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Abstract

Understanding the decision-making processes
of large language models (LLMs) is essential
for their trustworthy development and deploy-
ment. However, current interpretability meth-
ods often face challenges such as low resolution
and high computational cost. To address these
limitations, we propose the Multi-Layer At-
tention Consistency Score (MACS), a novel,
lightweight, and easily deployable heuristic for
estimating the importance of input tokens in
decoder-based models. MACS measures con-
tributions of input tokens based on the consis-
tency of maximal attention. Empirical evalua-
tions demonstrate that MACS achieves a favor-
able trade-off between interpretability quality
and computational efficiency, showing faithful-
ness comparable to complex techniques with a
22% decrease in VRAM usage and 30% reduc-
tion in latency.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) have revolutionized natural language
processing, powering diverse applications (Cai
et al., 2025a,b; He et al., 2025; Jin et al., 2025;
Li et al., 2025a,b; Yao et al., 2025). As these
models become increasingly integrated into crit-
ical systems, understanding their decision-making
processes is crucial for ensuring trustworthiness,
reliability, and enabling targeted improvements.
Explainable AI (XAI), particularly methods at-
tributing outputs to input tokens, is thus essential.
However, existing approaches for interpreting deep
decoder-only Transformers face notable limitations:
full attention aggregation methods like Attention
Rollout can produce noisy or diffuse attributions,
potentially due to phenomena like Over-squashing,
Over-mixing, and softmax dispersion which can
obscure important signals in deep models and long
sequences. Concurrently, many other XAI tech-
niques, including gradient and perturbation-based

Metric MACS Rollout AttnLRP AtMan

Faithfulness

Usability

Comp. Eff.

VRAM Eff.

Table 1: Comparative summary of MACS (ours) and other
XAI methods, highlighting their strengths and weaknesses
across key interpretability criteria. (✓) denotes strong perfor-
mance, (✗) indicates poor performance. MACS demonstrates
competitive results across most metrics.

approaches, are often too computationally inten-
sive, limiting their practicality for real-time diag-
nostics and require model modifications or special-
ized computation paths. Table 1 summarizes the
comparison of MACS and these state-of-the-art
XAI methods, outlining their respective advantages
and limitations across key interpretability dimen-
sions. 1 2

To address the need for efficient and insight-
ful interpretability, we propose the Multi-Layer
Attention Consistency Score (MACS), a novel,
lightweight heuristic for estimating the importance
of input tokens in Transformer models. Unlike con-
ventional attribution techniques, MACS quantifies
token contribution by evaluating the consistency of
the strongest attention connection from an output
query to each input token across all layers. This
consistency is derived via layer-wise max pooling
followed by element-wise (Hadamard) multiplica-
tion. MACS can be applied directly during infer-
ence without requiring any model modifications.

Our main contributions are as follows:

• MACS Methodology: We propose the
Multi-Layer Attention Consistency Score
(MACS), a lightweight and computationally

1* Both authors contributed equally to this research.
2† The corresponding author.
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efficient heuristic for input token attribution in
Transformer-based models, leveraging cross-
layer attention consistency.

• Theoretical Motivation: We provide a the-
oretical grounding for MACS as a response
to known information propagation challenges
(Over-squashing, Over-mixing, Softmax Dis-
persion), which often limit the effectiveness
of existing attribution techniques.

• Empirical Evaluation: Through experiments
on Question Answering tasks, we demonstrate
that MACS identifies salient tokens more ef-
fectively than Attention Rollout and achieves
faithfulness comparable to more complex at-
tribution methods.

• Practical Utility: We demonstrate the real-
time capability of MACS by highlighting
its efficiency and showcase its potential ap-
plicability beyond text-only models to other
Transformer architectures, as preliminarily ex-
plored in the context of Visual Question An-
swering (see Appendix B).

We show that MACS achieves a favorable trade-
off between computational efficiency and attribu-
tion quality, making it a practical component for
interpreting LLMs.

2 Background

Understanding the decision-making process of
Transformer-based models, especially Large Lan-
guage Models (LLMs), is a critical research ob-
jective in the field of Explainable AI (XAI) (Liu
et al., 2025; Shi et al., 2025). Existing attribution
methods that link model predictions to input to-
kens can be broadly categorized by their primary
mechanisms, including attention aggregation, per-
turbation, and backpropagation.

2.1 Explainability via Attention Aggregation
and its Challenges

The attention mechanism has been a natural candi-
date for interpretability due to its explicit weight-
ing of token interactions(Zhang et al., 2023). Early
studies demonstrated its usefulness in tasks such
as machine translation (Zenkel et al., 2019) and
document classification (Yang et al., 2016). Subse-
quent analyses of models like BERT revealed that
individual attention heads can capture linguistically
meaningful patterns (Clark et al., 2019)

However, interpreting raw attention from single
layers or heads in deep, multi-head Transformers
is often insufficient. To obtain a more holistic view,
some methods focusing on attention aggregation
across layers, like Attention Rollout (Abnar and
Zuidema, 2020), have been proposed. Rollout typi-
cally propagates attention by multiplying attention
matrices across layers, thereby tracing and accu-
mulating influence through all paths. Although
more comprehensive than raw attention, such full-
aggregation techniques may still yield "noisy" or
diffuse attribution maps, making it challenging to
identify critical input tokens.

Recent theoretical studies have highlighted chal-
lenges associated with aggregating attention sig-
nals in deep decoder-based Transformer models(Jia
and Li, 2024). Barbero et al. (2024, 2025) for-
malized phenomena like Over-squashing, where
influence from distant inputs is severely attenu-
ated, and Over-mixing/Representational Collapse,
where token representations lose distinctiveness.
Furthermore, Veličković et al. (2024) demonstrate
that standard softmax attention inherently disperses
and loses its ability to focus sharply as sequence
length increases out-of-distribution. These theoret-
ical limitations suggest that methods like Rollout,
by design, may struggle to produce clear attribu-
tions in deep, long-context models. This motivates
the need for alternative heuristics like the one pro-
posed in this work.

2.2 Perturbation and Backpropagation-Based
Explainability

Beyond direct attention aggregation, prominent
XAI paradigms include perturbation-based and
gradient-based methods, each offering distinct ap-
proaches to attribution.

Perturbation-based methods assess feature
importance by modifying input features or, in
Transformer-specific variants like AtMan (Deis-
eroth et al., 2025), by altering pre-softmax attention
weights and measuring the impact on outputs. This
family also includes local surrogate models such as
LIME (Ribeiro et al., 2016) and LORE (Guidotti
et al., 2018), which approximate the model locally
using interpretable proxies, and SHAP (Lundberg
and Lee, 2017), which leverages game-theoretic
principles. While generally model-agnostic, these
methods require numerous forward passes, mak-
ing them computationally expensive. Moreover,
surrogate-based explanations may fail to capture
the internal representations of the original model.
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Gradient-based methods propagate signals
from the output back to the input using gradi-
ent information. Techniques such as Smooth-
Grad (Smilkov et al., 2017) and Integrated Gra-
dients (Sundararajan et al., 2017) belong to this
family, however their effectiveness can degrade
in large Transformers (Achtibat et al., 2024).
Other approaches, like gradient-weighted atten-
tion (Chefer et al., 2021) (e.g., Grad-CAM (Sel-
varaju et al., 2019) variants), and rule-based tech-
niques like Layer-wise Relevance Propagation
(LRP) (Binder et al., 2016) and AttnLRP (Achtibat
et al., 2024), provide more structured attribu-
tions but face challenges in handling Transformer-
specific non-linearities while maintaining theoreti-
cal guarantees like relevance conservation.

Both families are typically post hoc and com-
putationally demanding, often requiring backward
passes or repeated evaluations. This limits their
scalability for real-time or interactive scenarios,
motivating the development of efficient inference-
time alternatives like MACS.

3 Methodology: From Full Aggregation
to Attention Consistency

This section outlines the motivation and formula-
tion of our proposed method, MACS. We begin
by discussing the limitations inherent in full atten-
tion aggregation approaches, which motivates our
alternative strategy based on measuring attention
consistency.

3.1 More is Less: Limitations of Full
Aggregation Methods

Aggregation-based methods like Attention Roll-
out aim to approximate how influence propagates
through a Transformer model. These methods op-
erate on the principle that each layer uses self-
attention to redistribute influence among token
representations. From a graph-theoretic perspec-
tive, the model can be viewed as a directed graph,
where nodes correspond to token representations
and edges represent attention-based interactions.
Attention Rollout seeks to estimate the total influ-
ence flowing from an initial input token j to a token
representation i at a later layer L by aggregating
attention patterns across layers.

A common formulation involves recursively mul-
tiplying attention matrices A(l) (often adjusted to
account for residual connections):

Ã(L) = A(L)A(L−1) · · ·A(0) (1)

The value (Ã(L))ij provides an estimate of the
total influence accumulated along all paths from
input j to position i at layer L.

However, a criticism of such full aggregation
methods is that the resulting attribution map can
be "noisy" (Achtibat et al., 2024). These methods
may highlight a large number of tokens, making
it difficult to identify which ones were truly influ-
ential. Recent studies on the dynamics of deep
decoder-only Transformers have identified several
contributing factors:

Over-squashing (Barbero et al., 2024, 2025): In
deep causal models, information propagating over
long distances (many layers or across many tokens)
can become progressively weaker or "squashed".
Aggregating contributions from all paths, as Roll-
out does, means accumulating potentially numer-
ous weak, squashed signals.

Over-mixing / Representational Collapse (Bar-
bero et al., 2024, 2025): Through successive layers
of transformation, token representations can be-
come less distinct and more similar to each other.
This may make attention patterns less discrimina-
tive, and aggregating them might lead to a blurred
or averaged-out view of influence.

Softmax Dispersion (Veličković et al., 2024):
The softmax attention mechanism inherently strug-
gles to maintain sharp focus as the number of at-
tended items grows, with attention weights dispers-
ing towards uniform. This affects methods relying
on aggregating these weights.

Because Attention Rollout structurally sums in-
fluence over all possible paths via matrix multi-
plication, it is susceptible to accumulating noise
from these weak (squashed) or potentially indis-
tinct (mixed) signals. This can result in dense or
diffuse attribution maps where identifying the most
critical input tokens for a specific output is chal-
lenging. This motivates our exploration of a more
focused approach.

3.2 Less is More: MACS - Measuring
Attention Consistency Across Layers

To provide an alternative perspective that might
yield clearer attribution while remaining computa-
tionally efficient for real-time diagnostic purposes,
we propose Multi-Layer Attention Consistency
Score (MACS).

Instead of summing contributions over all for-
ward paths like Rollout, MACS adopts a differ-
ent heuristic that focuses on measuring the consis-
tency of attention links directed backward from
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the generated token’s query to each input token’s
key, across all layers.

The core idea is that input tokens maintaining
a sustained, strong attention connection from the
output query across the network’s depth are likely
key contributors. This provides a distinct measure
of contribution based on the consistency of focused
attention rather than total aggregated flow. We hy-
pothesize that emphasizing consistent, strong links
can yield clearer and potentially sparser attribution
maps by filtering out weak or inconsistent signals.

3.2.1 Setup and Generation Process
Given an initial input sequence X =
{x1, x2, . . . , xN}, where xi represents the
embedding of the i-th input token, a decoder-only
Transformer generates subsequent tokens autore-
gressively. The token tk (at sequence position
n = N + k) is generated based on the conditional
probability:

tk ∼ P
(
tk | x1, . . . , xN , t1, . . . , tk−2, tk−1

)
(2)

Modern decoders utilize a caching mechanism for
efficiency. At generation step k (producing token tk
at position n = N + k), only the representation of
the most recently generated token tk−1 (at position
n− 1 = N + k − 1)3 typically issues new queries
into the attention mechanism. These queries attend
to the keys and values associated with all preceding
tokens in the sequence (both original inputs and
previously generated tokens).

For MACS, we focus on the attention patterns
generated when predicting token tk (at position n).
Let L be the number of layers in the Transformer
(indexed l = 0 to L). For each layer l and head h,
let a(l,h)uv denote the attention weight from the query
at position u to the key at position v. The attention
vector a(n−1,l,h) ∈ Rn−1 computed by the query
from position n− 1 (associated with predicting tk)
is:

a(n−1,l,h) = Attn(l,h)

(
x1, . . . , xN︸ ︷︷ ︸

keys: initial input

,

t1, . . . , tk−2, tk−1︸ ︷︷ ︸
keys: generated so far

∣∣∣∣∣ query: n− 1

)
(3)

3At the first generation step (k = 1, where n = N +
1), MACS is bootstrapped using the attention vector from
the input’s last token xN , representing the model’s attention
pattern just before generation begins.

where Attn(l,h)(·) denotes the standard scaled
dot-product attention computation for head h at
layer l under causal masking.

3.2.2 MACS Calculation Steps
MACS processes these attention vectors layer-by-
layer for each generation step k (predicting token
tk at position n) to compute a consistency score
C

(k)
i

4 for each input token i ∈ {1, . . . , N}.
Step 1: Attention Extraction and Redistribu-

tion For each layer l and head h:

• Extract attention to inputs:

a
(n−1,l,h)
I ∈ RN , where (a

(n−1,l,h)
I )i =

a
(l,h)
n−1,i for 1 ≤ i ≤ N .

• Extract attention to previous outputs:

a
(n−1,l,h)
O ∈ Rk−1, where (a

(n−1,l,h)
O )p =

a
(l,h)
n−1,(N+p) for 1 ≤ p ≤ k − 1.

• Calculate redistributed attention a
(n−1,l,h)
R ∈

RN :

(a
(n−1,l,h)
R )i = a

(n−1,l,h)
I,i +

1

N

k−1∑

p=1

a
(n−1,l,h)
O,p

︸ ︷︷ ︸
Avg. Attention to Outputs

(4)

Justification: This step incorporates indirect in-
fluence (tk−1 → tp → i) by uniformly distributing
attention from previous outputs back to inputs, aim-
ing to balance attention in long generations where
direct attention to distant inputs might decay due
to effects like over-squashing.

Step 2: Max-Pooling Across Heads For each
layer l, compute the element-wise maximum across
heads:

(m′
l)i = max

h∈{1,...,H}

(
(a

(n,l,h)
R )i

)
(5)

This yields m′
l ∈ RN .

Justification: This step isolates the strongest at-
tention signal directed toward input token i across
all heads at layer l. By focusing on peak signals
from potentially specialized heads, it filters out
weaker, diffuse attention often encountered in over-
mixing scenarios, thereby highlighting the most de-
cisive attention link per layer and mitigating noise
from less informative heads.

4For simplicity, we omit the step index (k) in the layer-
wise calculations and denote the token i consistency score
as Ci. The index (k) will be reintroduced when presenting
scores across multiple steps.
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Step 3: Incorporate floor vector Introduce a
minimum score offset using hyperparameter α (e.g.,
0.8):

ml = αm′
l + (1− α)1N (6)

Justification: This step ensures that even if m′
l has

near-zero entries (i.e., no head strongly attended
to token i at layer l), the score going forward (ml

is at least 1 − α. This prevents the subsequent
Hadamard product from prematurely zeroing out
the contribution score for tokens whose relevance
might only emerge in deeper layers.

Step 4: Multi-layer Attention Consistency
Score (MACS)

Measure sustained layer-wise attention strength
through layer-wise multiplication:

Initialize c0 = m0.
For l = 1, . . . , L:

cl = ml ⊙ cl−1 (7)

The final consistency vector is cL ∈ RN where
Ci = (cL)i

Justification: The Hadamard product directly
measures the consistency of the processed maxi-
mal attention link across layers. For (cL)i to be
large, the corresponding (ml)i must be consistently
large across most/all layers l. This contrasts with
additive aggregation and aims to yield clearer attri-
bution by emphasizing sustained relevance, filter-
ing transient signals that could contribute to noise
exacerbated by over-squashing or softmax disper-
sion.

3.2.3 Final Attribution Scores via Z-Scoring

The raw MACS score vector c(k)L ∈ RN at genera-
tion step k captures each token’s layer-consistent
maximal attention strength. To render these values
comparable and highlight the most salient tokens
at each step, we normalize them directly into Z-
scores:

z
(k)
i =

(
c
(k)
L

)
i
− µ(k)

σ(k)
, (8)

where µ(k) and σ(k) are the mean and standard de-
viation across the N input token scores within the
vector c(k)L . Each z

(k)
i directly measures how many

standard deviations token i’s attention consistency
deviates from the average, immediately flagging
tokens with statistically significant focus during
generation.

3.3 Algorithm Overview
The complete MACS algorithm is summarized as
follows:

Algorithm 1 MACS (streaming)

1: for each generation step k do
2: Extract and redistribute attention
3: for each transformer layer l do
4: Max-pooling across attention heads
5: Add weighted floor vector
6: Calculate attention consistency
7: end for
8: Compute step Z-score z(k)

9: yield z(k)

10: end for

4 Experiments

In the Experiments section, we address two key
research questions. First, how does our proposed
method compare to alternative approaches in terms
of accuracy and reliability? Second, what is the
impact of our method on the model’s inference
performance?

We perform all experiments on an NVIDIA
A800 (80 GB) GPU, using Llama 3.1-8B
(Grattafiori et al., 2024) as our primary model. This
choice was made because Llama 3.1-8B is a pow-
erful, widely-used, and publicly available LLM
whose architecture is characteristic of many current
state-of-the-art decoder-only Transformers, ensur-
ing our findings are broadly relevant to a significant
class of contemporary LLMs.

We benchmark MACS against four base-
line methods representing distinct explainability
paradigms:

• Random: Assigns random importance scores,
serving as a basic sanity check.

• Attention Rollout: An attention aggregation
method that sums influence over all paths.
Chosen as a widely recognized aggregation-
based baseline.

• AttnLRP: A state-of-the-art gradient-based
method adapted from Layer-wise Relevance
Propagation for Transformers. Chosen as a
strong, more complex gradient-based base-
line.

• AtMan: A perturbation-based method that
manipulates pre-softmax attention. Chosen to
represent post hoc perturbation techniques.
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The key hyperparameter α for MACS is set to
0.8. For AttnLRP, we use their official lxt 5 library,
and for AtMan, we adapt their publicly available
code6 to Llama 3.1-8B.

4.1 Question Answering (QA) Task
Attribution

4.1.1 Dataset, Metrics and Implementation
Details

We evaluate attribution performance on a Question
Answering task using a subset of 350 question-
context-answer triples from the SQuAD 2.0 dataset
(Rajpurkar et al., 2018), where answers are guar-
anteed to be spans within the context. we use the
following prompt:

Answer the question based on
the following text. Keep your
response short and simple. Do not
quote the original text.
Question: {question}
Context: {context}

This subset has an average context length of 169
tokens (max 512), and we set the maximum gen-
eration length to 256 tokens. If multiple answers
exist, metrics are averaged.

Our primary evaluation metric for ranking rele-
vant input tokens is the Area Under the Precision-
Recall Curve (AUC-PR), which evaluates how well
each method ranks the ground-truth answer tokens
(answer spans) within the input context. The final
AUC-PR reported for a given sample is the max-
imum AUC-PR achieved across all generation
steps for that sample. This "best step" approach ac-
knowledges that an attribution method might high-
light the answer most clearly at a particular point
during the generation of the response.

To assess faithfulness, we adopt the Sym-
metric Relevance Gain (SRG) (Blücher et al.,
2024), which quantifies the difference between
the model’s performance (e.g., output text simi-
larity to the original or model confidence) when
progressively removing the least influential tokens
versus removing the most influential tokens. We
report SRG based on model perplexity (SRG-PP)
and ROUGE-L F1 score (SRG-RL). For SRG-PP,
more negative values indicate better faithfulness
(as perplexity should ideally increase more with
important token removal); for other metrics, higher

5https://github.com/rachtibat/LRP-eXplains-Transformer
6https://github.com/Aleph-Alpha-Research/AtMan

is better. The SRG for the Random baseline is
computed using two independent random pertur-
bation orderings and is expected to be near zero.
Confidence intervals (95%) are reported as mean ±
half-width. Full details and additional results are
in Appendix A and Table 5.

4.1.2 Results and Discussions

Method mAUC-PR ↑ mSRG-PP ↓ mSRG-RL ↑

Random 0.113 ± 0.01 0.003 ± 0.01 -0.006 ± 0.01

Rollout 0.147 ± 0.02 -0.039 ± 0.02 0.082 ± 0.02

AttnLRP 0.565 ± 0.03 -0.126 ± 0.01 0.323 ± 0.02

AtMan 0.315 ± 0.03 -0.021 ± 0.01 0.055 ± 0.02

MACS(Ours) 0.601 ± 0.03 -0.118 ± 0.01 0.315 ± 0.02

Table 2: Performance on the QA task. SRG = Symmetric
Relevance Gain; PP = Perplexity; RL = ROUGE-L; high-
er/negative is better; The SRG for the Random baseline is
computed using two independent random perturbation order-
ings and is expected to be near zero. ± value represents the
half-width of the 95% CI. m represents the averaged value
across all samples.

Table 2 presents the attribution performance
among the tested XAI methods. MACS leads in
identifying relevant answer tokens, achieving an
mAUC-PR of 0.601.This significantly outperforms
Attention Rollout by over 300% (0.147±0.02) and
AtMan by over 90% (0.315± 0.03).

In terms of faithfulness, MACS demonstrates
performance statistically comparable to the more
complex AttnLRP method across both mSRG-RL
and mSRG-PP. Both substantially outperform Roll-
out and AtMan.

The poor performance of Attention Rollout
across both mAUC-PR and faithfulness metrics
suggests its tendency to produce diffuse or mislead-
ing attributions, a behavior consistent with the the-
oretical challenges of signal degradation from over-
squashing and softmax dispersion in deep models.

4.1.3 Analysis of "Best Step" Timing
To further understand the nature of the attention
consistency captured by MACS, we analyzed when
its "best step" (the generation step with highest
AUC-PR for identifying the answer span in the
context) occurs relative to the actual generation of
the answer. Across our 350 SQuAD samples, we
found that in 97.68% of cases, MACS achieved its
peak AUC-PR towards the answer span before
the model began to generate the answer tokens
themselves. An illustrative example is shown in
Figure 3, where MACS highlights the answer in the
context based on the query from an early generated
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token, prior to the answer appearing in the output.
This finding suggests that MACS captures antic-
ipatory attention related to information retrieval
and comprehension crucial for answer formation,
rather than merely reflecting a surface-level simi-
larity during the token-by-token generation of the
answer.

4.2 Performance Comparison
Beyond attribution quality, the practical utility of
XAI methods hinges on their computational effi-
ciency, especially for real-time applications or anal-
ysis of large models and long contexts. In this sec-
tion, we evaluate the efficiency of MACS against
other attribution methods.

4.2.1 Dataset, Metrics, and Implementation
Details

We focus on two key aspects: peak VRAM usage
and throughput (tokens generated per second). It’s
important to distinguish how these metrics apply
across XAI methods. For real-time capable meth-
ods such as MACS, AttnLRP, and Rollout, VRAM
and throughput reflect overhead added during the
generation process. In contrast, post-hoc meth-
ods like AtMan report "Peak VRAM" as the sum
of baseline inference memory and the additional
memory used for attribution, such as perturbations.
Similarly, AtMan’s "Throughput" is calculated us-
ing the total time, including both inference and
perturbation, divided by the number of tokens gen-
erated in the original inference, capturing the full
explanation cost.

To evaluate computational efficiency under de-
manding conditions, we sampled 70 CNN/Daily-
Mail (Hermann et al., 2015) examples with input
lengths ranging from 173 to 3,936 tokens, paired
with a summarization task requiring up to 512 out-
put tokens. This setup imposes substantial and di-
verse workloads, allowing for a clear assessment of
VRAM usage and throughput scaling across differ-
ent attribution methods as context length increases.
The prompt used is as follows:

Summarize the following text.
Text: {context}

4.2.2 Results and Discussions
As shown in Figure 1a and Table 3, A clear advan-
tage of MACS is its low VRAM footprint, with
only a 11% mean increase over baseline inference;
this is much more efficient than AttnLRP, which
shows a 33% increase. Attention Rollout’s VRAM

consumption is substantially higher, increasing by
62% over baseline for the samples it could com-
plete, its need to manipulate entire attention ma-
trices leads to rapidly escalating VRAM costs and
Out-of-Memory errors, especially with longer in-
puts. AtMan imposes negligible impact on VRAM
usage (only a 1% increase); however, this comes at
the cost of greatly reduced throughput.

Regarding inference speed (Figure 1b, Table
3), MACS has the least impact on inference time,
showing only a 23% mean decrease in throughput.
Its performance degrades gently with increasing
context length and is nearly identical to the base-
line for inputs under 500 tokens. This is noticeably
better than AttnLRP, which sees a 53% decrease
in throughput. Attention Rollout slows inference
considerably (a 59% throughput decrease) due to
its full matrix aggregations. AtMan, being post
hoc and requiring 1 + lengthinput perturbations,
becomes prohibitively slow (a 78% decrease) for
long contexts, rendering it unsuitable for real-time
applications.

Method mPeak VRAM mThroughput
(MB) ↓ (Tokens/Sec) ↑

Pure Inference 16088 7.46

Rollout 42649 (+62%) 3.04 (-59%)
AtMan 16253 (+1%) 1.66 (-78%)
AttnLRP 24112 (+33%) 3.49 (- 53%)
MACS (Ours) 17998 (+11%) 5.69 (-23%)

Table 3: Efficiency comparison. For AtMan and Rollout,
reported mean values are based on the subset of samples com-
pleted before encountering errors (e.g., Out-of-Memory or
excessive processing time); means for other methods are over
all 70 samples.↑ represents increase compared to the pure in-
ference baseline

5 Ablation Study

To validate the design of MACS and understand
the contribution of its distinct components, we con-
duct a series of ablation studies. We systematically
remove or modify key elements of the MACS algo-
rithm and evaluate the impact on performance. All
ablations are performed on the SQuAD 2.0 subset
using AUC-PR as the primary metric, as described
in Section 4.1.1. The full MACS method (detailed
in Section 3.2.2) serves as the baseline for compar-
ison.

5.1 Ablated Variants

We evaluate the following variations of MACS:
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(a) Peak VRAM vs Context Size (b) Throughput vs Context Size

Figure 1: Peak VRAM usage (a) and Throughput (b) against context size for different XAI methods. denotes Out-
of-Memory (OOM) errors. indicates prohibitive inference times (>10 mins or near-zero throughput). Baseline is
the inference without any XAI method. MACS maintains high efficiency across context lengths.

1. w/o Redistribution: The redistribution step
is removed. The calculation uses only the
direct attention to inputs a(n−1,l,h)

I instead of
a
(n−1,l,h)
R . (Section 3.2.2 Step 1)

2. Pooling: Max-pooling across heads is re-
placed with mean-pooling/min-pooling across
heads. (Section 3.2.2 Step 2)

3. The Floor vector : Evaluate performance us-
ing different values for the floor hyperparam-
eter in the α(1 − α)1N . (Section 3.2.2 Step
3)

5.1.1 Discussion
The results in Table 4 validate the core design
choices of MACS.

Max-pooling is critical, replacing it with mean-
pooling or min-pooling significantly degrades
mAUC-PR (from 0.601 to 0.570 and 0.443, respec-
tively). This strongly supports our hypothesis that
identifying and propagating the strongest consistent
attention link via max-pooling is key to MACS’s
effectiveness, aligning with the idea that salient
contributions are often marked by peak attention
signals rather than averaged ones.

The weighted floor vector is also essential, its
removal drops mAUC-PR to 0.546, confirming its
key role in preventing the Hadamard product from
prematurely nullifying token scores that only gain
relevance in deeper layers. Interestingly, while the
baseline is essential, the exact value of α has a
limited impact, implying the main benefit lies in
setting a non-zero floor rather than fine-tuning the
weight.

Removing the attention redistribution step
had a negligible impact on mAUC-PR in this ex-
perimental setup, possibly due to the moderate gen-
eration lengths (max 256 tokens) where its benefits
for capturing distant indirect influences may be less
pronounced.

Method Variant mAUC-PR

Full MACS (Baseline) 0.601

w/o Redistribution 0.600
Mean-Pooling (vs Max) 0.570
Min-Pooling (vs Max) 0.443
w/o floor vector (α = 1) 0.546
Floor Vector (α = 0.2) 0.599
Floor Vector (α = 0.5) 0.599

Table 4: Ablation study results for MACS

6 Conclusion

We have introduced Multi-Layer Attention Consis-
tency Score (MACS), a novel heuristic for quanti-
fying input token importance in decoder-only mod-
els. Designed to be lightweight, computation-
ally efficient and usable without model modifica-
tions. Our empirical evaluations reveal that MACS
frequently matches more sophisticated attribution
techniques. These findings also support our hy-
pothesis that measuring the consistent strength of
maximal attention links across layers offers a clear
and effective way to identify salient input contribu-
tions. Consequently, MACS serves as a practical
tool for obtaining rapid insights, thus contributing
an efficient way toward enhancing interpretability
in LLMs.
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7 Limitations

While MACS demonstrates compelling advantages
in efficiency and offers strong empirical perfor-
mance, its unique approach warrants careful con-
sideration. MACS quantifies input contribution by
measuring the consistency of maximal attention
links across layers. This provides a distinct per-
spective on explainability compared to methods
focused on input sensitivity (e.g., gradient-based)
or marginal impact (e.g., perturbation-based).

The precise interpretation of this "attention con-
sistency" score, and how it relates to or comple-
ments the insights from other established XAI
paradigms, is an important area for consideration.
While our results show it effectively identifies
salient inputs, understanding the full implications
of this consistency measure versus, for example, to-
tal information flow, requires careful interpretation
based on its specific mechanism.

8 Future Work

This novel perspective itself opens avenues for fu-
ture research into different aspects of model rea-
soning and what various forms of "contribution"
signify (a more detailed discussion on interpreting
attention consistency is provided in Section 4.1.3
and Appendix B.0.3). Other factors, such as the
reliance on the underlying model’s attention qual-
ity and the information selection via max-pooling,
also define the scope of the current method.

Future work should therefore involve deeper the-
oretical analysis of this attention consistency mea-
sure, further exploring its connections to model
behavior and cognitive processes across diverse
tasks and Transformer architectures. Investigating
its role as both a standalone diagnostic and as a
component in hybrid XAI approaches also remain
a promising direction.
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The QA experiments utilized a subset of 350
question-context-answer triples from the SQuAD
2.0 dataset, selected for instances where the an-
swer span is present in the context. For evaluation,
the original input sequence refers to the tokenized
context part of the prompt, excluding any special
tokens or instructional prompt text. The ground
truth ("golden answer") consists of a list of all pos-
sible tokenized answers. If multiple correct answer
spans were provided in SQuAD 2.0 for a given
question, our metrics were computed for each and
then averaged.

A.1 AUC-PR Calculation

The Area Under the Precision-Recall Curve
(AUC-PR) is our primary metric for evaluating
how well an attribution method ranks the tokens
from the ground-truth answer span(s) higher than
non-answer tokens within the input context. For
each generation step k when predicting token tk, an
attribution method produces a score s

(k)
i for every

token xi in the input context (length Nctx). Given:

• A tokenized ground-truth answer span A =
{a1, a2, . . . , aM}.

• A list of (token_pos_idi, s
(k)
i ) pairs for the

input context tokens.

We construct two vectors for the average preci-
sion score (APS) function:

• ytrue: A binary vector of length Nctx. For
each input context token xi at position j:

(ytrue)j =

{
1 if xi ∈ A

0 otherwise

• yscore: A vector of the attribution scores
for the corresponding input context tokens:
(yscore)j = s

(k)
j (score for token xi at posi-

tion j).

The AUC-PR for a single answer span A at a
specific generation step k is then:

AUC-PR(A, k) = APS(ytrue,yscore)

This score reflects the ability of an attribution
score to correctly rank the answer tokens highly. If
any(ytrue) is false, the AUC-PR is treated as 0.0
for that specific case.

As a XAI method produces attribution scores
at each generation step, and SQuAD 2.0 can have
multiple reference answers, the final reported AUC-
PR for a given sample is calculated as follows:

• For each generation step during the model’s re-
sponse, the AUC-PR is calculated against each
tokenized ground-truth answer. The mean of
these AUC-PRs is taken as the step’s score.

MeanStepAUC(k) =
1

|A|
∑

Aj∈A

AUC-PR(Aj , k)

• The reported AUC-PR for the entire sample
is the maximum MeanStepAUC observed
across all generation steps for that sample:

SampleAUC-PR = max
k

(
MeanStepAUC(k)

)

A.2 Faithfulness Score Calculation

To assess the faithfulness of the attribution scores
generated by MACS and baseline methods, we
adapt the "pixel flipping" (or feature removal)
paradigm, commonly used in XAI, to the text do-
main using attention masking. This section de-
tails the calculation of the Most Influential First
(MIF), Least Influential First (LIF), and Sym-
metric Relevance Gain (SRG) metrics based on
this approach.

A.2.1 Perturbation Strategy: Attention
Masking

For each input sample and a given attribution
method, we first obtain the attribution scores (Z-
scores for MACS) for all Nctx tokens in the input
context. These scores are then used to rank the
input tokens from most to least influential.

Perturbations are performed by masking tokens
in the attention mechanism. Instead of removing to-
kens from the input sequence (which would change
token positions and require re-tokenization), we
modify the attention mask during the model’s gen-
eration process. If a token xj is selected for "re-
moval" based on its attribution score7, the attention
mask is altered such that no query position can at-
tend to key xj . This effectively makes the token
invisible to the attention mechanism for subsequent
generation steps.

7For methods like MACS, AttnLRP, and Rollout that pro-
duce scores at each generation step, the attribution score used
for ranking tokens for perturbation is the overall score, typ-
ically an average across all generation steps. For post hoc
methods like AtMan that produce a single attribution map for
the entire generated sequence, that single map is used directly.
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We perform these perturbations at predefined
fractions F = {f0, f1, . . . , fM} of the total num-
ber of input context tokens, where f0 = 0%
(baseline, no tokens masked) and fM = 20% in
our experiments. The specific fractions used are
F = {0.00, 0.01, 0.05, 0.10, 0.15, 0.20}.

A.2.2 Performance Curves
For each attribution method ϕ and each sample:

1. MIF Ordering (πϕ): Input tokens are sorted
in descending order of their attribution scores
(most influential first).

2. LIF Ordering ((πϕ)r: Input tokens are sorted
in ascending order of their attribution scores
(least influential first).

3. Random Ordering (πRND): Input tokens are
sorted in a random order.

For each ordering (πϕ, (πϕ)r, πRND) and each
perturbation fraction s ∈ F , we generate a new out-
put sequence by masking the corresponding frac-
tion s of tokens. We then measure a model per-
formance metric v(s, π) (e.g., logit of the original
next token, perplexity of the generated sequence,
ROUGE-L F1, BLEU, or Semantic Similarity com-
pared to the original unperturbed generation).

These performance values are then normalized
relative to the baseline performance at s = f0 =
0% perturbation (i.e., v(f0, π)):

c(s, π) =
v(s, π)

v(f0, π)

This results in three normalized performance
curves for each sample and base metric:

• cMIF (s): Normalized performance curve
when removing tokens by πϕ.

• cLIF (s): Normalized performance curve
when removing tokens by (πϕ)r.

• cRND(s): Normalized performance curve
when removing tokens by πRND.

A.2.3 AUC Calculation
The Area Under the normalized Perturbation Curve
(AUC) is calculated using the trapezoidal rule, nor-
malized by the maximum perturbation fraction
fM = 0.20:

AUC[π] =
1

fM

∫ fM

0

c(s, π) ds

≈ 1

F [−1]

M∑

j=1

[
c(F [j], π) + c(F [j−1], π)

2
·∆Fj

]

where ∆Fj := F [j] − F [j−1] and F [j] is the
j-th fraction in our fraction array F . This yields
AUCMIF [ϕ], AUCLIF [ϕ], and AUCRND[ϕ] for
each sample.

A.2.4 Faithfulness Metrics
The final faithfulness metrics reported are averages
for all samples.

• mMIF Score: The average AUCMIF [ϕ]

• mLIF Score: The average AUCLIF [ϕ]

• mSRG Score: SRG[ϕ] = AUCLIF [ϕ] −
AUCMIF [ϕ]

The SRG for a random baseline (SRGRND) is
computed using two independent random perturba-
tion orderings and is expected to be close to zero.

We show the comprehensive comparison across
all metrics and attribution methods in Table 5

B Exploring MACS’s Applicability to
Multi-Modal Models (Visual Question
Answering)

The core mechanism of MACS, which measures
the consistency of maximal attention links across
layers, is not inherently limited to text-only decoder
models. It primarily requires access to layer-wise
attention weights. This suggests potential appli-
cability to other Transformer-based architectures,
including multi-modal models.

B.0.1 Motivation and Approach
To explore this potential, we conducted a prelim-
inary study applying MACS to a Visual Ques-
tion Answering (VQA) task. A key advantage of
MACS in this context is its out-of-the-box integra-
tion capability. Unlike perturbation or gradient-
based XAI techniques that often require significant
adaptation or architectural modifications to handle
multi-modal inputs (e.g., separate handling of text
and image feature perturbations, or complex gradi-
ent paths through vision and language encoders),
MACS can be applied by analyzing the attention
patterns within the language processing or cross-
modal attention layers of the multi-modal model
without changes to the underlying network.

Given the difficulty of adapting other XAI meth-
ods for a direct, rigorous comparison in this multi-
modal setup without extensive engineering, our pri-
mary goal here is to demonstrate MACS’s straight-
forward applicability and to qualitatively observe
its behavior.
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Figure 2: During generation, MACS dynamically high-
lights in the image the regions corresponding to the text
as it’s being produced. The generated text is: “The
image shows a young child and a white dog, sitting to-
gether in a grassy outdoor setting. The child is wearing
a red cap, a red and gray jacket, and has a backpack on.”
Source: Perhols (n.d.)

B.0.2 Experimental Setup
Similar to the QA task, we selected 200 anno-
tated images from the Open Images Dataset V4
(Kuznetsova et al., 2020), spanning 10 everyday
object categories8, with 20 samples per category.
To simplify the setup and reduce model load, we
only included images containing exactly one an-
notated object. Each image was paired with the
following prompt:

What is in the image?

The goal is to evaluate if MACS effectively high-
lights image regions relevant to the model’s pre-
dicted answer, specifically the object in the image.
We report AUR PC scores calculated over the la-
beled masked regions. The QVA task uses the
Qwen 2.5-VL-7B model (Bai et al., 2025).

B.0.3 Preliminary Observations
Our application of MACS to the Qwen-VL model
for this simplified VQA task yielded a mean
mAUC-PR of 0.602 (averaged over 200 samples,
taking the best step per sample). This score indi-
cates that MACS is generally able to rank pixels
belonging to the target object significantly higher
than background pixels, demonstrating a promising
level of attribution accuracy for identifying relevant
visual regions.

8Orange, Apple, Dog, Cat, Book, Laptop, Guitar, Piano,
Bus, Airplane

Qualitatively, we observe a distinct pattern in
MACS’s attributions on these VQA samples. As
illustrated in Figure 2.

MACS often produces sparse or "peaky"
heatmaps. Instead of highlighting the entire ex-
tent of the ground-truth object, it tends to concen-
trate high attribution scores on a small, often well-
defined, sub-region within the target object. We
hypothesize that MACS produces concentrated at-
tribution patterns due to its core mechanism. By
measuring the consistency of maximal attention us-
ing layer-wise max-pooling and a Hadamard prod-
uct, MACS highlights input features that receive
consistently strong attention across layers. This
results in sparse attributions focused on the most
discriminative parts, rather than spreading impor-
tance evenly. While this "peaky" attribution leads
to good ranking performance,not all ground truth
object pixels receive high scores, a characteristic
important for interpreting MACS outputs visually.
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Q: In what country is Normandy located?
G: Normandy

The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th
centuries gave their name to Normandy, a region in France . They were descended from Norse (“Norman” comes from
“Norseman”) raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear
fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish
and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West
Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century,
and it continued to evolve over the succeeding centuries.
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The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th
centuries gave their name to Normandy, a region in France . They were descended from Norse (“Norman” comes
from “Norseman”) raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear
fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish
and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West
Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century,
and it continued to evolve over the succeeding centuries.

Figure 3: MACS demonstrating anticipatory attention on a QA example. The heatmap shows MACS attribution
scores on the input context prior to the model generating the answer "France". High consistency scores (darker
red) on "France" in the context indicate MACS identifies the answer span before its generation by the model (Q:
Question, G: Generated tokens).
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Output Type Metric MACS AttnLRP Rollout AtMan Random

Main Task AUC-PR 0.601± 0.033 0.565± 0.030 0.147± 0.021 0.315± 0.032 0.113± 0.012

Mean Logits
mMIF (AUC) 0.919± 0.006 0.915± 0.006 0.967± 0.005 0.945± 0.006 −
mLIF (AUC) 1.003± 0.002 1.005± 0.002 0.995± 0.003 0.964± 0.005 −
mSRG 0.084± 0.006 0.090± 0.006 0.028± 0.005 0.019± 0.006 −0.003± 0.003

Perplexity
mMIF (AUC) 1.114± 0.013 1.120± 0.014 1.040± 0.010 1.046± 0.010 −
mLIF (AUC) 0.996± 0.004 0.994± 0.004 1.002± 0.005 1.025± 0.008 −
mSRG −0.118± 0.013 −0.126± 0.013 −0.039± 0.009 −0.021± 0.010 0.003± 0.005

ROUGE-L F1
mMIF (AUC) 0.619± 0.021 0.609± 0.021 0.823± 0.019 0.783± 0.019 −
mLIF (AUC) 0.933± 0.013 0.932± 0.013 0.906± 0.014 0.838± 0.018 −
mSRG 0.315± 0.021 0.323± 0.022 0.082± 0.019 0.055± 0.020 −0.006± 0.011

BLEU
mMIF (AUC) 0.571± 0.020 0.558± 0.019 0.780± 0.022 0.718± 0.021 −
mLIF (AUC) 0.903± 0.017 0.902± 0.016 0.869± 0.019 0.784± 0.021 −
mSRG 0.332± 0.021 0.344± 0.021 0.089± 0.021 0.066± 0.022 −0.011± 0.012

Semantic Sim.
mMIF (AUC) 0.758± 0.020 0.752± 0.020 0.892± 0.014 0.870± 0.015 −
mLIF (AUC) 0.962± 0.009 0.962± 0.009 0.944± 0.011 0.906± 0.013 −
mSRG 0.205± 0.019 0.210± 0.019 0.051± 0.014 0.036± 0.015 −0.004± 0.009

Table 5: Comprehensive Comparison of Attribution Methods. All values are averaged across all samples.
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