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Abstract

Text Image Machine Translation (TIMT) aims
to translate texts embedded within an image
into another language. Current TIMT studies
primarily focus on providing translations for all
the text within an image, while neglecting to
provide bounding boxes and covering limited
scenarios. In this work, we extend traditional
TIMT into position-aware TIMT (PATIMT),
aiming to support fine-grained and layout-
preserving translation, which holds great prac-
tical value but remains largely unexplored.
This task comprises two key sub-tasks: region-
specific translation and full-image translation
with grounding. To support existing models
on PATIMT and conduct fair evaluation, we
construct the PATIMT benchmark (PATIMT-
Bench), which consists of 10 diverse real-world
scenarios. Specifically, we introduce an Adap-
tive Image OCR Refinement Pipeline, which
adaptively selects appropriate OCR tools based
on scenario and refines the results of text-rich
images. To ensure evaluation reliability, we fur-
ther construct a test set, which contains 1,200
high-quality instances manually annotated and
reviewed by human experts. After fine-tuning
on our data, compact Large Vision-Language
Models (LVLMs) achieve state-of-the-art per-
formance on both sub-tasks. Experimental re-
sults also highlight the scalability and general-
izability of our training data'.

1 Introduction

Text Image Machine Translation (TIMT) is a chal-
lenging branch of Neural Machine Translation
(NMT), offering broad application prospects in
both academic research and commercial applica-
tions. Conventional TIMT methods (Jain et al.,
2021; Zhu et al., 2023; Liang et al., 2024) typi-
cally focus on generating plain text or markdown-
* Equal contribution.
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'Our benchmark and code are openly available at
https://github.com/XMUDeepLIT/PATIMT-Bench
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Figure 1: Two sub-tasks of PATIMT: region-specific
translation and full-image translation with grounding.

formatted translations of all text within an image,
failing to precisely preserve the original layout of
source text in the image. This limitation gives rise
to a critical position alignment problem in real-
world applications, where users cannot reliably
match translations to the corresponding source text.
Additionally, all these methods overlook the local-
ized translation requirements. This significantly
limits their practical usability.

In this paper, we explore position-aware TIMT
(PATIMT) which contains two core sub-tasks:
region-specific translation and full-image transla-
tion with grounding as shown in Figure 1. Region-
specific translation enables users to manually se-
lect one region of an image for translation, which
allows fine-grained, user-controllable TIMT. Full-
image translation with grounding ensures precise
positional alignment between the translation and
source text in the image, enabling seamless render-
ing of translated image version.

Recently, Large Vision-Language Models
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Figure 2: Comparison between the Original LVLM and
the LVLM fine-tuned on our data (Ours). In two types
of fine-grained TIMT tasks, ours can correctly follow
the translation instructions and conduct precise text re-
ferring and grounding within proper layout.

(LVLMs) (Gu et al., 2024; Wu et al., 2024; Chen
et al., 2024; Bai et al., 2025) show remarkable per-
formance across diverse multimodal benchmarks
such as OCR (Liu et al., 2024b), image understand-
ing (Mishra et al., 2019; Mathew et al., 2021, 2022;
Masry et al., 2022; Lu et al., 2022) and visual
grounding (Kazemzadeh et al., 2014; Mao et al.,
2016; Li et al., 2022; Paiss et al., 2023). They
appear to have great potential to perform region-
specific translation and full-image translation with
grounding. However, existing LVLMs usually fail
to follow the above two types of translation instruc-
tions, as illustrated in Figure 2. This limitation
primarily derives from data scarcity. Available
TIMT datasets (Wang et al., 2021; Zhang et al.,
2023b; Lan et al., 2023; Li et al., 2025) typically
lack bounding box annotations or suffer from lim-
ited scenarios and scale, making them difficult to
support accurate position-aware TIMT. Moreover,
there is a lack of comprehensive benchmark. Exist-
ing TIMT benchmarks mainly focus on evaluating
plain text or markdown translations and only spe-
cialize in a single scenario (Wang et al., 2021; Lan
et al., 2023; Zhu et al., 2023; Liang et al., 2024).
Although MIT-10M (Li et al., 2025) covers diverse
image categories, it lacks bounding box annota-
tions and is confined to simple scenarios, excluding
document, infographic images and so on.

Nevertheless, constructing multi-scenario PA-
TIMT datasets remains challenging for three main
reasons. 1) General OCR tools typically provide
line-by-line recognition results, leading to semanti-

cally incoherent annotations; 2) Document-specific
OCR tools sometimes ignore text-containing areas
and are not always optimal for other scenarios; 3)
Manual annotation is labor-intensive and expen-
sive. In this work, we address these issues by in-
troducing an automated data processing pipeline to
construct a high-quality, multi-scenario PATIMT
dataset and a comprehensive benchmark: First, we
introduce an adaptive image OCR refinement
pipeline that combines a general EasyOCR? with
a PDF-optimized MinerU (Wang et al., 2024) to
adaptively process images from different scenarios
and refine the results of text-rich samples. Second,
we propose PATIMT-Bench, which is explicitly
designed to evaluate region-specific translation and
full-image translation with grounding for images
from diverse domains. Specifically, we use our
pipeline to construct training data, which provides
fine-grained bounding boxes in proper layout for
text within the images. As for the test set, we select
1200 images with high-quality manual annotations
that are carefully reviewed by human experts.

Experimental results demonstrate that all com-
pact LVLMs achieve state-of-the-art performance
on PATIMT-Bench after fine-tuning on our train-
ing data, outperforming larger models such as
Qwen2.5-VL-72B and closed-source models like
GPT-4o0. A series of systematic analyses are con-
ducted which demonstrate the scalability and gen-
eralizability of our dataset.

2 Related Work

2.1 TIMT models

Early approaches predominantly rely on cascaded
systems (Sable et al., 2023; Zhang et al., 2023b;
Lan et al., 2023), where OCR and NMT models are
separately optimized and pipelined. Such methods
suffer from error propagation, and they only pro-
vide plain text translation. Recent advancements
explore end-to-end frameworks (Jain et al., 2021;
Ma et al., 2022; Zhu et al., 2023; Liang et al., 2024)
to mitigate these issues. A representative approach
developed by Liang et al. (2024) enables mark-
down format translations for document-style im-
ages. While this approach achieves layout-aware
translation, it remains limitations in handling other
scenarios such as infographic, chart, natural scene
where markdown is inadequate to establish accu-
rate localization correspondence.

Zhttps://github.com/Jaided Al/EasyOCR

16573



Dataset Source  Bounding box  Scenario
OCRMT30K (Lan et al., 2023) | realistic v street-view
DITrans (Zhang et al., 2023b) realistic v document
DoTA (Liang et al., 2024) realistic X document
UMTIT (Niu et al., 2024) synthetic X document
MIT-10M (Li et al., 2025) realistic X multi-scene
PATIMT-Bench (Ours) realistic v multi-scene

Table 1: Comparison of PATIMT-Bench with other
TIMT datasets.

2.2 TIMT Datasets

Dataset scarcity remains a critical challenge in
TIMT research (Shen et al., 2024). Early studies
(Mansimov et al., 2020; Jain et al., 2021; Ma et al.,
2022; Niu et al., 2024) primarily rely on synthetic
data, which are generated by rendering source lan-
guage text onto background images. However, syn-
thetic data are unable to capture the nuanced com-
plexity of text in real-world translation applications
(e.g., occlusions, irregular layouts), leading to an
inevitable performance gap.

Recent efforts aim to construct real-world TIMT
datasets. Lan et al. (2023) develops OCRMT30K,
derived from street view images and their OCR an-
notations; Zhang et al. (2023b) constructs DITrans,
which considers reading order in document images;
Liang et al. (2024) introduces DoTA, a document
image machine translation dataset in markdown
format. Afterwards, Li et al. (2025) constructs
MIT-10M, a large-scale, real-world dataset with di-
verse image categories. However, it lacks bounding
box annotations and omits more complex scenarios
such as infographic and document. In this work,
we propose the Adaptive Image OCR Refinement
Pipeline, an automated and cost-effective solution
for processing text within images. Our pipeline
provides bounding box labels in proper layouts
for images from varying scenarios. Table 1 shows
the comparison of our dataset with existing TIMT
datasets, image examples and output format com-
parison are listed in Appendix A.1.

2.3 Large Vision-Language Models

Recent advances in LVLMs (Gu et al., 2024; Wu
et al., 2024; Chen et al., 2024; Bai et al., 2025)
demonstrate remarkable performance across di-
verse multimodal benchmarks, including visual
question answering (Mathew et al., 2021; Singh
et al., 2019; Mishra et al., 2019; Mathew et al.,
2022; Lu et al., 2022), OCR (Liu et al., 2024b; Fu
et al., 2025), and visual grounding (Kazemzadeh

et al., 2014; Mao et al., 2016). The prevailing
architecture integrates a powerful visual encoder
with a large language model (LLM) via cross-
modal adapters. This unified framework exhibits
two strengths: (1) superior translation quality with
the powerful LLM, and (2) precise text grounding
that enabling position-aware TIMT for diverse im-
ages. Despite these potentials, no existing work
has systematically explored position-aware TIMT
capability for LVLMs. In this work, we present
PATIMT-Bench, which is designed to evaluate PA-
TIMT through region-specific translation and full-
image translation with grounding tasks.

3 Adaptive Image OCR Refinement
Pipeline

To develop a high-quality PATIMT dataset for di-
verse real-world scenarios, we first extensively col-
lect existing open-source image-text datasets and
classify these images into corresponding scenar-
i0s. Secondly, we introduce an adaptive processing
with refinement strategy to adaptively process im-
ages from different scenarios. Finally, we prompt
GPT-40 (Hurst et al., 2024) to generate the instruc-
tion tuning data. Figure 3 illustrates the overall
pipeline.

3.1 Data Collection and Preprocessing

We collect data from the following sources: MIT-
10M (Li et al., 2025), CC12M (Changpinyo et al.,
2021), DocVQA (Mathew et al., 2021), InfoVQA
(Mathew et al., 2022), TextVQA (Singh et al.,
2019), ChartQA (Masry et al., 2022), Wukong (Gu
et al., 2022), WTW (Rujiao et al., 2021), LSVT
(Sun et al., 2019), CDLA?, pdfa—eng—wds4, an En-
glish hand-wriitten OCR dataset from Nexdata’,
and some online data.

After collecting data from various sources, we
categorize the collected data using CLIP (Radford
et al., 2021) following Zhang et al. (2023a), result-
ing in 10 different scenarios: advertisement, poster,
book cover, natural scene, street view, chart, ta-
ble, hand-written, infographic, and document, Ap-
pendix A.2 lists the detailed implementation. To
ensure the classification accuracy, we randomly
sample 200 images from the easy and hard cate-
gories separately for verification, which achieves
an accuracy rate of 98.5%. Figure 4 shows the
proportion of different scenarios.

3https://github.com/buptlihang/CDLA .git

*https://huggingface.co/datasets/pixparse/pdfa-eng-wds
>from https://www.nexdata.ai
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Figure 3: Our pipeline includes three steps: (1) collecting images from open-source datasets with initial OCR
filtering, classifying images into easy/hard categories using CLIP; (2) adaptive processing with refinement strategy
that generates accurate annotations for both easy and hard categories, and (3) constructing instruction dataset using

GPT-4o0.

We then implement EasyOCR to generate the
OCR results for the collected images and conduct
coarse-grained filtering. Specifically, images are
excluded if: (1) their OCR results are empty; (2)
their OCR results contain repetitive character se-
quences of length > 3; or (3) the average character
pixels are less than 3% of the total image pixels.

3.2 Adaptive Processing with Refinement

This process handles images from different scenar-
io0s and generates box annotations. To begin with,
we categorize the aforementioned ten scenarios into
two groups based on the level of difficulty:

* Easy: Characterized by images containing
sparse text, clean layouts, and typically low
resolutions with modest aspect ratios.

* Hard: Characterized by text-rich images with
small font sizes, complex layouts, and high
resolutions with potentially extreme aspect ra-
tios. These scenarios present intricate spatial
arrangements where text, graphics, and tables
are sometimes interleaved.

We classify document and infographic as the
hard scenarios, and the others as the easy scenar-
ios. For images belonging to easy scenarios, we
directly merge the OCR results based on their spa-
tial relevance, the algorithm is shown in Table 2.

Tt MaA 193118

Document
22%

Infographic
7%
2>

i
"'tte,, 35,
%

Figure 4: The proportion of different scenarios in our
dataset.

As for images belonging to hard scenarios, we first
employ MinerU (Wang et al., 2024) to process the
original images. MinerU is a specialized cascaded
system designed for document-type pdf, which or-
ganizes the recognized content into blocks attached
by corresponding bounding box and block type la-
bels such as text, image or table. Nevertheless, it
sometimes overlooks some text regions or misclas-
sifies text-containing blocks as images. To mitigate
this issue, we refine MinerU’s output by leveraging
the initial OCR results. Specifically, we extract a
subset of initial OCR results that are omitted by
MinerU through analysis of bounding box over-
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Algorithm 1 Spatial merge

OCR MinerU

Input: OCR results O, thresholds s, Yins
Output: Merged text boxes R 1: B <+ @
2:forb € O:

3:  Store (bext; Tmin; Lmax; Ymin, Ymax, Py e, 0)
4:  where h = Ymax — Ymin, Yo = W%
S5:9+1

6: while ungrouped boxes exist:

7:  if group g empty:

8: Assign first ungrouped box to g

9: else:

10: Compute group bounds using +xmsh, £yimsh
11: for ungrouped box u:

12: if u overlaps bounds:

13: Assign u to g; break

14: if no assignment: g <— g + 1

I5: R+ @

16: for each group k:

17: text <+ ""

18:  box «+ [0,0,0,0]
19:  while group boxes remain:
20: Find highest candidate row S

21: Select leftmost box b* in S
22: Append b, to text
23: Combine box by, and box

24:  Store merged text and group bbox
25: R+ R U {(text : text.strip(), box : box)}
26: return R

Table 2: Algorithm of spatial merge, which merges the
OCR results based on their spatial relevance.

laps, and merge them based on spatial relevance.
These recovered OCR results are then extended
into MinerU’s output to supplement its original
results. As shown in Figure 5, utilizing adaptive
processing with refinement strategy can accurately
handle images from different scenarios.

3.2.1 Instruction Tuning Dataset

Based on the processed results, we leverage GPT-
40 (Hurst et al., 2024) to generate translations.
Specifically, we prompt GPT-40 to generate 100 di-
verse questions for region-specific translation and
full-image translation with grounding tasks, which
are randomly sampled as questions for each in-
stance. For each image, we construct a region-
specific translation question-answer pair for each
bounding box, and one full-image translation with
grounding question-answer pair. The details of the
templates are shown in Appendix A.3.

4 PATIMT Benchmark

In this section, we present a detailed description of
our PATIMT-Bench. Firstly, we formally define the

Homelessness in Wales Homelessness in Wales

it ugh S

Sleepers in Woles epers in Wales

Figure 5: Comparison of utilizing different strategies.
EasyOCR offer line-by-line results ignoring semantic
coherence, while MinerU often fail to identify some
text-containing areas. Our proposed adaptive processing
with refinement strategy can accurately handle images
from different scenarios.

PATIMT ‘ Images OCRboxes Boxes Src Words Tgt Words
Train 48,884 1,307,516 417,066 24,827,252 30,437,907
Test 1,200 - 11,102 564,656 685,375

Table 3: Data statistics of PATIMT-Bench. OCR boxes,
boxes refer to raw OCR box count and box count utiliz-
ing our pipeline, src words and tgt words refer to total
number of words in source text and target text. Typi-
cally, test set is manually labeled.

two sub-tasks mentioned above. Secondly, we con-
duct a comprehensive analysis of our datasets. The
specific details of these two aspects are presented
as follows.

4.1 Task Definition
Our PATIMT-Bench focus on two sub-tasks:

* Region-specific translation: Given an input
image with specified bounding box coordi-
nates in the prompt, the model needs to gener-
ate its accurate translation.

e Full-image translation with grounding:
Given an input image, the model needs to gen-
erate the text translation and the correspond-
ing bounding box for each layout. This sup-
ports spatial correspondence between target
text and source text and within the input image
in practical applications.

4.2 Analysis of PATIMT-Bench
4.2.1 Training Dataset

We quantify key dataset metrics including image
numbers, original OCR detection box numbers,
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Region-Specific Translation Full-Image Translation with Grounding
Model EN-ZH ZH-EN EN-ZH ZH-EN
BLEU COMET BLEU COMET | BLEU COMET IoU BLEU COMET IoU
Proprietary LVLMs
Qwen2.5-VL-72B 45.0 76.6 37.3 752 132 48.7 0.185 113 53.0 0.251
GPT-40 22.8 60.6 16.3 58.7 6.9 47.4 0.068 8.2 48.5 0.094
Compact LVLMs
Aquila-VL-2B 3.1 459 22 44.0 1.0 15.7 0.037 0.3 20.8 0.056
Aquila-VL-2B* 40.3 79.7 17.3 63.5 19.6 65.0 0.359 7.4 53.1 0.332
InternVL2.5-2B 17.6 59.8 12.3 58.1 6.6 475 0.057 53 472 0.047
InternVL2.5-2B* 44.0 79.8 29.2 74.0 20.0 59.6 0411 10.9 54.6 0.426
DeepseekVL2-Tiny 3.2 46.1 3.1 50.9 0.0 0.0 0.000 0.0 0.0 0.000
Deepseek VL2-Tiny* 43.8 85.4 29.8 71.8 16.3 61.0 0.199 11.2 57.3 0.313
SmoVLM?2-2.2B 2.1 41.2 1.1 373 0.0 0.0 0.000 0.0 0.0 0.000
SmoVLM2-2.2B* 22.0 66.4 11.6 53.1 12.3 57.5 0.257 10.2 51.2 0.235
PaliGemma2-3B 0.1 34.8 1.1 37.6 0.0 0.0 0.000 0.0 0.0 0.000
PaliGemma2-3B* 13.4 55.4 24.8 65.4 14.7 54.6 0.106 10.9 51.7 0.157
Qwen2.5-VL-3B 19.5 63.0 10.5 58.3 33 19.6 0.073 22 17.8 0.068
Qwen2.5-VL-3B* 53.6 87.7 36.8 80.5 26.4 67.0 0.457 17.5 59.4 0.427
Cascade Pipelines

EasyOCR + LLM 21.3 58.0 19.1 63.0 55 47.0 0.223 5.4 49.0 0.305
GOT-OCR + LLM 38.2 75.5 27.3 71.7 11.6 459 - 6.3 474 -

Table 4: Evaluation results of proprietary, compact LVLMs and cascade systems on PATIMT-Bench across two
sub-tasks: region-specific translation and full-image translation with grounding, evaluated on both English —
Chinese (EN-ZH) and Chinese — English (ZH-EN) using BLEU, COMET, and IoU metrics. Models marked with *
indicate fine-tuning on our PATIMT train set. Best results are marked in bold and second-best results are underlined.

[t§
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src_lang: Chinese,
tgt_lang: English,
src_text: "HEE"
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Figure 6: samples from train set (left) and test set (right).

box numbers after processing by our pipeline, and
source/target word numbers, as presented in Table
3. A significant drop can be observed in the num-
ber of bounding boxes after processing, indicating
that our pipeline effectively merges line-level OCR
detection boxes to mitigate potential semantic frag-
mentation. To ensure the quality of our dataset, we
further conduct manual validation on a randomly
sampled subset of 1,000 training images and verify
both bounding box annotations and translations,
which achieves a 92% approval rate. We also ex-

hibit some examples as shown in Figure 6.

4.2.2 Test set

Specifically, considering stylistic similarities in
text across certain image categories, during the
evaluation, we group advertisement/poster/book
cover, table/chart, and natural scene/street view
into three categories and remain the other scenarios
unchanged. Therefore, the final evaluation includes
images of six categories. The test set consists of
1,200 images including English — Chinese and
Chinese — English, with 100 images manually se-
lected and annotated for each category. Similar to
the training set, the statistical results of the indica-
tors and the sample demonstrations are shown in
Table 3 and Figure 6.

S Experiments

Section 5.1 outlines our experimental setup, includ-
ing evaluation metrics, baseline models and imple-
mentation details. Section 5.2 presents the main
results, demonstrating performance improvements
obtained by training on our dataset. In Section 5.3,
we conduct an ablation study to evaluate the effec-
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tiveness of our data construction pipeline. Section
5.4 assesses the scalability of the training dataset,
while Section 5.5 examines its generalizability on
the relevant benchmark. Finally, Section 5.6 pro-
vides an analysis of the trade-off between speed and
performance across varying image-compression ra-
tios.

5.1 Experimental Setting
5.1.1 Metrics

We report case-sensitive detokenized BLEU using
SacreBLEU (Papineni et al., 2002) and COMET
(Rei et al., 2020) to evaluate translation quality, and
assess the grounding capability in full-image trans-
lation with grounding task using the Intersection
over Union (IoU) metric.

5.1.2 Baselines

Compact LVLMs. We select six LVLMs
as our baselines: Aquila-VL-2B (Gu et al.,
2024), InternVL-2.5-2B (Chen et al., 2024),
Deepseek-VL2-Tiny (Wu et al, 2024),
SMOVLM2-2.2B®, PaliGemma2-3B (Steiner
et al., 2024) and Qwen2.5-VL-3B (Bai et al.,
2025). Each model is evaluated under two
conditions: zero-shot inference and fine-tuning on
our proposed training data. This dual evaluation
provides a reliable assessment of the quality of our
constructed dataset. Detailed introduction of these
baseline models are listed in Appendix B.1.

Proprietary LVLMs. To benchmark our ap-
proach against more advanced vision—language
models, we establish proprietary models using two
state-of-the-art LVLMs: Qwen2.5-VL-72B (Bai
et al., 2025) and GPT-40 (Hurst et al., 2024), both
evaluated without fine-tuning on our dataset.

Cascade Pipelines. Additionally, we imple-
ment cascade baselines that integrate EasyOCR
or GOT-OCR (Wei et al., 2024) for text recogni-
tion with Qwen2.5-VL-3B (Yang et al., 2024) for
translation to facilitate comparison with the afore-
mentioned end-to-end image machine translation
methods.

5.1.3 Implementation Details

Through our experiments, proprietary LVLMs,
Qwen2.5-VL-3B and InternVL-2.5-2B can con-
sistently generate outputs in JSON format,
which yield superior performance, we fine-tune
Qwen2.5-VL-3B and InternVL-2.5-2B and eval-
uate all these four models in JSON format. The

®https://huggingface.co/blog/smolvim2

EN-ZH ZH-EN
Data Process
BLEU COMET BLEU COMET
OCR only 42.0 79.4 29.8 75.6
MinerU only 46.7 81.4 31.7 742
Ours 49.3 84.0 34.0 76.7

(a) Ablation on region-specific translation.

EN-ZH ZH-EN
Data process
BLEU COMET IoU BLEU COMET IoU
OCR only 16.0 58.8 0319 109 50.8 0.326
MinerU only 21.0 63.9 0343  13.0 54.4 0.357
Ours 22.6 66.0 0414 143 57.9 0.367

(b) Ablation on full-image translation with grounding.

Table 5: Ablation on different data processing methods.
OCR only and MinerU only denote using EasyOCR
and MinerU to generate OCR results without spatial
merge and refinement. Ours denotes using our data
construction pipeline. Best results are marked in bold.

training of compact LVLMs is conducted with a
batch size of 128 on four A6000 GPUs. Complete
inference and training settings are provided in Ap-
pendix B.2.

5.2 Main Results

Table 4 reports the average performance across
different image scenarios in the PATIMT-Bench.
Compact LVLMs struggle to follow PATIMT in-
structions under zero-shot settings, resulting in low
BLEU, COMET, and IoU scores. After fine-tuning
on our proposed dataset, all compact LVLMs
achieve competitive performance, with some re-
sults even surpassing Qwen2.5-VL-72B and GPT-
4o. For instance, the BLEU score of Aquila-VL-2B
in the EN-ZH region-specific translation task in-
creases from 3.1 to 40.3, and COMET improves
from 45.9 to 79.7. Remarkably, Qwen2.5-VL-3B
stands out among the baselines, outperforming both
cascade pipelines and proprietary LVLMs by wide
margins in most metrics. Detailed results for each
scenario are provided in Appendix C.

For clear visualization, we render the results of
full-image translation with grounding based on the
predicted grounding information, as shown in Fig-
ure 7, which demonstrates that our model generates
translations with accurate grounding.

Overall, these results validate the effectiveness
of our dataset in enhancing translation quality and
text spatial grounding to handle PATIMT.

16578



W e om
EMPOWERING
WOMEN

1917 ﬂ g‘
w_ i

o o o

16%® g5 ¢

PLEASE DO
NOTTURN

THE COPIER
OFF

TAH 1L wamanimenssn

91 7]

- - .

RS

T
00
W2

SRR 9

SRR
AT, SISORRRFERS
FRERTIFHAE,

Figure 7: Visualization of the full-image translation with grounding results by rendering the model outputs onto the
corresponding source images based on their grounding information. The top row shows the source images, while

the bottom row displays the rendered outputs.

EN-ZH ZH-EN
Scale
BLEU COMET BLEU COMET
5K 49.3 84.0 34.0 76.7
10K 51.0 84.3 35.2 77.9
all 53.7 87.7 36.8 80.5

(a) Results on region-specific translation.

Scale EN-ZH ZH-EN

BLEU COMET 1IoU BLEU COMET IoU
SK 22.6 63.0 0.414 14.3 579 0.367
10K 24.3 64.7 0.432 15.8 58.7 0.405
all 264 67.0 0.457 17.5 59.4 0.427

(b) Results on full-image translation.

Table 6: Results of scalability of our data based on
Qwen2.5-VL-3B, dK denotes the base model is fine-
tuned on dK subset from our train set, all represents
training on the entire dataset. The best results are
marked in bold.

5.3 Ablation Study

To evaluate the effectiveness of our data con-
struction pipeline, we assess the performance of
Qwen2.5-VL-3B using EasyOCR or MinerU an-
notations without implementing our adaptive pro-
cessing with refinement strategy. Given the high
cost of GPT-based labeling, we randomly sample
10 % of instances from each scenario in our train-
ing dataset, resulting in a subset of 5,000 examples.
As shown in Table 5, the first row and second row

Models BLEU COMET
Fox 13.8 36.6
Qwen2.5-VL-3B 9.4 89.2
Qwen2.5-VL-3B* 479 91.7

Table 7: Comparison of our fine-tuned model on Fox
benchmark (Liu et al., 2024a). The best results are
marked in bold.

represent training on the subset annotated by Easy-
OCR and MinerU without spatial merge and refine-
ment. The last row corresponds to training on the
subset processed by our pipeline, demonstrating a
clear performance improvement.

5.4 Scalability

To assess the scalability of our dataset, we construct
two additional training subsets of 5,000 and 10,000
instances. As illustrated in Table 6, we observe
a steady improvement in performance, thereby
demonstrating the scalability of our dataset.

5.5 Extending to Other Benchmarks

To further assess the generalizability of our train-
ing data, we evaluate our baseline models on the
Fox benchmark (Liu et al., 2024a), which con-
tains document region-specific text image machine
translation. As shown in Table 7, our fine-tuned
model substantially outperform both the Fox model
and the baseline model by approximately 400% in
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BLEU score and 250% in COMET, demonstrat-
ing the broad applicability of our training data and
benchmark.

5.6 Tradeoff Between Speed and Performance
Across Image Compression Ratios.

High-resolution images provide fine-grained vi-
sual information facilitating great performance,
while generate excessive visual tokens which sig-
nificantly increase the inference time (Zhang et al.,
2024). To explore this influence in PATIMT task,
we conduct a series of experiments. Specifically,
we here compress the images in our test set to differ-
ent ratios and measure the change of both inference
time and BLEU score, as shown in Figure 8. For
clarity, We report BLEU scores and inference times
as decimal fractions of the uncompressed baseline
performance. From the resulting plot, we draw the
following conclusions:

* In region-specific translation task, the perfor-
mance remains comparable even when images
are significantly compressed. It indicates that
this task holds the great potential to accelerate
through the compression of visual features.

¢ In full-image translation with grounding task,
the performance of some scenarios such as
chart&table, document, and infographic are
sensitive to image compression ratio. These
scenarios may be adversely affected by lim-
ited image size, whereas other categories
maintain stable performance.

6 Conclusion

In this paper, we extend the conventional TIMT
task into PATIMT task, which encompasses two
sub-tasks: region-specific translation and full-
image translation with grounding. Confronted with
data scarcity, we construct the PATIMT-Bench, a
benchmark featuring 10 distinct image scenarios.
We introduce an Adaptive Image OCR Refinement
Pipeline to construct training data, which adap-
tively selects suitable OCR tools according to dif-
ferent image scenarios and refines the results for
text-rich images to ensure high-quality annotations.
Notably, to ensure the accuracy of evaluation, we
manually annotate bounding boxes and review the
translation results of 1,200 instances to construct
the test set. LVLMs fine-tuned on our data achieve
state-of-the-art performance on PATIMT-Bench,
and demonstrate the scaling ability of our training
data. In the future, we will explore the applica-
tion of our dataset to domains including in-image
machine translation (Tian et al., 2023; Lan et al.,
2024) and visual text generation (Tuo et al., 2023;
Liu et al., 2023; Li et al., 2024b; Esser et al., 2024).
Additionally, we aim to expand our benchmark into
a large-scale multilingual version.

Limitations

Despite the contributions of our benchmark in ad-
vancing PATIMT and achieving impressive perfor-
mance, several limitations still remain. Our bench-
mark predominantly focuses on bounding boxes
for region annotation. However, in practical appli-
cations, users may prefer or require other formats
such as polygons, points, or free-form shapes. Be-
sides, multilingual translation is not explored in our
benchmark.
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A Adaptive Image OCR Refinement
Pipeline

A.1 Data Comparison

For more clear comparison, we show the example
input images and the output format of our dataset
comparing to existing TIMT datasets, as shown in
Figure 8.

A.2 CLIP-based Categorization

Following (Zhang et al., 2023a), we divide the im-
ages in our training data into 10 distinct classes.
Each class is associated with one or more descrip-
tive labels.

¢ ads: "advertisement"

* book: "book cover", "magazine cover",
"comic book cover”

* poster: "movie poster”, "podcast poster",
"TV show poster", "event poster”, "poster”,

non

"concert poster”,

n.on

poster”,

"non

conference poster”, "travel
art poster"

non

 patural: "natural scene", "landscape”, "nature
background", "wildlife scene", "Trail sign",
"Park map", "Info board", "Gate sign", "Stone
plaque”, "Wood post","Kiosk sign", "Exhibit
panel"”

* street: "street view", "urban scene", "city
street”, "suburban neighborhood", "rural
road", "traffic scene", "billboard", "shop
front"

* hand-written: "hand-written", "handwriting
letter"
* infographic:

"non

"mind map",

"infographic",
statistical graph"

"diagram",

"non

¢ document: "document", "contract"

non

e chart: "chart", "bar chart", "pie chart", "scat-
ter plot", "line chart", "Histogram", "area
chart", "bubble chart",

table: "table", "spreadsheet", "

non

matrix",

grid"

For each word, we apply the same textual tem-
plates used in Zhang et al. (2023a) to achieve
embedding-space ensembling (Radford et al.,
2021):

* "aphotoofa {}.",

* "ablurry photo of a {}.",

* "ablack and white photo of a {}.",

* "a low contrast photo of a {}.",

Output
Dataset Input Image Format
OCRMT30K Plain Text
—’_ﬂ[\ =
DiTrans Plain Text
DoTA : : — Markdown
S I e Text

Méchten Sie

ausflihrliche

Einzelheiten
UMTIT Uber dieses Image

Hotel?
MIT-10M Plain Text
PATIMT (Ours) Plain Text &

Bounding Box

Table 8: Image and output format comparison of PA-
TIMT with other popular image translation datasets.

* "a high contrast photo of a {}.",

* "a bad photo of a {}.",

* "a good photo of a {}.",

* "a photo of a small {}.",

* "aphoto of a big {}."

Using CLIP-ViT-L/14, we compute the similar-
ity between each image and all associated labels.
Each image is then assigned to the corresponding
superclass (e.g., book) of the label (e.g., "book
cover") with the highest similarity score.

A.3 Instruction Tuning Data

In this section, we detail the question and label for-
mats used for each baseline model during training,
as illustrated in Table 9.
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Image Question Format Response Format
First pinpoint the words in Box([0.13, 0.09, 0.28, 0.15]),
A cotentand amslation resul in format: ext tanety. P! <lanslation> 7K1
FO tionl> translation.
& N Extract all visible text and offer its English meaning. [ 7R 45 2| B8 L E <Itrans-

Return the recognized text content, translation result and
boxes in format: text <ltranslationl> translation Box([x1, y1,
x2, y2]).

lation|> Apply your eye makeup, then
smile to locate the tear trough area
Box([0.14, 0.17, 0.43, 0.26])\n ...

(a) Example of instruction tuning data with plain-text format. Aquila-VL-2B and DeepseekVL2-Tiny utilize this format.

Image

Question Format

Response Format

First read the English snippet at Box([40, 553, 730, 596])),
then provide its Chinese version.. Output result in the
following JSON format (note xxx is placeholder for text,
x1,y1,x2,y2 are placeholders for coordinate).{"bbox_2d": Box([
x1,y1,x2,y2]), "text_content": xxx, "translation": xxx}

json{"bbox_2d": "Box([40,
553, 730, 596])","text_content":
"GIVE THEM A SAFE CUD-
DLE SPACE","translation": "4&
AT — 2 AR =S (A] )

Can you do text detection and translation from English
to Chinese?. Output result in the following JSON format
(note xxx is placeholder for text, x1,y1,x2,y2 are placehold-
ers for coordinate, ... means there may be more contents in the
image).["bbox_2d": Box([x1,y1,x2,y2]), "text_content": XXX,
"translation": Xxx,...].

json[{"bbox_2d":  "Box([40,
553, 730, 596])","text_content":
"GIVE THEM A SAFE CUD-
DLE SPACE","translation": "#&
i1 —" % 2P,
o]

(b) Example of instruction tuning data with JSON format. InternVL2.5-2B and Qwen2.5VL-3B utilize this format.

Table 9: Example of instruction tuning data with different format. texts marked in bold refer to diverse question
generated by GPT-40, Box(-) denotes converting bounding box to the format utilized by each baseline model, such
that Box([10,20,30,40]) is [10,20,30,40] for Qwen2.5-VL-3B and <box>[[10,20,30,40]]</box> for InternVL2.5-3-

2B.

B Detailed Experiment Settings

B.1 Details of baseline models.

We introduce the trainable parameters, bounding
box format and other settings of our selected LVLM
baseline models as the following:

* Aquila-VL-2B (Gu et al., 2024). This model
is developed based on the LLaVA-One-Vision
framework (Li et al., 2024a), utilizing the
Qwen2.5-1.5B-Instruct (Yang et al., 2024)
as the language model and Sigl.IP-SO400M-
Patch14-3847 as the vision tower. It contains a
total of 2.18 billion trainable parameters. The
bounding box format is [x1, y1, x2, y2], where
each coordinate represents a normalized ratio
in the range [0,1].

* InternVL-2.5-2B (Chen et al., 2024). This
model employs InternL.M?2.5-1.8B-Chat (Cai
et al., 2024) as the large language model and
InternViT-300M-448px-V2.5% as the vision

"https://huggingface.co/google/siglip-s0400m-patch14-
384

8https://huggingface.co/OpenGVLab/InternViT-300M-
448px-V2_5
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tower, with a randomly initialized MLP pro-
jector. It has 2.21 billion trainable parameters.
The bounding box format is <box>[x1, y1, x2,
y2]</box>, where the coordinates are normal-
ized to the range [0,1000].

DeepSeek-VL2-Tiny (Wu et al., 2024). This
model is based on DeepSeekMoE-3B (Dai
et al., 2024), comprising 3.37 billion train-
able parameters and 1.0 billion activated pa-
rameters during inference. The bounding
box format is <ldetl>[x1, y1, x2, y2]<l/detl>,
where coordinates are normalized to the range
[0,999].

SmoVLM?2-2.2B.  This model is designed for
efficient video understanding across various
devices, offering strong visual understanding
and localization capabilities. The bounding
box format is [x1, y1, x2, y2], where each
coordinate represents a normalized ratio in
the range [0,1].

PaliGemma2-3B (Steiner et al., 2024).  This
model connects the SigLIP image encoder
with the Gemma?2 language model, supporting



various input resolutions (224x224, 448x448,
and 896x896) for different use cases. The
bounding box format is [x1, y1, x2, y2], where
each coordinate represents a normalized ratio
in the range [0,1].

* Owen2.5-VL-3B (Bai et al.,, 2025). This
model demonstrates strong visual understand-
ing and localization capabilities. It has 3.75
billion trainable parameters. The bounding
box format is [x1, y1, X2, y2], using absolute
position coordinates.

B.2 Details of Training and Inference
Configuration

We list the detailed training settings as the follow-
ing:

¢ Optimization Settings:

— Learning rate: le-5 with cosine schedul-
ing

— Warmup ratio: 0.1

— Weight decay: 0.0

— Batch size: 128

— Training epoch: 1

— Optimizer: AdamW

¢ Computational Environment:

— Precision: bfloat16 (bf16)

— Acceleration framework: DeepSpeed
Stage 3

— Hardware: 4x NVIDIA A6000 GPUs

During inference, we set the temperature parame-
ter to zero and employ greedy decoding. To prevent
premature truncation of generated sequences, we
specify the maximum number of new tokens as
the greater of the ground-truth sequence or length
4096.

C Complete Results of Main Experiments

This section presents the complete results of our
main experiments. Table 10 reports the results
for the region-specific translation task, while Ta-
ble 11 provides detailed results for the full-image
translation with grounding task. From these ta-
bles, we observe that Qwen2.5-VL-3B achieves
the best performance across most metrics after
fine-tuning. Additionally, models such as Aquila-
VL-2B and DeepseekVL2-Tiny demonstrate strong

performance despite their relatively limited foun-
dational capabilities.

Moerover, our evaluation reveals distinct perfor-
mance patterns across different domains:

* Easy Domains. Most LVLMs achieve
high performance in easy domains such
as ads&books&posters, and natural
scenes&street view.  The improvement
is limited in these domains because the
number of text regions is usually small and
often dominates the image, making them
easier to recognize. In contrast, domains like
charts&tables and hand-written text show
significant improvement.  Charts&tables
contain small characters, while hand-written
text contains characters that are harder to
recognize.

* Hard Domains. Performance in document
and infographic domains is similar across all
LVLMs. Both domains contain long para-
graphs and small characters. The primary dif-
ference lies in layout: documents typically
have a structured layout, while infographics
have a more random layout. However, experi-
ments show that this difference does not signif-
icantly impact performance. We attribute this
to the models’ ability to accurately locate texts
after fine-tuning across multiple domains.

* However, we observe the opposite pat-
tern in ZH-EN full-image translation with
grounding, where models perform better
on hard domains than on easy domains.
We attribute this to the fact that difficult sce-
narios typically contain longer, semantically
coherent text, which provides richer contex-
tual information to guide translation. In con-
trast, simple scenarios often feature short,
context-deficient phrases, such as advertising
slogans or highly localized Chinese expres-
sions, that most models are poorly trained to
handle (e.g. #1E45JE (Xinhua Bookstore) is
translated to New China Bookstore). Even
when these phrases are accurately recognized,
they show suboptimal translation quality for
such culturally embedded phrases.
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ads&book &poster chart&table document hand-written infographics natural&street

Model BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Proprietary LVLMs
Qwen2.5-VL-72B 47.2 78.3 50.5 78.5 41.1 76.0 37.6 74.0 36.6 71.1 56.8 81.5
GPT-40 36.6 72.8 16.2 54.5 8.1 45.3 28.8 68.3 11.7 51.6 354 70.9
Compact LVLMs
Aquila-VL-2B 2.7 50.1 2.7 43.1 2.1 40.5 34 41.7 2.4 44.1 53 55.6
Aquila-VL-2B* 39.6 80.9 47.0 81.4 38.2 79.4 36.1 81.1 34.2 76.5 46.9 79.0
InternVL2.5-2B 233 68.4 133 543 8.6 48.7 20.2 64.8 10.6 53.3 29.7 69.0
InternVL2.5-2B* 49.8 81.8 47.5 83.2 394 79.3 36.8 76.5 38.7 71.8 52.0 80.0
DeepseekVL2-Tiny 24 49.9 24 41.8 2.0 41.7 44 44.0 3.8 44.8 4.4 54.5
DeepseekVL2-Tiny* 46.7 86.2 54.5 86.7 41.2 83.9 35.8 85.1 33.8 88.1 51.0 82.6
SmolVLM2-2.2B 39 479 1.2 38.2 1.2 34.6 0.5 37.8 1.6 37.5 4.2 51.2
SmolVLM2-2.2B* 26.3 72.3 229 66.6 21.1 66.2 15.8 62.0 17.9 61.8 27.8 69.3
PaliGemma2-3B 0.3 43.5 0.1 34.6 0.1 28.3 0.0 25.0 0.1 34.6 0.0 42.8
PaliGemma2-3B* 36.6 76.3 234 65.4 15.0 59.0 12.9 56.2 20.9 62.1 39.9 73.4
Qwen2.5-VL-3B 31.3 68.2 20.9 62.2 8.6 56.0 6.0 61.9 12.2 53.7 38.0 75.7
Qwen2.5-VL-3B* 52.6 86.5 60.3 90.2 51.3 86.8 52.7 89.7 47.0 86.4 57.8 86.7
Cascade Pipelines
EasyOCR + LLM 20.2 59.0 23.6 63.3 31.6 69.3 3.8 32.8 342 69.2 14.5 54.6
GOT-OCR + LLM 40.9 774 41.3 76.2 33.1 73.1 43.6 80.1 32.8 73.3 37.5 73.1
(a) Detailed results for region-specific translation task (EN-ZH).
Model ads&book&poster chart&table document hand-written infographics natural&street
BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Proprietary LVLMs
Qwen2.5-VL-72B 304 73.5 48.7 83.6 40.3 76.2 28.0 67.3 46.6 814 29.6 69.3
GPT-40 26.1 65.1 19.5 64.9 8.6 53.1 17.0 57.8 9.7 51.9 16.9 59.6
Compact LVLMs
Aquila-VL-2B 32 44.6 2.6 46.7 0.4 43.1 1.9 41.5 23 44.1 2.9 442
Aquila-VL-2B* 19.6 66.4 272 7.7 9.5 65.1 8.9 52.0 214 64.9 17.3 60.6
InternVL2.5-2B 14.0 60.4 10.9 59.7 5.7 555 14.4 61.0 15.0 56.3 13.9 55.4
InternVL2.5-2B* 25.5 74.3 342 71.9 35.7 80.5 21.4 67.5 339 74.4 244 69.5
DeepseekVL2-Tiny 32 49.9 3.4 51.2 1.3 54.2 3.8 51.7 1.9 49.3 53 49.0
Deepseek VL2-Tiny* 242 75.4 40.6 84.5 33.6 834 20.8 71.7 30.0 76.5 29.7 75.0
SmolVLM2-2.2B 1.9 39.2 1.0 36.6 0.3 36.1 0.9 37.3 0.6 36.1 1.8 38.3
SmolVLM2-2.2B* 11.2 53.2 10.8 52.7 9.1 55.0 8.9 51.1 13.9 48.0 15.7 58.6
PaliGemma2-3B 1.5 39.3 1.3 42.6 0.1 29.4 1.4 393 1.4 38.7 1.0 36.5
PaliGemma2-3B* 18.0 63.1 13.5 54.0 8.7 51.3 13.3 57.1 12.3 49.7 14.7 57.4
Qwen2.5-VL-3B 9.2 55.8 11.7 62.8 7.4 58.4 14.1 63.8 11.0 552 9.7 539
Qwen2.5-VL-3B* 29.3 77.8 46.5 86.2 42.7 83.0 28.6 73.6 42.5 86.5 31.1 76.1
Cascade Pipelines
EasyOCR + LLM 7.6 53.0 26.7 71.4 37.2 81.0 55 49.0 28.6 72.9 9.0 50.5
GOT-OCR + LLM 23.2 71.9 33.1 71.5 39.3 81.4 13.8 59.9 32.8 76.2 21.5 63.0

(b) Detailed results for region-specific translation task (ZH-EN).

Table 10: Detailed evaluation results for region-specific translation task. Models marked with * indicate fine-tuning
on our PATIMT train set. Best results are masked in bold.
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Model ads&book&poster chart&table document hand-written infographics natural&street
BLEU COMET IoU BLEUCOMET IoU BLEUCOMET IoU BLEUCOMET IoU BLEUCOMET IoU BLEU COMET IoU
Proprietary LVLMs
Qwen2.5-VL-72B 195 659 0274 98 46.6 0110 30 377 0056 127 378 0.153 1.7 357 0.036 328 684 0.480
GPT-40 12.1  56.6 0.138 6.3 488 0.059 2.1 403 0.057 23 394 0050 3.1 439 0.058 157 552 0.045
Compact LVLMs
Aquila-VL-2B 1.0 209 0.062 00 108 0.001 0.0 50 0.004 00 11.0 0.058 00 17.8 0.005 5.1 28.5 0.090
Aquila-VL-2B* 19.8 672 0422 9.7 557 0.139 152 612 0355 29.6 774 0679 144 59.6 0210 289 689 0.347
InternVL2.5-2B 81 537 0056 22 437 0015 16 408 0.035 93 51.1 0.8 1.6 41.8 0.030 166 538 0.022
InternVL2.5-2B* 28.8 727 0.512 106 474 0212 141 528 0428 253 68.6 0.641 92 451 0246 322 709 0428
DeepseekVL2-Tiny 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000
DeepseekVL2-Tiny* 21.9 66.3 0364 6.8 519 0.076 41 494 0.085 215 708 0.109 121 585 0.182 313 69.2 0.376
SmolVLM2-2.2B 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000
SmolVLM2-2.2B* 177 673 0446 6.0 514 0.077 99 535 0.191 123 571 0471 6.6 513 0.098 212 645 0.256
PaliGemma2-3B 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000
PaliGemma2-3B* 220 575 0.143 92 51.0 0.041 139 52.0 0206 9.5 489 0.141 11.0 53.1 0063 22.8 64.8 0.043
Qwen2.5-VL-3B 53 190 0.093 9.8 46,6 0.110 12 159 0071 0.0 181 0084 35 162 0.059 0.1 1.7 0.023
Qwen2.5-VL-3B* 264 698 0439 150 57.0 0279 233 649 0.539 364 799 0.669 209 604 0366 362 69.8 0.448
Cascade Pipelines
EasyOCR + LLM 11.0 549 0312 57 527 0251 1.2 423 0.09 03 29.0 0087 3.1 495 0222 119 537 0372
GOT-OCR + LLM 69 413 - 23 357 - 146 482 - 386 756 - 29 343 - 41 403 -
(a) Detailed results for full-image translation with grounding task (EN-ZH).
Model ads&book &poster chart&table document hand-written infographics natural&street
BLEU COMET IoU BLEUCOMET IoU BLEUCOMET IoU BLEUCOMET IoU BLEUCOMET IoU BLEUCOMET IoU
Proprietary LVLMs
Qwen2.5-VL-72B 195 661 051 9.0 476 0.053 42 431 0.034 160 595 0409 20 399 0058 168 62.0 0439
GPT-40 162 547 0.149 87 535 0.059 3.0 472 0078 8.1 423 0.105 3.0 47.1 0.08 10.1 46.0 0.089
Compact LVLMs
Aquila-VL-2B 0.6 230 0069 03 214 0007 0.0 129 0014 02 245 0.144 0.1 17.9 0.008 04 252 0.09%
Aquila-VL-2B* 10.6 56.6 0419 7.5 543 0.124 55 547 0339 7.8 489 0482 48 510 0247 84 53.0 0379
InternVL2.5-2B 7.6  51.1 0085 29 464 0.021 32 495 0.037 9.0 48.0 0064 1.7 430 0.042 72 454 0.032
InternVL2.5-2B* 13.1 633 0487 7.6 512 021 41 420 0315 160 626 0669 85 460 0346 159 624 053
DeepseekVL2-Tiny 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000
DeepseekVL2-Tiny* 13.5 59.6 0393 94 568 0.139 11.7 568 0.197 138 60.0 0.583 5.1 51.0 0.153 138 594 0414
SmolVLM2-2.2B 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000
SmolVLM2-2.2B* 92 503 0274 92 498 0.143 84 489 0080 7.3 472 0513 105 527 0.107 168 585 0.292
PaliGemma2-3B 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.000
PaliGemma2-3B* 9.1 523 0.145 9.7 487 0.106 157 613 0.088 81 475 0208 9.0 499 0.095 137 50.7 0.301
Qwen2.5-VL-3B 30 185 0117 29 289 0023 10 154 0.022 36 226 0152 09 11.5 0.035 2.0 9.8 0.061
Qwen2.5-VL-3B* 159 645 0481 158 585 0236 213 567 0381 22.6 631 062 157 544 0389 140 59.0 0.452
Cascade Pipelines
EasyOCR + LLM 73 525 044 113 609 0332 29 504 0.125 50 406 0382 22 466 0.195 39 431 0357
GOT-OCR + LLM 36 470 - 3.8 405 - 16.7  61.5 - 52 484 - 56 427 - 3.1 441 -

(b) Detailed results for full-image translation with grounding task (ZH-EN).

Table 11: Detailed evaluation results for full-image translation with grounding task. Models marked with * indicate
fine-tuning on our PATIMT train set. Best results are masked in bold.
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