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Abstract

The efficacy of Large Language Models
(LLMs) in long-context tasks is often ham-
pered by the substantial memory footprint
and computational demands of the Key-Value
(KV) cache. Current compression strategies,
including token eviction and learned projec-
tions, frequently lead to biased representa-
tions—either by overemphasizing recent/high-
attention tokens or by repeatedly degrad-
ing information from earlier context—and
may require costly model retraining. We
present FAEDKV (Frequency-Adaptive In-
finite-Window for KV cache), a novel,
training-free KV cache compression frame-
work that ensures unbiased information re-
tention. FAEDKV operates by transforming
the KV cache into the frequency domain us-
ing a proposed Infinite-Window Fourier Trans-
form (IWDFT). This approach allows for
the equalized contribution of all tokens to
the compressed representation, effectively pre-
serving both early and recent contextual in-
formation. A preliminary frequency ablation
study identifies critical spectral components
for layer-wise, targeted compression. Experi-
ments on LongBench benchmark demonstrate
FAEDKV’s superiority over existing methods
by up to 22%. In addition, our method shows
superior, position-agnostic retrieval accuracy
on the Needle-In-A-Haystack task compared
to compression based approaches.

1 Introduction

LLM has become the paradigm in language-
generating tasks. It can perform variety of impor-
tant tasks such as text generation, question answer-
ing, mathmatical problem-solving. For this types
of problems, a long context is often required to
provide enough background information, thus they
demand the model have long context capability.
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Recently, chain-of-thought reasoning models have
earned popularity due to their ability to breakdown
the problems into small steps and solve them in a
reasoning process. It also requires sufficiently long
generated text to solve complex problems.

However, Transformers(Vaswani et al., 2023) in-
herently struggle with long sequences. While their
quadratic self-attention complexity is a known bot-
tleneck, autoregressive decoding mitigates this for
subsequent tokens using a Key-Value (KV) cache.
This cache, however, introduces its own challenge:
its memory footprint grows linearly with context
length, rapidly consuming inference resources.

Recent approaches to mitigate KV cache mem-
ory costs primarily involve token pruning. For in-
stance, H2O (Zhang et al., 2023b) evicts tokens
with low accumulated attention scores to main-
tain a target cache size, while PyramidKV (Cai
et al., 2024b) extends this by dynamically allocat-
ing cache budgets across layers and selecting to-
kens deemed most important. While such methods
can reduce KV cache sizes during inference, their
reliance on attention scores as a primary selection
criterion introduces a bias. This bias favors tokens
with high immediate relevance to the current query,
potentially leading to the premature eviction of im-
portant tokens, a phenomenon related to the ’lost
in the middle’ problem (Liu et al., 2023b).

Alternatively, learning-based compression tech-
niques have been applied to the KV cache. For
example, ActivationBeacon (Zhang et al., 2024)
learns to condense preceding tokens into a compact
’activation beacon,’ while LOCOCO (Cai et al.,
2024a) employs 1-D convolutional networks to
project keys and values into compressed represen-
tations. Although these data-driven approaches
can effectively reduce cache size, they often rely
on a learned compression module activated when
the cache exceeds a predefined threshold. This
can lead to repeated compression of earlier tokens
as the context window expands, progressively de-
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Figure 1: Conceptual illustration of how different KV cache management strategies process past tokens, highlight-
ing their inherent biases. (a) Full KV Cache: Represents unbiased, complete retention. (b) Eviction strategies
(e.g., H2O/SnapKV): Clearly show biased token removal. (c) Learned compression (e.g., Lococo): Illustrates
bias through targeted, often heavier, compression of older tokens. (d) FAEDKV (Ours): Its visually consistent
treatment of all past tokens underscores an algorithmic approach designed to operate without introducing arbitrary
biases.

grading their information content. Moreover, these
methods frequently necessitate model fine-tuning
or the training of auxiliary modules, demanding
significant computational resources.

This paper introduces Frequency-Adaptive In-
finite Window for KV cache (FAEDKV), a novel
algorithm to address these challenges. FAEDKV
transforms the KV cache into the frequency do-
main, ensuring balanced preservation of informa-
tion from all tokens. Its methodology involves
a layer-wise frequency ablation study to identify
critical spectral components and a novel Infinite-
Window Fourier Transform (IWDFT) for manag-
ing the frequency-domain cache. Unlike common
approaches leading to abrupt eviction or repeated
compression of older tokens (conceptualized in Fig-
ure 1 (b,c)), FAEDKV more consistently retains
their information (Figure 1 (d)), enabling targeted
frequency filtering for compression. FAEDKV is
universally compatible, requires no fine-tuning, and
integrates via a one-time ablation study and modifi-
cation of the attention module.

Contribution:

• We propose FAEDKV, a novel method
achieving unbiased Key-Value (KV) cache
compression by transforming entries into the
frequency domain, thereby mitigating preva-
lent contextual biases found in existing tech-
niques.

• We develop a supporting frequency-based
framework featuring a novel Infinite-
Window Fourier Transform (IWDFT)

for efficient, recursive cache updates, and
a frequency ablation study for targeted,
layer-wise spectral pruning to optimize
compression.

• Experiments demonstrate FAEDKV’s supe-
rior performance, significantly outperforming
established baselines on LongBench by up to
22% with 9% cache size and achieving con-
sistent, position-agnostic retrieval accuracy in
Needle-in-a-Haystack tests.

2 Related Works

2.1 KV Cache Compression

Managing the extensive Key-Value (KV) cache in
Large Language Models (LLMs) to reduce mem-
ory overhead and latency is a significant research
focus (Ge et al., 2023; Liu et al., 2024a). Many
approaches selectively prune the cache by evicting
less important tokens based on attention scores or
other heuristics, such as H2O (Zhang et al., 2023a),
Scissorhands (Liu et al., 2023a), and SnapKV (Li
et al., 2024c). Other strategies involve learned pro-
jections or recursive compression, like LoCoCo
(Cai et al., 2024a), which may require fine-tuning
as discussed in broader analyses of learned long-
context methods (Tan et al., 2024; Fu et al., 2025b).

Another line of work focuses on obtaining more
compact cache representations through sparse de-
composition. This includes low-rank approxima-
tion methods such as PALU (Chang et al., 2024),
as well as approaches that achieve sparsity via
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Figure 2: Overview of the FAEDKV workflow. (a) Pre-filling: The middle segment of the initial context is con-
verted to the frequency domain (orange) by DFT, pruned, and stored with sink/recent tokens (blue). (b) Decoding:
The compressed frequency-domain segment (orange) is updated via IWDFT (with new token information) and re-
pruned. For attention, it’s reconstructed to the time domain (red) by Sparse IDFT and combined with sink/recent
tokens (blue) before attention score calculation.

aggressive quantization (e.g., KIVI (Liu et al.,
2024b)) or structured, layer-wise attention (e.g.,
MLA (DeepSeek AI, 2024)). However, these meth-
ods operate primarily in the embedding dimension,
reducing the per-token representation size rather
than the sequence length, which is the main focus
of our work. Therefore, sparse embedding-based
approaches like PALU and MLA are complemen-
tary but not directly comparable to our method.

Architectural modifications such as Grouped-
Query Attention (GQA) (Ainslie et al., 2023) and
other attention-aware compression techniques (Ge
et al., 2024) further attempt to reduce cache size.
While these methods effectively decrease memory
usage, they often introduce unequal token influ-
ence, with some tokens being discarded or heavily
down-weighted. Our approach diverges by ensur-
ing that every token contributes more evenly to the
compressed representation.

2.2 Fourier Transform in LLM

Concurrently, Fourier transforms are proving instru-
mental in analyzing and enhancing LLMs. Stud-
ies reveal LLMs utilize Fourier features internally
for tasks like arithmetic, encoding information
across different frequency components (Nanda
et al., 2023; Murty et al., 2024). Beyond analy-
sis, frequency-domain techniques are actively im-
proving model efficiency and capabilities. For ex-
ample, Transformer FFNs have been reinterpreted
as frequency transformers (Lee et al., 2024), and

methods like AFFormer (Li et al., 2024b) incor-
porate Fourier-inspired adaptive filters. Fourier
features are also applied in specialized areas such
as LLM-based time-series forecasting (Zhou et al.,
2024), creating robust positional embeddings like
RoFormer (Su et al., 2024), and developing novel
frequency-domain attention mechanisms like FNet
(Lee-Thorp et al., 2021). While these studies high-
light the versatility of Fourier methods in LLMs,
their specific application to KV cache compression
with an emphasis on uniform token contribution—
as explored in our work—remains a novel direc-
tion(Fu et al., 2025a; Long et al., 2025).

3 Preliminaries

Existing KV cache compression largely relies on
eviction or learning-based techniques, which can
introduce recency bias. Our approach differs by
applying a novel frequency-domain transformation
to the KV cache, aiming for equalize token contri-
bution to the compressed state. This requires empir-
ically analyzing frequency component importance
via ablation experiments that measure perplexity
changes upon pruning. This section outlines pre-
liminaries and the frequency ablation study.

3.1 Background

3.1.1 KV Cache in Autoregressive Decoding
During generation, we omit batch and head dimen-
sions for clarity. Let xt ∈ R1×d be the input em-
bedding at step t, and let WQ,WK ,W V ∈ Rd×d
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be the projection matrices. The query, key, and
value vectors are computed as

qt = xtWQ,kt = xtWK ,vt = xtW V . (1)

The key and value caches grow by appending the
new vectors:

Kt+1 =

[
Kt

kt

]
,Vt+1 =

[
Vt

vt

]
, (2)

so that Kt, V t ∈ Rt×d.
The attention output for the next token is then

ot = Softmax
(qt

[
Kt
]>

√
d

)
Vt. (3)

While caching prevents the redundant recompu-
tation of past keys and values, allowing the atten-
tion calculation for each new token to be performed
in O(t) time with respect to the current context
length t, the KV cache itself incurs a memory cost
of O(t). For very long sequences, both this linear
growth in memory and the per-step computational
cost become substantial. This challenge motivates
our frequency-domain compression strategy, aimed
at reducing the effective cache size—and thereby
both memory and computational overheads for at-
tention—without sacrificing the model’s ability to
attend to both recent and distant tokens.

3.1.2 Discrete Fourier Transform
The Discrete Fourier Transform (DFT) is a funda-
mental tool for analyzing signals in the frequency
domain, widely used in fields like voice and im-
age processing. In the context of Large Language
Models (LLMs), a sequence of vectors (such as
those in the KV cache along the token dimension)
can be treated as a 1-D time-domain signal. Apply-
ing a 1-D DFT to such sequences transforms them
into the frequency domain, which can reveal struc-
tural properties and allow for targeted manipulation,
forming the basis for our compression approach.

The DFT converts a finite discrete-time sequence
x[0], x[1], . . . , x[N − 1] into its frequency-domain
representation Xf [0], Xf [1], . . . , Xf [N−1]. This
transformation is defined as:

Xf [k] =

N−1∑

n=0

x[n](Wk)n,

where Wk = e−j
2πk
N , k = 0, 1, . . . , N − 1.

(4)

In this formulation, x[n] is the input signal at time
n, Xf [k] is the k-th frequency component, N is
the sequence length, j is the imaginary unit, and
Wk is the complex exponential term e−j

2πk
N (often

referred to as a twiddle factor). This transforma-
tion can be computed efficiently using the Fast
Fourier Transform (FFT) algorithm, which has an
O(N logN) time complexity and O(N) memory
cost.

To utilize the frequency-domain representation
for attention, the time-domain KV cache vectors
must be reconstructed. This is achieved using the
inverse DFT (IDFT). Given the frequency com-
ponents Xf [k] and our previously defined Wk =

e−j
2πk
N , the IDFT reconstructs the time-domain se-

quence x̃[n] as:

x̃[n] =
1

N

N−1∑

k=0

Xf [k](W ∗k )n,

where W ∗k = ej
2πk
N , n = 0, 1, . . . , N − 1.

(5)

This reconstruction can be performed efficiently
using an Inverse Fast Fourier Transform (IFFT)
with O(N logN) time complexity. We adopt this
method for reconstructing our KV cache from
its compressed frequency-domain representation.
While the initial pre-filling stage for attention cal-
culation over N tokens is typically O(N2), our
DFT-based enables us to reduce the initial latency.
We verify it at Section 5.4.

3.2 Frequency Ablation Study

Previous studies (He et al., 2023; Kai et al., 2025)
have employed the Discrete Cosine Transform
(DCT) for analyzing model components, often
finding energy concentrated in lower frequencies
and thus retaining only these for compression.
We choose a DFT approach over DCT because
DCT’s implicit symmetric signal extension (mir-
roring) contributes to its strong emphasis on lower-
frequency bins. It could leads to the loss of critical
higher-frequency details.

To assess the relative importance of different
spectral bands in the KV cache, we perform a
layer-wise frequency ablation study. We randomly
sampled 100 texts from WikiText-103-v1 (Merity
et al., 2016), processing each up to the model’s
maximum token sequence length, denoted as N .
For each Transformer layer ` ∈ {1, . . . , Llayers}
(where Llayers is the total number of layers), we
compute the DFT of the keys and values along
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Figure 3: Overview of the Frequency Ablation Study. (a) The workflow illustrates the process: time-domain
Key/Value cache data (“Key Before Filtering”) is transformed via DFT into its frequency-domain energy repre-
sentation (“Energy Before Filtering”). Specific frequency bands are then pruned (“Energy After Filtering”), and
the corresponding time-domain data is reconstructed via IDFT (“Key After Filtering”) to evaluate performance im-
pact. (b) A heatmap displays the Normalized Perplexity Increase (∆`,c) resulting from ablating different frequency
bands (x-axis, 1-20) across various model layers (y-axis, 0-27). Higher float values (brighter colors, from 0.0 to
1.0) indicate greater importance of the ablated band to model performance.

the token sequence length dimension. This DFT
yields N frequency bins. These N bins are par-
titioned into C contiguous chunks. Each chunk
c ∈ {1, . . . , C} consists of N/C frequency bins.
Let Bc ⊂ {0, . . . , N − 1} denote the set of fre-
quency indices belonging to chunk c.

During the ablation study, for each layer ` and
each chunk c, we zero out (prune) all DFT coeffi-
cients Xf

` [k] where k ∈ Bc. The modified coeffi-
cients X̂f

` [k] are thus defined as:

X̂f
` [k] =

{
0, if k ∈ Bc,

Xf
` [k], if k /∈ Bc.

(6)

Using these pruned coefficients X̂f
` [k], we re-

construct the key and value tensors for layer ` via
the IDFT. This reconstructed KV cache temporarily
replaces the original one for that layer to evaluate
the impact of pruning chunk Bc. We record the
resulting model perplexity as PPL`,c. For baseline
comparison, let PPLorig be the perplexity of the
model with an unmodified KV cache. The normal-
ized perplexity increase, ∆`,c, is then defined as:

∆`,c =
PPL`,c − PPLorig

PPLorig
, (7)

This metric, ∆`,c, quantifies the importance of fre-
quency chunk c at layer `; a larger value indicates
a more significant contribution of that chunk to the
model’s performance.

Our analysis of these ∆`,c′ values reveals that
while low-frequency components often demon-
strate greater importance, many high-frequency
components (or chunks containing them) also
yield significant ∆ values, indicating their non-
negligible role. This finding suggests that a simple
low-pass filtering approach might be suboptimal.
The whole process is visualized in Figure 3.

Thus, to retain as much critical information as
possible across the spectrum, we employ a greedy
compression strategy. For each layer, given a de-
sired retention ratio r, we select the top r · C most
important frequency chunks and discard the remain-
der. C is a hyperparameter that controls the gran-
ularity of ablation study. We evaluate its effect in
our experiments at Section 5.5.
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4 FAEDKV

4.1 Infinite Window DFT
The standard Discrete Fourier Transform (DFT),
as defined in Equation (4), provides a static anal-
ysis of an entire input sequence. However, in au-
toregressive Transformer models, new tokens are
generated sequentially. If we were to recompute
the DFT over the entire growing KV cache (of cur-
rent length N ) at each decoding step, this would
incur a computational cost of O(N logN) using
FFT (or O(N2) naively) for that single step. This
is problematic when compared to the typical com-
plexities of decoder-only Transformers. We notice
that sliding-window DFT is better being recursively
updated. With window size M , it updates each fre-
quency bin as:

St+1[k] = Wk

(
St[k]− xt−M+1 + xt+1

)
,

Wk = e−j
2πk
M , for k = 0, 1, . . . ,M − 1.

(8)
Here, x[t + 1] is the new input sample entering
the window, and x[t −M + 1] is the oldest sam-
ple leaving the window.The sliding-window DFT
efficiently updates the windowed frequency repre-
sentation at O(M) per time step to update all M
frequency bins.

Despite this, it presents two major drawbacks
for our goal of KV cache compression. Firstly, it
necessitates storing all M time-domain samples
of the current window. Secondly, this subtraction
of x[t−M + 1] completely removes information
about tokens older than the M -sample window.

To address the fixed memory window and as-
sociated storage overhead of the standard sliding-
window DFT, an intuitive first step is to remove the
subtraction of the oldest sample (x[t−M+1]). This
creates a conceptually infinite, recursive window.
However, this simpler recursion would lead to un-
bounded accumulation of values in the frequency-
domain state St[k], risking floating-point overflow
for very long sequences common in LLMs(Lee
et al., 2025).

Our Infinite Window DFT (IWDFT), defined
in Equation 9, prevents such overflow by incorpo-
rating a normalization factor based on the current
sequence length, N , into each recursive update:

St+1[k] = Wk

(
N − 1

N
St[k] +

1

N
x[t + 1]

)
.

(9)
Here, St[k] is the previous state for the k-th fre-
quency bin. We approximate term N−1

N to 1 since

most context is larger than 1000.
This IWDFT approach is applied during decod-

ing to update the K and V caches. It resolves the
primary issues of the standard sliding window by
avoiding extra time-domain storage and the hard
cut-off of past information. Unlike methods that
can introduce bias (Cai et al., 2024a; He et al.,
2023), IWDFT processes each token’s contribution
consistently. The update is efficient (O(NDFT )
per step), training-free, and compatible with autore-
gressive LLMs.

4.2 Workflow

In this section, we detail our workflow, shown in
Figure 2. Our overall idea is to transform Key and
Value (KV) caches into the frequency domain using
the Infinite Window DFT (IWDFT), and then com-
press this representation by selectively retaining
frequency regions based on importance scores (∆)
derived from an ablation study. Initially, for each
model, this ablation study is performed.By measur-
ing the normalized perplexity increase (∆) that oc-
curs when each chunk is temporarily removed, we
obtain layer-specific importance scores for these C
distinct spectral chunks. Given a desired retention
ratio r, we then select the top r · C most impor-
tant frequency chunks per layer based on these ∆
scores. We refer to this process "pruning".

4.2.1 Pre-filling Stage
In the pre-filling stage, an initial input context of
length N (e.g., up to 100k tokens) is processed
with an approximate O(N2) attention complexity
to generate the Key-Value (KV) cache. To pre-
pare for compression, we transform a segment of
this cache to the frequency domain using the Fast
Fourier Transform (FFT) with Equation 4). Guided
by studies highlighting the importance of initial
and recent tokens for "attention sinks"(Han et al.,
2024), we exclude the first S and last R tokens
from this transformation. Thus, only the middle
segment of M = N − S − R tokens from each
layer’s KV cache undergoes DFT:

Kf
0:M−1 = DFT

(
K[S : S + M − 1]

)
,

Vf
0:M−1 = DFT

(
V[S : S + M − 1]

)
.

(10)

Subsequently, these M -length frequency-domain
representations, Kf

0:M−1 and Vf
0:M−1, are pruned

layer-wise. Using the set of important frequency
components B∗` identified in Section 3.2 and the
rule from Equation 6, we obtain the compressed
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versions K̂f
0:M−1 and V̂f

0:M−1. Storing only these
selected components significantly reduces memory
for the full N -token KV cache from O(N) to O(N ·
r), where r denotes the cache compression ratio.

4.2.2 Decoding Stage
At each decoding step t, we have three operations:

Cache Reconstruction. At each decoding step
t, the compressed frequency-domain KV caches,
K̂f

t and V̂f
t (inherited and updated from the previ-

ous step), are transformed back to the time domain
using the IDFT operation from Equation 5. This
yields the reconstructed caches K̃t and Ṽt:

K̃t = IDFT
(
K̂f

t

)
,

Ṽt = IDFT
(
V̂f

t

)
.

(11)

To optimize this reconstruction, we leverage the
sparsity inherent in the compressed K̂f

t and V̂f
t

by employing a sparse IDFT implementation. It
speed up the process by only working on the non-
zero frequency components. We show this in our
experiment at Section 5.4

Updating Cache As new tokens (kt, vt) are gen-
erated and added to a recent time-domain window
of size R, the tokens that age out of this window
(e.g., kt−R, vt−R) are incorporated into the histori-
cal compressed KV cache. This update leverages
our IWDFT mechanism, as defined in Equation 9.
The update process is:

Kf
t+1 = IWDFT

(
K̂f

t , kt−R
)
,

Vf
t+1 = IWDFT

(
V̂f

t , vt−R
)
.

(12)

Here, K̂f
t and V̂f

t are the previous compressed
frequency-domain states, and Kf

t+1,V
f
t+1 are the

updated states. This IWDFT process ensures that
each token aging into the historical cache is in-
corporated consistently, allowing early context to
maintain a sustained influence. Since the IWDFT
update operates on all its maintained frequency
bins, it can repopulate components that were pre-
viously zero due to pruning. After each IWDFT
update, the pruning rule (Equation 6, using the se-
lected components B∗` ) must be reapplied to main-
tain the compression level. In practice, we only
compute and store the coefficients for the selected
frequency components B∗` .

Calculating Attention We assemble our K and
V as follow:

Kt =
[
K[0:S], K̃t, K[N−R:N−1]

]
,

Vt =
[
V[0:S], K̃t, V[N−R:N−1]

]
,

(13)

As shown in the equation, the current KV pair con-
sist of “attention-sink” tokens, reconstructed tokens
and the last R recent tokens.

Finally, the attention output ot is computed us-
ing the assembled Kt and Vt caches (Equation 3).
Critically, FAEDKV requires no model fine-tuning
for its integration. By reconstructing compressed
KV cache segments to their original length, our
method ensures the model operates within its exist-
ing architectural and positional embedding limits.
This approach differs from other works(Tan et al.,
2024; Cai et al., 2024a) that designed to extend the
model’s inherent context.

5 Experiments

5.1 Setup

We use Llama3-8B for long-context Question An-
swering (QA) and Qwen2-7B-Instruct for Needle-
in-the-Haystack evaluations. Initial frequency ab-
lation studies on both models informed our ap-
proach, leading us to segment the frequency spec-
trum into Cchunks = 22 chunks (further details in
Section 5.5). Our method explicitly retains the first
S = 10 tokens as attention sinks and the most re-
cent R = 50 tokens, incurring negligible KV cache
overhead from these. All experiments employed
greedy decoding, and baseline methods were im-
plemented using their officially provided code for
fair comparison.

5.2 QA Datasets

We evaluate our approach on Llama3-8B-Instruct
model on the LongBench benchmark(Bai et al.,
2024b), which comprises 16 tasks across six
categories—single-document QA, multi-document
QA, summarization, few-shot learning, synthetic
tasks, and code completion—with an average con-
text length of roughly 11 000 tokens. We compare
against three baselines: H2O(Zhang et al., 2023b),
an eviction based compression method; SnapKV(Li
et al., 2024c), the state of art for long context tasks;
and full KV cache that stores all KV pairs with-
out compression. We set the baseline compression
method’s cache size to 512, 1024,2048 respectively.
Correspondingly, we set our method’s compression
ratio r to 0.094, 0.125 and 0.25 to facilitate fair
comparison.

Table 1 presents our model’s performance across
all LongBench tasks and cache sizes. On aver-
age, FAEDKV improves accuracy by 2.91 points
compared to H2O and by 2.12 points compared to
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Method Single-Doc QA Multi-Doc QA Summarization Few-shot Synthetic Code Avg.
NtrvQA QAsper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRe LCC RB-P

FullKV 22.53 26.29 41.52 37.46 29.24 21.56 29.47 22.23 25.85 65.00 81.00 40.12 4.65 4.75 39.42 43.63 33.42

Cache Size = 768 (Compression Ratio = 0.094)

H2O 7.67 11.81 25.92 20.40 17.37 7.32 12.86 9.18 12.56 24.50 49.18 26.72 0.0 0.0 27.61 32.29 17.83
SnapKV 11.84 12.35 30.86 26.54 17.01 13.22 15.71 9.86 16.66 29.50 55.89 28.54 0 3.00 20.97 26.15 19.91
FAEDKV 15.23 18.08 39.12 31.62 21.09 15.48 19.02 14.26 19.70 43.5 66.54 30.70 2.45 3.20 28.47 34.86 25.21

Cache Size = 1024 (Compression Ratio = 0.125)

H2O 16.97 19.94 41.54 34.26 24.03 17.53 22.83 19.40 23.26 55.50 78.65 33.68 3.24 4.25 33.89 38.52 28.69
SnapKV 17.98 19.35 40.67 35.02 24.46 16.24 24.72 18.00 23.27 60.00 77.73 35.03 3.18 4.16 33.07 38.62 28.86
FAEDKV 17.49 20.24 42.40 34.26 25.84 17.39 23.13 18.55 21.61 61.50 77.51 34.27 3.26 4.50 35.30 39.68 29.45

Cache Size = 2048 (Compression Ratio = 0.25)

H2O 21.63 23.89 45.32 37.53 29.21 20.72 28.11 22.54 25.78 63.50 81.10 38.47 3.50 4.50 38.13 43.22 32.95
SnapKV 22.12 25.26 44.03 38.13 30.06 22.99 28.53 22.53 26.35 64.50 80.10 38.57 3.50 4.50 32.19 38.22 32.60
FAEDKV 21.47 24.61 45.61 38.50 30.04 21.29 27.98 22.67 26.29 64.50 81.05 39.21 3.50 4.25 37.84 43.16 33.24

Table 1: LongBench performance (perplexity) across 16 tasks and varying cache sizes. Bold indicates the best
compressed method at each cache size.

SnapKV, while it remains slightly below the full-
attention baseline.

Importantly, under extremely tight cache bud-
gets, FAEDKV outperforms eviction-based meth-
ods by up to 22 %. We attribute this advantage to
the fact that eviction strategies tend to bias toward
current tokens and discard valuable information
that has low attention scores toward the current
tokens. In contrast, our frequency-domain com-
pression precisely identifies and preserves the most
informative spectral components across the entire
context, yielding a more balanced retention of in-
formation in the most constrained settings.

5.3 Fact Retrieval

To assess FAEDKV’s ability to preserve informa-
tion integrity across varying context lengths and
token positions, we employed the "Needle in a
Haystack" benchmark(Li et al., 2024a). This test
evaluates an LLM’s capacity to retrieve specific in-
formation embedded within a larger text corpus.
We used excerpts from THUDM’s implementa-
tion(Bai et al., 2024a), creating contexts of 8K-30K
tokens. A unique factual statement was inserted as
the needle at 9 relative positions within each from
0% to 100% document depth.

Our experimental procedure involved present-
ing a Qwen2.5-7B-Instruct model with these aug-
mented documents. We compared with Lo-
CoCo(Cai et al., 2024a), a convulution based com-
pression approach. Both LoCoCo and FAEDKV
were evaluated on 1024 (r = 0.05 of 24K) Cache
size.

The results demonstrate two key advantages of
FAEDKV. Firstly, FAEDKV generally achieved
higher retrieval accuracy compared to the LoCoCo
baseline across various context lengths and com-
pression ratios. Secondly, and critically for our

     (a) LoCoCo 
Cache size=2048

    (b) FAEDKV (Ours) 

Compression Rate=5%

Figure 4: Results of Fact Retrieval Across Context
Lengths (“Needle In A Haystack”). The x-axis denotes
the length of the document (the “haystack”) from 8K
to 300K tokens; the axis indicates the position that the
“needle” (a short sentence) is located within the docu-
ment.

design, FAEDKV exhibited markedly more consis-
tent accuracy irrespective of the needle’s position
within the haystack. This is attributed to its core
mechanism employing the DFT, which inherently
processes all token information with equal weight,
ensuring a more uniform preservation of contextual
details throughout the compressed KV cache.

5.4 Pre-filling and Decoding Latency

To evaluate FAEDKV’s computational efficiency,
we benchmarked its inference latency against Lo-
CoCo and a full KV cache baseline using a Llama-
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Figure 5: Results of Pre-filling and Decoding Latency

Figure 6: Results of Ablation Study on Chunk Size.

3 8B model (Hugging Face Transformers) on an
NVIDIA A6000 GPU. We measured prefill latency
and decoding latency for generating 10 tokens. We
sample input prompts from the PG19(Rae et al.,
2019) dataset, pruned to lengths of 4K, 8K, 12K,
and 16K tokens. All tests used a batch size of 1 and
compression ratios of 0.1. As shown in Figure 5,
While the baseline exceeds GPU VRAM limits for
sequences longer than 12k tokens, FAEDKV main-
tains efficient generation for sequences up to 24k
tokens. Our result shows consistant improvement
over the baseline, demonstrating the effectiveness
of our optimizations in the workflow.

5.5 Ablation Study Of Chunk Size

We evaluated the impact of different chunk sizes
(C)—a key hyperparameter for our frequency ab-
lation study and subsequent workflow—on model
performance. The ablation study was conducted
with varying C values, measuring perplexity in-
crease on the PG-19 dataset for both Llama3-8B
and Qwen2.5-7B models. As illustrated in Fig-
ure 6, perplexity drops sharply around C = 12
and stabilizes near its minimum at C = 22. This
finding supports C = 22 as an optimal choice,
balancing model performance retention with the
computational cost of the ablation study.

6 Conclusion

In this paper, we introduced FAEDKV, a novel
training-free KV cache compression algorithm de-
signed to mitigate memory overhead in LLMs
while promoting unbiased information reten-
tion. Our approach uniquely leverages frequency-
domain transformations, guided by an empirical
frequency ablation study to identify critical spec-
tral components for preservation. The core of our
method, the IWDFT, enables efficient and normal-
ized updates to the compressed cache during au-
toregressive decoding, ensuring a more consistent
treatment of token contributions over time. Experi-
mental results on multiple benchmarks demonstrate
FAEDKV’s ability to achieve significant cache
compression with competitive, and often superior,
performance compared to existing methods, partic-
ularly in preserving information uniformly across
long contexts.

7 Limitations

Our study has several limitations. Firstly, ex-
periments were conducted on models deployable
on a single A6000 GPU, simulating resource-
constrained scenarios. While this provides prac-
tical insights, the behavior of significantly larger
models in the frequency domain and the scalabil-
ity of our approach warrant further investigation.
Secondly, although FAEDKV improves efficiency,
opportunities may exist for even more performant
frequency-based inference by more deeply lever-
aging principles like signal locality or semantic
clustering within the frequency domain. Finally,
FAEDKV focuses on efficient KV cache manage-
ment within a model’s existing maximum context
length and does not inherently extend this architec-
tural limit,

8 Ethical Considerations

Large Language Models (LLMs), the systems our
work aims to optimize, have well-documented
broader ethical considerations. Our method,
FAEDKV, is a technical contribution focused on
improving computational efficiency via KV cache
compression. As such, FAEDKV itself does not
introduce new ethical dimensions beyond those in-
herent to the LLMs it is applied to, nor does it
directly address these existing societal concerns.
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