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Abstract

Preference optimization is a standard approach
to fine-tuning large language models to align
with human preferences. The quantity, diver-
sity, and representativeness of the preference
dataset are critical to the effectiveness of prefer-
ence optimization. However, obtaining a large
amount of preference annotations is difficult
in many applications. This raises the question
of how to use the limited annotation budget
to create an effective preference dataset. To
this end, we propose Annotation-Efficient Pref-
erence Optimization (AEPO). Instead of ex-
haustively annotating preference over all avail-
able response texts, AEPO selects a subset of
responses that maximizes diversity and rep-
resentativeness from the available responses
and then annotates preference over the selected
ones. In this way, AEPO focuses the annotation
budget on labeling preferences over a smaller
but informative subset of responses. We eval-
uate the performance of preference learning
using AEPO on three datasets and show that it
outperforms the baselines with the same an-
notation budget. The code is open-sourced
at https://github.com/CyberAgentAILab/
annotation-efficient-po and the package
is available by pip install aepo.

1 Introduction

Language model alignment aims to address these
issues by guiding Large Language Models (LLMs)
to generate responses that aligns with human pref-
erences, steering them to generate responses that
are informative, harmless, and helpful (Christiano
et al., 2017; Ziegler et al., 2020; Stiennon et al.,
2020; Bai et al., 2022; Ouyang et al., 2022; Rafailov
et al., 2023). The performance of the alignemnt
algorithms is highly dependent on the choice of
the preference dataset. However, building a human
preference dataset requires expensive human anno-
tations, which is the major bottleneck for construct-
ing a large and high quality preference dataset.

A large number of works have investigated the
synthesis of preference data using a powerful LLM
(e.g., GPT-4) to distill the knowledge of human
preferences (Dubois et al., 2023; Lee et al., 2024;
Ding et al., 2023; Honovich et al., 2023; Cui et al.,
2023; Mukherjee et al., 2023; Xu et al., 2024a; Liu
et al., 2024a). However, human preferences are
known to be diverse and pluralistic, and they are
unlikely to be represented by the opinion of a sin-
gle model (Qiu et al., 2022; Kirk et al., 2023; Wan
et al., 2023; Cao et al., 2023b; Zhou et al., 2024;
Sorensen et al., 2024a; Rao et al., 2024; Xu et al.,
2024b; Sorensen et al., 2024b; Kirk et al., 2024,
Shen et al., 2024a; Chakraborty et al., 2024; Pis-
tilli et al., 2024). Several papers have pointed out
that LLMs may exhibit bias toward aligning with
people from a particular background (Santurkar
et al., 2023; Naous et al., 2024; Adilazuarda et al.,
2024). For example, Cao et al. (2023b) reports
that ChatGPT has a strong alignment with Amer-
ican culture, but adapts less effectively to other
cultural contexts. In addition to cultural biases,
previous work suggests that even a highly capable
model (e.g., GPT-4) still has biases such as length
bias (Jain et al., 2024; Dubois et al., 2024), style
bias (Gudibande et al., 2024), and positional bias
(Zheng et al., 2023). Thus, human annotation is
desirable to align and personalize an LLM with
diverse and unbiased human preferences (Greene
et al., 2023; Jang et al., 2023; Kirk et al., 2023).

The efficiency of annotation is critical to making
LLMs accessible and useful to people from diverse
backgrounds, who may have only a small amount
of preference feedback data to work with. To this
end, we investigate how to generate an effective
preference dataset with a limited human anno-
tation budget. Previous work has shown that the
following three features are desirable for a prefer-
ence dataset to be effective (Liu et al., 2024c,a):

1. Quantity and Diversity of instructions.
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Greater quantity and diversity are desirable for
the instruction set (Askell et al., 2021; Wang
et al., 2023; Ding et al., 2023; Honovich et al.,
2023; Cao et al., 2023a; Yuan et al., 2023; Yu
et al., 2023; Xu et al., 2024a; Zhang et al.,
2024; Ge et al., 2024).

2. Diversity of responses. A set of responses
with higher diversity is desirable (Cui et al.,
2023; Lu et al., 2024; Yuan et al., 2023; Song
et al., 2024; Wang et al., 2024; Dubey et al.,
2024).

3. Representativeness of responses. Responses
that represent the behavior of the training
model are more desirable (Guo et al., 2024,
Tajwar et al., 2024; Tang et al., 2024; Xu et al.,
2024d)

To achieve all three desiderata with a limited anno-
tation budget, it is desirable to annotate preference
over diverse and representative responses with a
minimum amount of annotation per instruction.

To this end, we propose Annotation-Efficient
Preference Optimization (AEPQO), a preference
optimization with a preprocessing step on the pref-
erence dataset to reduce the required amount of
annotation (Figure 1). Instead of annotating the
preference over all N responses, AEPO selects
k(< N) responses from N responses. We deploy
a sophisticated method to select a set of response
texts with high diversity and representativeness. It
then annotates the preference for the selected k re-
sponses. In this way, AEPO uses all N samples to
select a subset of responses with high diversity and
representativeness, while requiring only an annota-
tion over a subset of responses.

The strength of AEPO is threefold. First, it is ap-
plicable to human feedback data. Compared to Re-
inforcement Learning from Al Feedback (RLAIF)
(Lee et al., 2024), our approach can be applied to
both human and Al feedback. RLAIF is a scalable
approach in terms of both instructions and annota-
tions, but it is known that the feedback from exist-
ing language models is biased in various ways (Cao
et al., 2023b; Zheng et al., 2023; Jain et al., 2024;
Gudibande et al., 2024; Dubois et al., 2024). Sec-
ond, it is scalable with additional computational
resources. By generating a larger amount of re-
sponses, AEPO can find more diverse and repre-
sentative responses to annotate, resulting in a more
effective preference dataset with a fixed amount
of annotation (Figure 3). Third, less annotation is

Method Human feedback Scalable Annotation cost
Human feedback v
RLAIF v v
West-of-N v v
AEPO v v v

Table 1: Comparison of annotation strategies for prefer-
ence dataset.

required to generate an effective preference dataset.
Unlike an exhaustive annotation strategy which re-
quires a large annotation effort (e.g., West-of-N
strategy, Xu et al. 2023; Yuan et al. 2024b; Pace
et al. 2024), AEPO can reduce the annotation cost
through the subsampling process.

We evaluate the performance of DPO using
AEPO on the AlpacaFarm, hh-rlhf, and JCommon-
sensMorality datasets in Section 4 (Bai et al., 2022;
Dubois et al., 2023; Takeshita et al., 2023). With a
fixed annotation budget, the performance of vanilla
DPO degrades as the number of responses per in-
struction increases above a certain threshold (Fig-
ure 3). In contrast, AEPO scales with the number
of responses under a fixed annotation budget, out-
performing vanilla DPO when a large number of re-
sponses are available. The result shows that AEPO
is a promising algorithm for efficient preference
optimization, especially when annotation cost is
the bottleneck of the alignment process.

2 Background

Preference Optimization. Let D), be a pairwise
preference dataset D, = {(x, yc, yr)}, where x is
an instruction (z € X)), y. is the chosen response,
and y, is the rejected response, that is, ¥, is pre-
ferred to vy, (Y¢, Yr € V). One of the popular algo-
rithms for learning from the preference dataset is
Direct Preference Optimization (DPO) (Rafailov
et al., 2023). DPO trains the language model to
directly align with the human preference data over
the responses without using reward models. The
objective function of the DPO is the following:

TppO = argmax E
m (x7yc7yT)NDP
ﬂ-(yc|x) W(yr‘m)
logo(Blog ——~ — Blog ———)],
( Tret (Ye|T) et (Yr|T) )
(1)

where o is the sigmoid function and 3 is a hyper-
parameter that controls the proximity to the SFT
model Tpef.
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Figure 1: Annotation-Efficient Preference Optimization (AEPO) is a process for generating a preference dataset
with diverse and representative responses with fewer annotations. See Section 3 for details. Here we set k = 2 and
select two responses from the candidate responses to annotate.

Preference Dataset. The performance of prefer-
ence optimization largely depends on the choice
of the preference dataset D). Aside from synthe-
sizing, several papers have investigated annotation-
efficient learning by reducing the number of instruc-
tions rather than synthesizing more (Cohn et al.,
1994; Settles, 2009; Su et al., 2023; Zhou et al.,
2023; Chen et al., 2024).

Regarding the selection of the response texts,
several works have proposed to use the West-of-
N (WoN) strategy (Xu et al., 2023; Yuan et al.,
2024b; Pace et al., 2024). The WoN strategy ran-
domly samples N responses {y;}; for each in-
struction x. Then, it annotates the preference over
all N responses. The response with the highest
preference is labeled as chosen (win) y. and the
one with the lowest preference is labeled as rejected
(lose) y to construct Dp:

Yo < argmax R(z,y),
ye{vitY,

yr < argmin R(x,y).
ye{yi}ll,
(2)

The strategy is shown to be more efficient than
random sampling with the same number of instruc-
tions. However, it requires N annotations per in-
struction to run, making it inapplicable when the
annotation budget is limited.

3 Annotation-Efficient Preference
Optimization (AEPO)

We propose Annotation-Efficient Preference Op-
timization (AEPQ), a method for efficiently learn-
ing preferences from a large number of responses
with a limited budget on preference annotations

Algorithm 1 Annotation-Efficient Preference Opti-
mization (AEPO)

Input: A set of pairs of an instruction and a set of
candidate responses D = {(z, Ycand)}» a pref-
erence annotator R, and an annotation budget
per instruction k

I: Dag =10
2: for (x, Yeand) € D do
Yann < arg MaXy Cy, na,|Y|=k frep(Y) +
Ma(Y)  (See Eq. 10)
Yo ¢ argmax,cy, R(v,y)
Yr < argmingey, - R(7,y)
Dag <+ Dagp U {(xyywyr)}
end for
return D g

W

® >R

(Figure 1).

The procedure of AEPO is described in Algo-
rithm 1. We assume that a set of N candidate
responses is available for each instruction: D =
{(z, Yeana)}» where Yeanq = {y;},. Instead
of annotating the preference over all responses in
Ycand, AEPO subsamples k responses (e.g., k = 2)
from Y_..nq according to the objective function
(Eq. 10) that heuristically maximizes the accuracy
of reward value estimates (line 3). We explain the
objective function later. Then, it deploys the WoN
strategy (Eq. 2) on the subsampled subset of re-
sponses Yany instead of all N responses Ycanqg. It
annotates the preference over Y,,, to select the
best and the worst responses as the chosen and the
rejected responses, respectively (lines 4, 5). In this
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way, we can allocate the annotation budget only
to labeling & responses. AEPO achieves to build a
preference dataset with diverse and representative
responses using a small amount of annotation effort,
which is exactly the characteristics desired for the
preference annotation methodology we discussed
in Section 1.

Choosing the Responses to Annotate Preference
(Line 3 in Algorithm 1). The performance of
the procedure is highly dependent on how we sub-
sample a subset Yy, from the candidate set of re-
sponses Y.anq. Ideally, one wants to identify Y,
that the reward values R(x,y) of y € Ycanq can be
estimated using the preference annotation over Y.

We deploy two heuristics to derive the objec-
tive function for choosing Yan,. Let d(y1, y2) be
a cost function that represents the dissimilarity of
the two response texts: D : ) x )V — [0, 1], where
d(y1,y2) = 0if y; = yo. For example, d can be
implemented by the cosine distance of the embed-
ding of the sentences:

d(y1,y2) = 1 — cos(emb(y1),emb(y2)), (3)

where cos is the cosine function and emb is the
sentence embedding function.

3.1 Representativeness Heuristic

Heuristic 1 The preference annotation over Yann
is more likely to be informative in estimating
R(z,y) if Yann is closer to y. That is, if

yi€Y v, €Y’

then the estimate of R(x,vy) is more likely to be
accurate using Y than'Y’.

Figure 2 illustrates the intuition behind the
heuristic. Intuitively, similar texts are more likely
to have similar reward values. Thus, knowing the
preference values of y; and ys are likely more in-
formative than those of ¥} and v} to estimate the
reward value of y.

From Eq. 4, we are motivated to choose a subset
Yann so that they are closer to y to estimate R(z, y).
Thus, to find Ya,, closer to all y € Yiang, the
objective is to maximize the following:

frep(Y) == Z frep(y; Y), where

yeycand

frep(Y3y) == —% > dly,vi). S

Yi €Y

Yim = {v1, 95}
1
Y1

Yann = {yh yQ}
Yie---|-/~---- Y2

Figure 2: An illustrative example of response subsets
for annotating preference. Our algorithm is based on
the heuristic that the subset Y that is more diverse and
closer to y is more likely to be informative than Y’ to
infer the value of y.

An alternative explanation of f.,(Y') is that it
quantifies the representativeness of the subset Y
for the entire sample set Y..q.

=Y (-5 2

yey yleyvcand\{y}

Representativeness of y

d(y,y") | (©)

where the bracketed term can be interpreted as the
representativeness of y, the average distance from
y to all other samples. That is, it shows the close-
ness to the mean of the sample set. Thus, fiep(Y)
represents the objective to select a subset Y that is
closer to the center of the samples, making it more
representative of the generated samples.

3.2 Diversity Heuristic

Heuristic 2 The preference over Yan, is likely to
be more informative in estimating R(z,y) if each
pair of samples in Yany is more distinct. That is, if

Z Zd(y1,y2)2 Z Zd(yhyz),

y1€Y yoeY\{y1} y1€Y’ yoeY'\{y1}
(N

then, the estimate of R(x,y) is more likely to be
accurate using Y than'Y’.

An example of high and low diversity subsam-
ples (Yann and Y, ) is shown in Figure 2. If
the selected samples are too similar (e.g., Y7, ),
then it will be difficult to estimate R(z,y) as y
is roughly as similar to y{ as to y5. On the other
hand, if the selected samples are distinct enough
(e.g., Yann), then we expect it to be easier to esti-
mate the value of R(z,y). Thus, we assume that
it is difficult to estimate the value of R(x,y) when
|d(y,y1) — d(y, y2)| is small since y is roughly as
close to y; as it is as to yo.
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Motivated by the heuristic, we propose the fol-
lowing objective function fg;, as the diversity ob-
jective:

fle

y1€Y yoeY\{y1}

Another intuition for fg;, is that it is an upper
bound on the sum of the distance differences be-
tween the sample pairs in Y, assuming d is a

metric. Here, d(y1,y2) is an upper bound of
|d(y,y1) — d(y,y2)| from the triangle inequality.
Therefore,

d(y, y1) — d(y,y2)]

IEDIEDD

ye;y%dnd y1€5/ yQG)/\{yl}

Z > dlyy) =

yl€Y y2€Y \{y1}

IYI2

fa(Y). 9

Thus, ensuring fg;, to be large is a desirable prop-
erty to make |d(y,y1) — d(y,y2)| large enough,
which is likely to contribute to estimating R(x,y)
accurately. Note that the cost and utility functions
used in NLP are often not precisely a metric, as
many of them are based on neural networks (e.g.,
COMET, Metric-X, and LLM-as-a-Judge; Rei et al.
2020, 2022; Juraska et al. 2024; Zheng et al. 2023).
Eq. 9 is intended to be an intuitive explanation of
the diversity objective fg;, rather than a theoretical
guarantee of the objective.

3.3 Objective Function for Selecting Y,
Based on the two heuristics, we propose to optimize
the following objective to select the subsample Y
to annotate from a set of responses Y.ang:

Yann = arg max frep(Y) + Afain(Y),  (10)

Y CYeand

Y=k
where ) is a hyperparameter to control the trade-off
between the two objectives.

We use the cosine distance of the embedding
computed by all-mpnet-base-v2 sentence BERT
model, which has been shown to be effective for a
variety of sentence embedding tasks (Reimers and
Gurevych, 2019, 2020; Song et al., 2020).

Computing the optimal solution for Eq. 10 re-
quires O(|Yeana|¥) time in the worst case. In the
following experiments, we use £k = 2 and com-
pute the optimal solutions for Yy, by enumerating
all pairs of samples. In a case where k is large,
we can compute Y approximately using a greedy

1100

1050

1000

Reward Score (Eurus)

©
a
=]

—k— DPO (WoN)
DPO (AEPO)

2 4 8 16 32 64 128
Number of Responses (N)

Figure 3: Evaluation of AEPO and West-of-N for DPO
with an annotation budget fixed to 2 times the number
of instructions on AlpacaFarm. The line represents the
average reward score and the bar shows the standard
deviation over three runs.

search algorithm that iteratively selects a single y
that maximizes the objective at each step until it
selects k responses (Nemhauser et al., 1978).

The use of the representativeness and diversity
is shown to be useful for text generation algorithms
in prior work (Vijayakumar et al., 2016; Eikema
and Aziz, 2022; Jinnai et al., 2024; Li et al., 2024a).
In fact, the objective function Eq. 10 corresponds
to the decoding objective of Diverse Minimum
Bayes Risk decoding algorithm (Jinnai et al., 2024).
These objectives are also often used in active learn-
ing in NLP (Zhang et al. 2022; See Section 5), in-
cluding the application to select instruction set for
supervised fine tuning (Zhou et al., 2023; Li et al.,
2024b). The contribution of the study is on im-
porting these objectives to the problem of selecting
a set of responses to annotate from a set of candi-
date responses for preference optimzation, which is
critical when aligning LLMs with languages, com-
munities, and tasks with limited annotations.

4 Experiments

We first conduct simulated experiments using re-
ward models instead of human annotation to evalu-
ate the performance of AEPO in depth with abla-
tion studies. Then, we evaluate AEPO on a more
realistic setting of learning cultural commonsense
morality (Awad et al., 2020; Hendrycks et al., 2021)
where human annotations are difficult to obtain.

4.1 Simulated Experiment

For the purpose of the method, it is ideal to use
human annotations to evaluate the performance
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AlpacaFarm Method #Insts  #Annots

6 T, ol SFT (Mistral) 0 0
58 Random (p = 0.8) |D| 2|D|
§ Random (p = 0.9)  |D| 2|D|
5% I Random (p =1.0)  |D| 2|D|
£ WoN (N = 4) Dl/2 2/D|
WoN (N = 8) D|/4 2D
52 ' WoN (N =128) [D|/64  2[D|
" Coreset |D] 2|D|
//gg,\ PREC «u\ ‘\//q,\ & o&e@\ & //Q»Q\ //09 o //Wg\ Perplexity |D) 2|D|
I A AEPOO=0) Dl 2D
& & T TS & ¢ AEPO(\=05)  [D| 2D
AEPO (A = 1.0) |D| 2|D|
AEPO (A = 2.0) |D| 2|D|

Figure 4: Evaluation of preference annotation strategies for DPO on Alpaca-
Farm using Mistral under the annotation budget fixed to 2 times the number
of instructions. The win rate against the SFT model is evaluated. The bar
represents the mean, and the error bar indicates the standard deviation of

three runs.

of the algorithms. However, human annotations
are expensive and difficult to reproduce. To this
end, we first evaluate the proposed method on a
simulated scenario where the annotations are from
open source reward models.

Datasets and models. We evaluate the perfor-
mance of AEPO on DPO using the AlpacaFarm
(Dubois et al., 2023) and hh-rlhf (Bai et al., 2022)
datasets. We use mistral-7b-sft-beta (Mistral)
(Jiang et al., 2023a; Tunstall et al., 2024) as the
language model. See C.2 for the results using dolly-
v2-3b (Conover et al., 2023) as the language model.

AEPO and baseline strategies. We generate up
to N = 128 responses per instruction with nucleus
sampling (p = 0.9) (Holtzman et al., 2020) to be
used for the subsampling strategies. The temper-
ature of the sampling algorithm is set to 1.0 for
all experiments. Both AEPO and baseline strate-
gies use the same set of responses to ensure a fair
comparison.

For AEPO, the size of Y., is set to & =
2 and the diversity hyperparameter is set to
A € {0.0,0.5,1.0,2.0} for AlpacaFarm and A €
{0.5,1.0,2.0} for the rest of the datasets.

As baselines, we evaluate two active learning
strategies, Coreset and Perplexity, in addition to
random sampling and WoN strategy. Coreset start-
egy (Sener and Savarese, 2018) is inspiried from
the coreset selection problem which chooses a sub-
set of the dataset such that the model trained on the
selected subset will perform as closely as possible
to the model trained on the entire dataset (Feld-
man, 2020). Perplexity strategy selects a pair of

Table 2: The number of instructions
(#Insts) and annotations (#Annots)
used by the preference annotation
strategies in Figures 4, 5, and 7.

responses with the highest and lowest perplexity.
See Appendix B for the details of the algorithms.

Since WoN strategy uses N/2 times more anno-
tations per instruction than AEPO with £ = 2, we
reduce the number of instructions for WoN to 2/N
so that the number of required annotations is the
same as for AEPO.

Alignment procedure. We train the same model
that generates the responses (Mistral) using DPO
with Low-Rank Adaptation (LoRA) (Hu et al,,
2022; Sidahmed et al., 2024). We set the LoRA’s
64 and « = r/4. Other hyperparame-
ters for the training process are described in Ap-
pendix A. For the AlpacaFarm dataset, we use the
alpaca_human_preference subset as the training
set and use the alpaca_farm_evaluation subset
as the evaluation set. For the hh-rlhf datasets, we
use the first 5000 entries of the training set of
both the helpful-base and harmless-base sub-
sets as the training set. Then we evaluate the trained
model on the first 1000 entries of the test set of the
helpful-base (Helpfulness) and harmless-base
(Harmlessness) subsets. For WoN, we reduce the
number of instructions evenly for the two subsets
so that the dataset always has the same number of
instructions from the two subsets.

T =

Results. We evaluate the quality of the trained
models by sampling a response using nucleus sam-
pling (p = 0.7). The model output is evaluated
using Eurus-RM-7B (Eurus; Yuan et al. 2024a) as
it is open source and shown to have a high cor-
relation with human annotations in RewardBench
(Lambert et al., 2024).
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Figure 5: Evaluation of preference dataset annotation
strategies for DPO on hh-rlhf’s Helpfulness and Harm-
lessness dataset using Mistral under the annotation bud-
get. The win rate against the SFT model is evaluated.
The bar represents the mean, and the error bar indicates
the standard deviation of three runs.

Figure 3 shows the Eurus score of the DPO
models on AlpacaFarm using AEPO (A = 1.0)
and WoN with different numbers of responses.
WoN with N = 4 outperforms the random sam-
pling baselines (i.e., WoN with N = 2), even
though it uses only half of the available instruc-
tions, which is consistent with the results of Song
et al. (2024). However, WoN’s score drops signifi-
cantly for N > 8 as the number of instructions de-
creases. In contrast, AEPO scales with the number
of responses N and outperforms WoN (Figure 3).

Figures 4 and 5 show the win rate of the DPO
models with N = 128 under a fixed annotation
budget. The win rate is computed against the SFT
model using Eurus as a reference reward model.
See Appendix G for the evaluation using other re-
ward models. In all three datasets, AEPO outper-
forms the baseline algorithms except for when A is
set to 0 so that no diversity is assured.

The ablation study of AEPO is described in Ap-
pendix C where we evaluate AEPO on a smaller
LLM, out-of-domain tasks, using varying LoRA
hyperparameters, and using varying loss functions.
The result shows that AEPO consistently outper-
forms the baselines in a wide range of settings.

AEPO generates a diverse and representative
preference dataset. We evaluate the diversity,

075 —* Random (N=2)
AEPO (N = 4)
0.70 —e— AEPO (N=8)
—e— AEPO (N =16)
0.65 —e— AEPO (N =32)
—e— AEPO (N =64)
0.60 AEPO (N = 128)

1 Pairwise-SentBERT

0.70 0.72 0.74 0.76 0.78
T Representativeness

Figure 6: Diversity ({Pairwise-SentBERT) and repre-
sentativeness of the responses of the preference datasets
D ar generated by AEPO with a varying number of
input responses (V). The number of selected responses
(k) is fixed at 2. AEPO successfully generates datasets
with better diversity-representativeness trade-offs with-
out requiring additional annotations.

representativeness, and quality of the preference
dataset generated by AEPO. To measure the seman-
tic and lexical diversity of the responses, we use
pairwise Sentence BERT and distinct-n (Li et al.,
2016). We use the same Sentence BERT model
(all-mpnet-base-v2) as AEPO to evaluate the av-
erage cosine similarity between the selected pairs
of responses. Distinct-n counts the number of dis-
tinct n-grams in a sentence divided by the length of
the sentence. The representativeness is measured
by — frep(Y)/|Ycand| Which is the average similar-
ity of Yann to Yeand. The quality of the responses
is measured by the average reward score of the
selected responses.

The result is shown in Figure 6. By using a
larger number of responses /N, AEPO manages to
generate more diverse and representative response
pairs than a random sampling with the same num-
ber of annotations. Interestingly, AEPO also results
in higher-quality texts being selected than random
sampling (Figure 14 in Appendix G). This aligns
with prior work reporting that diversity and repre-
sentativeness objectives can improve the quality of
the output texts (Vijayakumar et al., 2016, 2018;
Eikema and Aziz, 2022; Jinnai et al., 2024). See
Appendix D for examples of the preference data
generated by AEPO. We observe similar trends
in the results on distinct-n, as well as the results
on the hh-rlhf datasets (Figures 14, 15, and 16 in
Appendix G).

Both diversity and representativeness of the
preference dataset are important for preference
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learning. The question is what contributes to the
improved performance of AEPO. In Figures 4 and
9, AEPO with moderate size of A outperforms
AEPO with higher or lower A. The result indicates
that both the diversity and the representativeness of
responses are important for the preference dataset,
which is consistent with the observations in pre-
vious work (Mukherjee et al., 2023; Chen et al.,
2024; Liu et al., 2024c; Song et al., 2024).

4.2 Realistic Experiment

We evaluate AEPO on a more realistic setting using
JCommonsenseMorality (JCM) dataset (Takeshita
et al., 2023). JCM is a collection of texts labeled
with whether a text contains a morally wrong state-
ment according to the commonsense morality of
people in Japanese culture. Because commonsense
morality is culturally dependent and requires anno-
tation by the members of the community (Durmus
et al., 2024; Shen et al., 2024b), it is difficult to
collect a large number of annotations. Therefore,
we consider the task of learning Japanese com-
monsense morality to be a suitable benchmark for
evaluating AEPO in a realistic application.

We use 800 entries (|D| = 800) from the train
split for training and 500 entries from the test split
for evaluation. The preference annotation is done
semi-automatically; we use Gemma 2 to evaluate if
the generated text is aligned with the human anno-
tation in the dataset (Zheng et al., 2023; Team et al.,
2024). See Appendix F for the evaluation proce-
dure. We train a Japanese LLM (calm2-7b-chat;
Ishigami 2023). All the other hyperparameters fol-
low Section 4.1. The results are summarized in
Figure 7. Overall, AEPO outperforms the baselines
within the same annotation budget constraint. The
result shows the potential of AEPO in tasks where
the available annotations are limited.

5 Related Work

Active learning. Annotation-efficient learning
has long been a challenge in natural language pro-
cessing (Zhang et al., 2022). Active learning is an
approach that aims to achieve training with fewer
training labels by proactively selecting the data to
be annotated and used for learning (Cohn et al.,
1994; Settles, 2009; Houlsby et al., 2011). Active
learning methods in NLP are often categorized in
two strategies (Zhang et al., 2022). One uses the
informativeness of the data instances, such as uncer-
tainty and disagreement of the models (Lewis and

JCommonsenseMorality

Win Rate (%)
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Figure 7: Evaluation of preference annotation strategies
for DPO on the JCommonsenseMorality (JCM) dataset
using calm2-7b-chat under a fixed annotation budget.
The win rate against the SFT model is evaluated.

Gale, 1994; Engelson and Dagan, 1996; Siddhant
and Lipton, 2018; Huang et al., 2024; Dwaracherla
et al., 2024). This approach has proven to be effi-
cient in many text classification tasks. The other
strategy is based on the representativeness of the
data instances (McCallum and Nigam, 1998; Set-
tles and Craven, 2008; Zhao et al., 2020; Chen and
Wang, 2024). The strategy annotates instances with
high average similarity to all the other instances
so that it can cover a large portion of the dataset
with few annotations. Another approach is to select
instances that maximize the diversity of labeled in-
stances (Eck et al., 2005; Zeng et al., 2019; Blood-
good and Callison-Burch, 2010). Our approach is
related to these approaches as our objective is a
combination of representative and diversity mea-
sures designed to maximize the information gain.

Minimum Bayes risk decoding. Eq. 5 and 10 are
largely inspired by Minimum Bayes Risk (MBR)
decoding (Kumar and Byrne, 2002, 2004; Eikema
and Aziz, 2022). MBR decoding is a text genera-
tion algorithm that selects the sequence with the
highest similarity to the sequences generated by
the probability model. As such, the objective func-
tion of MBR decoding corresponds to Eq. 5. MBR
decoding has been proven to produce high-quality
text in many text generation tasks, including ma-
chine translation, text summarization, and image
captioning (Freitag et al., 2023; Suzgun et al., 2023;
Bertsch et al., 2023; Li et al., 2024a; Yang et al.,
2024). In particular, Eq. 10 is strongly inspired by
the objective function of Diverse MBR (DMBR)
decoding (Jinnai et al., 2024). The contribution of
our work is to introduce the objective function of
DMBR as a strategy to subsample representative
and diverse responses from candidate responses so

16623



that the annotation budget can be used efficiently.

6 Conclusions

We propose Annotation-Efficient Preference Opti-
mization (AEPQO), an annotation-efficient dataset
subsampling strategy for language model align-
ment. AEPO selects response texts to annotate
from candidate responses, maximizing the repre-
sentativeness and diversity. By focusing the an-
notation effort on the selected responses, AEPO
achieves efficient preference optimization under a
limited annotation budget. The experimental re-
sults and ablation studies (Appendix C) show that
AEPO consistently outperforms the baseline strate-
gies on a wide range of benchmarks. We believe
that AEPO is a critical contribution to promoting
preference optimization in low resource settings by
addressing the severe obstacle, the cost of creating
better preference data.

7 Limitations

Although our method is motivated by the situa-
tion where the human annotation is needed to align
the language model, part of our experiments (Al-
pacaFarm and hh-rlhf) are conducted using a proxy
reward model to annotate preference on training
datasets instead of using human annotation. We
use human annotation for the JCM dataset but com-
bined with an LLM to evaluate the agreement of the
response text with the human annotation. Evalua-
tion of the method using human annotation directly
to the responses would be desirable for future work.

The underlying assumption of the paper is that
human annotation is the correct gold reference,
preferable to synthesized annotation. However, it
is known that human annotation can be wrong and
unreliable (Ipeirotis et al., 2010; Clark et al., 2021;
Hosking et al., 2024). Developing an annotation
strategy that considers the possibility of annotation
errors is future work.

Our focus is on developing a method to generate
a diverse and representative set of responses. The
preparation of diverse and representative instruc-
tions is also an important task to generate an effi-
cient dataset (Sanh et al., 2022; Ding et al., 2023;
Cui et al., 2023; Liu et al., 2024a; Xu et al., 2024a).
Our method is orthogonal to methods for generat-
ing high quality instructions and can be combined.
Comparing and combining AEPO with methods
for generating diverse instructions is future work.

The goal of AEPO is to construct an efficient,

reusable pairwise preference dataset that can be
shared across multiple models rather than selecting
a data entry for a particular model which is often
the objective for active learning methods. Thus,
our approach is complementary to active learning
methods. For example, one can use AEPO to con-
struct an efficient dataset and then apply active
learning to refine a particular model on that dataset.
Evaluation of AEPO combined with active learning
algorithms is future work.

AEPO has the same limitation as active learn-
ing algorithms in that it is inherently limited by
the quality and diversity of the entire candidate
responses from which the response subsets are cho-
sen.

We evaluate the performance of AEPO us-
ing all-mpnet-base-v2 as the embedding model.
Embedding models are widely used in various ap-
plications, and their quality continues to improve
with advances in the field. As such, it is likely that
the performance of AEPO will benefit from future
improvements in embedding models. The evalua-
tion of AEPO using better embedding models is a
future work.

The performance of AEPO depends on the
choice of the hyperparameter A. We observe that
A = 1.0 is a good choice throughout the experi-
ments, but developing a strategy to find an effective
A for a given dataset is future work.

All experiments are performed using LoRA (Hu
et al., 2022). The evaluation of AEPO with full
parameter fine-tuning is future work.

We assume that the cost of annotating the prefer-
ence rank for IV responses is linear in N. However,
prior work shows that it becomes increasingly diffi-
cult to annotate preference ranks as the number of
options increases (Ganzfried, 2017). Because this
assumption favors WoN over AEPO, we believe it
will not affect the overall analysis presented in this
paper. Evaluating the human annotation burden of
ranking N responses is an important direction for
future work.

8 [Ethical Considerations

We believe that this work will have a positive im-
pact by encouraging work on Al systems that work
better with a diverse set of people. LLMs would be
more useful if they could adapt to the preferences
of diverse groups of people, even if little preference
annotation is available from their communities.
AEPO is designed for an offline setting where
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the dataset is constructed before the training pro-
cess. An offline setting has advantages in trans-
parency, fairness, and inclusivity in the alignment
process. By constructing the dataset before the
model training begins, stakeholders can fully audit
the dataset, ensuring that it reflects diverse view-
points and minimizes biases.

We foresee our method being useful for personal-
izing LLMs (Greene et al., 2023; Jang et al., 2023;
Kirk et al., 2023). Personalized LLMs could have
far-reaching benefits, but also a number of worri-
some risks, such as the propagation of polarized
views. We refer to Kirk et al. (2023) for a dis-
cussion of potential risks and countermeasures for
personalized LLM:s.
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A Hyperparameters

Table 3 lists the hyperparameters we use to run
DPO. Table 4 lists the hyperparameters we use to
generate the texts for evaluation.

Table 3: DPO hyperparameters.

Parameter Value
Training epochs 3
Batch size 4
Regularization factor (3) 0.1
Optimizer RMSProp
Learning rate le-5
Learning rate scheduler linear
Warm up steps #instructions / 80
Max instruction length 512
Max new tokens 512
Max total length 512

Table 4: Generation hyperparameters on evaluation.

Parameter Value
Max instruction length 512
Max new tokens 512
Temperature 1.0
Top-p 0.7

B Implementation of Baselines

In addition to the existing methods (random sam-
pling and WoN sampling), we present two response
texts subsampling strategies, a coreset-based sub-
sampling and perplexity-based subsampling as
baselines.

We implement the Coreset selection using the
set cover minimization algorithm following the
work of (Sener and Savarese, 2018) (Algorithm
1, k-Center-Greedy). The objective function for
selecting the subset Y is the following:

(11)

Yann = arg min max min d(y7 y/)
ngvcamd yEY«:and y,EY

Intuitively, Eq. 11 is similar to the representative
objective (frep; Eq. 5) but instead of minimizing
the average distance of Y and Y .,q, it aims to
minimize the maximum distance of y € Y_,,q and
y' € Y. Although the algorithm was originally pro-
posed for training convolutional neural networks,
its procedure applies to the response text subsam-
pling problem. We use the cosine distance of the
sentence embedding as the distance between the
data points. We use the same text embedding model
as AEPO (all-mpnet-base-v2).

The perplexity-based dataset filtering strategy
is shown to be effective for the pretraining (De la
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Rosa et al., 2022; Marion et al., 2023; Thrush et al.,
2024) and instruction fine-tuning (Zhou et al., 2023;
Li et al., 2024b). We implement a perplexity-based
selection strategy to pick a pair of responses with
the highest and the lowest perplexity:

Yann = {argmax PP(y | x),argmin PP (y | z)},
yenand yGYcand
(12)

where PP denotes the perplexity of y given z as
the input.

C Ablation Study

We describe the ablation study to evaluate the effect
of AEPO in various settings.

C.1 GPT-4 Evaluation

Figure 8 shows the win rate of the DPO models
against the SFT model using GPT-4 as an evaluator.
Overall we observe the same qualitative result as
in Eurus. We access GPT-4 API via Azure OpenAl
service. The model name is gpt-4o0 and the model
version is 2024-05-13. We set the model temper-
ature, frequency penalty, and presence penalty to
0. The following prompt is used to evaluate the
response text:

Please act as an impartial judge and
evaluate the quality of the response
provided by an Al assistant to the
user question displayed below. Your
evaluation should consider factors such
as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of
the response. Begin your evaluation by
providing a short explanation. Be as
objective as possible. After providing
your explanation, you must rate the
response on a scale of 1 to 10 by strictly
following this format: “[[rating]]”, for
example: “Rating: [[5]]”.

[Question]

{question}

[The Start of Assistant’s Answer]
{answer}

[The End of Assistant’s Answer]
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Figure 8: Evaluation of AEPO on the AlpacaFarm
dataset using GPT-4 as an evaluator. The win rate
against the SFT model is evaluated.

C.2 Training Dolly Language Model

Several studies have shown that using responses
generated by the training model itself (on-policy
learning) is more effective than using responses
generated by other models (off-policy learning)
(Chang et al., 2024; Guo et al., 2024; Xu et al.,
2024c; Tajwar et al., 2024; Dong et al., 2024;
Pace et al., 2024; Tang et al., 2024). Nevertheless,
off-policy learning is advantageous in resource-
constrained settings because it can leverage exist-
ing public resources to train arbitrary models.

To this end, we investigate the use of AEPO for
off-policy learning. We use the preference dataset
D g generated by Mistral’s responses {y; }; on
AlpacaFarm to train dolly-v2-3b (Dolly; Conover
et al. 2023). We set the LoRA’s r = 32 and a =
r /4. Other experimental settings are the same as
the experiment on Mistral. Figure 9 shows the
results of the off-policy learning using Eurus as the
reference reward model. AEPO with sufficiently
large A outperforms vanilla DPO. The result shows
the potential of AEPO to improve the efficiency
of off-policy learning. See Table 24for the result
using other reward models.
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Figure 9: Evaluation of AEPO on training Dolly lan-
guage model using the AlpacaFarm dataset. We gen-
erate responses with Mistral and use the sampled re-
sponses to train Dolly. The win rate against the SFT
model is evaluated.

C.3 Out-of-Domain Evaluation

Previous work has shown that training on a diverse
set of instructions improves the performance on
out-of-domain tasks (Sanh et al., 2022). The ques-
tion is whether we can achieve a similar robustness
with a diverse set of responses generated by AEPO.
We evaluate the Mistral models fine-tuned with the
AlpacaFarm dataset on ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), Truthful QA (Lin
et al., 2022), and WinoGrande (Sakaguchi et al.,
2021) using the language model evaluation harness
(Gao et al., 2023b). Table 5 summarizes the scores
and the standard errors of the trained models on
these benchmarks. Overall, AEPO scores slightly
higher than WoN, except for the ARC. The result
shows that AEPO outperforms WoN in the Alpaca-
Farm domain not because it overfits to the task, but
because it improves on a wide range of tasks.

C.4 LoRA Hyperparameters

We evaluate the effect of the LoORA hyperparam-
eters on the performance of AEPO. We run DPO
once with LoRA’s » € {32,128} and o = r/4.
All other experimental settings are the same as in
Section 4. Tables 6 and 7 show the experimental
results. We observe that AEPO outperforms WoN
in reward scores as in Section 4 regardless of the
choice of the LoRA’s r.
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Table 5: Evaluation of DPO models trained with AlpacaFarm on out-of-domain benchmarks. Means and standard

€rrors are reported.

Preference Dataset Configuration

Method #Insts #Annots ARC HellaSwag TruthfulQA  WinoGrande
SFT (Mistral) 0 0 57.94 +1.44 82.07 +£0.38 4298 +1.46 77.51 +1.17
Random (p = 0.9) |D| 2|D| 59.73 £ 143 83.14 £0.37 46.37 151 78.06+1.16
WoN (N =4) |D|/2 2|D| 59.73 £ 143 8295+0.38 4813 +154 75.14+1.21
WoN (N = 8) |D|/4 2|D| 5990 £ 143 82.80+038 4941 +1.55 7490+ 1.22
AEPO (A =0) |D| 2|D| 59.64 +1.43 83.10£0.37 4631 +1.51 7814+ 1.16
AEPO (A = 0.5) |D| 2|D| 5990 + 143 83.28 +0.37 49.69 £1.54 77.19 +1.18
AEPO (A =1.0) |D| 2|D| 58.62 +1.44 82.57+0.38 4434+1.49 77.90+1.17
AEPO (A = 2.0) |D| 2|D| 5870 £ 1.44 82.54 +0.38 44.75+1.49 77.58+1.17

Table 6: Evaluation of AEPO on AlpacaFarm using Mistral with LoRA’s » = 32 and o = r/4.

Preference Dataset Configuration

Method #Insts #Annots OASST Eurus OASST (w%) Eurus (w%) PairRM (w%)
SFT (Mistral) 0 0 1.901 878.48 50 50 50
Random (p = 0.8) |D| 2|D| 2.021 997.05 54.22 55.59 52.49
Random (p = 0.9) |D| 2|D| 2.029 970.77 54.10 54.72 52.64
Random (p = 1.0) |D| 2|D| 2.099  1009.53 55.47 56.96 53.64
WoN (N = 4) |D|/2 2|D| 2.088 1031.62 56.34 56.71 53.98
WoN (N = 8) |D|/4 2|D| 2.052 993.94 54.84 56.09 54.10
AEPO (A =0) |D| 2|D| 1.994 936.94 53.48 53.35 53.10
AEPO (A = 0.5) |D| 2|D| 2.079 981.37 56.77 55.53 54.12
AEPO (A =1.0) |D| 2|D| 2.121 1063.08 58.26 58.07 53.98
AEPO (A = 2.0) |D| 2|D| 2.072  1034.58 55.53 56.34 53.97
WoN (N = 128) |D| 128|D| 2.339  1169.37 65.47 63.23 59.61

Table 7: Evaluation of AEPO on AlpacaFarm using Mistral with LoRA’s = 128 and o = /4.

Preference Dataset Configuration

Method #Insts #Annots OASST  Eurus OASST (w%) Eurus (w%) PairRM (w%)
SFT (Mistral) 0 0 1.901 878.48 50 50 50
Random (p = 0.8) |D| 2|D| 2310  1149.53 63.11 60.62 59.18
Random (p = 0.9) |D| 2|D| 2.394  1140.02 65.96 59.25 60.00
Random (p = 1.0)  |D| 2|D| 2.308  1096.25 63.11 58.01 58.96
WoN (N = 4) |D|/2 2|D| 2.390 1160.43 66.02 63.66 61.68
WoN (N = 8) |D|/4 2|D| 2.357 1183.47 65.65 63.29 61.28
AEPO (A = 0) |D| 2|D| 2.186  1050.34 60.62 58.01 57.80
AEPO (A = 0.5) |D| 2|D| 2.379  1172.73 63.29 63.91 60.37
AEPO (A = 1.0) |D| 2|D| 2.354 1164.29 64.35 63.60 60.62
AEPO (A = 2.0) |D| 2|D| 2.400 1203.51 66.34 63.60 59.69
WoN (N = 128) |D| 128|D| 2.705 1303.34 74.35 68.76 66.72
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C.5 Distance Function

We evaluate the effect of the choice of the distance
function d on the performance of AEPO. We run
AEPO on AlpacaFarm using BLEU (Papineni et al.,
2002) using sacrebleu package (Post, 2018) and
BLEURT-20 (Sellam et al., 2020) as the distance
functions and compare their performance to AEPO
using Sentence BERT as in Section 4. We compute
the distance as 1 minus the score of the BLEU
and BLEURT-20. We set A = 1.0 for all the runs.
All the other experimental settings are the same
as in Section 4. Table 8 shows the result. AEPO
outperforms the baselines regardless of the choice
of the distance functions.

Method Eurus
Random (p = 0.9) 1058.8
WoN (N = 4) 1076.3
Sentence BERT (MPNet) 1151.5
BLEU 1144.5
BLEURT-20 1184.7

Table 8: Evaluation of AEPO on AlpacaFarm with Mis-
tral using varying distance functions.

C.6 Loss Function

Several variants of loss functions are proposed to
replace the sigmoid loss function of DPO. The ex-
perimental results of AEPO using hinge loss (Zhao
et al., 2023; Liu et al., 2024b) and KTO loss (Etha-
yarajh et al., 2024) are given in Tables 9 and 10. We
use LoRA r = 32 and LoRA a = r/4. Other ex-
perimental settings follow the settings in Section 4.
We observe that AEPO outperforms the baselines
regardless of the choice of the loss function.
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Table 9: Evaluation of AEPO on AlpacaFarm with Mistral using hinge loss.

Preference Dataset Configuration

Method #Insts #Annots OASST  Eurus OASST (w%) Eurus (w%) PairRM (w%)
SFT (Mistral) 0 0 1.901 878.48 50 50 50
Random (p = 0.8) |D| 2|D| 2.026 998.26 54.66 55.78 52.77
Random (p = 0.9) |D| 2|D| 2.036 989.09 55.47 55.71 53.32
Random (p = 1.0)  |D| 2|D| 2.068 997.99 55.59 56.46 53.46
WoN (N = 4) |D|/2 2|D| 2.095 1009.54 55.90 55.28 53.69
WoN (N = 8) |D|/4 2|D| 2.037 989.60 54.47 55.59 54.15
AEPO (A = 0) |D| 2|D| 1.994 964.50 53.48 54.60 53.10
AEPO (A = 0.5) |D| 2|D| 2.079 991.11 56.77 55.65 54.22
AEPO (A =1.0) |D| 2|D| 2,121  1052.23 58.26 58.51 53.98
AEPO (A = 2.0) |D| 2|D| 2.072  1050.30 55.53 57.27 53.97

WoN (N =128)  |D

128|D| 2335 1156.37 63.42 63.17 59.08

Table 10: Evaluation of AEPO on AlpacaFarm with Mistral using KTO loss.

Preference Dataset Configuration

Method #Insts #Annots OASST  Eurus OASST (w%) Eurus (w%) PairRM (w%)
SFT (Mistral) 0 0 1.901 878.48 50 50 50
Random (p = 0.8) |D| 2|D| 2.025  1022.52 54.78 57.14 52.83
Random (p =0.9) |D| 2|D| 2.057 988.42 55.16 55.90 53.04
Random (p = 1.0)  |D| 2|D| 2.095  1000.09 56.15 57.02 53.88
WoN (N = 4) |D|/2 2|D| 2.075 994.79 55.22 54.60 54.03
WoN (N = 8) |D|/4 2|D| 2.032  1002.73 54.29 56.15 53.87
AEPO (A = 0) |D| 2|D| 1.994 952.70 53.48 53.73 53.10
AEPO (A = 0.5) |D| 2|D| 2.079 981.76 56.77 55.40 54.15
AEPO (A = 1.0) |D| 2|D| 2121 1059.95 58.26 58.76 53.98
AEPO (\ = 2.0) |D| 2|D| 2.072  1030.45 55.53 57.39 53.97

WoN (N =128)  |D

128|D| 2.359  1158.02 64.84 62.86 59.84
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D Generation Examples of AEPO

The generation examples of AEPO are listed in
Tables 11 and 12 for AlpacaFarm and Tables 13
and 15 for JCM. AEPO with A = 0.0 selects two
very similar or even identical responses. In contrast,
the two responses selected by AEPO with A = 1.0
are sufficiently diverse.
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Table 11: Example of a preference dataset entry generated by AEPO and WoN on AlpacaFarm dataset. The input
prompt is: Write two sentences with the same meaning but with different wordings\n\nHe went to the store.

Method Label Text

Random (p = 0.9) Chosen  He visited the store. He went shopping.

He visited the store.

Rejected He went shopping.

I got a message from my mom.

Chosen 1. He went to the market.
WoN (N = 4) 2. He went shopping.

He purchased products from the grocery store.

He went and made purchases at the store.
Rejected

He left the house.

He walked away from his living space.

Chosen |- He went to the market.
WoN (IV = 8) 2. He went shopping.

He purchased products from the grocery store.

He went and made purchases at the store.
Rejected

He left the house.

He walked away from his living space.

Chosen  1i¢ Went shopping at the store.
AEPO (A = 0.0) He visited a store for purchasing goods.

Rejected He traveled to the store or he went to shop.

Chosen 1. The subject went to the destination.
AEPO (A = 1.0) 2. The subject made his/her way to the location in question.

He made a trip to the store for some supplies.
He purchased items from the store.
Rejected I will buy the supplies from the store tomorrow.

Could you please provide me with some groceries from the store?

Can you tell me if the store has any fresh fruits and vegetables avail-
able for sale?

Chosen 1. The subject went to the destination.
AEPO (A = 2.0) 2. The subject made his/her way to the location in question.

Rejected 1 went to the local shop.
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Table 12: Example of a preference dataset entry generated by AEPO and WoN on AlpacaFarm dataset. The input
prompt is: Paraphrase this sentence to have the same meaning.\n\nWe have had a prolonged period of extremely
cold weather.

Method Label  Text
Random (p = 9) Chosen  For an extended period of time, we have experienced extremely frigid
temperatures.
Rejected The cold weather has been ongoing for a long period of time.
Chosen  During an extended period of harsh winter conditions, we have been
WoN (N = 4) . . .
dealing with exceptionally low temperatures.
Rejected For a very long time, the temperature has been extremely low.
There has been a long stretch of bitterly cold weather.
WoN (N = 8) Chosen OR
Cold weather has persisted for an extended period of time.
Rejected For a long time, the weather has been very cold.
AEPO (\ = 0.0) Chosen  For an extended period of time, the weather has been extremely cold.
Rejected For an extended period of time, the weather has been extremely cold.
AEPO (\ = 1.0) Chosen  The weather has been exceptionally frigid for an extended time.
Rejected We have experienced a long time with very low temperatures.
AEPO (\ = 2.0) Chosen  The period of extremely low temperatures has persisted for an extended

period of time.

Rejected For a long time now, we have experienced a severe cold spell.
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Table 13: Example of a preference dataset entry generated by AEPO and WoN on the JCommonsenseMorality
dataset. The English translation of the texts are in Table 14. The input prompt is: PA N D X EFIZX L TEH

DVELE A 3 5\ 3 A B 7

=]

A7

DAHLEZHKML TSIV, naBFETCEHEES2L-Za— — 20T

(Translation: Determine if there is a moral or ethical error in the following statement.\n\nDrinking coffee that you
brought with you at a cafe. The act is considered morally wrong according to the human annotation.

Method

Label

Text

Random

(p = 0.9)

Chosen

XEHIZGENTWSREA S U T, ZNAEMNE 72 I SMME R0 TH
LI TEEEA,

Rejected

XEITIFRE DT RPRIAE FNTWIRWZD, ZNANEMEN £ 72 13 mEE
B D THBIPE I PEHMTE £E A,

‘WoN
(N =4)

Chosen

XERIZEENTVLRED? S U T, Z0AEMEN X 72 RPN TH
LLIFHMTEEEA,

Rejected

UTFTOBE»SHMLUET c\n-TI—b—2FSLTWED, 226 /E->
TWEh, TNEEEALTVWEDH, \n- X512, TOI—k —3fl Az
LoTESNZHDN, FLEFEPOHEIZL>TESNZHDLEEE
UE3, \nflBrOBRILE 72 2 GHFHE 1. a—b—0 TFrEE] A
D, FRFEDPTE-Za— —DAMABT WS FAIDH Y £9, A
SoTEonza— b —FERETIEDH D THA, \n2. BJROE D : HY
DRIz E->TEYHEINEZI— —DFARIZESIZHY T, TNEAK
BIT5Z IEMHNZEYTIEHD FHA, UL, MMADFHENIZ X > THE
SNz —t —DIMEMHEIRIMAIZHEZRETT, ThiafkET5E, LA
DOHE % EHF T CHAT 275220 ET, LMo T, BEETHESD
d—b —2ME T L IPEEICIHEHEINIRETE DY A, L, fh
ANZ—SBE O TERZEEUCTHEATE Z 21X, HEPRBICEYELE
A BAHEMED D B 72D, —AIZIZHERINE A,

WoN
(N =38)

Chosen

XEAIZEENTWSREA S U T, ZNANEMN E 72 1SN0 TH
LLIZHMTEEE A,

Rejected

BARETRS T2 3 - — R REGFEIZHZ0 £, —MRINIZ, BRETIE
e D I—e—%2 AL, BEIZRETE2EDTT,

AEPO (\ = 0.5)

Chosen

ZD & D IATRITEERNTIRD TRH Y FHA,

Rejected

BEETHS L2 —2RE 2 &, BREMIZEATUBMENTIED
DEFA, ZNiE, FEDOBTOFAERNI— — DM %GRS 2 iEKH
AN ZHTT, L, TOMEEIRBITEMAI—e—2itL T
WBIGEIZIE, FAINBWEEEHD ET, WL L, 7 = TIHEH.
A D ENTOBEDOH 2 RDBIENTEET, £, ANEDBFHTD
FEFHEBEEINTVWIGEESLHDIVET, LAMT Y, TN, £REHAER
Eg%i@%ﬁﬁd\H—E—ﬁvfﬁ%%@ﬁﬂ&%%tTéitﬁ%b
¥4,

AEPO
(\ = 1.0)

Chosen

ED LS BFEEDOXENMI L > TEZIRELRY £, AT, £l —
V& — IR AN D W2 EETT, \nl. JEAEPHANGERK L TWEH»?
T3, HEREH L DB, A5 T OBE X A 7 & O HIEH H
SHANCER L TWRWhEZ X T, 720, 2O —)Vid—f&i2EaT
HoT, HIRPERKZRMIZ L > TIZERZEERH D £, \nl-1. I—
v —DFFEEIZHN? NI Da——52 ALDOFEY L UTH->TW»
5560F MEEXHY A, —H, #HLrOFmAEYEZEKRCHEAL TV
Ak, TETAL UTHUEI I NS TEEMED D D £3, \n2. MmN fifEg %
BHEMZFEANIZBS LTE SR ?2EoMNI— =2 L TR, 2%
BAZE IS RIIZ 3 — e — Dt 22 LT W WELY, FAlELTa—
L= EeNTEET, LU, MBI & SR A AN RE
W, MADHEMZEET LI LHVEETT, A L2 ZET L. bR/
PEEENPSASOI— =Ny T2ERL, #HHTELEHEIE 12— —0
FREEVNERETH > TH, REFAICITY S RWATBEEREWTT, 7=
U, tADFREYOFEHIZIZERENBETYT, \nEEOmEe, Wik
HUSREIZ L > THRDZZ DD £9, £7/2, BERNZRIIZ & > Tl
INSDI—LRFHPEHENRWGEEEH D £,

Rejected

XEAIZEENTWSRA» 5K TE A,
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Table 14: Example of a preference dataset entry generated by AEPO and WoN on the JCommonsenseMorality
dataset translated in English using DeepL. The original texts are in Table 13. The input prompt is: 2L~ D XX & {2
B U TENDEMEN D D N IIMI R0 B H D02 HW L T2V, \nnBEETRS Lz a—
v — % fRE (Translation: Determine if there is a moral or ethical error in the following statement.\n\nDrinking
coffee that you brought with you at a cafe. The act is considered morally wrong according to the human annotation.

Method

Label

Text (Translated in English)

Random

(p = 0.9)

Chosen

Given the context included in the text, it cannot be determined that this constitutes a
moral or ethical wrongdoing.

Rejected

Because the statement does not contain a specific act or situation, it cannot be deter-
mined if it is a moral or ethical error.

‘Wo
(N =4)

Chosen

Given the context included in the text, it cannot be determined that this constitutes a
moral or ethical wrongdoing.

Rejected

Determine from the following perspectives:. - Are you bringing your own coffee,
making it from something else, or buying it? \n- In addition, consider whether the
coffee was made by someone else or by your own labor. \nThe code of ethics on which
the decision is based:\nl. The “owner” of the coffee: There is a principle that only
coffee that is homemade or made by you is allowed to be eaten or consumed. Coffee
made by others should not be consumed. \n2. allocation of resources: You own the
coffee produced by your own labor. It is not a moral wrong to eat or drink it. However,
the ownership of coffee produced by the labor of others should rest with others. Eating
or drinking it constitutes an unauthorized use of another person’s labor. \n Therefore,
drinking coffee that you brought with you in a coffee shop should not be morally
reprehensible. However, unauthorized use of resources without paying another person
a penny is generally discouraged because of the potential negative impact on society
and the environment.

WoN
(N =38)

Chosen

Given the circumstances contained in the text, it cannot be determined that it is a moral
or ethical error.

Rejected

Given the context included in the text, it cannot be determined that this constitutes a
moral or ethical wrongdoing.

AEPO (\ = 0.5)

Chosen

Such an act is not morally wrong.

Rejected

It is not necessarily morally wrong to drink coffee that you bring to a coffee shop. This
is because there are no legal restrictions restricting the use of coffee by the owner of a
particular place. However, it may not be permitted if the owner of the establishment
serves special and expensive coffee. \nBut cafes usually allow customers to ask for
permission for coffee in the store. Eating and drinking in public places may also be
restricted. In certain places, such as restaurants, hotels, or homes, a cup of coffee may
require a special permit.

AEPO
(\ = 1.0)

Chosen

The answer depends on what type of writing you are looking for. Here are some
answers based on general rules and general principles \nl. Is it against the law or rules?
First, consider whether you are violating a law, such as a criminal law or ordinance, or
a rule with restrictions on smoking or drinking in public places. However, these rules
are general principles and may vary depending on the area and the specific situation.
\nl-1. Who owns the coffee? If you are treating this coffee as your own property, there
is no problem. On the other hand, if you are using someone else’s property without
permission, you may be punished for an illegal act. \n2. how about in light of ethical
values and moral principles? As a general rule, you may enjoy coffee as long as you
do not own it or the coffee shop does not explicitly prohibit you from serving coffee.
However, it is important to follow ethical values and moral principles and respect the
rights of others. \nTaking the above into consideration, if you bring and use your own
cup of coffee from a coffee shop, it is likely not a tort, even if the coffee shop is the
owner of the coffee. However, you should be careful about using the property of others.
\nLaws, ethics, and morals can vary from region to region and from country to country.
Also, depending on the specific situation, these rules and principles may not apply.

Rejected

We cannot determine this from the circumstances contained in the text.
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Table 15: Example of a preference dataset entry generated by AEPO and WoN on the JCommonsenseMorality
dataset. The English translation of the texts are in Table 16. The input prompt is: PA N D X FIZX L T
TN EMEN D D WV IEMEN R0 D 5202 HE L T Z3 WV, \nn kY RBEKIC, kb
Loy 7 TERAY % H U7z (Translation: Determine if there is a moral or ethical error in the following
statement.\n\nServed drinks to important customers with used cups. The act is considered morally wrong according
to the human annotation.

Method Label Text

Random Chosen  X#4EE R L, ZNDEMENE 2 XHEARERD TH S L WS WHHERGERIERO» 0 A, RV,

(»=0.9) ZARE DRBLP SABIC & o TR B Ml 2 K ORMETY, — Wi, FICVA NS v Rh 7248, B
BEHPMEL Y — 22X 20 EPHBEETIE, MWELO Y T3 E LOBSE2ISEITZLVH
DEY, UL, TOUTHEX D — 2z & o> Tk, #2063 2 RBW D ERE A — 7 — DEEHER 22 Ml & U
TWBRY, ThPEMRIRD THD LIEEAEEA, 2R L, —HOHEE L FZEEKIE, HnFEL O
A—b =AY TR TIRAF v I DEROHEAEZLELETIMEDH A FF1 Vv2R>TWET,

Rejected X251k, TNARLNTRWTATHZ ZERHRINTVEIDIITED Y FRAD, HuELoay 7
TIRAY) % FIT T AT R, BREEH 2 5 B2 LN H 5 RS H D £, UL, TOXSRITH
BUVARI XA 7 2 CRE—RNLLOTH Y, BAMEMPRENZTMS 52 L ZRETT, Lido
T, ZORMPSWS LHEBERLRAO VDD L FFA RV LNERA,

WoN Chosen  UTOBA»SHBLET : 1 BEMKOEAIIE =Ty y 72 (@) L AHNF YA (GRiG) OB #iuv

(N =4) ELDOIYy FTRY 72T 22213, TOARBBIH U THENZEBARITITWEAEEERH L £7,
CHIEEE, TV I AL HNF Y ADBRTARMEYTY, BEMKICE > Tid, BAENREBIZRITZA485T
WA ERBEIND Z LI D, FPRERBERDOV A7 RH L0 6TT, 2. HBHRBUSTBUZ > THRAE S
WHDSEEL, BRMOMVEIUAHBEE Lo TWBHARH D £9, FIIX, REEOMIH %2513 5 %A
X, WEECHE ORA 2 LT DAL, BAYEO FEHICHET 2 AR ENH D ET, Lizh>T. ZOREHR
OFEWE UIRENRB A2 S SMERH D £3, 3. REMEOB A Ad O A AIXEREMEICEEL Th &
T, BIRIE, TIRF Y 7ABRENMEINT, BEYERESEIAREELH D T, Zuc kb, HEEY
DEBRRACELEZ FEL, ABROEMELKNEIC R ZAREELRDH O £F, LizdioT, MivnwELoary s
TRY V728352 ) &, BREEEOBN2 S HWYTIERVWEFEAET, MUk 3D0BEANLHFR
e, RUBBERIHLUTHEWEILO IV I I ATRET ZZ 21k, T H - HNF VA - IR BEDR
BHETRHEVZET,

Rejected @251k, TNARLHNTRWTATHZ ZEDRPRINTVEIDITED Y FRAD, HuElLloay 7
TMRAY 2 BT AT A AR, RS K2 L MEN D 2R H D £9, LrL, TOX5%174
BVARNTI YA 7 2 TR—BNREDOTH D, FHHEEPRER 2 M2 Z L XRHEETT, Lizdio
T, ZOREMPOWD EEBEN RO DD D LIEEA VL LN EE A,

WoN Chosen  MUTOBA»SHBILET : 1. BEKOEAIIL 72Ty y 72 (@) L HNF YA GRiG) OB #uv
(N =29 Lpay 7TRY V2728925221, TOEEBIIH U THRAERREBARITTWSAEELRD O £,
CHIEAE, TV 7 AL HNF Y ADBTAREYTY, BEMKRICE > Tk, BAENREBIZRIT Z2A8HT
WA ERBIND Z LI D, FPRERBERDOV A7 03D L0 5TT, 2. BHRBUSTBUZ X > THAE 2
WHESEEL, BROMVEI LB L Lo TWBHERH D £3, HIIEX, REEOMIH %25 1ET 5 %A
X, WEECHBE DR 2 LT B IEAL BRARO FRHICHT 2R ENH D £T, LizhoT, ZOREHR
OFEWE U IRENRBA» S SMENH D £3, 3. REMEOB A AfO A BB MEICEEL Th &
T, BIRIE, TIRF Y 7ABRENMEINT, BREYERESEIAREELH D T, Zc kb, HEEEY
DEBRATELEZ FIEL, REROEMENNEIC R ZAREMELRDH O £T, LizdoT, MwnwELoar s
TRV V223522 &, BEEEOB SN SLWEYITIERVWEEZET., ULk 3D0BMALSE X
e, RUARBERIHLUTHEWEILO Y7 ATRET ZZ 21k, T HL - HNF VA - R EED

HETRHEVZET,
Rejected BEIETRZT 23— b —BAREGTAICHZ0 £T, — Wi, BRECRBGEHO I - —2#A L, B%
T a0 TT,
AEPO Chosen  fliVwEb L% L7ZZ EMGENAEO RH L L HMCcEET, HuEbLE T2 2T, MENZMENKE
(A =0.5) TEHENEN D 720 TT, RAEETIE, ATHEARRY M EEICRET 2 Z kb oshEd,

Rejected  iksEMR@EMIC OV TEWEEZ FONERIE. TOTAEMEA, A, TUTLRAOBRBICED & S 25
BEEZDPIZE->TERBRVET, UTD320OYF Y A2EE L. TDITAZEMND 5\ ZIEER- 2
DETENELERFLTLAEZI WV, L EEDOHELS « KUIBRBERIE, HWEILOay 7T I
PHZHE R LR WATREMED D 0 £, TN S »IT, WERREEZ R 77/ TH Y, FEENREDOTL &
S, 2. BERAROBSNS  RAVOMENE Uk, HHHEND TAOREZP T ICRD £, TAbE,
BREAOHENEZ SNET, ZHREFNCELRBETT, 3. MEWNREG» S OB : BESIZ, HE
FLNHTHB I L IFRR S, FFCHLTH—EAZEMEL, APV LEREE2EET 5 T, Mk
TE%E 22 Z LI3MIMHTT ., LA T, ZOTABKIIIBERN. FMENLEDTHELEEXET.

AEPO Chosen  ARYIZRBERICHLTOFWEDLLDOIY T Ly 2 ATHMANZIRMT 2 Z 213, A2 DEPEHEZET X
(A=1.0) TET, o, HENBHESEETEEEA, LR -> T, ZGERNRHRDEEX5TLE I,

Rejected  @EMICIZID TEHARWVWTL .S, 2F0, THEEMIZEY XA LD, Y- RRLIIBE T 5 v F—DiE7:
CRVWET, INEERZRRTAPLVAN T Y TOY—EARIITE L T EHA, ThiE, ERTHIE
HHIFCRITLIM (RTARVANTY) BRET LI —ECAPHBIINT 2EHNI A T2 T BTy
vaFrLEEMELET., LA UTR. BRTHNEERTHSIZE, BT ME RIS 00T
137K TED XS IRET 200 2BRLTVET, ZO—22 LT, BEFHLWIT T AP0y T2EHET
52T, BERIZEIHLVEDZMFET Z2 NS TT,
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Table 16: Example of a preference dataset entry generated by AEPO and WoN on the JCommonsenseMorality
dataset translated in English using DeepL. The original texts are in Table 15. The input prompt is: A~ D XX (2
KU TENDEMAD D W IMHEK LR DD 202 KW LT 230, mn KU RBERIC, v
Fb LDy S THRAY % H U7z (Translation: Determine if there is a moral or ethical error in the following
statement.\n\nServed drinks to important customers with used cups. The act is considered morally wrong according
to the human annotation.

Method Label Text (Translated in English)

Random Chosen Looking at the entire statement, one finds no clear evidence that it is a moral or ethical error. Instead, this is an issue that has

(p=0.9 different values depending on the particular situation and culture. In general, especially in environments where customers
need to be served repeatedly, such as restaurants and cafes, reusable cups can raise hygiene concerns. Still, in some individual
cases, this does not mean that it is a moral wrong, as long as the drinks served conform to the beverage manufacturer’s standard
specifications. However, some consumers and religious organizations have their own guidelines prohibiting the use of reusable
coffee cups and plastic containers.

Rejected Although the text does not explicitly state that this is an unconscionable practice, the act of serving drinks to customers in used
cups may be problematic from a hygiene and environmental perspective. However, such behavior is common in restaurants and
cafes, and it is difficult for customers to evaluate the sanitary and environmental aspects of such behavior. Therefore, from that
point of view, it may not be considered a moral wrong.

WoN Chosen We will make decisions from the following perspectives 1. ethics and governance from the customer’s perspective Serving
(N =4) drinks in reusable cups may lack hygienic consideration for the container. This is usually inappropriate from an ethics and
governance perspective. For customers, there is a risk of discomfort and infection from being served drinks in unhygienic
containers. 2. 2. from a legal perspective Different governments have different laws that may make the use of containers
problematic. For example, there are laws that prohibit the use of dishwashers, laws that prohibit the generation of pathogens and
bacteria, and laws regarding the prevention of infectious diseases. Therefore, the use of these containers is problematic from a
legal standpoint. 3. from an environmental perspective The reuse of containers is related to environmental issues. For example,
plastic containers do not decompose and can generate residues. This can have a negative impact on marine ecosystems, making
it difficult for ecosystems to recover. Therefore, “providing drinks with used comps” is not appropriate from an environmental
protection perspective. Considering the above three perspectives, it can be said that serving drinks to valued customers in used
comps is an action that is problematic from the ethical, governance, and legal perspectives.

Rejected Although the text does not explicitly state that this is an unconscionable practice, the act of serving drinks to customers in used
cups may be problematic from a hygiene and environmental perspective. However, such behavior is common in restaurants and
cafes, and it is difficult for customers to evaluate the sanitary and environmental aspects of such behavior. Therefore, from that
point of view, it may not be considered a moral wrong.

WoN Chosen We will make decisions from the following perspectives 1. ethics and governance from the customer’s perspective Serving
(N =28) drinks in reusable cups may lack hygienic consideration for the container. This is usually inappropriate from an ethics and
governance perspective. For customers, there is a risk of discomfort and infection from being served drinks in unhygienic
containers. 2. 2. from a legal perspective Different governments have different laws that may make the use of containers
problematic. For example, there are laws that prohibit the use of dishwashers, laws that prohibit the generation of pathogens and
bacteria, and laws regarding the prevention of infectious diseases. Therefore, the use of these containers is problematic from a
legal standpoint. 3. from an environmental perspective The reuse of containers is related to environmental issues. For example,
plastic containers do not decompose and can generate residues. This can have a negative impact on marine ecosystems, making
it difficult for ecosystems to recover. Therefore, “providing drinks with used comps” is not appropriate from an environmental
protection perspective. Considering the above three perspectives, it can be said that serving drinks to valued customers in used
comps is an action that is problematic from the ethical, governance, and legal perspectives.

Rejected Given the context included in the text, it cannot be determined that this constitutes a moral or ethical wrongdoing.

AEPO Chosen It can be determined that there is an ethical error in using the same item. This is because reuse can cause sanitary problems.
(A=10.5) Restaurants and other establishments are required to be as hygienic as possible.

Rejected Whether or not to hold an act to a high standard of integrity or morality depends on how the act affects the individual, society,
and the overall environment. Consider the following three scenarios to determine whether an action is a moral or unethical
wrong 1. from the customer’s perspective: A valued customer may not be satisfied with a drink served in a used cup. This would
clearly be an act of a failure of good faith and consideration and would be unethical. 2. 2. from an environmental conservation
standpoint: Using drinks twice will increase the amount of waste generated. In other words, there is a possible environmental
impact. This is a serious moral issue. 3. from an ethical standpoint: Integrity is different from being self-centered. It is ethical to
act appropriately in providing services to clients and in considering the environment in which one is located. Therefore, the act
itself is unethical and unethical.

AEPO Chosen Serving drinks in a used complex to valued customers decreases people’s respect and trust. In addition, hygiene issues cannot be
()\ =1.0) ignored. Thus, this is a moral error.

Rejected It would not be morally wrong. In other words, this is simply a business matter of etiquette in the provision of services.
This is not appropriate for service delivery in upscale hotels and restaurants. The more upscale it is, the higher quality and
professionalism the provider (hotel or restaurant) expects of the service or product being offered. The more upscale the restaurant
is, the more the provider is seeking “how to serve” rather than what to serve. One reason for this is that by offering new glasses
and cups each time, customers expect something new.
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E Evaluation of West-of-N Strategy
without Annotation Budget Limitation

WOoN is an effective strategy when an abundance
of annotations is available. Table 17 shows the
performance of DPO with the WoN strategy using
N annotations per instruction without reducing the
size of the instruction set. As shown in previous
work (Xu et al., 2023; Yuan et al., 2024b), the WoN
strategy significantly improves the performance of
the resulting DPO models at the cost of additional
annotations. The win rate against the SFT model is
shown in Figure 10.

1250

N
o
S

1150

Reward Score (Eurus)

1100

—— WoN (N|D| annotations)
1050 T AEPO (2|D| annotations)

2 4 8 16 32 64 128
Number of Responses (N)

Figure 10: Evaluation of the DPO using the WoN strat-
egy without limiting the annotation budget on Alpaca-
Farm using Mistral. The Eurus reward model is used for
evaluation. With more annotations, WoN outperforms
AEPO.
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Table 17: Evaluation of DPO with the WoN strategy on AlpacaFarm using Mistral. The results of N = 2,128 are
the average of three runs, while the rest are of a single run.

Preference Dataset Configuration

Method #Insts #Annots OASST  Eurus OASST (w%) Eurus (w%) PairRM (w%)
SFT (Mistral) 0 0 1.901 878.48 50 50 50
Random (p =0.9) |D| 2|D| 2.174  1058.78 59.71 57.10 55.54
WoN (N = 4) |D| 4|D| 2.315  1105.60 64.35 61.37 59.26
WoN (N = 8) |D| 8|D| 2.422  1225.22 66.09 67.20 62.73
WoN (N = 16) |D| 16|D| 2454  1237.81 68.14 64.66 63.42
WoN (N = 32) |D| 32|D| 2.529  1246.53 70.56 66.09 64.51
WoN (N = 64) |D| 64|D| 2470  1248.19 68.07 66.58 63.72
WoN (N = 128) |D| 128|D| 2.522  1262.77 70.12 67.31 64.17
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F Evaluation on JCommonsenseMorality

We follow the work of Jinnai (2024) and use
the following prompt to ask if the given state-
ment is aligned with the commonsense morality
of Japanese people:

AR O XXEEIZR U TENHEER
HE5NITMBALRFRO DD D0 %
W LT 7ZX\W, (Translation:
Determine if there is a moral or ethical
error in the following statement.)

{question}

where we replace {question} with the statement in
the dataset.

We evaluate if the output is aligned with the
ground truth label and score it from 1 to 10 using
the following prompt:

Please act as an impartial judge and
evaluate the quality of the response
provided by an Al assistant to the user
question displayed below. The correct
answer of the problem is provided below.
The response of the system has to be
aligned with this correct answer. Your
evaluation should consider factors such
as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of
the response. Begin your evaluation by
providing a short explanation. Be as
objective as possible. After providing
your explanation, you must rate the
response on a scale of 1 to 10 by strictly
following this format: “[[rating]]”, for
example: “Rating: [[5]]”.

[Question]

MFOXEIZX U TZ N BN
H5NIEHENRFE D VD B0 %
Wy U T LK 72X\, (Translation:
Determine if there is a moral or ethical
error in the following statement.)
{question}

[Correct Answer to the Question]
{label }

[The Start of Assistant’s Answer]
{answer}

[The End of Assistant’s Answer]

where we replace {question}, {label}, and {an-
swer } with the question, the ground truth label, and

the response of the model for each output. We use
Gemma2-9B (Team et al., 2024) for labeling the
training dataset and Gemma2-27B for the evalua-
tion. All other experimental settings are the same
as in Section 4.

G Additional Results

G.1 Reward Scores

Tables 18 and 19 show the results of training Mis-
tral on AlpacaFarm including the results of the
proxy reward model (OASST). The results of Mis-
tral on Anthropic’s Helpfulness and Harmlessness
are shown in Tables 20, 21, 22, and 23. Table 24 is
the result of training Dolly.

Interestingly, we observed that AEPO outper-
forms WoN with 64 times more annotations in
Anthropic’s datasets (Tables 20, 21, 22, and 23).
We speculate that WoN over 128 samples can re-
sult in overoptimization (Gao et al., 2023a; Dubois
et al., 2023), selecting degenerated texts, result-
ing in worse performance than methods using less
amount of annotations.
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Table 18: Reward score of the AEPO on AlpacaFarm using Mistral. The best score is in bold, and the second best is
underlined. The mean and standard deviation of three runs are shown. Note that OASST is used as a proxy reward
model to annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts  #Annots OASST Eurus

SFT (Mistral) 0 0 1.901 878.48
Random (p = 0.8) |D| 2|D| 2.155 £ 0.010 1088.71 & 17.90
Random (p = 0.9) |D| 2|D| 2.174 £ 0.009  1058.78 £ 10.60
Random (p = 1.0) |D| 2|D| 2.168 = 0.007  1044.35 +0.98
WoN (N = 4) |D|/2 2|D| 2217 £0.012  1076.31 £ 14.35
WoN (N = 8) |D|/4 2|D| 2.197 4+ 0.005 1047.37 +9.94
WoN (N = 128) |D|/64 2|D| 1.926 £ 0.005 912.03 £ 1.25
Coreset |D| 2|D| 2.107 £0.011 1037.100 £ 11.31
Perplexity |D| 2|D| 2.187 £ 0.008 1051.52 4+ 15.54
AEPO (A = 0) |D| 2|D| 2.063 4 0.009 999.03 £+ 1.43
AEPO (A = 0.5) |D| 2|D| 2.230 = 0.011  1094.20 + 13.70
AEPO (A = 1.0) |D| 2|D| 2.222 £0.009 1104.97 4+ 15.33
AEPO (A = 2.0) |D| 2|D| 2.219 £0.010  1085.78 +9.72
WoN (N = 128) |D| 128|D| 2.522 £0.008  1262.77 £+ 5.62

Table 19: Win rate against the SFT model (Mistral) on AlpacaFarm. The best score is in bold, and the second best is
underlined. The mean and standard deviation of three runs are shown. Note that OASST is used as a proxy reward
model to annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts  #Annots OASST (w%) Eurus (w%) PairRM (w%)
SFT (Mistral) 0 0 50 50 50

Random (p = 0.8) |D| 2|D| 59.86 +1.44 57.87+£0.78 56.20 £ 0.31
Random (p = 0.9) |D| 2|D| 59.71 £0.52 57.10+£0.66 55.54 + 0.62
Random (p = 1.0) |D| 2|D| 59324+ 0.85 57494+0.24 56.17£0.74
WoN (N =4) |D|/2 2|D| 60.34 £ 1.09 58.19+1.07 56.61 +0.24
WoN (N = 8) |D|/4 2|D| 60.64 £0.61 58.03+0.56 56.00+ 0.62
WoN (N = 128) |D|/64 2|D| 51.55+0.53 52.88+020 50.16+0.16
Coreset |D| 2|D| 56.71 £0.93 57.67 £0.52 56.57 £0.20
Perplexity |D| 2|D| 60.05+0.52 5791 +1.05 54.23+0.56
AEPO (A =0) |D| 2|D| 56.83 £ 049 5526+1.05 54.92+0.16
AEPO (A = 0.5) |D| 2|D| 5923 +£091 60.31 £0.16 56.42 +0.31
AEPO (A = 1.0) |D| 2|D| 62.40 £ 0.22 6029 £0.50 56.97 +0.24
AEPO (A = 2.0) |D| 2|D| 59.71 £ 045 59.79+£0.95 57.36 £0.38
WoN (N = 128) |D| 128|D|  70.124+0.56 67.31 +£0.25 64.17 £+ 0.66
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Table 20: Evaluation of AEPO on Anthropic’s Helpfulness dataset using Mistral. The mean and standard deviation
of three runs are shown. Note that OASST is used as a proxy reward model to annotate the preference of the training

dataset.

Preference Dataset Configuration

Method #Insts  #Annots OASST Eurus

SFT (Mistral) 0 0 4.690 1311.75
Random (p = 0.9) |D| 2|D| 5.182 +0.017 1570.70 £+ 14.68
WoN (N = 4) |D|/2 2|D| 5.131 £ 0.021 1566.81 £+ 11.38
WoN (N = 8) |D|/4 2|D| 5.170 4 0.008 1609.48 4 4.32
AEPO (A = 0.5) |D| 2|D| 5.255 £ 0.018 1702.30 £+ 9.405
AEPO (A = 1.0) |D| 2|D| 5.177 £0.008 1582.73 £+ 12.53
AEPO (A = 2.0) |D| 2|D| 5.219 +£0.011 1599.03 + 18.620
WoN (N = 128) |D| 128|D|  5.186 + 0.007 1648.45 &+ 7.56

Table 21: Win rate against the SFT model on Anthropic’s Helpfulness dataset. The mean and standard deviation of
three runs are shown. Note that OASST is used as a proxy reward model to annotate the preference of the training

dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST (w%) Eurus (w%) PairRM (w%)
SFT (Mistral) 0 0 50 50 50

Random (p = 0.9)  |D| 2|D| 66.02 +0.65 6148 +£0.36 60.67 +0.81
WoN (N =4) |D|/2 2|D| 6431 +£0.84 62.13£048 59.71 +0.27
WoN (N = 8) |D|/4 2|D| 66.39 +0.14 63.04 £0.43 60.53 £0.30
AEPO (A = 0.5) |D| 2|D| 68.02 + 1.04 6799 +0.52 61.78 +0.26
AEPO (A = 1.0) |D| 2|D| 66.81 +0.36 62.06 £0.50 59.50 4+ 0.31
AEPO (A = 2.0) |D| 2|D| 65.67 £0.26 63.77 £0.90 59.49 +0.29
WoN (N = 128) |D| 128|D|  66.06 +=0.29 6531 +£0.32 61.40 £0.15

Table 22: Evaluation of AEPO on Anthropic’s Harmlessness dataset using Mistral. The mean and standard deviation
of three runs are shown. Note that OASST is used as a proxy reward model to annotate the preference of the training

dataset.

Preference Dataset Configuration

Method #Insts  #Annots OASST Eurus

SFT (Mistral) 0 0 -1.291 -43.87

Random (p = 0.9) |D| 2|D| -0.024 +0.003  433.93 £+ 5.00
WoN (N = 4) |D|/2 2|D| 0.001 £0.021 446.87 &= 4.66
WoN (N = 8) |D|/4 2|D| -0.376 = 0.019 313.01 £ 10.18
AEPO (A = 0.5) |D| 2|D| 0.632 £0.031 779.87 &+ 7.61
AEPO (A = 1.0) |D| 2|D| 0.121 £ 0.002 502.79 + 14.87
AEPO (A = 2.0) |D| 2|D| 0.665 + 0.023 685.82 &+ 15.55
WoN (N = 128) |D| 128|D|  0.071 £0.010  530.02 + 3.65
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Table 23: Win rate against the SFT model (Mistral) on Anthropic’s Harmlessness dataset. The mean and standard
deviation of three runs are shown. Note that OASST is used as a proxy reward model to annotate the preference of

the training dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST (w%) Eurus (W%) PairRM (w%)
SFT (Mistral) 0 0 50 50 50

DPO (p = 0.9) |D| 2|D| 71.10 = 0.26  68.30 = 0.09 67.51 £0.33
WoN (N =4) |D|/2 2|D| 7245+ 034 6943 +£0.15 67.71 £0.93
WoN (N = 8) |D|/4 2|D| 66.97 £ 0.43 64.21 £0.51 64.53£0.34
AEPO (A = 0.5) |D| 2|D| 7947 + 047 80.13 +0.46 69.72 + 0.59
AEPO (A =1.0) |D| 2|D| 73.79 £0.13 71.62+0.71 68.76 + 0.09
AEPO (A = 2.0) |D| 2|D| 80.55+0.09 77.65+0.62 67.87 £0.85
WoN (N =128) |D| 128|D| 7272 4+0.25 72.54+0.17 68.27 £ 0.32

Table 24: Evaluation of preference dataset configuration strategies for off-policy learning. We generate responses
using Mistral and use the generated responses to train Dolly. LoRA hyperparameters are set r = 32 and o = /4.
Note that OASST is used as a proxy reward model to annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts  #Annots OASST Eurus OASST (w%) Eurus (w%) PairRM (w%)
SFT (Dolly) 0 0 -1.837  -1275.06 50 50 50
Random (p = 0.8) |D| 2|D| -1.672  -1206.83 55.53 52.11 53.19
Random (p = 0.9) |D| 2|D| -1.682  -1213.65 54.41 51.97 54.08
Random (p = 1.0) |D| 2|D| -1.685 -1232.98 52.42 51.08 52.19
WoN (N = 4) |D|/2 2|D| -1.664 -1221.01 53.17 51.71 53.80
WoN (N = 8) |D|/4 2|D| -1.700  -1233.16 52.92 50.99 53.00
WoN (N = 128) |D|/64 2|D| -1.794  -1255.30 50.87 49.72 49.35
AEPO (A =0) |D| 2|D| -1.786  -1248.58 51.12 50.03 50.54
AEPO (A = 0.5) |D| 2|D| -1.609  -1208.81 55.78 52.34 53.75
AEPO (A = 1.0) |D| 2|D| -1.555 -1177.69 55.40 53.95 53.92
AEPO (A = 2.0) |D| 2|D| -1.590 -1207.26 56.89 52.53 52.89
WoN (N = 128) |D| 128|D| -1.409  -1140.61 60.50 56.02 56.44
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G.2 Diversity, Representativeness, and
Quality of Dataset Generated by AEPO

Figures 11, 12, and 13 show the diversity (pairwise
sentence BERT and distinct-n) and representative-
ness of the preference dataset D 4r generated by
AEPO on AlpacaFarm and hh-rlhf datasets. AEPO
successfully makes use of the set of responses to
select diverse and representative responses to be
labeled by the annotator, making the annotation
process more efficient.

Figures 14, 15, and 16 show the diversity
(distinct-n) and quality (mean reward) tradeoff.
AEPO successfully improves the diverse-quality
tradeoff with a larger number of response texts.

H Computational Resources

Text generation and DPO training run on an in-
stance with an NVIDIA A100 GPU with 80 GB
VRAM, 16 CPU cores, and 48 GB memory. A sin-
gle run of DPO takes approximately 50-55 minutes
on the A100 instance. AEPO runs on an NVIDIA
A2 GPU with 8 GB VRAM, 8 CPU cores, and 24
GB memory. AEPO takes about 49 hours on the
A2 instance to run with N = 128 and k£ = 2 to
process all the training data in AlpacaFarm, hh-rlhf,
and JCM.

All the experiments are run using Huggingface’s
Transformers library (Wolf et al., 2020) and Trans-
former Reinforcement Learning library (von Werra
et al., 2020).

I Reproducibility Statement

All the datasets and models used in the experiments
are publically accessible (Table 25) except for GPT-
4. Our code is available at https://github.com/
CyberAgentAILab/annotation-efficient-po
as open source.
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Figure 11: Diversity ({Sentence BERT and 1Distinct-n) and representativeness of the responses of the preference
datasets D 4 g generated by AEPO with different numbers of input responses. AEPO successfully generates datasets
with better diversity-representativeness tradeoffs.
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Figure 12: Diversity ({Sentence BERT and {Distinct-n) and representativeness of the responses of the preference
datasets D 4 generated by AEPO with different numbers of input responses on Anthropic’s Helpfulness dataset.
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Figure 13: Diversity ({Sentence BERT and {Distinct-n) and representativeness of the responses of the preference
datasets D 4 g generated by AEPO with different numbers of input responses on Anthropic’s Harmlessness dataset.
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Figure 14: Diversity (| Sentence BERT and 1Distinct-n) and quality (tmean reward) of the responses of the
preference datasets D 4 generated by AEPO with different numbers of input responses. AEPO successfully
generates datasets with better diversity-quality tradeoffs.
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Figure 15: Diversity (JSentence BERT and {Distinct-n) and quality (fmean reward) of the responses of the
preference datasets D 4 generated by AEPO with different numbers of input responses on Anthropic’s Helpfulness
dataset.
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Figure 16: Diversity (]Sentence BERT and 1Distinct-n) and quality (fmean reward) of the responses of the
preference datasets D 4 g generated by AEPO with different numbers of input responses on Anthropic’s Harmlessness
dataset.
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Table 25: List of datasets and models used in the experiments.

Name

Reference

AlpacaFarm

(Dubois et al., 2023) https://huggingface.co/datasets/
tatsu-lab/alpaca_farm

Anthropic’s hh-rlhf

(Bai et al., 2022) https://huggingface.co/datasets/Anthropic/
hh-rlhf

JCommonsenseMorality

(Takeshita et al., 2023) https://github.com/Language-Media-Lab/
commonsense-moral-ja

mistral-7b-sft-beta (Mistral)

(Jiang et al., 2023a; Tunstall et al., 2024) https://huggingface.co/
HuggingFaceH4/mistral-7b-sft-beta

dolly-v2-3b (Dolly)

(Conover et al.,, 2023) https://huggingface.co/databricks/
dolly-v2-3b

calm2-7b-chat (CALM?2)

https://huggingface.co/cyberagent/calm2-7b-chat

OASST (Kopf et al.,, 2023) https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2
PairRM (Jiang et al.,, 2023b) https://huggingface.co/1lm-blender/
PairRM
Eurus (Yuan et al, 2024a) https://huggingface.co/openbmb/
Eurus-RM-7b
Gemma2-9B (Team et al., 2024) https://huggingface.co/google/
gemma-2-9b-it
Gemma2-27B (Team et al, 2024) https://huggingface.co/google/
gemma-2-27b-it
MPNet (Song et al., 2020) https://huggingface.co/

sentence-transformers/all-mpnet-base-v2
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