is feasible because every EQ
query contains a single entity. We obtain entity
frequencies from Wikipedia hyperlinks and create
10 log-spaced bins ranging from 1 to 10,000.
Figure 2 shows that KPRggrT is more consistent
across entity frequencies than other models and
outperforms DPRggrT and DPRpg; 1, especially on
queries with less-frequent entities. Compared to
BM25, it performs comparably on less-frequent
entities and substantially better on frequent ones.

Analysis of KPR’s Attention Mechanism. Ap-
pendix F provides a qualitative analysis of our at-
tention mechanism. We observe that KPR tends
to assign lower weights to common entities and
generally higher weights to correct entities than to
incorrect ones, as shown in Figure 3.

3.2 Pushing State-of-the-Art

To evaluate the effectiveness of KPR on recent off-
the-shelf retrievers, we select the bge-base model
(Xiao et al., 2024) and train KPRypge.pase using it as
the base model. Since bge-base is already trained
on large-scale, high-quality datasets, we freeze the
base model to prevent catastrophic forgetting and
train only the newly introduced parameters. De-
tailed settings are provided in Appendix C.
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Table 3 presents results comparing our model
with recent off-the-shelf retrievers. KPRypge.base
consistently outperforms bge-base across all
datasets, with a substantial 5.8% gain on EQ. It also
achieves the highest average performance among
all strong off-the-shelf retrievers.

4 Related Work

The performance of dense retrievers (Karpukhin
et al., 2020; Guu et al., 2020) remains insufficient
for queries involving less-frequent entities (Sci-
avolino et al., 2021), due to the limited knowl-
edge of such entities in LMs (Kandpal et al., 2023;
Mallen et al., 2023). Several studies have explored
incorporating entity knowledge to enhance LMs
(Zhang et al., 2019; Yamada et al., 2020b; Ye et al.,
2022; Zhang et al., 2023b), among which we adopt
PELT (Ye et al., 2022) as a baseline.

Entity knowledge has also been leveraged to im-
prove retrieval tasks (Liu and Fang, 2015; Xiong
et al., 2017a,b; Liu et al., 2018; Tran and Yates,
2022; Nguyen et al., 2024; Chatterjee et al., 2024).
However, to our knowledge, only Tran and Yates
(2022) is directly applicable to dense retrieval, in-
tegrating Wikipedia2Vec embeddings into a BERT-
based retriever. Because its entity representations
are computed independently of BERT, the model
cannot learn to select relevant entities based on con-
text. As a result, it fails to improve performance
compared to the vanilla model when passages are
represented by a single embedding. Moreover, its
effectiveness on queries involving less-frequent en-
tities remains unexamined, and updating entity em-
beddings requires retraining Wikipedia2Vec. In
contrast, KPR integrates an attention layer into
BERT, enabling it to select contextually relevant
entities more effectively. This leads to improved
performance across multiple retrieval benchmarks.

5 Conclusions

We proposed KPR, a dense retriever with a context-
entity attention layer and dynamically updatable en-
tity knowledge. KPR consistently improves perfor-
mance across benchmarks, particularly on queries
involving less-frequent entities. When built on
bge-base, it achieves state-of-the-art results on two
benchmarks among similarly sized models. Future
work includes applying KPR to decoder-based re-
trievers and extending it to KBs beyond Wikipedia.

Limitations

This work focuses on English-language datasets
and assumes the availability of a KB, namely
Wikipedia. While the proposed method is modular
by design, its effectiveness in languages other than
English or in domains lacking a comprehensive KB
remains unexplored.
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A Overview of DPR

DPR is a BERT-based model that encodes a query
q and a passage p into D-dimensional embeddings,
denoted as e, € RP and e, € RP. The embedding
is taken from the output embedding of BERT’s
[CLS] token. To construct passage p, the passage
title and text are concatenated with BERT’s [SEP]
tokens as: [CLS] passage title [SEP] passage text
[SEP]. Given query g, the relevance of passage p
is computed as the dot product (ey, e,).

Training. LetD = {<QZ7pl+7p;1a o 7p;N>}£‘i1
be a set of M training instances, where each in-
stance consists of a query g¢;, a positive passage
p;L relevant to the query, and NV negative passages
p; j irrelevant to the query. The model is trained
by minimizing the negative log-likelihood of the
positive passage:

exp((ey;- e, 1))

L = —log

exp({eq;, €t >)+Z§‘V:1 exp({eq;, €. DA
i Y

During training, in-batch negatives are used, where
each positive and negative passage in the batch
serves as a negative for all other queries.

Inference. DPR constructs a passage index by
encoding all target passages. At runtime, it re-
trieves the top-ranked passages using maximum
inner product search, with the query embedding as
input.

B Notes on Computational Overhead

In this section, we analyze the impact of KPR’s
attention layer on the total number of floating
point operations (FLOPs), following the estima-
tion method of Kaplan et al. (2020). The non-
embedding FLOPs for a single forward pass of
BERT can be approximated as:

FLOPsgggr ~ 2LDM (12D + M),

where L, D, and M denote the number of hidden
layers, hidden size, and input token length, respec-
tively.

The FLOPs for a forward pass of KPR’s attention
layer can be approximated as:

FLOPsgpg-a =~ 2D?(2N + 1) + 2DN,

where N denotes the number of input entities. The
two terms correspond to the computation of the
key-query-value matrices and the dot product, re-
spectively.

The total FLOPs for a single forward pass of
KPR is then given by:

FLOPskpr ~ FLOPsggrT + FLOPSKPR-att-

For example, with M = 128 input tokens and
N = 16 entities, a forward pass of base-sized
BERT (L = 12, D = 768) requires approximately
22 GFLOPs. The additional cost from KPR’s at-
tention layer is about 39 MFLOPs, accounting for
only 0.18% of the total FLOPs.

Note that while FLOPs provide a hardware-
agnostic estimate of computational cost, actual
runtime may vary due to factors such as imple-
mentation optimizations and hardware constraints.
Consequently, the computational latency of KPR’s
attention layer may not precisely correspond to its
0.18% FLOPs share.

C Detailed Experimental Setup

Entity vocabulary. The entity vocabulary of
KPR consists of 7.2M English Wikipedia entities
that appear as hyperlinks at least once in the April
2024 dump. These hyperlinks are extracted using
the mwparserfromhell library.!

Entity embeddings. As described in Section 2,
entity embeddings are obtained by running BERT
inference on Wikipedia passages that refer to the
corresponding entities. For each entity, we ran-
domly select up to 128 such passages and compute
the embedding using the method outlined in Sec-
tion 2.

For the Wikipedia2Vec entity embeddings used
in Section 3.1, we train the model with the de-
fault hyperparameters, except that the embedding
dimension is set to 768 to match BERT’s input em-
beddings. The same Wikipedia dump is used as for
our entity embeddings.

Entity linker. The dictionary used in our entity
linker is constructed directly from entity hyperlinks
in Wikipedia. For example, if a hyperlink with the
anchor text “New York” refers to the entity New
York City, we register “New York™ as an entity
name and New York City as its possible referent.
To build the dictionary, we collect two statistics
commonly used in the entity linking literature: link
probability, the probability that a name appears as
a hyperlink in Wikipedia, and commonness, the
probability that a name refers to a specific entity

"https://github.com/earwig/mwparserfromhell
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Dataset License #Train #Dev  #Test
Natural Questions Apache-2.0 58,880 8,757 3,610
TriviaQA Apache-2.0 60,413 - 11,313
WebQuestions CCBY 4.0 2,474 - -
CuratedTREC - 1,125 - -
EntityQuestions MIT — - 22,075
MS MARCO Non-commercial 502,939 6,980 -
GraphQuestions CCBY 4.0 1,672 417 2,075

Table 4: Licenses and the number of training, development, and test examples (if available and used) for each

dataset used in this paper.

Model | Base Model | Entity Linker | EQ NQ TQA Avg
BM25 | - | - | 798 737 767 767
DPRgggrr BERT - 700 86.0 847 80.2
KPREBERT BERT Dictionary 78.9 87.0 850 83.6
DPRpg1 1 BERT ReFinED 753 863 847 82.1
KPRgggrT BERT ReFinED 78.7 86.7 85.0 83.5
DPRRetroMAE RetroMAE - 79.8 877 86.0 84.5
KPRRewroMaE | RetroMAE Dictionary 82.3 88.2 86.7 85.7

Table 5: Top 100 accuracies of KPR and baseline models. For clarity, models are grouped by their base pretrained
models and entity linkers. The best overall scores are shown in bold, and the best scores within each group are
underlined. The corresponding top 20 accuracies are available in Table 1.

(Mihalcea and Csomai, 2007; Milne and Witten,
2008). To filter out names unlikely to denote enti-
ties (e.g., function words), we exclude a name if its
link probability is below 5%. We also exclude an
entity if its commonness with respect to the name
is below 30%.

We tokenize text using the default English to-
kenizer provided by the SpaCy library (Honnibal
et al., 2020) and extract entity names by matching
all possible n-grams against the dictionary. Dic-
tionary matching is implemented using a trie from
the marisa-trie library? and is performed in a
case-insensitive manner.

In Section 3, we also use the ReFinED entity
linker, employing the model trained on Wikipedia
with default parameters.

Model. We use the base-sized BERT? with 110M
parameters. RetroMAE* and bge-base’ are also
based on this BERT model. KPR with the entity
embeddings contains 5.6B parameters.

2https://github.com/pytries/marisa-trie
3https://huggingface.co/google-bert/
bert-base-uncased
4https://huggingface.co/Shitao/RetroMAE
Shttps://huggingface.co/BAAI/bge-base-en

Datasets. The licenses and the number of train-
ing, development, and test examples for the
datasets used in this paper are provided in Table 4.
All datasets are publicly and freely available for
research purposes. Access to CuratedTREC is gov-
erned by the TREC organizers. MS MARCO is
freely available for non-commercial research pur-
poses.® We also use Wikipedia, which is licensed
under CC BY-SA 4.0.

For the target passages used in retrieval, we
use a preprocessed version of English Wikipedia
containing 21M passages, originally released by
Karpukhin et al. (2020). The corpus is based on
the December 2018 Wikipedia dump, with semi-
structured content such as tables, infoboxes, lists,
and disambiguation pages removed. The remain-
ing article text is segmented into non-overlapping
chunks, each containing approximately 100 words.

Training. Our training settings follow Karpukhin
et al. (2020). For each query, we use one posi-
tive and one hard negative passage, and construct
a mini-batch of 128 queries. We share parame-
ters between the query and passage encoders to
reduce computational cost, as using separate en-

®https://microsoft.github.io/msmarco/
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Model | EQ NQ TQA Avg
contriever (Izacard et al., 2022) | 75.2 80.6 829 80.0
gte-base (Li et al., 2023) 79.8 86.4 839 834
e5-base (Wang et al., 2022) 825 90.8 86.2 86.5
bge-base (Xiao et al., 2024) 80.8 88.5 859 85.1
KPRypge-base 84.2 89.0 86.6 86.6

Table 6: Top 100 accuracies of KPR based on bge-base and off-the-shelf retrievers on EQ, NQ, and TQA. The

corresponding top 20 accuracies are available in Table 3.

Model ‘ MRR@10 MRR@100 R@10 R@100 R@1000
DPRggrr (Xiao et al., 2022) 31.7 32.8 58.0 85.7 96.0
KPRgERT 33.1 34.2 60.1 86.5 96.1
DPRRetroMmaE (Xiao et al., 2022) 355 36.7 63.6 89.2 97.6
KPRRetroMAE 37.3 38.4 66.4 91.2 98.3

Table 7: The experimental results of KPR and DPR on the MS MARCO dataset.

coders yields nearly identical results (within 0.2%
difference in top 20 accuracy across datasets) in our
experiments, consistent with prior work (Lee et al.,
2023; Zhang et al., 2023a). We optimize the model
using Adam (Kingma and Ba, 2014) with a learn-
ing rate of 2e-5 for 40 epochs. We apply in-batch
negatives (see Appendix A) during training. We do
not perform hyperparameter tuning and instead use
the same settings provided in the GitHub repository
of Karpukhin et al. (2020).”

To construct KPR with the bge-base model pre-
sented in Section 3.2, we make slight modifica-
tions to align with the original settings of bge-base.
Specifically, we use cosine similarity instead of the
dot product for the similarity function and set the
temperature of the softmax function to 0.02 before
computing the cross-entropy loss during training.
We also prepend the instruction “Represent this
sentence for searching relevant passages:” to each
query. We tune the hyperparameters over 12 trials
using the development set of NQ. In particular, we
select the number of epochs from {10, 20, 40} and
the learning rate from {2e—5, 3e—5, 5e—5, le—4},
and choose 20 epochs and a learning rate of 5e—5.
Note that training is highly stable, and all hyperpa-
rameter settings yield similar results.

Our training is implemented using the PyTorch
library (Ansel et al., 2024), the Transformers li-
brary (Wolf et al., 2020), the Datasets library
(Lhoest et al., 2021), and the DeepSpeed library
(Rasley et al., 2020). Experiments are conducted

7https ://github.com/facebookresearch/DPR/blob/
main/conf/train/biencoder_nq.yaml

on servers equipped with two Intel Xeon E5-2698
v4 CPUs and eight NVIDIA V100 GPUs, each
with 32GB of memory. Training KPR takes ap-
proximately eight hours.

D Results Based on Top 100 Accuracy

Table 5 presents the top 100 accuracies of KPR and
baseline models. Furthermore, Table 6 reports the
top 100 accuracies of KPR based on bge-base and
recent off-the-shelf retrievers.

E Additional Experiments on MS
MARCO

We conduct additional experiments on the MS
MARCO dataset to assess the effectiveness of KPR
on a widely used retrieval benchmark. The experi-
mental setup follows Xiao et al. (2022). We train
the model on the public training set, using hard
negatives mined with BM25, and employ the offi-
cial corpus of 8.8 million passages as the retrieval
target. Evaluation is conducted on the development
set. We report Mean Reciprocal Rank (MRR@10
and MRR@100) and recall (R@10, R@100, and
R@1000).

We use the hyperparameters provided in the
GitHub repository of Xiao et al. (2022).% For each
query, we select one positive and 15 negative pas-
sages to form a mini-batch of 16 queries. Negative
passages are sampled from the top 200 ranked by
BM25. We apply in-batch negatives during train-
ing. The model is trained for 4 epochs with a learn-

8https ://github.com/staoxiao/RetroMAE/tree/
master/examples/retriever/msmarco
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ing rate of 2e-5 using the Adam optimizer. For
RetroMAE, we use the variant trained on the MS
MARCO corpus’, following Xiao et al. (2022).
As shown in Table 7, KPR consistently outper-
forms DPR built on both BERT and RetroMAE
across all metrics. These results clearly demon-
strate the effectiveness of KPR on this benchmark.

F Qualitative Analysis of KPR’s
Attention Mechanism

To examine the behavior of KPR’s attention
mechanism, we conduct an experiment using the
GraphQuestions dataset (Su et al., 2016; Sorokin
and Gurevych, 2018), which contains questions
annotated with entity names linked to Wikidata
entities that can be resolved to Wikipedia entities.
We randomly select 500 questions that include en-
tity names associated with more than two possi-
ble referent entities in the dictionary used by our
entity linker. Each question and its entities are in-
put to KPR, and we manually inspect the attention
weights (i.e., the normalized outputs of the sigmoid
activation) assigned to each entity.

We present 10 example questions with their en-
tities and corresponding attention weights in Fig-
ure 3. This analysis reveals two general trends:
(1) KPR tends to assign lower attention weights
to common entities, such as widely known geo-
graphic names, racial group names, and religious
terms (Questions #1 and #2). We hypothesize that
this occurs because such entities are already well-
represented in the underlying BERT model, and
KPR does not require additional knowledge to han-
dle them. (2) KPR generally assigns higher atten-
tion weights to correct entities than to incorrect
ones (Questions #1-#8), suggesting that it implic-
itly learns to disambiguate entities. However, it
occasionally assigns higher or comparable weights
to incorrect entities, particularly when those enti-
ties are rarer than the correct ones (Questions #8—
#10). Moreover, in some cases where the correct
and incorrect entities are semantically similar (e.g.,
Questions #1 and #2), both may still contribute
positively to retrieval performance.

These findings partly explain why KPR appears
robust to noise (see Section 3.1), even though it
sometimes assigns non-negligible weights to irrele-
vant entities. Another possible explanation is that,
as suggested by a recent study (Elhage et al., 2022),

9https ://huggingface.co/Shitao/RetroMAE_
MSMARCO

LMs can represent numerous features simultane-
ously in an almost orthogonal manner, which may
allow the incorporation of noisy entities without
significantly affecting similarity scores.
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Question #1: in which month does the average rainfall of new york exceed 86 mm?
v/ New York City (0.031)
8 New York (state) (0.030)

Question #2: what is the number of tv directors that are jewish?
v Jews (0.041)
8 Judaism (0.030)

Question #3: how does one drink margarita?
v/ Margarita (0.099)
¥ Margarita Island (0.061)

Question #4: the largest unit of area in the si system is called as?
v/ International System of Units (0.098)
® Silicon (0.077)

Question #5: thatcher was the inspiration for which for your eyes only character?
v/ Margaret Thatcher (0.127)
® Thatcher, Arizona (0.071)

Question #6: what movies were edited by spielberg?
v/ Steven Spielberg (0.161)
® Spielberg, Styria (0.091)

Question #7: who made the sensor of d300?
v/ Nikon D300 (0.121)
® State road D.300 (Turkey) (0.088)

Question #8: which position was glen johnson playing in 2010 world cup?
v/ Glen Johnson (0.122)
8 Glen Johnson (boxer) (0.120)

Question #9: michael tyson uses which stance?
v/ Mike Tyson (0.107)
¥ Michael Tyson (antiquary) (0.110)

Question #10: o was discovered by how many people?
v/ Oxygen (0.099)
¥ Big O notation (0.142)

Figure 3: Qualitative analysis of KPR’s attention mechanism on the GraphQuestions dataset. Entity names are
underlined; correct and incorrect referent entities are marked with «and %, respectively. The referent entity
receiving the higher attention weight is shown in bold.
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