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Abstract

Recent advances in chain-of-thought (CoT)
prompting have enabled large language models
(LLMs) to perform multi-step reasoning. How-
ever, the explainability of such reasoning re-
mains limited, with prior work primarily focus-
ing on local token-level attribution, such that
the high-level semantic roles of reasoning steps
and their transitions remain underexplored. In
this paper, we introduce a state-aware transition
framework that abstracts CoT trajectories into
structured latent dynamics. Specifically, to cap-
ture the evolving semantics of CoT reasoning,
each reasoning step is represented via spectral
analysis of token-level embeddings and clus-
tered into semantically coherent latent states.
To characterize the global structure of reason-
ing, we model their progression as a Markov
chain, yielding a structured and interpretable
view of the reasoning process. This abstrac-
tion supports a range of analyses, including
semantic role identification, temporal pattern
visualization, and consistency evaluation.

1 Introduction

Chain-of-thought (CoT) prompting has become a
central technique for eliciting multi-step reason-
ing in large language models (LLMs) (Wei et al.,
2022). By encouraging models to decompose prob-
lems into intermediate steps, CoT improves per-
formance on tasks such as arithmetic, logical de-
duction, and multi-hop question answering. Un-
derstanding CoT outputs is, therefore, critical for
both evaluation and user comprehension. Recent
large-scale studies have shown that even modest
increases in textual complexity can hinder human
comprehension and increase cognitive load, high-
lighting the need for more interpretable LLM out-
puts (Guidroz et al., 2025; Xiao and Yang, 2025;
Wasi and Islam, 2024; Wu et al., 2025, 2024a,b).
Understanding CoT is even more challenging in
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this context, given its length, multi-step structure,
and abstract semantic progression. However, the
explainability of CoT remains limited. Prior work
often focuses on token-level attribution(Hou et al.,
2023) or heuristic correctness measures(Gan et al.,
2025). Focusing on local token-level attribution
leaves the high-level semantic roles of reasoning
steps and their transitions underexplored. Under-
standing CoT reasoning benefits from a shift from
local analysis to a structured, global perspective.

To address this, we propose a state-aware tran-
sition framework for CoT reasoning. We segment
generated CoTs into discrete steps, embed each
step via spectral analysis of token-level representa-
tions, and cluster them into semantically coherent
latent states. Transitions between these states are
modeled as a first-order Markov chain, yielding a
structured view of reasoning dynamics. This ap-
proach goes beyond surface-level generation by
uncovering latent structure in CoT trajectories, of-
fering a non-trivial solution to the challenge of in-
terpreting abstract, multi-step reasoning without ac-
cess to ground-truth annotations or explicit reason-
ing labels. Designed as an explainability scaffold,
this framework supports diverse analyses, includ-
ing semantic role identification, temporal transition
pattern discovery, and trajectory-level consistency
evaluation. We summarize our contributions as
follows:

• We propose a framework that abstracts CoT
reasoning as structured transitions over latent
semantic states, modeled via a Markov Chain.

• We further visualize multi-step CoT reasoning
for explainable understanding of reasoning
dynamics beyond token-level attribution.

• We enable explainabilities for CoT, includ-
ing reasoning step abstraction, semantics, and
state-aware transition.
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• Empirical results across multiple tasks and
models reveal consistent and recurring latent
transition patterns, suggesting that LLM rea-
soning exhibits structured dynamics beyond
surface-level token sequences.

2 Related Work

Chain-of-Thought (CoT) Reasoning in LLMs.
Chain-of-Thought (CoT) prompting has emerged
as an effective strategy to elicit multi-step rea-
soning in large language models (LLMs) (Wei
et al., 2022). Subsequent work explored improved
prompting techniques (Kojima et al., 2023), auto-
matic CoT generation (Zhang et al., 2022), and
evaluation of reasoning quality (Wang et al., 2023).
While most prior work focuses on generating or en-
hancing CoT outputs, we aim to abstract and model
the latent structure of CoTs for interpretability. Co-
conut (Hao et al., 2024) introduces a latent rea-
soning paradigm that operates in continuous space
rather than natural language, enabling breadth-first
exploration of reasoning paths and highlighting
the limitations of token-level CoT representations.
This further motivates our structural approach to
modeling CoT dynamics.
Explainability in Language Models. Explainabil-
ity methods for LLMs often focus on token-level
attribution, such as attention rollout (Chuang et al.,
2024; Wu et al., 2021) or integrated gradients (Zhao
et al., 2024). In addition, in-context explanabil-
ity (Liu et al., 2023; Wei et al., 2023; Liu et al.,
2024; Wu et al., 2022) focuses on understanding
how to best prompt LLMs with demonstrations.
Recent work has also questioned the faithfulness of
CoT explanations (Turpin et al., 2023; Atanasova
et al., 2023). From the perspective of LLM’s la-
tent space, the gradient-based method (Wu et al.,
2023) explains more fine-grained CoT behaviors.
In contrast, we propose a structural abstraction
framework that operates at the step level, capturing
global reasoning dynamics rather than local token
importance.

3 Explainable Modeling of
Chain-of-Thought Reasoning

Step Embedding and Abstraction To capture the
evolving semantics of each reasoning step, we seg-
ment the CoT output y (elicited from an instruction-
tuned LLM given input x) into a sequence of steps
c = (c1, . . . , cT ). For each step ct, we extract
token embeddings Xt ∈ Rnt×d and compute the

local Gram matrix G̃t = X⊤
t Xt. We define the

spectral embedding Et ∈ Rkeig as the vector of
top-keig eigenvalues:

Et = (λ1, . . . , λkeig), λ1 ≥ · · · ≥ λkeig .

To incorporate contextual accumulation, we recur-
sively update the accumulated Gram matrix across
steps:

Gt = Gt−1 + G̃t, G1 = G̃1.

This yields a trajectory of spectral embeddings
(E1, . . . , ET ), which we abstract using k-means
with kclu clusters to assign each step to a latent
state st ∈ {1, . . . , kclu}. The resulting state se-
quence enables structural abstraction of CoT and
supports distribution-level explainability.
Semantics of Reasoning State To assess whether
latent clusters correspond to meaningful functional
roles, we collect all reasoning steps assigned to
each cluster and manually summarize their seman-
tics. To further ground these semantics, we com-
pute the average position of steps assigned to each
cluster within the reasoning trajectory. Specifically,
for cluster c, the average step index is given by:

t̄c =
1

|Sc|
∑

(i,t)∈Sc

t,

where Sc denotes the set of steps assigned to cluster
c, and t is the position of the step in its trajectory.
Modeling Transitions via Markov Chains To cap-
ture the global structure of CoTs, we model transi-
tions between clusters as a Markov chain. Given
the step-wise state sequence s = (s0, . . . , sT ), we
estimate a transition matrix P ∈ Rk×k, where each
entry denotes:

Pi,j = P(st+1 = j | st = i) =
Ci,j∑
j′ Ci,j′

,

with Ci,j as the number of observed transitions
from state i to j. This latent transition structure
reveals sequential patterns in CoT and serves as the
basis for downstream diagnostics and simulation.

4 Analysis of Reasoning Dynamics

Datasets To comprehensively assess the struc-
tural dynamics of chain-of-thought (CoT) reason-
ing, we consider datasets from three distinct cate-
gories: mathematical GSM8k (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), focusing on sym-
bolic and numerical reasoning; knowledge-based
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Figure 1: An overview of our CoT abstraction and simulation framework.

(HotpotQA (Yang et al., 2018), MusiQUe (Trivedi
et al., 2022)), involving multi-hop factual infer-
ence over text; and commonsense (CSQA (Talmor
et al., 2019), SocialIQa (Sap et al., 2019)), target-
ing intuitive reasoning about everyday and social
scenarios. This diverse selection enables us to eval-
uate whether latent reasoning structures generalize
across quantitative, textual, and intuitive domains.
Implementation Details We analyze CoT reason-
ing using three instruction-tuned language models:
Gemma 2B (Team et al., 2024), LLaMA 3.2B (Liu
et al., 2025), and Qwen2.5 7B (Qwen et al., 2025).
For each question, we generate a CoT response
using a fixed prompt and segment it into reasoning
steps via explicit textual markers. We extract token-
level hidden states, compute cumulative Gram ma-
trices, and obtain spectral embeddings by taking
the top-64 eigenvalues. These embeddings are clus-
tered into k=5 latent states via k-means to estimate
a first-order transition matrix P . Monte Carlo roll-
outs from P yield synthetic reasoning trajectories.

4.1 Explainability of Reasoning Abstraction

We examine whether reasoning steps exhibit struc-
turally coherent organization in the latent embed-
ding space. For each step, we compute its spectral
embedding and apply t-SNE for visualization. Fig-
ure 2 shows the resulting projections across four
datasets, GSM8K, SocialIQA, Math, and MuSiQue,
using LLaMA-3B. Coloring each point by its clus-
ter assignment reveals clear separation with mini-
mal overlap, suggesting that the latent representa-
tions capture distinct structural modes of reasoning.
Notably, the same clustering patterns consistently
emerge across diverse domains, indicating that the
abstraction is robust and generalizable beyond a
single task. These visualizations provide explain-
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Figure 2: t-SNE projection of Chain-of-Thought step
embeddings from Llama-3B across four datasets.

ability by revealing how reasoning steps naturally
fall into functionally distinct groups, even without
explicit supervision.

4.2 Explainability of Reasoning Semantics

To investigate whether latent clusters correspond
to meaningful reasoning behaviors, we aggregate
the texts of all steps within each cluster and manu-
ally summarize their functional roles. As shown in
Table 1, clusters derived from LLaMA-generated
CoT on SocialIQA align with intuitive categories
such as scenario description, problem framing, op-
tion evaluation, and answer synthesis. These roles
were annotated based on step content and ranked
by their typical position in the CoT trajectory.

We further validate these interpretations by com-
puting the average step index for each cluster. Ta-
ble 2 reports the average step index of each cluster
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Cluster ID Label Description Rank in CoT

0 Scenario Description Summarize the scenario’s characters, actions, setting. 4
1 Problem Framing Extract key facts and define the question and options. 2
2 Detailed Option Evaluation Integrate reasoning steps into a clear conclusion. 5
3 Option Analysis Laying out settings before evaluating choices. 1
4 Answer Synthesis Systematically align each option with the context. 3

Table 1: Interpretation of unsupervised cluster assignments on LLaMA-generated reasoning steps from SocialIQA.
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Figure 3: Transition diagrams for the SocialIQA dataset.
Each diagram visualizes one model: Llama-3 3B (top),
Gemma-2 2B (middle) and Qwen-7B (bottom)

based on real CoT trajectories across models and
datasets. For LLaMA, we observe strong consis-
tency: clusters with lower average indices (e.g.,
C3, C1) correspond to early-stage functions like
option analysis and problem framing, while those
with higher indices (e.g., C2, C4) align with final-
stage synthesis. This ordering effect mirrors our
manual rank assignment in Table 1, reinforcing the
interpretability of the latent abstraction.

4.3 Explainability of Reasoning Transition

To capture the structural dynamics of CoT rea-
soning, we model the transitions between latent
states as a Markov chain. Given the clustered
state sequence {zt}, we estimate a transition ma-
trix P ∈ Rk×k, where each entry Pi,j reflects the
empirical probability of transitioning from state
i to j. We visualize P as a heatmap (Figure 4),
which reveals structured and asymmetric transition
patterns. For instance, certain clusters (e.g., setup-
related) predominantly initiate trajectories, while
others (e.g., synthesis) absorb transitions at the end,
suggesting coherent behaviors across tasks.

To further highlight dominant reasoning tra-
jectories, we render the most frequent transi-
tions using Sankey diagrams (Figure 3) for mod-
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Figure 4: Cluster transition probability heatmaps for
Llama-3B across four benchmarks.

els like LLaMA, Gemma, and Qwen on So-
cialIQA. These visualizations show that most tra-
jectories follow consistent paths such as scenario
description → option evaluation → answer
synthesis, which aligns well with our semantic
interpretation in Table 1. This correspondence pro-
vides evidence that the learned transition structure
reflects meaningful reasoning phases, rather than
arbitrary or noisy transitions.

We also compute the expected step index at
which each cluster appears to ground these roles
temporally. As shown in Table 2, the observed
ordering of clusters is highly correlated with real
reasoning positions, particularly for LLaMA. This
confirms that the latent transition model captures
natural CoT reasoning.

5 Conclusion

We proposed a state-aware transition framework
that abstracts CoT trajectories into structured latent
dynamics, offering a global perspective on multi-
step reasoning in LLMs. Each reasoning step is
embedded via spectral analysis and clustered into
semantically coherent states, with their transitions

16663



modeled as a first-order Markov chain. This ap-
proach moves beyond token-level attribution by
uncovering consistent latent structures across mod-
els and tasks. It enables explainability applications
such as semantic role identification and temporal
pattern visualization.Empirical results demonstrate
that LLMs exhibit structured reasoning patterns,
pointing to underlying strategies beyond surface-
level token sequences.

6 Limitation

Our framework assumes access to internal represen-
tations of open-source language models. This as-
sumption is common in many existing interpretabil-
ity and reasoning analysis works (Bharadwaj, 2024;
Tang et al., 2025; Orlicki, 2025). While our frame-
work provides interpretable abstractions of CoT
reasoning, it focuses primarily on intrinsic struc-
tural analysis.
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A Model and Processing Details

We use publicly available instruction-tuned check-
points: Gemma 2B Instruct (fast inference base-
line), LLaMA 3.2B Instruct (balanced perfor-
mance), and Qwen2.5 7B Instruct (strong reason-
ing quality). For each input, we prepend a standard
reasoning prompt (e.g., “Let’s solve this step by
step.”) and extract reasoning steps based on explicit
markers (e.g., “Step 1:”). Hidden states from the
final transformer layer are projected to 128 dimen-
sions before Gram matrix computation. Top-64
eigenvalues are retained per step to form spectral
embeddings.

A.1 Running Example: Llama-3B on
SocialIQA

To ground our abstraction and simulation frame-
work, we walk through a single question from the
SocialIQA benchmark as answered by Llama-3B.

Prompt {"id": "sample_33", "prompt": "Con-
text: Cameron flew on a plane because he figured
he would get there faster than driving.Question:
What will Cameron want to do next? Options:A)
buy a ticket B) get back on the plane C) find
a hotel Let’s solve this problem step-by-step."}
Model response {"sample_id": "sample_33", "de-
tected_steps": 4, "steps": [{"step_id": 1, "text":
"Step 1: Analyze the situation. Cameron flew on a
plane because he thought it would be faster than
driving. However, we don’t know if he actually ar-
rived faster or if he’s now facing a new challenge."},
{"step_id": 2, "text": "Step 2: Consider the options.
The options are buying a ticket, getting back on
the plane, or finding a hotel. Since Cameron is
already on the plane, getting back on the plane is
unlikely."}, {"step_id": 3, "text": "Step 3: Evaluate
the options. Buying a ticket is not necessary, as
Cameron is already on the plane. Finding a hotel
is a reasonable option, as it’s common for people
to stay overnight when they travel."}, {"step_id":
4, "text": "Step 4: Choose the most logical option.
Given the context, finding a hotel seems like the
most logical next step. The final answer is: C) find
a hotel."}]}

The transition probabilities reveal that Llama-
3B most frequently transitions from goal-setting
to hazard analysis before arriving at a conclusion,
reflecting a two-stage reasoning pattern. A t-SNE
plot further confirms that these clusters are well-
separated in embedding space. This running exam-
ple demonstrates how our abstraction captures both

the content and dynamics of the model’s internal
reasoning on a typical SocialIQA question.

A.2 Simulating Reasoning Trajectories via
Markov Rollouts

To validate whether the learned transition model
faithfully captures the temporal structure of reason-
ing, we simulate step-wise trajectories using the
Markov matrix P . Each trajectory is sampled by
recursively drawing the next state from the condi-
tional distribution:

st+1 ∼ P (· | st).

This sampling process reduces to a standard
Markov chain, where the acceptance probability
is always 1 due to symmetric proposal and target
distributions:

α(st, s
∗
t+1) = min

{
1,

p(s∗t+1 | st)
p(st | s∗t+1)

}
= 1.

The resulting simulated trajectories τ (i) =

(s
(i)
0 , . . . , s

(i)
T ) can be used to estimate trajectory-

level statistics via Monte Carlo approximation:

Eτ∼P [f(τ)] ≈
1

N

N∑

i=1

f(τ (i)),

where f may represent properties such as average
step index or transition counts. These simulations
allow us to probe whether the model captures co-
herent and temporally structured reasoning flows.
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Figure 5: Average original step index at each position
in the simulated trajectory on SocialIQA.
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Dataset Model C0 C1 C2 C3 C4 ρ p-value

SocialIQA
Gemma 2.26/1.99 3.20/2.74 1.46/1.56 3.56/6.35 2.76/2.27 1.000 0.001
Llama 3.59/3.09 1.99/1.58 3.88/6.47 1.16/1.16 2.98/2.14 1.000 0.001
Qwen 4.43/3.06 1.38/1.59 3.65/2.31 2.54/1.95 4.67/6.41 1.000 0.001

CSQA
Gemma 1.73/3.06 3.05/6.47 2.85/2.68 2.54/3.74 1.67/2.11 0.700 0.188
Llama 2.08/1.65 3.62/3.06 3.11/2.07 3.95/6.46 1.16/1.18 1.000 0.001
Qwen 1.29/1.31 4.35/3.20 2.41/1.81 4.48/6.49 3.63/2.27 1.000 0.001

GSM8K
Gemma 3.02/3.03 2.69/3.98 1.77/2.16 2.68/3.38 3.02/6.56 0.700 0.188
Llama 2.44/2.06 1.19/1.17 3.10/3.15 1.69/1.56 3.12/6.50 1.000 0.001
Qwen 4.30/3.51 1.47/1.47 3.59/2.65 4.52/6.51 2.43/2.04 1.000 0.001

Table 2: Simulated vs. real average cluster positions and Spearman statistics. Columns C0–C4 list mean simu-
lated/real positions. Spearman ρ measures the monotonic agreement between simulated and real rankings (ρ = 1 is
perfect), and the p-value tests its significance (p < 0.05 indicates a non-random correlation).

A.3 Validating Temporal Consistency via
Monte Carlo Simulation

To evaluate whether the learned transition matrix
captures the temporal structure of CoT reasoning,
we perform Monte Carlo rollouts by sampling tra-
jectories from the Markov model. Starting from
a common initial cluster, we generate 10-step la-
tent sequences based on P , and analyze the corre-
spondence between simulated states and their real
positions in CoT.

Figure 5 shows the average original step index
of reasoning steps sampled at each simulated posi-
tion. The upward trend across all models indicates
that our transition model preserves the directional
nature of reasoning—from early-stage states (e.g.,
problem framing) to later stages (e.g., synthesis).
This validates the ability of P to approximate real-
world temporal dynamics in CoT trajectories.

Beyond position-wise trends, we also examine
the expected position of each cluster across simu-
lated trajectories. We estimate Eτ∼P [f(τ)] to ob-
tain the average step index for each cluster and
compare it against empirical values. Table 2 re-
ports these results, along with Spearman correla-
tion scores. For all models and datasets, we observe
near-perfect alignment between simulated and real
rankings, confirming that the learned abstraction
preserves both semantic and temporal consistency.
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