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Abstract
Although Large Language Models (LLMs)
perform well in general fields, they exhibit
a confidence distortion problem on multi-
choice question-answering (MCQA), partic-
ularly as the number of answer choices in-
creases. Specifically, on MCQA with many
choices, LLMs suffer from under-confidence
in correct predictions and over-confidence in
incorrect ones, leading to a substantially de-
graded performance. To solve this problem,
we propose Self-Ensemble in this work. Our
method splits the choices into several groups
and ensembles LLM predictions across these
groups to reach a final decision. The advan-
tage of Self-Ensemble is its plug-and-play
nature, where it can be integrated into exist-
ing LLM architecture based on a designed at-
tention mask and positional encoding, without
requiring labeled datasets for parameter tun-
ing. Experimental results on three LLMs and
datasets demonstrate that Self-Ensemble com-
prehensively addresses the confidence distor-
tion problem of LLMs, outperforming standard
inference as well as baseline methods. The
source code is available at https://github.
com/ZichengXu/Self-Ensemble.

1 Introduction

Large Language Models (LLMs) have exhibited
remarkable performance in processing natural lan-
guage information, such as the LLaMA (Touvron
et al., 2023), Mistral (Jiang et al., 2024), and
Deepseek (Guo et al., 2025). Among various NLP
tasks, multi-choice question-answering (MCQA)
stands out as a standard and challenging benchmark
to evaluate the reliability and reasoning ability of
LLMs (Wang et al., 2024c). It can significantly re-
duce the hallucinations by limiting the answer to a
predefined set of choice aligned with human knowl-
edge (Anjum et al., 2024; Neeley et al., 2025).

*Equal contribution, ordered by rolling dices.
†Correspondence to: Vladimir Braverman vova@cs.jhu

.edu and Guanchu Wang gwang16@charlotte.edu

Figure 1: Self-Ensemble’s comprehensive perfor-
mance on the QASC, TruthfulQA, and MMLU-Pro Bi-
ology datasets compared with baseline methods.

While advanced LLMs perform well on standard
MCQA benchmarks, such as MMLU (Hendrycks
et al., 2021), MathQA (Amini et al., 2019), and
GSM-8K (Cobbe et al., 2021), they still face chal-
lenges when it comes to numerous choices that are
closely related (Wang et al., 2024a). In particular,
we identify a critical problem: LLMs suffer from
confidence distortion on MCQA tasks based on a
comprehensive benchmark analysis. Specifically,
LLM’s confidence in the correct choice tends to de-
grade, while its confidence in incorrect choices in-
creases as the number of choices grows. This prob-
lem grows even more pronounced in the presence
of additional noisy or partially relevant choices,
thereby increasing the unreliable generations and
erroneous predictions.

To calibrate LLM predictions on MCQA, exist-
ing work focuses on post-processing LLM predic-
tions to better align confidence with correctness.
One common method is the vector scaling (Guo
et al., 2017). It adjusts the model outputs by apply-
ing a learned scaling vector and bias vector to the
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(a) LLaMA-3-8B (Correct) (b) Mistral-7B-v0.1 (Correct) (c) Qwen2-7B (Correct)

(d) LLaMA-3-8B (Incorrect) (e) Mistral-7B-v0.1 (Incorrect) (f) Qwen2-7B (Incorrect)
Figure 2: Proportion of model prediction probability exceeding a threshold on the QASC dataset, for each model
under both correct- and incorrect-answer conditions.

logits before applying the softmax function, which
can smooth or sharpen the probabilities to better
align with correctness. Another approach is Dirich-
let Calibration (Zong et al., 2024). It generalizes
LLM’s prediction probability on each choice using
a Dirichlet distribution to maximize the likelihood
function on a validation set. However, a major
limitation of these methods is their reliance on a
labeled validation dataset to optimize calibration
parameters. In practical scenarios, collecting high-
quality validation data can be both labor-intensive
and costly, which limits these techniques.

To overcome this limitation, we introduce
Self-Ensemble for LLM calibration in this work.
Unlike existing work, Self-Ensemble calibrates
LLM predictions without relying on a labeled val-
idation dataset for parameter tuning. Specifically,
Self-Ensemble mitigates the confidence distor-
tion problem through a divide-and-conquer process:
it splits the choices into several groups of choice
subsets; then ensembles LLM predictions on each
group to achieve the final decision. To plug into ex-
isting LLM architecture, we design attention mask-
ing and positional re-encoding mechanisms that en-
able the divide-and-conquer process to be executed
internally during inference. Figure 1 shows the
comprehensive performance of Self-Ensemble on
three datasets and LLMs, where our method shows
significant improvement over standard inference
and baseline methods by addressing the confidence
distortion problem. To summarize, the contribu-
tions of this work are as follows:

• Confidence distortion. We identify the confi-
dence distortion problem of LLMs in MCQA
task, where LLMs have under-confident prob-
lems on correct answers and over-confident prob-

lems on incorrect answers.
• Self-Ensemble. We introduce Self-Ensemble

to calibrate LLM confidence in MCQA task.
We design attention masking and positional re-
encoding to plug Self-Ensemble into existing
LLM architectures.

• Evaluation. Experimental results demonstrate
that Self-Ensemble can comprehensively mit-
igate the under-confident problems on correct
answers and over-confident problems on incor-
rect answers. It can effectively improve accuracy
on benchmark datasets by 8% on average.

2 Preliminary
2.1 Notations

We consider an LLM f on MCQA tasks in this
work. We define an MCQA task with K answer
choices as K-choice QA, where the set of options is
denoted as C={op1, op2, · · · , opK}. In this work,
we refer to the setting with K ≤ 4 as few-choice
QA, and with K≥8 as many-choice QA. Our goal
is to solve the degradation of LLM’s performance
and confidence on the task of many-choice QA.

2.2 LLMs for MCQA

The two most effective ways for LLMs doing
MCQA are verbal generation and token probabil-
ity. In the verbal generation approach, the LLM
generates the final answer as text outputs, corre-
sponding to one of the choices. However, a key
drawback is that it may fail to follow the expected
output format, leading to answer extraction errors.
In contrast, the token probability approach directly
computes the probability of each choice token at
the model’s final layer, selecting the answer with
the highest probability. It offers a more reliable
evaluation result and often reflects a model’s best
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Figure 3: LLMs ignore the correct choice and pick the
incorrect one in the many-choice setting.

Model 2-choice 4-choice 6-choice 8-choice

LLaMA-3-8B 91.90 86.29 76.35 73.22
Mistral-7B-v0.1 86.83 75.81 65.98 57.78
Qwen2-7B 90.82 83.80 73.97 69.44
Average 89.85 81.97 72.10 66.81

Table 1: Accuracy of LLMs on the QASC dataset with
different choice numbers.

achievable performance. In this work, we consider
the token probability approach for MCQA.

3 Confidence Distortion and
Self-Ensemble

We demonstrate the confidence distortion prob-
lem for LLMs and introduce our Self-Ensemble
method to overcome this problem.

3.1 Confidence Distortion on Many-choice QA

We give Figure 2 to demonstrate the confidence
distortion problems of LLMs on many-choice
QA, where the experiment is on the QASC
datasets (Khot et al., 2020). Specifically, Figure 2
shows the proportion of f([Q, C])>τ versus τ for
0<τ < 1, where f([Q, C])>τ represents LLM’s
predicted probability on the correct or incorrect
choice exceeds a threshold τ . A high value of
f([Q, C])>τ proportion across 0≤τ≤1 indicates
strong model confidence. To show the confidence
distortion problem, we compare the f([Q, C])>τ
proportion across different choice settings with
K = 2, 4, 6, 8 in Figure 2. On the correctly an-

swered questions, the LLM achieves the highest
f([Q, C]) > τ proportion when K = 2, showing
that the model becomes under-confident in many-
choice scenarios. In contrast, for the incorrectly
answered questions, the LLM shows the highest
f([Q, C])>τ proportion when K =8, indicating
an over-confidence issue in many-choice scenarios.

The confidence distortion problem causes a
degradation of LLM performance on many-choice
QA. As shown in Figure 3, for the LLaMA-3-8B
model, it can originally solve the 4-choice QA.
However, when the same question is extended to
8 choices, while keeping the correct answer un-
changed, the model selects an incorrect option.
This failure is due to a decrease in confidence in
the correct answer and an increase in confidence in
incorrect options. We show a comprehensive result
in Table 1, where each column shares the same
question context but varies in the number of an-
swer choices. A many-choice question contains all
the options from the corresponding few-choice ver-
sions. For example, each question in the 8-choice
task includes all the choices from the 6-choice task.
As shown in Table 1, LLMs generally perform
worse on many-choice QA than few-choice QA,
This indicates the confidence distortion problem
for LLM on many-choice QA.

3.2 LLM Inference with Self-Ensemble

We propose Self-Ensemble to solve the confi-
dence distortion problem on many-choice QA.
The intuition of Self-Ensemble is to divide a K-
choice (many-choice) QA into multiple m-choice
(few-choice) QA, where m ≪ K. Then, it col-
lects LLM’s answer probability in each few-choice
case, and estimates the expected probability of
each choice for the final decision. Specifically,
Self-Ensemble has three steps as follows:

Step 1. Given the K choices C={op1, · · ·, opK},
Self-Ensemble randomly splits them into ⌈Km⌉
groups with seed s, which is given by Gs(C) =
{G1, · · · , G⌈K

m
⌉}. Each group Gi has m choices,

while the last group may have less than m choices
if K mod m ̸= 0. Different groups take random
subsets of C without overlaps, i.e. Gi ∩ Gj = ∅
for i ̸= j, and G1 ∪ · · · ∪G⌈K

m
⌉ = C.

Step 2. For each group Gj = {õp1, · · · , õpm̃},
Self-Ensemble collects the probability of each
choice within this group from LLMs as follows:

Pr(õp1), · · · , P r(õpm̃) = f([Q,Gj ]) (1)
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Figure 4: Example of Self-Ensemble process on 4-choice QA.

Step 3. To estimate the final probability of each
choice opi, Self-Ensemble averages all the proba-
bilities of choice opi as follows:

Pr(opi)=E s∼U(N),Gj∼Gs(C),
õp∼Gj

[
I(opi= õp)Pr(õp)

]
(2)

where s∼U(N), Gj∼Gs(C) represents randomly
splitting the choice set using different integer ran-
dom seed s; and I(opi= õp)=1 if opi= õp; other-
wise it takes 0. The intuition of Equation (2) is to
estimate the expected probability of each choice by
averaging over different group partitions.

An example of Self-Ensemble is given in Fig-
ure 4. Specifically, in each trial, Self-Ensemble
simplifies the given 4-choice QA into 2-choice QAs
by randomly grouping the choices, and achieves the
choice probability within each group from LLMs.
After N trials, it estimates the expected probability
of each choice by averaging different trials.

4 Plugging Self-Ensemble into LLMs

We propose integrating Self-Ensemble into ex-
isting LLM architectures to enable intrinsic self-
ensemble processing during inference. As illus-
trated in Equations (1) and (2), Self-Ensemble
requires multiple forward passes through the LLM,
which are f([Q,G1]), f([Q,G2]), f([Q,G3]), · · · .
For efficient self-ensemble processing, we design
specialized attention masks and positional encod-
ing, such that these multiple calls of LLM can be
executed in a single forward pass over the con-
catenated sequence f([Q,G1, G2, G3, · · · ]). Here,
each group Gj ∼ Gs(C), s ∼ N is sampled from
the choice set following Section 3.2 Step 1; and
[Q,G1, G2, G3, · · · ] denotes combining the ques-
tion and different groups of choice into a sequence
of tokens as prompts for LLMs.

4.1 Attention Masking
The standard auto-regressive attention mask fol-
lows I(j ≤ i), ensuring that each token attends
to all preceding tokens in the sequence. How-
ever, following Self-Ensemble, the LLM should
restrict its attention to a single group of choices
during each trial, ignoring the influence of other
groups. Therefore, for the concatenated input se-
quence with the question and all choice groups
[Q,G1, G2, G3, · · · ], when processing a certain
choice group Gi, the LLM should not have atten-
tion to other groups Gj , j ̸= i.

To implement this constraint, Self-Ensemble
designs a custom attention mask to block the cross-
group attention. As shown in the left-hand side of
Figure 5, a token within group G1 (highlighted in
red) attends only to the question and other tokens
within G1. This ensures that the model focuses
solely on the current group when generating the
answer. In general, let Tki denote a certain token
at position i. Its attention mask to a previous token
Tkj , j ≤ i is given by

Mi,j=





1, if Tkj ∈ Tk(Q),
N∏

n=1
I(Tki, Tkj ∈ Tk(Gn)) otherwise,

(3)

where Tk(Q) denotes the tokens of question Q;
I(Tki,Tkj ∈ Tk(Gn)) = 1 if Tki and Tkj belong to
the same group, and 0 otherwise; and Mi,j = 0
for j > i as standard attention masks. This atten-
tion mask enforces pairwise independence between
choice groups during inference.

4.2 Positional Re-encoding
The standard auto-regressive positional encoding
follows Posi = i, where Posi denotes the posi-
tional index of a token at position i. Following
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Figure 5: Plug-in Self-Ensemble: by incorporating the attention mask and positional re-encoding, LLMs can
achieve the ensembled results in a single forward pass.

Self-Ensemble, the LLM should process each
question-group pair [Q,Gj ] as a continuous input
sequence for 1 ≤ j ≤ N . However, this continu-
ity is disrupted in the concatenated input sequence
[Q,G1, G2, G3, · · · ], because starting from G2, the
question Q and a choice group are no longer phys-
ically adjacent. For example, G1 lies between Q
and G2, breaking the positional continuity between
Q and G2. To preserve the relative positional re-
lationships between the question and each choice
group, each choice group should be encoded into
the relative contextual position to the question.
Specifically, the positional indexes of question to-
kens and choice tokens are given as follows:

Question tokens. A question token Tki∈Tk(Q)
should have absolute position Posi = i.

Choice tokens. A choice token Tki, if it is with
choice group Gn, its absolute position should be
replaced into a relative position as follows:

Posi = i−
n∑

j=1

|Tk(Gj)|, (4)

where |Tk(Gj)| indicates the token number of a
choice group Gj ; and n takes maximal value that
satisfies i ≥ ∑n

j=1 |Gj |.
Following Equation (4) to replace the position

index of choice tokens, the position index of input
sequence [Q,G1, · · · , Gn] is given by

[ Position index of Q︷ ︸︸ ︷
0, 1, · · · , |Tk(Q)|−1, (5)

Position index of G1︷ ︸︸ ︷
|Tk(Q)|, · · · , |Tk(Q)|+|Tk(G1)|−1, · · · ,

Position index of Gn︷ ︸︸ ︷
|Tk(Q)|, · · · , |Tk(Q)|+|Tk(Gn)|−1

]

By combining the attention mask with positional
re-encoding, we ensure that processing the concate-
nated sequence [Q,G1, G2, G3, · · · ] is function-
ally equivalent to independently processing each
question-group pair [Q,G1], [Q,G2], [Q,G3], · · · .
This enables Self-Ensemble to seamlessly inte-
grate into existing LLM architectures.

4.3 Choice Probability

By using the attention mask and positional re-
encoding in Equations (3) and (5), respectively,
the LLM can simultaneously process all groups
of choices in a single forward pass. As shown
in Figure 5, within the output sequence, the end-
ing token of each group captures the choice prob-
abilities within each choice group. Formally, let
a = f([Q,G1, G2, G3, · · · ]) denote the sequence
of output logits. For a certain choice õpi ∈ Gj , the
probability of õpi is estimated by

Pr(õpi) = a[indexj , indexi], (6)

where indexj= |Q|+∑j−1
k=1|Tk(k)|−1 takes the end-

ing token position of group Gj ; indexi takes the
token ID of õpi defined by the LLM tokenizer. The
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final probability of each choice takes the expected
probability Pr(opi)=E[I(opi= õpi)Pr(õpi)].

The advantage of Self-Ensemble lies in its
seamless integration with existing LLM architec-
tures. It enables the LLM to achieve the expected
probability of each choice in a single forward pass,
avoiding separate inference over individual choice
groups. This enables Self-Ensemble to behave
both accurately and efficiently on MCQA.

5 Experiment

In this experiment, we conduct experiments to eval-
uate Self-Ensemble, aiming to answer the follow-
ing research questions: RQ1: Can Self-Ensemble
improve on LLM’s accuracy on many-choice QA?
RQ2: Can Self-Ensemble mitigate the confi-
dence distortion problems for LLMs? RQ3: How
does Self-Ensemble reshape the scaling of model
accuracy with respect to parameter size?

5.1 Experimental Setup

We specify the datasets, LLMs, evaluation metrics,
and implementation details.

Models. We evaluate Self-Ensemble using
three popular model families: LLaMA-3-8B (Tou-
vron et al., 2023), Mistral-7B-v0.1 (Jiang et al.,
2024), and Qwen-2-7B (Yang et al., 2024). We
download these models from the Huggingface
Transformers library (Wolf et al., 2019).

Dataset. The evaluation of Self-Ensemble is
based on the QASC (Khot et al., 2020), Truth-
fulQA (Lin et al., 2021), and MMLU-Pro (Wang
et al., 2024d) datasets. QASC: It is a multi-hop
reasoning dataset comprised of 8-choice QA. We
evaluate LLM performance on its validation set
with 927 questions under a closed-book setting.
TruthfulQA: It has 817 multiple-choice and short-
answer questions across 38 categories, such as
health, law, and finance. Following many-choice
setting, we filter out questions with fewer than five
incorrect choices. As a result, 277 questions have at
least one correct choice and five incorrect choices.
MMLU-Pro: Enhancement of the MMLU dataset
by selecting questions where state-of-the-art LLMs
consistently fail. We use the Biology subset for our
experiments, which has 450 10-choice questions.

Baseline Methods. Standard inference: We per-
form standard inference by comparing the proba-
bility of each choice token and selecting the option
with the highest likelihood. Vector scaling: Vector

scaling (Guo et al., 2017) applies a learnable scale
vector w and bias b to the logits before softmax, en-
abling finer-grained calibration. The parameters are
optimized to maximize accuracy on a validation set.
Dirichlet calibration: Dirichlet calibration (Zong
et al., 2024) is a lightweight multiclass calibration
method that adjusts the model’s predicted proba-
bility to better match observed frequencies on a
validation set.

Implementation Details. For QASC’s 8-choice
QA, Self-Ensemble splits each question into a 4-
choice QA for 20 trials. In addition, for the Truth-
fulQA dataset, it splits the 6-choice QAs into 3-
choice QAs for 6 trials. Moreover, for the MMLU-
Pro Biology dataset, it splits the 10-choice QAs
into 5-choice QAs for 40 trials. Self-Ensemble
does not reply on a validation set for optimizing
any parameter or special setting.

5.2 Accuracy of MCQA (RQ1)

Table 2 shows the accuracy (%) of Self-Ensemble.
These results are compared with baseline methods
and standard inference of LLMs.

Accuracy Improvement. As shown in Table 2,
Self-Ensemble consistently outperforms LLM
standard inference and baseline methods, demon-
strating its potential in enhancing LLM’s perfor-
mance on MCQA. Moreover, compared with base-
line methods, Self-Ensemble does not require a
validation set for maximizing performance.

Model Agnosticism. By integrating with dif-
ferent families of LLMs, Self-Ensemble shows
consistent performance and improvement, as
shown in Table 2. This generality indicates that
Self-Ensemble can potentially serve as a versatile
enhancement for a range of LLMs in practice.

Stable Improvement. For datasets of different
difficulty levels, standard inference shows less ac-
curacy on TruthfulQA and MMLU-Pro than QASC.
This implies that the confidence distortion is gen-
eral problem on both easy and hard MCQA tasks.
In contrast, Self-Ensemble consistently improves
performance across all difficulty levels, demon-
strating its general effectiveness in mitigating the
confidence distortion problem.

5.3 Confidence Calibration by
Self-Ensemble (RQ2)

In this section, we show that Self-Ensemble miti-
gates the confidence distortion problem of LLMs in
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QASC TruthfulQA MMLU-Pro Biology Average

Model Method Accuracy Improve Accuracy Improve Accuracy Improve Accuracy Improve

LLaMA-3-8B

Standard inference 73.22 - 51.99 - 62.00 - 62.40 -
Vector Scaling 75.16 +1.94 57.40 +5.41 62.00 +0.00 64.85 +2.45
Dirichlet Calibration 74.96 +1.74 53.07 +1.06 62.24 +0.24 63.42 +1.02
Self-Ensemble 80.67 +7.45 59.57 +7.58 65.78 +3.78 68.67 +6.27

Mistral-7B-v0.1

Standard inference 57.78 - 32.13 - 50.89 - 46.93 -
Vector Scaling 58.42 +0.64 41.52 +9.39 51.56 +0.67 50.50 +3.57
Dirichlet Calibration 58.53 +0.75 35.38 +3.25 51.11 +0.22 48.34 +1.41
Self-Ensemble 66.31 +8.53 54.15 +22.02 55.11 +4.22 58.52 +11.59

Qwen-2-7B

Standard inference 69.44 - 53.79 - 59.78 - 61.00 -
Vector Scaling 73.00 +3.56 55.60 +1.81 60.44 +0.66 63.01 +2.01
Dirichlet Calibration 75.05 +5.61 56.68 +2.89 62.00 +2.22 64.58 +3.58
Self-Ensemble 77.86 +8.42 60.29 +6.50 66.00 +6.22 68.05 +7.05

Table 2: Accuracy of Self-Ensemble on the QASC, TruthfulQA, MMLU-Pro Biology datasets.

Figure 6: Probability of model confidence exceeding a threshold on the QASC, TruthfulQA, and MMLU-Pro-
Biology dataset, for each model under both correct- and incorrect-answer conditions.

Figure 6. Specifically, Figure 6 shows the propor-
tion of f([Q, C])>τ versus τ for 0<τ <1 on three
different LLMs and datasets, where f takes differ-
ent LLMs; and f([Q, C])>τ represents LLM’s pre-
dicted probability exceeds a threshold τ . A higher
value of f([Q, C])>τ proportion across 0<τ <1
indicates strong model confidence.

In Figure 6’s sub-figures (a)-(c), (g)-(i), (m)-(o),
Self-Ensemble has a higher confidence level on
its correct answers; while in sub-figures (d)-(f),
(j)-(l), (p)-(r), Self-Ensemble has a lower confi-
dence level on its incorrect answers. This indicates
Self-Ensemble can effective mitigate the under-
confident problems on correct answers and over-
confident problems on incorrect answers, improv-
ing the reliability of LLMs on MCQA in practice.

Figure 7: Qwen2.5-1.5B, 3B, 7B, and 14B with standard
inference and Self-Ensemble on the QASC dataset.

5.4 Improving Accuracy-to-Parameter
Scaling (RQ3)

Self-Ensemble achieves improved scaling of ac-
curacy with parameter size. As shown in Figure 7,
Self-Ensemble consistently yields higher accu-

16609



Model Accuracy

LLaMA-3-8B 73.22
DeepSeek-R1-Distill-Llama-8B 73.33
LLaMA-3-8B with CoT 74.62
LLaMA-3-8B with Self-Ensemble 80.67

Qwen2-7B 69.44
DeepSeek-R1-Distill-Qwen-7B 70.63
Qwen2-7B with CoT 74.19
Qwen2-7B with Self-Ensemble 77.86

Table 3: General LLMs with Self-Ensemble outper-
form reasoning LLMs and chain of thought prompting
on the QASC dataset.

racy on the QASC dataset as the model size in-
creases from 1.5B to 14B. It enables better scal-
ability across model sizes and can be integrated
with any LLM without requiring additional data or
retraining. Notably, Qwen2.5-1.5B, 3B, 7B with
Self-Ensemble outperform larger models using
standard inference. This demonstrates the potential
of Self-Ensemble to advance the deployment of
small language models in real-world scenarios with
constrained memory resources.

5.5 General-purpose LLMs with
Self-Ensemble Outperforms Reasoning
LLMs and Chain of Thought Prompting

We evaluate whether Self-Ensemble can match
or surpass specialized reasoning methods. On the
QASC dataset, general-purpose LLMs combined
with Self-Ensemble outperform their reasoning-
tuned counterparts, indicating that Self-Ensemble
unlocks accuracy gains without dedicated reason-
ing fine-tuning. Furthermore, Self-Ensemble also
surpasses chain-of-thought (CoT) prompting (Wei
et al., 2022), which yields higher accuracy than
CoT while avoiding the extra latency and token-
generation overhead of producing reasoning traces.
Both results are summarized in Table 3, highlight-
ing that Self-Ensemble offers an efficient, single-
pass, and fine-tuning-free alternative to reasoning
LLMs and CoT prompting on MCQA.

5.6 Application to Quantized LLMs
To further explore Self-Ensemble’s application to
memory-constrained settings, we show its effec-
tiveness on quantized LLMs, including LLaMA-
3-8B, Mistral-7B-v0.1, and Qwen2-7B under 4-
bit bitsandbytes (BNB) quantization. As shown
in Table 4, Self-Ensemble effectively offsets ac-

Model 4-bit Full Precision 4-bit + Self-Ensemble

LLaMA-3-8B 72.57 73.22 79.16
Mistral-7B-v0.1 57.45 57.78 65.23
Qwen2-7B 67.71 69.44 78.83

Table 4: Self-Ensemble helps quantized LLMs outper-
form full-precision LLMs on the QASC dataset.

Model w/o Attn Mask w/o Pos Re-enc Self-Ensemble

LLaMA-3-8B 19.22 67.39 80.67
Mistral-7B-v0.1 18.57 53.24 66.31
Qwen2-7B 15.44 71.27 77.86

Table 5: Comparison of Self-Ensemble with that w/o
attention masks or positional re-encoding.

curacy loss caused by the aggressive compres-
sion, enabling each quantized model to outper-
form its full-precision version. This indicates
Self-Ensemble’s potential for quantized LLMs
in resource-constrained environments, without re-
quiring additional training or external information.

5.7 Ablation Study

We demonstrate the individual contribution of
attention masks and positional re-encoding to
Self-Ensemble. Specifically, we conduct experi-
ments comparing Self-Ensemble with its ablated
versions: without attention masks or positional re-
encoding. Experimental results for the LLaMA-3-
8B, Mistral-7B-v0.1, and Qwen2-7B on the QASC
dataset are given in Table 5. It is observed that
each model has a significant loss of accuracy with-
out attention masks or positional re-encoding, in-
dicating that both attention structure and position
encoding contributes to the self-ensemble process.
Self-Ensemble has a special attention mask de-
signed in Sections 4.2 and positional re-encoding
in Section 4.1 to enable intrinsic LLM inference
over different choice groups and produce ensem-
ble results efficiently. This can effectively cali-
brate LLM confidence and enhance the accuracy
on many-choice problems.

5.8 Sensitivity to Group Size and Number of
Trials

We study how Self-Ensemble depends on the
group size m and the number of ensembles N . Us-
ing Qwen2.5-7B on the QASC dataset, we sweep
m ∈ {3, 4, 5} and N ∈ {10, 20, 40, 80}. As
shown in Table 6, accuracy is relatively insensi-
tive to the group size, while increasing the number
of trials improves performance and stabilizes at
N ≥ 40, indicating robustness to hyperparameters.
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Trials N m = 3 m = 4 m = 5

10 78.73 78.08 78.61
20 79.59 80.67 79.91
40 79.27 81.97 81.43
80 80.45 82.40 81.97

Table 6: Accuracy comparison of Self-Ensemble
across group sizes and trial numbers.

Consequently, Self-Ensemble can be used with-
out hyperparameter tuning, reducing setup time
while preserving performance.

6 Related Work

Confidence Calibration. Calibration aligns pre-
dicted probabilities with true correctness likeli-
hoods to ensure reliable confidence estimates. Tra-
ditional methods like vector scaling (Guo et al.,
2017), isotonic regression (Zadrozny and Elkan,
2002), and Dirichlet calibration (Kull et al., 2019)
have been adapted to LLMs but often assume
fixed prediction heads and struggle with distri-
bution shifts or multi-choice uncertainty. Recent
generative-specific techniques, such as logit pertur-
bation (Jiang et al., 2021), prompt-based reweight-
ing (Zhou et al., 2022b), Bayesian post-hoc meth-
ods (Wang et al., 2023), chain-of-though reason-
ing (Seßler et al., 2024) partially address these lim-
itations. Moreover, pioneer work (Zhong et al.,
2025) proposes a unified framework of calibrating
LLMs under weight quantization, with theoretical
foundations and practical design. However, consis-
tent calibration across diverse LLM architectures
and tasks remains challenging, highlighting the
need for effective, model-agnostic solutions.

LLM Ensemble. Ensembling has long been a
powerful strategy to improve both model accuracy
and robustness. In LLMs, methods such as vot-
ing schemes (Zhou et al., 2022a), stochastic de-
coding (Ho and Weller, 2022), and diverse prompt-
ing (Wang et al., 2022) aggregate outputs from mul-
tiple model instances or inference runs. Notably,
similar to our intuition of self-ensemble, a con-
current work (Neeley et al., 2025) also proposes a
"divide-and-conquer" strategy to improve LLM per-
formance on healthcare tasks. It has shown promis-
ing results in diagnosing rare diseases caused by ge-
netic variants, a task that remains highly challeng-
ing. These methods are especially useful for reduc-
ing variance in generative outputs and mitigating in-

dividual model biases. Additionally, ensemble ap-
proaches support calibration via confidence averag-
ing and self-consistency mechanisms (Wang et al.,
2022). However, standard ensembles are computa-
tionally costly and less generalizable across model
families and tasks, motivating for a more efficient
and scalable ensemble method.

7 Conclusion

In this work, we demonstrate the confidence distor-
tion problem of LLMs generally on MCQA, par-
ticularly in the many-choice setting. To solve this
problem, we propose Self-Ensemble by decom-
posing a many-choice problem into several few-
choice problems, and aggregating the intermedi-
ate results into the final solution. We further inte-
grate Self-Ensemble with existing LLM architec-
ture, enabling an intrinsic self-ensemble process for
LLM inference. Experimental results across vari-
ous LLMs and datasets show that Self-Ensemble
can effectively overcome this problem, improv-
ing confidence in correct answers and reducing
confidence in incorrect answers. This enables
Self-Ensemble to significantly improve the ac-
curacy of LLMs in MCQA by 8% on average.

8 Limitations and Potential Risks

In this work, we propose a Self-Ensemble to cali-
brate the LLM decisions on many-choice QA. The
application of Self-Ensemble is limited to the
muti-choice question-answer (MCQA) problems.
While MCQA stands out as a standard and chal-
lenging benchmark to evaluate the ability of LLMs,
there are open-ended QA tasks in real-world scenar-
ios. Calibrating LLMs’ decisions on open-ended
QA remains our future research. Furthermore,
Self-Ensemble is methodologically orthogonal to
existing calibration techniques such as Vector Scal-
ing and Dirichlet Calibration, enabling synergistic
integration to further enhance performance.
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Appendix

A Efficiency Comparison of Multi-Pass
and Single-Pass Self-Ensemble

We follow existing work (Wang et al., 2024b; Liu
et al., 2023; Yuan et al., 2024) to benchmark the
efficiency of multi-pass Self-Ensemble in Sec-
tion 3.2 and the single-pass Self-Ensemble in Sec-
tion 4 using LLaMA-3-8B on the QASC dataset.
As shown in Table 7, single-pass Self-Ensemble
successfully accelerates inference time without
sacrificing accuracy while maintaining almost the
same memory cost. This demonstrates the effective-
ness of our Section 4 in accelerating the inference
through parallelization.

B Confidence Distortion Across Model
Scales and Families

We assess generality beyond 7B–8B models by
evaluating LLaMA-3.2-1B/3B, LLaMA-3-8B, and
Qwen2.5-1.5B/3B/7B/14B on QASC with K ∈
{2, 4, 6, 8}. As shown in Table 8, accuracy consis-
tently declines as K increases for every model, in-
dicating that the confidence distortion phenomenon
holds across architectures and scales.

C Extended Confidence Distortion
Evaluation

To further illustrate Self-Ensemble mitigates con-
fidence distortion, we provide additional evalu-
ations based on the under-confidence and over-
confidence ratios. Here, under-confidence is de-
fined as the proportion of correct answers where
the model assigns probability below a threshold
τ , while over-confidence is the proportion of in-
correct answers where the model assigns proba-
bility above τ . For example, with τ = 0.5, the
under-confidence ratio measures the percentage
of correct answers where f(Q) < 0.5, and the
over-confidence ratio measures the percentage of
incorrect answers where f(Q) > 0.5.

We report results averaged across LLaMA-3-8B,
Mistral-7B-v0.1, and Qwen2-7B on QASC, Truth-
fulQA, and MMLU-Pro. As shown in Table 9,
Self-Ensemble consistently reduces both under-
confidence and over-confidence compared to stan-
dard inference, demonstrating its ability to mitigate
confidence distortion rather than exacerbate it.

Multi-pass Single-pass

Time (s) per question ↓ 0.78 0.16
Memory (GB) 14.97 15.12
Accuracy (%) 78.62 80.67

Table 7: Efficiency and accuracy comparison of multi-
pass vs. single-pass Self-Ensemble

Model 2-choice 4-choice 6-choice 8-choice

LLaMA-3.2-1B 81.75 66.85 51.51 50.22
LLaMA-3.2-3B 91.04 84.77 77.97 69.55
LLaMA-3-8B 91.90 86.29 76.35 73.22
Qwen2.5-1.5B 89.30 81.53 62.31 60.91
Qwen2.5-3B 91.47 81.53 75.81 69.98
Qwen2.5-7B 94.71 89.42 82.51 76.57
Qwen2.5-14B 95.68 91.68 86.29 79.59

Table 8: Accuracy of LLMs on the QASC dataset with
different choice numbers.

D Additional Self-Ensemble Results
Across Model Scales

To assess the generality of Self-Ensemble, we
report 8-choice QASC accuracy across two model
families spanning multiple scales. As shown in
Table 10, Self-Ensemble consistently improves
over standard inference from small (1–3B) to larger
(7–14B) models.

E Robustness to Random Grouping Seeds

We quantify the effect of grouping randomness by
repeating Self-Ensemble on QASC with seeds
s ∈ {0, 1, 2, 3, 4} that control the random partition-
ing of answer choices, holding all other variables
fixed. Accuracy is reported as mean ± standard
deviation across seeds. As shown in Table 11, the
small variances (all ≤ 0.60 percentage points) in-
dicate that Self-Ensemble is stable to grouping
randomness across models.

F Group-wise Normalization with a Null
Option

Self-Ensemble normalizes probabilities within
each group by augmenting the group with a null
choice ("None of the above") and applying a soft-
max over the augmented set. This guarantees per-
group normalization (the probabilities over all can-
didates in a group sum to 1). Two immediate con-
sequences explain the observed behavior: (i) when
the correct answer is present, the null option re-
ceives negligible mass, so the sum over real options
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Under-confidence ↓
Model Standard Self-Ensemble

LLaMA-3-8B 43.45 35.33
Mistral-7B-v0.1 58.33 50.60
Qwen2-7B 41.41 34.25

Over-confidence ↓
Model Standard Self-Ensemble

LLaMA-3-8B 25.09 20.53
Mistral-7B-v0.1 33.77 21.66
Qwen2-7B 30.89 25.13

Table 9: Under-confidence and over-confidence ratios
at τ = 0.5.

Model Standard Self-Ensemble

Qwen2.5 family
Qwen2.5-1.5B 60.91 71.81
Qwen2.5-3B 69.98 76.78
Qwen2.5-7B 76.57 81.43
Qwen2.5-14B 79.59 83.37

LLaMA-3.x family
LLaMA-3.2-1B 50.22 56.37
LLaMA-3.2-3B 69.55 77.32
LLaMA-3-8B 73.22 80.67

Table 10: Self-Ensemble consistently improves accu-
racy over standard inference across scales.

is close to 1; (ii) when the correct answer is absent,
the null option absorbs probability mass, so the
sum over real options drops below 1.

G Combination with Improvement

Self-Ensemble is designed to be orthogonal to ex-
isting approaches and can be seamlessly combined
with them to further enhance the performance and
reliability. Specifically, it can be integrated with ef-
ficient inference methods, such as KIVI (Liu et al.,
2024; Yuan et al., 2024) or H2O (Zhang et al.,
2023), to accelerate model execution while main-
taining accuracy. Moreover, it can also be com-
bined with secure deployment techniques, such as
Taylor-Unswift (Wang et al., 2024b), which effec-
tively protects the intellectual property of LLMs
through parameter space decomposition. Finally, it
is compatible with methods for multi-agent frame-
works for solving complex tasks, such as (Chang
et al., 2024; Yu et al., 2025).

Model Accuracy

LLaMA-3-8B 80.24 ± 0.60
Mistral-7B-v0.1 77.91 ± 0.60
Qwen2-7B 65.87 ± 0.36

Table 11: Accuracy with error bar of Self-Ensemble
on QASC across random seeds.

Name Value

Data type torch.bfloat16
Flash-Attention False
Eval batch-size 1
Computing Infrastructure GPU
GPU Model NVIDIA-A40
GPU Memory 48GB
GPU Number 1
CUDA Version 12.3
CPU Memory 512GB

Table 12: Experiment configuration and computing in-
frastructure.

H Packages

In this work, we use the transformers along with
datasets packages (Wolf et al., 2019) for model
and dataset loading. All open-sourced packages
have the Apache-2.0 license, which allows for aca-
demic research. We use public benchmarks and
open models strictly for research and evaluation
in accordance with their original licenses/terms of
use. We release Self-Ensemble code, prompts,
and evaluation scripts for research reproducibility;
any derivatives of licensed datasets inherit their
original research-only restrictions.

I Computational Infrastructure

The computational infrastructure information is
given in Table 12.
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