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Abstract

Large Vision-Language Models (LVLMs) have
demonstrated remarkable capabilities in pro-
cessing both visual and textual information.
However, the critical challenge of alignment
between visual and textual representations is
not fully understood. This survey presents a
comprehensive examination of alignment and
misalignment in LVLMs through an explain-
ability lens. We first examine the fundamen-
tals of alignment, exploring its representational
and behavioral aspects, training methodologies,
and theoretical foundations. We then analyze
misalignment phenomena across three seman-
tic levels: object, attribute, and relational mis-
alignment. Our investigation reveals that mis-
alignment emerges from challenges at multi-
ple levels: the data level, the model level, and
the inference level. We provide a comprehen-
sive review of existing mitigation strategies,
categorizing them into parameter-frozen and
parameter-tuning approaches. Finally, we out-
line promising future research directions, em-
phasizing the need for standardized evaluation
protocols and in-depth explainability studies.

1 Introduction

Recent Large Vision-Language Models (LVLMs)
have achieved significant progress in multimodal
understanding. Models such as GPT-4V (OpenAI),
Gemini (Team et al., 2023), LLaVA (Liu et al.,
2024b), Claude-3.5-Sonnet (Anthropic, 2024),
Qwen2-VL (Wang et al., 2024d), and LLaMa 3.2
(Dubey et al., 2024) demonstrate remarkable ca-
pabilities in tasks like image captioning and vi-
sual question answering, not only processing visual
and textual information independently but also rea-
soning across these modalities. These advances
are built upon two key foundations: large lan-
guage models (LLMs) and vision encoders. LLMs
such as GPT-3.5 (Brown, 2020), LLaMA (Touvron
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et al., 2023a), LLaMA 2 (Touvron et al., 2023b),
and Qwen (Bai et al., 2023a) transformed natural
language processing, while visual understanding
models like Vision Transformer (ViT) (Dosovit-
skiy et al., 2021) and vision-language models like
CLIP (Radford et al., 2021) have advanced the abil-
ity to process visual information and create aligned
visual-textual representations respectively.

The key challenge in developing effective
LVLMs lies in achieving proper alignment be-
tween visual and textual representations (Liu et al.,
2024a). The predominant approach involves using
representation alignment techniques, where visual
features from an image encoder and textual repre-
sentations from an LLM are mapped into a shared
embedding space, typically matching the LLM’s
embedding dimensions (Jia et al., 2021; Yang et al.,
2022; Shu et al., 2024). Once both modalities are
mapped into this shared space, alignment can be
achieved through various training objectives and
architectural designs that encourage the model to
understand and reason about cross-modal relation-
ships. This method has gained popularity due to
its straightforward approach and generalizability
across different model architectures.

However, the current understanding of alignment
mechanisms remains limited. A critical challenge
lies in misalignment phenomena, which manifest in
various forms. For instance, when shown an image
of a green apple, the model might fail to recognize
the apple altogether (object misalignment), incor-
rectly describe it as red (attribute misalignment),
or generate incorrect relationships like “the apple
is floating in the air” when it’s sitting on a table
(relational misalignment). These misalignments
lead to reliability issues (Zhang et al., 2024; Zhou
et al., 2024; Zhao et al., 2024e), where models gen-
erate textual outputs that are inconsistent with the
visual input. Understanding and addressing these
misalignment issues is crucial for developing more
reliable and trustworthy LVLMs, as they directly
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impact the models’ ability to generate accurate and
consistent multimodal outputs.

1.1 Contribution and Uniqueness

Our Contributions. In this survey, we present
a structured framework for understanding and ad-
dressing alignment challenges in LVLMs from an
explainability perspective. Our major contributions
are listed as follows: (1) We examine the fundamen-
tals of alignment, covering its representational and
behavioral aspects, training procedures, and theo-
retical foundations (Section 2). (2) We analyze mis-
alignment at both the representation and behavior
levels, and categorize behavioral phenomena into
object, attribute, and relational misalignment (Sec-
tion 3). (3) We identify that misalignment arises
from challenges at three key levels: data level,
model level, and inference level (Section 3). (4) We
review existing mitigation strategies with an em-
phasis on their underlying motivations, trade-offs,
and assumptions, and further enhance the explain-
ability analysis of these approaches (Section 4). (5)
In the Appendix, we provide extended discussions
including existing evaluation methods, real-world
examples of LVLM misalignment, and mitigation
methods comparative analysis.

Differences with Existing Surveys. While several
existing surveys focus primarily on hallucination
in LVLMs (Liu et al., 2024a; Bai et al., 2024; Sa-
hoo et al., 2024), our work addresses the broader
and more foundational concept of misalignment.
We view hallucination as one possible consequence
of misalignment. Another key distinction is our
focus on explainability as the central lens for un-
derstanding alignment. We systematically analyze
alignment through the questions of what alignment
is, how it is achieved, and why it is possible. This
explainability-driven perspective guides our entire
analysis, including the design of our mitigation
taxonomy and the in-depth discussion of existing
mitigation methods.

2 Alignment of LVLMs

In this section, we examine alignment in LVLMs
across four essential dimensions. First, we define
the concept of alignment in LVLMs. Second, we
detail the procedural stages through which align-
ment is achieved in practice. Third, we explore the
theoretical foundations that make alignment possi-
ble between visual and textual modalities. Finally,
we discuss methods for measuring and evaluating

alignment in LVLMs in Appendix C.

2.1 What is Alignment?

In the context of LVLMs, let X be the image space
and T be the text space. We define the alignment
in two fundamental aspects: representational align-
ment and behavioral alignment.

• Representational alignment refers to the degree
of correspondence between visual representa-
tions v ∈ V and textual representations t ∈ T
within the model’s internal embedding space E .
When well-aligned, the visual features extracted
from an image and the textual embeddings of its
corresponding description occupy nearby regions
in the shared latent space, exhibiting high seman-
tic similarity d(v, t) where d is a similarity met-
ric. This internal alignment enables the model to
establish meaningful connections between visual
and textual information at a fundamental level.

• Behavioral alignment refers to the model’s abil-
ity to generate accurate, factual, and consistent
textual responses y ∈ Y when processing image
inputs x ∈ X . A behaviorally aligned LVLM can
reliably answer questions about visual content,
provide precise descriptions, and perform reason-
ing tasks without introducing errors or halluci-
nations. This external manifestation ensures that
the model’s outputs faithfully reflect the actual
content and relationships present in the images.

These two aspects of alignment are inherently
connected. Strong representational alignment typi-
cally supports better behavioral alignment, as the
model can more effectively leverage both visual
and textual information to generate reliable outputs.
Conversely, poor alignment in either aspect can
lead to issues such as mismatched representations,
inaccurate responses, or hallucinated content.

2.2 Why is Alignment Possible?

Having established what alignment means and how
it is implemented in LVLMs, a fundamental ques-
tion arises: why is such alignment between vision
and language modalities possible in the first place?
The possibility of alignment between these modal-
ities can be understood from both theoretical and
algorithmic perspectives.

Theoretical Perspective. From a theoretical stand-
point, visual and textual data are different projec-
tions of the same underlying reality. As Huh et
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al. argue in their Platonic Representation Hypothe-
sis (Huh et al., 2024), all modalities are measure-
ments of a real world that generates our observa-
tions. When humans create images or write text,
they are encoding information about this same re-
ality, though through different measurement pro-
cesses. Although these modalities appear distinct
on the surface, they fundamentally capture overlap-
ping semantic information about the same world
state. This shared origin in physical reality, com-
bined with the fact that humans generate both types
of data to describe their observations of the world,
provides the theoretical foundation for why these
modalities can be meaningfully aligned in a com-
mon representation space. See Appendix D for a
formal justification.

Algorithmic Perspective. From an algorithmic
perspective, although visual encoders and language
models are initially trained separately on differ-
ent modality-specific data, their learned represen-
tations inherently capture some similar semantic
structures due to their training on human-generated
data. Recent research has shown that these inher-
ent similarities exist even before explicit alignment
training (Maniparambil et al., 2024; Sharma et al.,
2024; Neo et al., 2024). This natural compatibility
serves as a starting point for more sophisticated
alignment. The staged training process described
in Section 2.2 then is built upon this inherent com-
patibility through systematic refinement: first us-
ing contrastive learning to organize embeddings
in the shared latent space, then employing adapter
fine-tuning to bridge between modalities while pre-
serving their specialized capabilities, and finally
conducting end-to-end training to enable deep in-
tegration across all components. Through this sys-
tematic combination of training stages and opti-
mization objectives, the model gradually develops
a robust alignment between the two modalities.

3 Misalignment of LVLMs

After introducing the alignment of LVLMs, we now
examine a critical challenge facing these models:
their tendency to generate outputs that diverge from
the visual input. Despite significant advances in
alignment techniques, LVLMs still frequently ex-
hibit misalignment between their visual and textual
inputs. In this section, we provide a comprehensive
analysis of misalignment phenomena in LVLMs,
beginning with a definition and taxonomy of differ-
ent types of misalignment (see Figure 1), followed

by an examination of their underlying causes.

3.1 Definition of Misalignment

Misalignment in LVLMs occurs when the model’s
output semantically diverges from the visual con-
tent it is meant to describe. These discrepancies
show in several key phenomena, impacting the
overall performance of these models. In this sec-
tion, we categorize behavior-level misalignment
phenomena in LVLM into three semantic levels
S = {so, sa, sr}: object misalignment (so), at-
tribute misalignment (sa), and relation misalign-
ment (sr) (Figure 1 right). Rather than using the
term ‘hallucination’ commonly found in the liter-
ature (Liu et al., 2024a), we adopt the term ‘mis-
alignment’ to better characterize how these discrep-
ancies emerge between visual and language repre-
sentations. For representation-level misalignment,
please refer to Figure 1 left and Appendix B.

• Object Misalignment (so): This is one of the most
widely recognized forms of misalignment (Liu
et al., 2024a; Wang et al., 2023; Li et al., 2023b).
It occurs when the model generates descriptions
containing objects O′ that differ from the actual
objects O in the image, where O′ ̸⊆ O. This
represents the most coarse-grained level of mis-
alignment, as it simply refers whether an object
exists in the image or not. Due to its coarse-
grained nature, object misalignment is relatively
straightforward to detect and mitigate.

• Attribute Misalignment (sa): At a finer level,
we identify attribute misalignment (Shang et al.,
2024). This occurs when for an object o ∈ O, the
model correctly identifies the object but generates
incorrect attributes A′ ̸= A, where A represents
the true attributes of o. Attribute misalignment
typically involves adjectives or adverbs that de-
scribe properties of objects inaccurately. For ex-
ample, when input an image of a green apple, the
model might incorrectly describe the color of an
apple as ‘red’ instead of ‘green’.

• Relation Misalignment (sr): This category in-
volves the generation of incorrect or non-existent
relationships R′ between objects in an image (Wu
et al., 2024b), where R′ differs from the true rela-
tionships R. This misalignment manifests in two
primary ways: spatial relationship errors and ac-
tion relationship errors. In spatial relationships,
the model might incorrectly describe the rela-
tive positions of objects, such as saying ‘next to’
when the correct relation is ‘on top of’, or ‘in-
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Align

Misalign

Object Misalignment

Attribute Misalignment

Embedding Space

Positive Pair

Negative Pair
This is an elegant living 
room with a high ceiling, 
featuring modern design 
elements. There's a 
flat-screen TV mounted 
on the wall. On the left, 
there?s a small black 
sofa. In the center of the 
room, a tall indoor plant 
adds greenery to the 
whole environment.

Correct Alignment

Relational Misalignment

Figure 1: Illustration of representation-level and behavior-level alignment and misalignment in LVLMs. The left
side shows representation-level phenomena in embedding space, where aligned visual-text pairs cluster together
(positive pairs) while misaligned pairs are separated (negative pairs). The right side demonstrates behavior-level
alignment and misalignment through a room description example, showing the spectrum from correct alignment
(green) to various types of semantic misalignment: object misalignment (red), attribute misalignment (yellow), and
relational misalignment (blue). These two levels are inherently connected, as the quality of representation alignment
in the embedding space influences the model’s ability to generate semantically aligned outputs.

side’ when objects are merely ‘near’ each other.
In action relationships, the model might gener-
ate semantically impossible interactions between
objects, such as ‘he is walking a car’ instead of
‘he is driving a car’, or ‘the cat is reading a book’
instead of ‘the cat is sitting on a book’.

To better illustrate real-life examples of misalign-
ment, we have selected four prominent LVLMs and
provided their generated responses in Appendix F.

3.2 Reasons of Misalignment
Having identified the three semantic levels of mis-
alignment phenomena, we now analyze their root
causes across three fundamental levels: Dataset,
Model, and Inference. The Dataset level exam-
ines how training data characteristics influence mis-
alignment during learning. The Model level investi-
gates how architectural decisions and training pro-
cedures affect alignment between modalities. The
Inference level explores how the generation process
can introduce misalignment even with well-aligned
underlying representations.

3.2.1 Dataset Level
Data quality and distribution patterns play crucial
roles in contributing to misalignment between vi-
sual and language representations in LVLMs. Sev-
eral key dataset factors can impede the model’s
ability to form accurate associations between visual
inputs and textual descriptions, affecting both train-
ing effectiveness and inference performance. We
list one factor below, for additional factors please
refer to Appendix E.

• Data imperfections: This includes blurry images,
vague or inaccurate captions, and mismatched
image-caption pairs, which introduce significant
challenges during training (Ouali et al., 2025;
Shi et al., 2024). These quality issues manifest
in various forms: images may suffer from poor
resolution, inappropriate cropping, or visual arti-
facts; captions might contain grammatical errors,
ambiguous descriptions, or factually incorrect in-
formation; and in some cases, the captions may
describe content entirely unrelated to their paired
images. These low-quality data points can distort
the model’s ability to form precise mappings be-
tween modalities, leading to outputs that fail to
accurately reflect the input image and potentially
establishing incorrect associations that persist
through the training process.

3.2.2 Model Level
Beyond data-level issues, the architectural design
and training methodology of LVLMs significantly
influence model alignment.

• Ability Gap: This independent pretraining pro-
cess also creates an ability gap between the visual
encoder and the LLM (Li et al., 2024c), where
the LLM often demonstrates significantly greater
capability than the visual encoder. Consequently,
the LVLM tends to rely excessively on the LLM
for predictions, resulting in imbalanced attention
between visual and textual information (Chen
et al., 2025; Min et al., 2024; Woo et al., 2024b).

• Pretrain-finetuning Knowledge Gap: After inte-
grating the visual encoder and LLM into a uni-
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fied LVLM, fine-tuning is typically performed to
further enhance alignment and adapt the model
to specific downstream tasks. However, this
fine-tuning phase can introduce a pretraining-
finetuning knowledge gap or conflict, where the
general knowledge acquired during pretraining
may clash with the specific requirements of the
fine-tuning task (Zhou et al., 2024). Such con-
flicts can lead to knowledge forgetting, where
the LVLM loses previously learned information
while adapting to the new task (Zhou et al.,
2023a; Huang et al., 2024b). Although knowl-
edge forgetting might appear insignificant, it can
have cascading effects. Each unit of knowledge
in the model’s embedding space is interconnected
with lots of semantic relationships. Forgetting
even a single piece of knowledge can disrupt
these relational connections, undermining the in-
tegrity of the embedding space. This disruption
causes a broader misalignment within the LVLM.

• Knowledge Conflict: A significant challenge
arises from knowledge conflicts between the vi-
sual knowledge of image and parametric knowl-
edge of LLM. These conflicts emerge when the
visual encoder’s direct perception of image con-
tent contradicts the prior knowledge embedded in
the LLM’s parameters during pre-training (Zhu
et al., 2024b; Ghosh et al., 2024). For example,
when an image contains a green tomato, the vi-
sual encoder accurately detects its color, but the
LLM may resist this information since it has been
predominantly trained on texts describing ripe,
red tomatoes. This misalignment between ob-
served visual evidence and learned textual priors
can manifest in various ways: the model might
incorrectly describe the tomato as red despite
clear visual evidence, generate hesitant or self-
contradicting descriptions, or attempt to ratio-
nalize the discrepancy by making unwarranted
assumptions about the tomato’s ripeness stage.

3.2.3 Inference Level
Misalignment can also occur during the inference
stage due to task discrepancy. This discrepancy
fundamentally represents an out-of-distribution
(OOD) generalization problem, as users often pose
questions or request tasks that deviate from the dis-
tribution of examples seen during training. Even
when a LVLM has been trained on a large and
diverse dataset, it may encounter novel combina-
tions of visual and textual elements or be asked

to perform tasks in ways that differ subtly but sig-
nificantly from its training examples. This OOD
challenge manifests in several ways. First, the train-
ing data used for pre-training or fine-tuning the
model may not fully align with the specific tasks
it is later expected to perform (Zhang et al., 2024).
For example, a model trained primarily on image
captioning data might struggle when asked to an-
swer specific questions about spatial relationships
or perform detailed visual reasoning tasks. Sec-
ond, users may phrase requests in ways that differ
from the instruction patterns seen during training,
leading to potential misinterpretation of the task
requirements. Third, the visual inputs during in-
ference may contain novel object configurations
or scene compositions not well-represented in the
training data. These distribution shifts can create
misalignment in LVLMs as the model struggles to
adapt to new and distinct tasks that require different
interpretations of visual and textual information.

4 Mitigation Methods

Building upon our analysis of misalignment causes
in LVLMs, we now examine strategies for mitigat-
ing these challenges (see Figure 2). These mit-
igation approaches can be categorized into two
groups: parameter-tuning alignment methods and
parameter-frozen alignment methods. Parameter-
tuning alignment involves modifying specific com-
ponents within the LVLM architecture to reduce
misalignment through targeted parameter updates.
In contrast, parameter-frozen alignment meth-
ods address misalignment while maintaining the
LVLM’s original parameters unchanged, offering
solutions that preserve the model’s structure while
improving its cross-modal alignment capabilities.

4.1 Parameter Tuning Alignment

Parameter-tuning alignment focuses on mitigating
misalignment by refining the training scheme or
enhancing the architecture itself.

Improving Training Scheme. Parameter-tuning
methods that improve the training scheme often
address misalignment broadly as a data-level is-
sue or as a general visual-textual misalignment
(Ouali et al., 2025; Jiang et al., 2024). This un-
derstanding leads to a straightforward objective,
which is reducing the modality gap between vi-
sual and textual representations. This can often
achieved by improving the dataset quality or opti-
mizing training techniques. One common approach

1717



M
iti

ga
tio

n
M

et
ho

ds
(§

4)

Pa
ra

m
et

er
-T

un
in

g
A

lig
nm

en
t

(§
4.

1) Improving Training
Scheme

Contrastive
Learning

e.g., CIT (Hu et al., 2023), HACL (Jiang et al., 2024)

Instruction
Tuning

e.g., IDK-Instructions (Cha et al., 2024), REVERIE (Zhang et al., 2025), TextSquare
(Tang et al., 2024), LRV-Instruction (Liu et al., 2023), AIT (Park et al., 2024), MMINSTRUCT
(Liu et al., 2024d)

RLHF e.g., Fact-RLHF (Sun et al., 2023), RLHF-V (Yu et al., 2024c)

Preference
Optimization

e.g., CLIP-DPO (Ouali et al., 2025), HA-DPO (Zhao et al., 2023b), FDPO (Gunjal et al., 2024),
HSA-DPO (Xiao et al., 2024), HalluciDoctor (Yu et al., 2024b), Chen et al. (2023b), ReCaption
(Wang et al., 2024c), MOCHa (Ben-Kish et al., 2024), SILKIE (Li et al., 2023a), V-DPO
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Figure 2: Taxonomy of Misalignment Mitigation Methods for LVLMs, including Parameter-Tuning Alignment and
Parameter-Frozen Alignment.

is contrastive learning, exemplified by methods
such as CIT (Hu et al., 2023) and HACL (Jiang
et al., 2024). These techniques involve using a third
model to generate positive and negative data pairs.
The LVLM is then trained to bring the representa-
tions of positive pairs closer together while push-
ing negative pairs apart in the embedding space.
Another widely adopted strategy is instruction tun-
ing, as seen in LRV-Instruction (Liu et al., 2023),
VideoCon (Bansal et al., 2024), HACA (Zhao et al.,
2025), and TextSquare (Tang et al., 2024). Simi-
larly, these approaches rely on a third model to gen-
erate instructional data, which is subsequently used
to train the LVLM effectively. However, these ap-
proaches often lack robust quality assurance mech-
anisms to verify the accuracy or relevance of the
generated data, introducing potential risks. Alterna-
tively, Reinforcement Learning from Human Feed-
back (RLHF) employs human feedback to train a re-
ward model, ensuring that the generated data aligns
with human preferences (Sun et al., 2023; Yu et al.,
2024c). While RLHF guarantees high-quality train-
ing data, it comes at a significant cost. To address
this, some methods leverage preference optimiza-
tion, wherein multiple responses are generated for
the same input image, ranked or scored by a third
model, and categorized into positive and negative
pairs (Ouali et al., 2025; Zhao et al., 2023b; Gun-

jal et al., 2024). The model is then fine-tuned on
this curated dataset. Although these methods can
significantly improve the model, they are often con-
strained by either high resource requirements (as in
RLHF) or the uncertain quality of generated data
(as in contrastive learning and instruction tuning) or
rerank model (as in preference optimization). This
highlights the ongoing need for large, diverse, and
high-quality datasets to effectively address data-
level misalignment.

Improving Model Architecture. Methods that im-
prove the model architecture often involve a deep
understanding of the root causes of misalignment,
allowing researchers to pinpoint deficiencies within
specific components of the LVLM. Typical LVLM
architectures consist of three main components:
the visual encoder, the adapter module, and the
LLM (Liu et al., 2024a; Bai et al., 2024). Most
architecture-focused approaches concentrate on en-
hancing the visual encoder or the adapter module,
with relatively few addressing improvements to the
LLM itself. This aligns with our earlier model-level
claim of the model ability gap, where the LLM of-
ten outperforms the visual encoder. Blindly enhanc-
ing the LLM could exacerbate this gap, potentially
worsening the misalignment issue. To reduce this
ability gap, some studies scale up the visual en-
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coder by increasing its parameter size (Chen et al.,
2024c). Others introduce additional components to
the visual encoder to improve its capabilities with-
out necessarily scaling up its size (You et al., 2023;
Jain et al., 2024; Li et al., 2024b). In addition to the
visual encoder, many methods focus on improving
the adapter module, which serves as the critical
bridge between the visual and textual modalities.
Enhancements to the adapter module often involve
adding intermediary layers or mechanisms to better
align the visual encoder’s outputs with the LLM’s
input requirements. For example, PATCH (Shang
et al., 2024) employs trainable virtual tokens to en-
hance the projection layer, improving cross-modal
alignment. Similarly, HallE-Switch (Zhai et al.,
2023) introduces a dynamic mechanism that ad-
justs the flow of information between the visual
encoder and the LLM based on input complex-
ity. By addressing these architectural components,
parameter-tuning methods aim to reduce the modal-
ity gap and improve the alignment between visual
and textual representations, ultimately enhancing
the LVLM’s performance across tasks.

4.2 Parameter Frozen Alignment

Parameter-frozen alignment methods have gained
increasing popularity due to their significant practi-
cal advantages. These training-free approaches are
highly modular and easy to implement, allowing
them to be readily integrated into existing systems
without requiring costly retraining or fine-tuning
processes. This makes them particularly attractive
for real-world applications where computational
resources may be limited. We categorize these
parameter-frozen methods into four types based
on where they intervene in the LVLM process-
ing pipeline: Augment-based mitigation, augment-
ing the LVLM by incorporating external knowl-
edge; inference-based mitigation, operating in the
model’s latent space during intermediate process-
ing; decoding-based mitigation, which guides the
text generation process; and post-decoding mitiga-
tion, which refines the final outputs.

Augment-based Methods. As analyzed in Sec-
tion 3, insufficient input of image information is
one of the primary causes of misalignment, lead-
ing to poor visual understanding. To address this,
retrieval-augmented generation (RAG) methods
have been adapted to dynamically integrate exter-
nal knowledge into LVLMs through retrieved re-
sults (Qu et al., 2024; Chen et al., 2023a; Ramos

et al., 2023a,b; Sarto et al., 2024; Yang et al.,
2024a). By reranking the similarity of image-text
pairs, RAG approaches provide more visual context
and guidance to the model. Similarly, other meth-
ods rely on generating approach to enrich the input
with additional information. For instance, Zhao
et al. (2024d), Li et al. (2024a), and Zhao et al.
(2023a) propose integrating an auxiliary model
to generate relevant information based on the im-
age. Then inject these information into the input
prompt. Alternatively, methods such as RITUAL
(Woo et al., 2024a) bypass the need for external
models. It enhances the model’s exposure to di-
verse visual contexts by applying random transfor-
mations to input images. Additionally, approaches
like (Kim et al., 2024b; Ghosh et al., 2024) employ
self-generated textual descriptions appended to the
input prompt, ensuring the model has sufficient
knowledge to answer questions accurately.

Inference-based Methods. Some methods oper-
ate in the model’s latent space during the infer-
ence process, prior to decoding, by intervening in
both visual and textual representations to improve
alignment. For instance, Visual and Textual In-
tervention (VTI) (Liu et al., 2024c) pre-computes
intervention directions using a small set of ex-
amples and applies them during inference to en-
hance feature stability and vision-text alignment,
without requiring additional training. Similarly,
Image-Object Cross-Level Trusted Intervention
(ICT) (Chen et al., 2024a) introduces a lightweight
mechanism that intervenes in the model’s attention
at both image and object levels, applying targeted
activation shifts to selected attention heads. Since
they operate directly on the model’s internal repre-
sentations, they can make precise adjustments to
improve alignment without disrupting the model’s
broader language understanding capabilities. This
makes inference-based methods effective at reduc-
ing misalignment while preserving the model’s abil-
ity to generate contextually appropriate responses.

Decoding-based Methods. Another common ap-
proach to mitigating misalignment involves modi-
fying the decoding process. These methods often
target issues of imbalanced attention. However,
the imbalance attention between what still remain
debated. Some researchers argue that the model
over-focuses on irrelevant image tokens, such as
background elements or unimportant details (Woo
et al., 2024b; Gong et al., 2024). However, the
prevailing view is that the model prioritizes tex-
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Table 1: Comparison of Mitigation Methods on the POPE Benchmark. The table demonstrates the performance of
the baseline model and different mitigation methods that address baseline misalignment. Performance is evaluated
using Accuracy, Precision, Recall, and F1 score (with the highest score in each category underlined). Additionally,
the computational cost (in seconds per input) for both the baseline and each mitigation method is provided.

POPE-Random POPE-Adversarial POPE-Popular Comp. Cost
Method Acc Precis Recall F1 Acc Precis Recall F1 Acc Precis Recall F1 Sec/Input

Baseline
LLaVa-V1.5-7B 88.4 87.5 89.7 88.6 77.9 72.6 89.7 80.3 84.8 81.7 89.7 85.5 1.27

Mitigations
SoM-LLaVA (Yan et al., 2024) 89.6 89.1 90.2 89.6 81.0 76.2 90.2 82.6 84.8 81.4 90.2 85.6 1.62
SID (Huo et al., 2024) 89.4 92.2 86.1 89.0 80.4 77.4 85.9 81.4 85.9 85.9 85.9 85.9 1.68
LogicCheckGPT (Wu et al., 2024a) 88.0 98.3 77.3 86.5 85.0 94.1 74.7 83.3 86.7 95.1 77.3 85.3 51.5

tual tokens over visual ones, neglecting critical
visual information (Leng et al., 2024; Wang et al.,
2024e; Kim et al., 2024a; Liu et al.). Despite these
differences in interpretation, most decoding-based
methods use contrastive decoding to rebalance at-
tention between modalities, typically by reducing
attention to textual tokens while enhancing focus
on visual tokens. This approach, however, con-
trasts with inference-based methods, which avoid
reducing attention to textual information and in-
stead preserve the model’s overall language under-
standing. Another interesting observation is that,
while decoding-based methods typically lead to
similar approaches, they can sometimes result in
divergent strategies. For instance, OPERA (Huang
et al., 2024a) hypothesizes that the model over-
relies on summary tokens, instead of focusing vi-
sual tokens. However, text summarization is SGD’s
solution (Min et al., 2024) to misalignment. It uses
summarization to shorten textual context and helps
model shift focus toward visual information. This
divergence underscores how subtle differences in
understanding misalignment’s root causes can lead
to contradicted methodologies.

Post-decoding Methods. Lastly, post-decoding
approaches present broader hypotheses about mis-
alignment causes, tackling issues ranging from
data-level biases to model-level deficiencies. Meth-
ods such as LURE (Zhou et al., 2023b) and Wood-
pecker (Yin et al., 2023) exemplify this category.
LURE focuses on addressing object hallucinations
by revising the generated text, identifying halluci-
natory content, and reconstructing less biased out-
puts. Woodpecker employs a five stages validation
mechanism to extract and correct inconsistencies
in the generated response. Despite their specific
details, these methods converge on a shared strat-
egy, which involves modifying the model’s outputs
after decoding without altering parameters or archi-

tecture, making them easily adaptable to various
LVLMs. This flexibility lies in their goal-oriented
nature, as they directly target specific misalignment
phenomena.

4.3 Mitigation Performance Comparison
As shown in Table 1, we selected LLaVa-V1.5-7B
as the baseline model and evaluated it on POPE
benchmarks. We then tested three mitigation meth-
ods: SoM-LLaVA (Yan et al., 2024), SID (Huo
et al., 2024), and LogicCheckGPT (Wu et al.,
2024a), to assess their effectiveness and efficiency
in mitigating misalignment in the baseline model.
The baseline model was loaded directly from Hug-
ging Face, with parameters in float16 precision
and all other implementation details set to default.
Each mitigation method was implemented strictly
according to its official GitHub repository, without
modifications to core components, except for neces-
sary adjustments such as path configurations. More
detailed analysis regarding the mitigation perfor-
mance please refer to Section G in the Appendix.

5 Conclusions

In this paper, we systematically survey alignment
and misalignment in LVLMs through an explain-
ability lens. We show that achieving proper align-
ment involves complex interactions between data
quality, model architecture, and inference proce-
dures. We categorize misalignment into object,
attribute, and relational levels, providing a clear
framework to understand these challenges and de-
velop targeted solutions. Our review of mitigation
strategies highlights approaches ranging from com-
putationally intensive parameter-tuning methods
to practical parameter-frozen solutions, each with
trade-offs in effectiveness and feasibility. Lastly,
we outline key future directions for building robust
vision-language systems (see Appendix H).
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Limitations

While this paper provides a comprehensive survey
of alignment and misalignment in LVLMs, we ac-
knowledged there are several limitations. Currently,
the scope of this survey is limited to the alignment
between vision and language modalities. However,
real-world applications often require the integra-
tion of multiple modalities, such as audio, video,
or sensor data. We plan to expand the scope to
explore the challenges and alignment techniques
in such complex multi-modal settings, including
investigating alignment mechanisms in architec-
tures that incorporate three or more modalities, de-
veloping new evaluation metrics for multi-modal
alignment, and studying the interactions between
different modalities in integrated systems.

Acknowledgments

Mengnan Du is in part supported by National Sci-
ence Foundation (NSF) Grant #2310261. Lu Cheng
is supported by the National Science Foundation
(NSF) Grant #2312862, NSF CAREER #2440542,
NSF-Simons SkAI Institute, National Institutes of
Health (NIH) #R01AG091762, Google Research
Scholar Award, and a Cisco gift grant.

References
Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie, Hao-

nan Lin, QianYing Wang, Guang Dai, Ping Chen,
and Shijian Lu. 2024. Agla: Mitigating object hal-
lucinations in large vision-language models with as-
sembly of global and local attention. arXiv preprint
arXiv:2406.12718.

Anthropic. 2024. Claude 3.5 sonnet.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023a. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023b. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966.

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He,
Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
2024. Hallucination of multimodal large language
models: A survey. arXiv preprint arXiv:2404.18930.

Hritik Bansal, Yonatan Bitton, Idan Szpektor, Kai-Wei
Chang, and Aditya Grover. 2024. Videocon: Robust
video-language alignment via contrast captions. In

Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13927–
13937.

Assaf Ben-Kish, Moran Yanuka, Morris Alper, Raja
Giryes, and Hadar Averbuch-Elor. 2024. Mitigating
open-vocabulary caption hallucinations. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 22680–22698.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jaeseok Byun, Dohoon Kim, and Taesup Moon. 2024.
Mafa: Managing false negatives for vision-language
pre-training. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 27314–27324.

Sungguk Cha, Jusung Lee, Younghyun Lee, and Che-
oljong Yang. 2024. Visually dehallucinative instruc-
tion generation. In ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5510–5514. IEEE.

Jingwen Chen, Yingwei Pan, Yehao Li, Ting Yao,
Hongyang Chao, and Tao Mei. 2023a. Retrieval
augmented convolutional encoder-decoder networks
for video captioning. ACM Transactions on Multime-
dia Computing, Communications and Applications,
19(1s):1–24.

Junzhe Chen, Tianshu Zhang, Shiyu Huang, Yuwei Niu,
Linfeng Zhang, Lijie Wen, and Xuming Hu. 2024a.
Ict: Image-object cross-level trusted intervention
for mitigating object hallucination in large vision-
language models. arXiv preprint arXiv:2411.15268.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Jun-
yang Lin, Chang Zhou, and Baobao Chang. 2025. An
image is worth 1/2 tokens after layer 2: Plug-and-play
inference acceleration for large vision-language mod-
els. In European Conference on Computer Vision,
pages 19–35. Springer.

Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu
Yao, Bo Li, and Jiawei Zhou. 2024b. Halc: Object
hallucination reduction via adaptive focal-contrast
decoding. arXiv preprint arXiv:2403.00425.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, et al. 2024c. Internvl: Scal-
ing up vision foundation models and aligning for
generic visual-linguistic tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24185–24198.

Zhiyang Chen, Yousong Zhu, Yufei Zhan, Zhaowen
Li, Chaoyang Zhao, Jinqiao Wang, and Ming Tang.
2023b. Mitigating hallucination in visual language
models with visual supervision. arXiv preprint
arXiv:2311.16479.

1721

https://www.anthropic.com/news/claude-3-5-sonnet


Wenliang Dai, Zihan Liu, Ziwei Ji, Dan Su, and Pascale
Fung. 2022. Plausible may not be faithful: Probing
object hallucination in vision-language pre-training.
arXiv preprint arXiv:2210.07688.

Ailin Deng, Zhirui Chen, and Bryan Hooi. 2024. Seeing
is believing: Mitigating hallucination in large vision-
language models via clip-guided decoding. arXiv
preprint arXiv:2402.15300.

Wangyuan Ding and Nanne Van Noord. Imp: Bench-
marking image polysemy in vision-language models.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations (ICLR).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Alessandro Favero, Luca Zancato, Matthew Trager, Sid-
dharth Choudhary, Pramuditha Perera, Alessandro
Achille, Ashwin Swaminathan, and Stefano Soatto.
2024. Multi-modal hallucination control by vi-
sual information grounding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14303–14312.

Mingqian Feng, Yunlong Tang, Zeliang Zhang, and
Chenliang Xu. 2024. Do more details always intro-
duce more hallucinations in lvlm-based image cap-
tioning? arXiv preprint arXiv:2406.12663.

Laura Fieback, Jakob Spiegelberg, and Hanno
Gottschalk. 2024. Metatoken: Detecting halluci-
nation in image descriptions by meta classification.
arXiv preprint arXiv:2405.19186.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, et al. 2023. Mme: A comprehensive
evaluation benchmark for multimodal large language
models. arXiv preprint arXiv:2306.13394.

Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Ku-
mar, Utkarsh Tyagi, Oriol Nieto, Zeyu Jin, and Di-
nesh Manocha. 2024. Visual description grounding
reduces hallucinations and boosts reasoning in lvlms.
arXiv preprint arXiv:2405.15683.

Xuan Gong, Tianshi Ming, Xinpeng Wang, and Zhihua
Wei. 2024. Damro: Dive into the attention mecha-
nism of lvlm to reduce object hallucination. arXiv
preprint arXiv:2410.04514.

Anisha Gunjal, Jihan Yin, and Erhan Bas. 2024. De-
tecting and preventing hallucinations in large vision

language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
18135–18143.

Zongbo Han, Zechen Bai, Haiyang Mei, Qianli Xu,
Changqing Zhang, and Mike Zheng Shou. 2024.
Skip\n: A simple method to reduce hallucination
in large vision-language models. arXiv preprint
arXiv:2402.01345.

Hongyu Hu, Jiyuan Zhang, Minyi Zhao, and Zhenbang
Sun. 2023. Ciem: Contrastive instruction evaluation
method for better instruction tuning. arXiv preprint
arXiv:2309.02301.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang,
Conghui He, Jiaqi Wang, Dahua Lin, Weiming
Zhang, and Nenghai Yu. 2024a. Opera: Alleviating
hallucination in multi-modal large language models
via over-trust penalty and retrospection-allocation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13418–
13427.

Wenke Huang, Jian Liang, Zekun Shi, Didi Zhu,
Guancheng Wan, He Li, Bo Du, Dacheng Tao, and
Mang Ye. 2024b. Learn from downstream and be
yourself in multimodal large language model fine-
tuning. arXiv preprint arXiv:2411.10928.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and
Phillip Isola. 2024. The platonic representation hy-
pothesis. The International Conference on Machine
Learning (ICML).

Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao
Wang, Zhicheng Chen, and Peilin Zhao. 2024. Self-
introspective decoding: Alleviating hallucinations
for large vision-language models. arXiv preprint
arXiv:2408.02032.

Jitesh Jain, Jianwei Yang, and Humphrey Shi. 2024.
Vcoder: Versatile vision encoders for multimodal
large language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 27992–28002.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. 2021. Scaling up visual and
vision-language representation learning with noisy
text supervision. In International conference on ma-
chine learning, pages 4904–4916. PMLR.

Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing
Chen, Wei Ye, Ming Yan, Qinghao Ye, Ji Zhang,
Fei Huang, and Shikun Zhang. 2024. Hallucination
augmented contrastive learning for multimodal large
language model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 27036–27046.

Junho Kim, Hyunjun Kim, Yeonju Kim, and Yong Man
Ro. 2024a. Code: Contrasting self-generated descrip-
tion to combat hallucination in large multi-modal
models. arXiv preprint arXiv:2406.01920.

1722



Junho Kim, Kim Yeonju, and Yong Man Ro. 2024b.
What if...?: Thinking counterfactual keywords helps
to mitigate hallucination in large multi-modal models.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 10672–10689.

Seongyun Lee, Sue Hyun Park, Yongrae Jo, and Min-
joon Seo. 2023. Volcano: mitigating multimodal
hallucination through self-feedback guided revision.
arXiv preprint arXiv:2311.07362.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin
Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
2024. Mitigating object hallucinations in large vision-
language models through visual contrastive decod-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
13872–13882.

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi
Wang, Liang Chen, Yazheng Yang, Benyou Wang,
and Lingpeng Kong. 2023a. Silkie: Preference dis-
tillation for large visual language models. arXiv
preprint arXiv:2312.10665.

Wei Li, Zhen Huang, Houqiang Li, Le Lu, Yang Lu,
Xinmei Tian, Xu Shen, and Jieping Ye. 2024a. Vi-
sual evidence prompting mitigates hallucinations in
multimodal large language models.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo
Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. 2024b. Monkey: Image resolution and
text label are important things for large multi-modal
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
26763–26773.

Zhiyuan Li, Dongnan Liu, Chaoyi Zhang, Heng Wang,
Tengfei Xue, and Weidong Cai. 2024c. Enhancing
advanced visual reasoning ability of large language
models. arXiv preprint arXiv:2409.13980.

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon,
Serena Yeung, and James Y Zou. 2022. Mind the gap:
Understanding the modality gap in multi-modal con-
trastive representation learning. Advances in Neural
Information Processing Systems, 35:17612–17625.

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser
Yacoob, and Lijuan Wang. 2023. Mitigating halluci-
nation in large multi-modal models via robust instruc-
tion tuning. In The Twelfth International Conference
on Learning Representations.

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen,
Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li,
and Wei Peng. 2024a. A survey on hallucination
in large vision-language models. arXiv preprint
arXiv:2402.00253.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. Advances in
neural information processing systems, 36.

Sheng Liu, Haotian Ye, and James Zou. 2024c.
Reducing hallucinations in vision-language mod-
els via latent space steering. arXiv preprint
arXiv:2410.15778.

Shi Liu, Kecheng Zheng, and Wei Chen. Paying more
attention to image: A training-free method for allevi-
ating hallucination in lvlms, 2024. URL https://arxiv.
org/abs/2407.21771.

Yangzhou Liu, Yue Cao, Zhangwei Gao, Weiyun Wang,
Zhe Chen, Wenhai Wang, Hao Tian, Lewei Lu,
Xizhou Zhu, Tong Lu, et al. 2024d. Mminstruct: A
high-quality multi-modal instruction tuning dataset
with extensive diversity. Science China Information
Sciences, 67(12):1–16.

Rao Ma, Lesheng Jin, Qi Liu, Lu Chen, and Kai Yu.
2020. Addressing the polysemy problem in language
modeling with attentional multi-sense embeddings.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 8129–8133. IEEE.

Adyasha Maharana, Amita Kamath, Christopher Clark,
Mohit Bansal, and Aniruddha Kembhavi. 2023. Ex-
posing and addressing cross-task inconsistency in
unified vision-language models. arXiv preprint
arXiv:2303.16133.

Mayug Maniparambil, Raiymbek Akshulakov, Yasser
Abdelaziz Dahou Djilali, Mohamed El Amine Seddik,
Sanath Narayan, Karttikeya Mangalam, and Noel E
O’Connor. 2024. Do vision and language encoders
represent the world similarly? In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14334–14343.

Meta AI. 2024. Llama 3.2: Revolutionizing edge AI
and vision with open, customizable models. Meta AI
Blog. Retrieved December 20, 2024.

Kyungmin Min, Minbeom Kim, Kang-il Lee, Don-
gryeol Lee, and Kyomin Jung. 2024. Mitigat-
ing hallucinations in large vision-language mod-
els via summary-guided decoding. arXiv preprint
arXiv:2410.13321.

Clement Neo, Luke Ong, Philip Torr, Mor Geva, David
Krueger, and Fazl Barez. 2024. Towards interpret-
ing visual information processing in vision-language
models. arXiv preprint arXiv:2410.07149.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan
Nam, Honglak Lee, Andrew Y Ng, et al. 2011. Mul-
timodal deep learning. In ICML, volume 11, pages
689–696.

OpenAI. Chatgpt can now see, hear, and
speak. https://openai.com/index/
chatgpt-can-now-see-hear-and-speak/.
Accessed: September 25, 2023.

1723

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/chatgpt-can-now-see-hear-and-speak/
https://openai.com/index/chatgpt-can-now-see-hear-and-speak/


Yassine Ouali, Adrian Bulat, Brais Martinez, and
Georgios Tzimiropoulos. 2025. Clip-dpo: Vision-
language models as a source of preference for fixing
hallucinations in lvlms. In European Conference on
Computer Vision, pages 395–413. Springer.

Dongmin Park, Zhaofang Qian, Guangxing Han, and
Ser-Nam Lim. 2024. Mitigating dialogue halluci-
nation for large multi-modal models via adversarial
instruction tuning. arXiv preprint arXiv:2403.10492.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex
Alemi, and George Tucker. 2019. On variational
bounds of mutual information. In International
conference on machine learning, pages 5171–5180.
PMLR.

Xiaoye Qu, Qiyuan Chen, Wei Wei, Jishuo Sun, and
Jianfeng Dong. 2024. Alleviating hallucination in
large vision-language models with active retrieval
augmentation. arXiv preprint arXiv:2408.00555.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Rita Ramos, Bruno Martins, and Desmond Elliott.
2023a. Lmcap: Few-shot multilingual image caption-
ing by retrieval augmented language model prompt-
ing. arXiv preprint arXiv:2305.19821.

Rita Ramos, Bruno Martins, Desmond Elliott, and Yova
Kementchedjhieva. 2023b. Smallcap: lightweight
image captioning prompted with retrieval augmenta-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2840–2849.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object
hallucination in image captioning. arXiv preprint
arXiv:1809.02156.

Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sri-
parna Saha, Vinija Jain, and Aman Chadha. 2024. A
comprehensive survey of hallucination in large lan-
guage, image, video and audio foundation models.
arXiv preprint arXiv:2405.09589.

Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Alessan-
dro Nicolosi, and Rita Cucchiara. 2024. Towards
retrieval-augmented architectures for image caption-
ing. ACM Transactions on Multimedia Computing,
Communications and Applications.

Yuying Shang, Xinyi Zeng, Yutao Zhu, Xiao Yang,
Zhengwei Fang, Jingyuan Zhang, Jiawei Chen, Zinan
Liu, and Yu Tian. 2024. From pixels to tokens: Re-
visiting object hallucinations in large vision-language
models. arXiv preprint arXiv:2410.06795.

Pratyusha Sharma, Tamar Rott Shaham, Manel Baradad,
Stephanie Fu, Adrian Rodriguez-Munoz, Shivam
Duggal, Phillip Isola, and Antonio Torralba. 2024. A
vision check-up for language models. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14410–14419.

Zhelun Shi, Zhipin Wang, Hongxing Fan, Zaibin Zhang,
Lijun Li, Yongting Zhang, Zhenfei Yin, Lu Sheng,
Yu Qiao, and Jing Shao. 2024. Assessment of mul-
timodal large language models in alignment with
human values. arXiv preprint arXiv:2403.17830.

Dong Shu, Bingbing Duan, Kai Guo, Kaixiong Zhou,
Jiliang Tang, and Mengnan Du. 2024. Exploring
the alignment landscape: Llms and geometric deep
models in protein representation. arXiv preprint
arXiv:2411.05316.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,
Chunyuan Li, Yikang Shen, Chuang Gan, Liang-
Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. 2023.
Aligning large multimodal models with factually aug-
mented rlhf. arXiv preprint arXiv:2309.14525.

Jingqun Tang, Chunhui Lin, Zhen Zhao, Shu Wei,
Binghong Wu, Qi Liu, Hao Feng, Yang Li, Siqi
Wang, Lei Liao, et al. 2024. Textsquare: Scaling up
text-centric visual instruction tuning. arXiv preprint
arXiv:2404.12803.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Naftali Tishby and Noga Zaslavsky. 2015. Deep learn-
ing and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pages 1–5.
Ieee.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Chenglong Wang, Yang Gan, Yifu Huo, Yongyu
Mu, Murun Yang, Qiaozhi He, Tong Xiao, Chun-
liang Zhang, Tongran Liu, Quan Du, et al. 2024a.
Rovrm: A robust visual reward model optimized
via auxiliary textual preference data. arXiv preprint
arXiv:2408.12109.

Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong
Tian, Haoming Xu, Shumin Deng, and Huajun Chen.

1724



2024b. Mllm can see? dynamic correction de-
coding for hallucination mitigation. arXiv preprint
arXiv:2410.11779.

Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng
Shi, Chenlin Zhao, Haiyang Xu, Qinghao Ye, Ming
Yan, Ji Zhang, Jihua Zhu, et al. 2023. Evaluation
and analysis of hallucination in large vision-language
models. arXiv preprint arXiv:2308.15126.

Lei Wang, Jiabang He, Shenshen Li, Ning Liu, and
Ee-Peng Lim. 2024c. Mitigating fine-grained hallu-
cination by fine-tuning large vision-language models
with caption rewrites. In International Conference
on Multimedia Modeling, pages 32–45. Springer.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024d. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Xintong Wang, Jingheng Pan, Liang Ding, and Chris
Biemann. 2024e. Mitigating hallucinations in large
vision-language models with instruction contrastive
decoding. arXiv preprint arXiv:2403.18715.

Sangmin Woo, Jaehyuk Jang, Donguk Kim, Yubin Choi,
and Changick Kim. 2024a. Ritual: Random image
transformations as a universal anti-hallucination lever
in lvlms. arXiv preprint arXiv:2405.17821.

Sangmin Woo, Donguk Kim, Jaehyuk Jang, Yubin
Choi, and Changick Kim. 2024b. Don’t miss the
forest for the trees: Attentional vision calibration
for large vision language models. arXiv preprint
arXiv:2405.17820.

Junfei Wu, Qiang Liu, Ding Wang, Jinghao Zhang, Shu
Wu, Liang Wang, and Tieniu Tan. 2024a. Logi-
cal closed loop: Uncovering object hallucinations
in large vision-language models. arXiv preprint
arXiv:2402.11622.

Mingrui Wu, Jiayi Ji, Oucheng Huang, Jiale Li, Yuhang
Wu, Xiaoshuai Sun, and Rongrong Ji. 2024b. Eval-
uating and analyzing relationship hallucinations
in large vision-language models. arXiv preprint
arXiv:2406.16449.

Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao
Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma,
Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu,
Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi
Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You,
Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao,
Yisong Wang, and Chong Ruan. 2024c. Deepseek-
vl2: Mixture-of-experts vision-language models
for advanced multimodal understanding. Preprint,
arXiv:2412.10302.

Wenyi Xiao, Ziwei Huang, Leilei Gan, Wanggui He,
Haoyuan Li, Zhelun Yu, Hao Jiang, Fei Wu, and Lin-
chao Zhu. 2024. Detecting and mitigating hallucina-
tion in large vision language models via fine-grained
ai feedback. arXiv preprint arXiv:2404.14233.

Yuxi Xie, Guanzhen Li, Xiao Xu, and Min-Yen Kan.
2024. V-dpo: Mitigating hallucination in large vision
language models via vision-guided direct preference
optimization. arXiv preprint arXiv:2411.02712.

Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao,
Shuo Liu, Meng Lei, Fanqing Meng, Siyuan Huang,
Yu Qiao, and Ping Luo. 2024. Lvlm-ehub: A com-
prehensive evaluation benchmark for large vision-
language models. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

An Yan, Zhengyuan Yang, Junda Wu, Wanrong Zhu,
Jianwei Yang, Linjie Li, Kevin Lin, Jianfeng Wang,
Julian McAuley, Jianfeng Gao, et al. 2024. List
items one by one: A new data source and learn-
ing paradigm for multimodal llms. arXiv preprint
arXiv:2404.16375.

Dingchen Yang, Bowen Cao, Guang Chen, and
Changjun Jiang. 2024a. Pensieve: Retrospect-
then-compare mitigates visual hallucination. arXiv
preprint arXiv:2403.14401.

Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath
Chanda, Liqun Chen, Belinda Zeng, Trishul Chilimbi,
and Junzhou Huang. 2022. Vision-language pre-
training with triple contrastive learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 15671–15680.

Lingxiao Yang, Ru-Yuan Zhang, Yanchen Wang, and
Xiaohua Xie. 2024b. Mma: Multi-modal adapter
for vision-language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 23826–23837.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao
Wang, Dianbo Sui, Yunhang Shen, Ke Li, Xing Sun,
and Enhong Chen. 2023. Woodpecker: Hallucina-
tion correction for multimodal large language models.
arXiv preprint arXiv:2310.16045.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu
Chang, and Yinfei Yang. 2023. Ferret: Refer and
ground anything anywhere at any granularity. arXiv
preprint arXiv:2310.07704.

Chung-En (Johnny) Yu, Brian Jalaian, and Nathaniel D.
Bastian. 2024a. Mitigating large vision-language
model hallucination at post-hoc via multi-agent sys-
tem. Proceedings of the AAAI Symposium Series,
4(1):110–113.

Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wen-
tao Ye, Bosheng Qin, Siliang Tang, Qi Tian, and
Yueting Zhuang. 2024b. Hallucidoctor: Mitigating
hallucinatory toxicity in visual instruction data. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12944–
12953.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao
Zheng, Maosong Sun, et al. 2024c. Rlhf-v: Towards

1725

https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://doi.org/10.1609/aaaiss.v4i1.31780
https://doi.org/10.1609/aaaiss.v4i1.31780
https://doi.org/10.1609/aaaiss.v4i1.31780


trustworthy mllms via behavior alignment from fine-
grained correctional human feedback. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13807–13816.

Zihao Yue, Liang Zhang, and Qin Jin. 2024. Less
is more: Mitigating multimodal hallucination from
an eos decision perspective. arXiv preprint
arXiv:2402.14545.

Bohan Zhai, Shijia Yang, Xiangchen Zhao, Chenfeng
Xu, Sheng Shen, Dongdi Zhao, Kurt Keutzer, Man-
ling Li, Tan Yan, and Xiangjun Fan. 2023. Halle-
switch: Rethinking and controlling object existence
hallucinations in large vision language models for
detailed caption. arXiv preprint arXiv:2310.01779.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong,
Yifei Zhou, Alane Suhr, Saining Xie, Yann LeCun,
Yi Ma, et al. 2024. Fine-tuning large vision-language
models as decision-making agents via reinforcement
learning. Advances in Neural Information Processing
Systems, 37:110935–110971.

Jinrui Zhang, Teng Wang, Haigang Zhang, Ping Lu,
and Feng Zheng. 2025. Reflective instruction tuning:
Mitigating hallucinations in large vision-language
models. In European Conference on Computer Vi-
sion, pages 196–213. Springer.

Yanan Zhang, Jiangmeng Li, Lixiang Liu, and Wenwen
Qiang. 2024. Rethinking misalignment in vision-
language model adaptation from a causal perspective.
arXiv preprint arXiv:2410.12816.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2024a. Explainability for
large language models: A survey. ACM Transactions
on Intelligent Systems and Technology, 15(2):1–38.

Haiyan Zhao, Fan Yang, Himabindu Lakkaraju, and
Mengnan Du. 2024b. Towards uncovering how large
language model works: An explainability perspective.
arXiv e-prints, pages arXiv–2402.

Haiyan Zhao, Heng Zhao, Bo Shen, Ali Payani, Fan
Yang, and Mengnan Du. 2024c. Beyond single
concept vector: Modeling concept subspace in
llms with gaussian distribution. arXiv preprint
arXiv:2410.00153.

Lingjun Zhao, Mingyang Xie, Paola Cascante-Bonilla,
Hal Daumé III, and Kwonjoon Lee. 2025. Can hal-
lucination correction improve video-language align-
ment? arXiv preprint arXiv:2502.15079.

Linxi Zhao, Yihe Deng, Weitong Zhang, and Quanquan
Gu. 2024d. Mitigating object hallucination in large
vision-language models via classifier-free guidance.
arXiv preprint arXiv:2402.08680.

Tianyi Zhao, Liangliang Zhang, Yao Ma, and Lu Cheng.
2024e. A survey on safe multi-modal learning sys-
tems. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 6655–6665.

Yongqiang Zhao, Zhenyu Li, Zhi Jin, Feng Zhang,
Haiyan Zhao, Chengfeng Dou, Zhengwei Tao, Xinhai
Xu, and Donghong Liu. 2023a. Enhancing the spatial
awareness capability of multi-modal large language
model. arXiv preprint arXiv:2310.20357.

Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong,
Jiaqi Wang, and Conghui He. 2023b. Beyond hal-
lucinations: Enhancing lvlms through hallucination-
aware direct preference optimization. arXiv preprint
arXiv:2311.16839.

Weihong Zhong, Xiaocheng Feng, Liang Zhao, Qiming
Li, Lei Huang, Yuxuan Gu, Weitao Ma, Yuan Xu,
and Bing Qin. 2024. Investigating and mitigating the
multimodal hallucination snowballing in large vision-
language models. arXiv preprint arXiv:2407.00569.

Da-Wei Zhou, Yuanhan Zhang, Jingyi Ning, Han-Jia
Ye, De-Chuan Zhan, and Ziwei Liu. 2023a. Learning
without forgetting for vision-language models. arXiv
preprint arXiv:2305.19270.

Yiyang Zhou, Chenhang Cui, Rafael Rafailov, Chelsea
Finn, and Huaxiu Yao. 2024. Aligning modalities
in vision large language models via preference fine-
tuning. arXiv preprint arXiv:2402.11411.

Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun
Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and
Huaxiu Yao. 2023b. Analyzing and mitigating object
hallucination in large vision-language models. arXiv
preprint arXiv:2310.00754.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping
Ye, and Jun Liu. 2024a. Ibd: Alleviating halluci-
nations in large vision-language models via image-
biased decoding. arXiv preprint arXiv:2402.18476.

Tinghui Zhu, Qin Liu, Fei Wang, Zhengzhong Tu, and
Muhao Chen. 2024b. Unraveling cross-modality
knowledge conflicts in large vision-language models.
arXiv preprint arXiv:2410.03659.

1726



A Overview of LVLM Architectures

Table 1 summarizes the architectural components
of six prominent LVLMs discussed throughout this
survey paper on model alignment and misalign-
ment. The comparison reveals common patterns in
LVLM design: transformer-based vision encoders
(predominantly ViT variants), adapter modules of
varying complexity to connect vision and language
components, and state-of-the-art language models.

A.1 How is Alignment Achieved?
The development of alignment in LVLMs pro-
gresses through three major stages (see Figure 3),
each is built upon its predecessor to achieve increas-
ingly sophisticated cross-modal integration. Addi-
tionally, we present prominent real-world LVLM
architectures in Appendix A.

Stage 1: Training Visual Encoders. The founda-
tion of LVLM alignment begins with training visual
encoders through contrastive learning, exemplified
by models like CLIP (Radford et al., 2021). In
this stage, the model learns to align visual and tex-
tual representations in a shared embedding space
through a contrastive loss function. The process
involves training on large-scale image-text pairs
where matching pairs are pulled together in the
embedding space while non-matching pairs are
pushed apart. This leads to the development of
robust visual representations that can meaningfully
correspond to textual descriptions. Through this
process, a visual encoder is created that can extract
semantically meaningful features from images in
a way that naturally aligns with language. This
initial stage is crucial as it establishes the basic ca-
pability for cross-modal understanding, though the
alignment is still relatively coarse-grained.

Stage 2: Adapter Fine-tuning. The second stage
involves fine-tuning an adapter module that bridges
the pre-trained visual encoder with the language
model (Yang et al., 2024b). This stage introduces
lightweight adapter architectures, which typically
consist of simple components such as linear lay-
ers, MLPs, or cross-attention layers that learn to
translate between visual and language model em-
bedding spaces. For example, cross-attention lay-
ers can feed image encoder representations into the
language model, enabling the model to attend to
relevant visual features when generating text (Meta
AI, 2024). A key characteristic of this approach
is the preservation of the original capabilities of
both the visual encoder and language model while

learning to interface between them. During adapter
training, while the visual encoder parameters may
be updated, the language model parameters often
remain frozen to maintain their original text ca-
pabilities. This intermediate stage is essential for
establishing effective connections between modali-
ties while preserving the specialized capabilities of
each component.

Stage 3: End-to-End Fine-tuning. The final stage
involves comprehensive fine-tuning of the entire
system, including the visual encoder, adapter, and
LLM components together (Zhai et al., 2024). This
comprehensive approach allows for deeper integra-
tion and more sophisticated alignment between all
components. It enables the model to learn task-
specific optimizations that require coordinated ad-
justments across all modules. Through this process,
the model develops more advanced cross-modal
understanding capabilities and facilitates the emer-
gence of emergent behaviors that arise from the
deep integration of visual and textual processing.
This stage results in the highest performance but
requires careful balancing to avoid catastrophic for-
getting or degradation of pre-existing capabilities.

B Representation Misalignment

At the representation level, alignment refers to
how closely visual representations v ∈ V and tex-
tual representations t ∈ T are mapped within the
shared embedding space E of an LVLM. Repre-
sentation misalignment occurs when semantically
corresponding visual and textual representations
occupy distant regions in this space, resulting in
low similarity. This misalignment can have signif-
icant downstream consequences. For example, if
the embedding of an image containing an apple
lies far from the embedding of the word "apple"
and is instead closer to the embedding of "dog",
the model may incorrectly interpret the image as
depicting a dog. Such misalignment at the repre-
sentation level undermines the model’s ability to
ground visual input in the correct textual context.
In this paper, we argue that representation misalign-
ment fundamentally determines the upper ceiling
of an LVLM’s performance, regardless of the qual-
ity of its language modeling or vision encoder in
isolation.

C How to Measure Alignment?

This section examines approaches for quantifying
the effectiveness of alignment in LVLMs. These
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Figure 3: Overview of the three-stage LVLM training process, showing the progression from contrastive learning of
visual-text encoders, through adapter fine-tuning with frozen components, to end-to-end model training.

Table 2: Comparison of Vision-Language Models

Vision Encoder Adapter LLM
Qwen-VL (Bai et al., 2023b) Vision Transformer (ViT) Single cross-attention layer Qwen
Qwen2-VL (Wang et al., 2024d) ViT MLP layer Qwen2
MiniGPT-4 (Zhu et al., 2023) ViT-G/14 Single linear projection layer Vicuna
Llama 3.2-Vision (Meta AI, 2024) Modified ViT (16×16 patches) Multiple cross-attention layers Llama 3.1 text-only model
LLAVA-1.5 (Liu et al., 2024b) CLIP-ViT-L-336px MLP projection layer Vicuna v1.5
DeepSeek-VL2 (Wu et al., 2024c) SigLIP-SO400M-384 Two-layer MLP DeepSeekMoE

measurement approaches naturally align with our
earlier definition in Section 2.1 of representation
alignment and behavioral alignment, and can be
organized along these two fundamental levels.

Representation Level. At the representation level,
alignment can be directly measured between vi-
sual and textual representations within the LVLM’s
embedding space by assessing how similarly the
visual and textual modalities encode and relate to
the same concepts or data points. The simplest ap-
proach is to compute the cosine similarity between
the embeddings of visual and textual data. High
alignment corresponds to scores close to 1, while
low alignment corresponds to scores closer to 0
(Shu et al., 2024). More sophisticated metrics have
been developed to assess alignment between the
two representation spaces. For instance, the mu-
tual nearest-neighbor metric quantifies alignment
by evaluating the consistency of nearest neighbors
across modalities (Huh et al., 2024). Another ap-
proach is kernel alignment, which evaluates the
similarity of pairwise relationships within each
modality’s embedding space, providing a holis-
tic view of the alignment structure (Maniparambil
et al., 2024).

Behavioral Level. The behavioral level measures
alignment through the model’s performance on var-
ious downstream tasks and benchmarks, using both

direct comparisons and automated evaluation sys-
tems. The strength of alignment directly impacts
the LVLM’s performance, as better alignment typi-
cally leads to improved task outcomes. These mea-
surements generally involve comparing the model’s
outputs against ground truth labels, either through
direct comparison or using evaluation models to
simulate human judgment. Numerous benchmarks
have been developed to assess LVLM alignment
across a range of tasks, from coarse-grained evalua-
tions (e.g., object existence) to fine-grained assess-
ments (e.g., color, count, spatial relations). Exam-
ples of such benchmarks include POPE (Li et al.,
2023b), CHAIR (Rohrbach et al., 2018), MME (Fu
et al., 2023), MMHal-Bench (Sun et al., 2023), and
LLaVa-Bench (Liu et al., 2024b). In addition to tra-
ditional benchmarks, advanced evaluation models
like GAVIE (Liu et al., 2023), CCEval (Zhai et al.,
2023) and HaELM (Wang et al., 2023) provide so-
phisticated assessments by considering context and
evaluating responses comprehensively, similar to
human evaluators. The flexibility and diversity of
evaluation models enable thorough measurement
capabilities needed for open-ended questions.

In Table 3, we compare several existing bench-
marks. While most of these benchmarks focus on
evaluating misalignment, some also assess reason-
ing capabilities, such as whether the LVLM can
reason based on image information or whether the
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LVLM fully follow user input instructions. Future
benchmarks should also adopt this comprehensive
approach, evaluating not only misalignment but
also whether mitigating misalignment impacts the
LVLM’s reasoning ability, as our goal is to develop
LVLMs with minimal misalignment while preserv-
ing their reasoning capabilities.

D Formal Theoretical Perspective

From a theoretical standpoint, visual and textual
modalities can be modeled as distinct projections
of a shared latent semantic space (Ngiam et al.,
2011). Let Z ∈ Z denote the latent variable repre-
senting the underlying world state or concept being
observed. Images xv ∈ Xv and text xt ∈ Xt are
generated via distinct, conditionally independent
observation channels:

xv ∼ pv(x | Z), xt ∼ pt(x | Z). (1)

We assume visual and textual data are conditionally
independent given the latent semantics:

p(xv, xt | Z) = pv(xv | Z) · pt(xt | Z). (2)

This assumption reflects the intuitive idea that both
images and texts encode complementary but over-
lapping information about the same underlying con-
cept, such as an object, attribute, or relational.

Let fv : Xv → Rd and ft : Xt → Rd denote the
learned encoders (e.g., a vision encoder and a LLM)
that map raw inputs to d-dimensional embeddings.
If both fv(xv) and ft(xt) preserve all the relevant
information about the latent variable Z, they are
said to be sufficient statistics for Z:

I(Z; fv(xv)) = I(Z;xv) (3)

I(Z; ft(xt)) = I(Z;xt), (4)

where symbol I(A;B) denotes mutual information
between variables A and B. This implies that no
semantic information about Z is lost in the rep-
resentation process (Tishby and Zaslavsky, 2015;
Poole et al., 2019). Consequently, the learned repre-
sentations fv(xv) and ft(xt) should be functionally
equivalent in terms of semantic content, as they re-
flect the same underlying meaning. This sets the
foundation for representational alignment.

E More Reasons for Misalignment

Beyond the dataset-level issues discussed in Sec-
tion 3.2.1, we present additional dataset-related
challenges that may contribute to the misalignment
of LVLMs.

• Data Imbalance: When certain classes or types
of data are disproportionately represented, it
skews the model’s training process (Liu et al.,
2023; Hu et al., 2023). For example, visual
question-answering datasets often overrepresent
positive answers, subtly training the model to
favor these outcomes while underperforming on
underrepresented negative answers.

• Data Inconsistency: Inconsistencies exacerbate
misalignment by introducing contradictory out-
puts across different tasks for the same image.
For instance, an image captioning task might de-
scribe an image as depicting ‘a tiger eating a
chicken,’ yet in a visual question-answering task
for the same image, the answer to ‘what is the
tiger eating?’ might label the prey as ‘a duck’
(Maharana et al., 2023). Such contradictions dis-
rupt the model’s ability to generate coherent and
consistent outputs across tasks.

• Data False Negative: False negatives in the
dataset further complicate alignment, as nega-
tive image-text pairs, though not perfectly match-
ing, share overlapping components (Liang et al.,
2022; Byun et al., 2024). During training, embed-
dings of positive pairs are drawn closer together,
while those of negative pairs are pushed apart.
This binary method can suppress latent similari-
ties within false negatives, reducing the model’s
capacity to effectively align diverse modalities.

• Data Polysemy: The inherent polysemy within
datasets introduces additional complexity. Poly-
semy enriches data diversity by allowing a sin-
gle word or image to convey multiple meanings
depending on context, but this ambiguity also
amplifies the risk of misalignment (Ma et al.,
2020; Ding and Van Noord). For example, an
image caption of ‘the bat hit the ball’ could refer
to the animal or the baseball bat. This variabil-
ity challenges the model to establish consistent
mappings between modalities.

F Examples of LVLM Descriptions

In this section, we present examples from four
leading LVLMs and illustrate their generated de-
scriptions for given images. We have selected
one closed-source model, ChatGPT-4o, accessed
through its official website https://chatgpt.
com/, and three open-source models, Qwen2-VL-
72B-Instruct, DeepSeek-VL2, and LLaVa-1.5-13B-
hf, loaded directly from Hugging Face. All imple-
mentation settings, including parameters such as
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Table 3: Comparison of Misalignment Benchmark across Different Evaluation Dimensions. The evaluation
dimensions are categorized into two main aspects: (1) Evaluating misalignment, which examines object, attribute,
and relational misalignments in model outputs; and (2) Evaluating reasoning, which assesses models’ cognitive
reasoning abilities and instruction following capabilities. The rightmost column indicates whether the benchmark
uses traditional evaluation methods or third-model evaluation approaches.

Evaluating Misalignment Evaluating Reasoning
Object

Misalignment
Attribute

Misalignment
Relational

Misalignment
Cognition
Reasoning

Instruction
Following

Traditional/
Third-model

POPE (Li et al., 2023b) ✓ ✗ ✗ ✗ ✗ Traditional
CHAIR (Rohrbach et al., 2018) ✓ ✗ ✗ ✗ ✗ Traditional
MME (Fu et al., 2023) ✓ ✓ ✓ ✓ ✗ Traditional
MMHal-Bench (Sun et al., 2023) ✓ ✓ ✓ ✓ ✗ Traditional
LLaVa-Bench (Liu et al., 2024b) ✓ ✓ ✓ ✗ ✗ Traditional
LVLM-eHub (Xu et al., 2024) ✓ ✓ ✗ ✓ ✗ Traditional
GAVIE (Liu et al., 2023) ✓ ✓ ✓ ✗ ✓ Third-model
CCEval (Zhai et al., 2023) ✓ ✗ ✗ ✗ ✗ Third-model
HaELM (Wang et al., 2023) ✓ ✓ ✓ ✗ ✗ Third-model

temperature, were kept at their default values to en-
sure consistency. The experiments were conducted
using an A100 PCIE 80GB GPU. To enhance com-
putational efficiency and performance, the models
were loaded in float16 precision. During the eval-
uation phase, each model was provided with an
image along with the following prompt: ‘Describe
this image in detail. Include specific objects, their
attributes, and relationships.’ The input images and
the corresponding descriptions generated by each
model are presented in Figure 4, 5, and 6.

G Detailed Analysis of Mitigation
Methods Comparison

As shown in Table 1, we evaluated model perfor-
mance using Accuracy, Precision, Recall, and F1-
score, with the highest values underlined in the
table. The results indicate that mitigation methods
generally improve performance across most met-
rics compared to the baseline, particularly SoM-
LLaVA and LogicCheckGPT, which achieved five
and six highest scores, respectively. However, a
deeper analysis reveals that some methods nega-
tively impacted certain metrics. For instance, while
LogicCheckGPT achieved the highest Precision on
all benchmarks, it exhibited relatively lower Recall
and F1 scores, sometimes even worse than the base-
line. This occurs because LogicCheckGPT is con-
servative in predicting positives, meaning it only
classifies a sample as positive when it is highly con-
fident, resulting in fewer false positives but more
false negatives. Interestingly, SoM-LLaVA consis-
tently achieved the highest Recall across all bench-
marks, indicating that it is less strict in determining
positive cases compared to LogicCheckGPT. This
highlights how different mitigation strategies lead
to different prediction behaviors, emphasizing the

need for future works to report performance across
multiple metrics rather than focusing solely on a
single high-performing metric.

Beyond performance, we also evaluated the com-
putational cost of each mitigation method in sec-
onds per input. While SoM-LLaVA and SID had
only a minor increase in inference time compared
to the baseline, LogicCheckGPT required signifi-
cantly more time. This is because LogicCheckGPT
relies on an external third model, such as GPT-
3.5, to assess logical consistency and mitigate ob-
ject misalignment, making its computational cost
highly dependent on the third model’s complexity.
This trade-off between performance and computa-
tional efficiency is critical, as high computational
time may hinder real-world deployment of miti-
gation techniques. Future research should aim to
balance effectiveness with efficiency to ensure prac-
tical usability.

H Future Research Directions

In this section, we discuss several important di-
rections for future research in understanding and
improving alignment in LVLMs.

H.1 Standardized Benchmarks

The current evaluation of misalignment in LVLMs
suffers from a critical limitation, i.e., the lack of
standardized, comprehensive benchmarks that can
systematically assess different types of misalign-
ment across models. While existing benchmarks
have made important contributions, they typically
focus on specific aspects of misalignment in iso-
lation. For instance, POPE (Li et al., 2023b) pri-
marily evaluates object hallucination, while other
benchmarks concentrate on particular relationship
errors or attribute inconsistencies. What is ur-
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gently needed is a unified evaluation framework
that can systematically assess misalignment across
all semantic levels, from object-level (e.g., describ-
ing a non-existent dog in an image) to attribute-
level (e.g., color, size, texture errors) and relation-
level misalignment (e.g., spatial relationship er-
rors). Such a comprehensive benchmark would en-
able direct comparisons between different LVLM
architectures and alignment techniques using stan-
dardized metrics, evaluate both representational
alignment and behavioral alignment, and assess
how misalignment manifests across different types
of tasks. The benchmark should also consider both
the frequency and severity of different types of mis-
alignment, rather than treating all misalignments as
equally problematic. The development of such stan-
dardized benchmarks would represent a significant
step forward in our understanding of misalignment
in LVLMs and accelerate progress toward more
reliable and trustworthy vision-language systems.

H.2 Explainability based Diagnose
To better understand and address alignment issues
in LVLMs, future research should leverage ad-
vanced explainability techniques that can reveal the
internal mechanisms of these models. There are
two critical categories of explainability approaches
that warrant investigation: (1) internal knowledge
decoding and (2) attribution methods.

The first category of explainability approaches
centers on internal knowledge decoding and un-
derstanding how information is processed within
LVLMs (Zhao et al., 2024b,a). Mechanistic inter-
pretability approaches could help identify specific
components and circuits within LVLMs that are
responsible for cross-modal alignment, providing
insights into how visual and language represen-
tations are integrated and processed. Similarly,
probing techniques can analyze the emergence and
evolution of aligned representations across differ-
ent layers and attention heads, helping researchers
understand where and how misalignment occurs
within the model architecture (Zhao et al., 2024c).
This detailed understanding of the internal working
mechanisms would not only advance theoretical
knowledge but also guide the development of more
effective alignment techniques.

The second critical category focuses on attribu-
tion methods that can determine the relative in-
fluence of different information sources on model
outputs. LVLMs have three primary information
sources for generating outputs: user text prompts,

input images, and knowledge stored within pre-
trained LLMs. Future research needs to develop
sophisticated attribution algorithms that can deter-
mine whether a model’s output primarily depends
on the input text prompt, derives from the visual
information in the image, or relies on the LLM’s in-
ternal knowledge. This detailed attribution analysis
would help identify when and why misalignment
occurs, such as cases where the model inappropri-
ately relies on LLM knowledge rather than visual
evidence, or when it fails to properly integrate infor-
mation from multiple sources. Such insights would
be useful for designing targeted mitigation strate-
gies that address specific types of misalignment
and improve the overall reliability of LVLMs.

H.3 Architectural Innovations

Current LVLM architectures face fundamental chal-
lenges, including significant ability gaps between
visual encoders and LLMs, persistent attention im-
balances between modalities, and knowledge con-
flicts between visual and textual representations.
While most existing solutions focus on improv-
ing training procedures or adding post-processing
steps, future research should focus on architec-
tural innovations that address these structural lim-
itations. This could include developing novel in-
tegration mechanisms that better balance the ca-
pabilities of visual and language components, and
dynamic architectures that can adaptively adjust
their attention mechanisms to maintain equilibrium
between modalities. The field would benefit from
multi-stage processing architectures that explicitly
manage knowledge conflicts through specialized
components for different levels of semantic un-
derstanding. Additionally, new transformer archi-
tectures specifically designed for vision-language
tasks, rather than adapted from unimodal architec-
tures, could help bridge the ability gap between
visual and textual processing.

H.4 Real-world Implications

While LVLM misalignment mitigation strategies
have achieved impressive improvements, most of
these improvements are primarily validated on pre-
defined benchmarks, with limited translation to
real-world applications such as autonomous driv-
ing, medical imaging, or vision-focused assistive
AI. However, different types of misalignment can
have serious consequences in these domains. For
instance, in autonomous driving, object or rela-
tional misalignment may cause the system to over-
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look pedestrians or misinterpret traffic scenarios,
leading to safety-critical failures. In medical imag-
ing, attribute misalignment could result in misdiag-
nosis by inaccurately describing clinical indicators.
In assistive AI, especially for visually impaired
users, relational or object misalignment may lead
to incorrect environmental descriptions, potentially
putting users at risk. These high-stakes scenarios
underscore the urgent need to bridge the gap be-
tween benchmark-driven progress and deployment-
focused validation. It is essential that future work
moves beyond controlled datasets and begins test-
ing and adapting misalignment mitigation meth-
ods in real-world settings to ensure their reliability,
safety, and practical utility.
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ChatGPT-4o:
The image showcases a beautifully designed 
open-concept living room and kitchen area with a 
modern farmhouse aesthetic… Two dark brown 
leather armchairs with tufted backrests and 
wooden armrests face the sofa, each featuring a 
decorative pillow…. A dark wooden square coffee 
table sits in the center of the seating arrangement, 
holding a black bowl with decorative white stones, 
a potted green plant, a stack of books, and a 
sculptural decorative object.
The ceiling features exposed dark wooden beams 
that contrast with the white ceiling, adding a rustic 
touch to the space. Black recessed ceiling lights 
are evenly distributed across the ceiling, providing 
soft illumination... A large island with a wooden top 
and black barstools sits at the center of the 
kitchen, complementing the overall color scheme…
Decorative elements throughout the space include 
artwork on the walls, such as a framed black and 
white photo, a vibrant red abstract piece, and a 
landscape painting...

Qwen2-VL:
This image depicts a modern, open-concept living space 
with a combination of rustic and contemporary design 
elements… Lighting: There are several recessed lights 
installed in the ceiling, providing ample illumination… 
Sofa: A large, gray sectional sofa is positioned against the 
wall… Armchairs:… They have tufted backs and are
accompanied by small side tables. Coffee Table:... It has a 
few decorative items on top, including a book, a small 
bowl, and a vase with greenery… Kitchen Area: A white
kitchen island with a marble countertop is visible. It has 
bar stools tucked under it. Appliances: Stainless steel 
appliances, including a refrigerator and oven, are 
integrated into the kitchen design… Front Door: A wooden 
front door with glass panels is visible...

DeepSeek-VL2:
This image depicts a well-designed living room with a 
modern rustic and cozy interior. The room features a
large, dark wooden beams on the ceiling... The room has 
a large gray sofa with multiple cushions… and a wooden 
side tables. The room also has a staircase…, and a 
kitchen area with marble countertops and a large potted 
plants. The room has a door with glass panels.

LLaVa-1.5:
The image depicts a spacious and well-furnished living 
room with a wooden floor. The room features a couch 
situated on the left side, a chair on the right side, and a 
dining table in the center… There are several books 
scattered around the room, with some on the dining table
and others on the floor. A vase can be seen on the dining 
table, and a remote control is placed nearby. A clock is 
mounted on the wall, and a bowl is located on the floor.
The living room is connected to a kitchen area, which 
includes a sink and an oven. A staircase can be seen in 
the background, leading to another floor of the house.

Object Misalignment Attribute Misalignment Relational Misalignment

Figure 4: This figure presents examples of descriptions generated by different LVLMs when given the image shown
in the upper left corner. The highlighted text segments in the descriptions represent different types of misalignment.
Specifically, red highlights indicate object misalignment. Yellow highlights represent attribute misalignment. Blue
highlights denote relational misalignment.
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ChatGPT-4o:
The image captures a lively and bustling scene of 
Times Square in New York City, filled with bright 
lights, advertisements, and the energy of city life. 
The street is busy with the iconic yellow taxis 
driving along clearly marked lanes, accompanied 
by a few white cars adding to the traffic. A central
divider with short bollards helps organize the flow 
of vehicles, and pedestrian crossings and 
directional signs are visible on the asphalt, 
ensuring movement is orderly.
Surrounding the street, towering buildings are 
adorned with large electronic billboards 
showcasing advertisements for famous brands, 
Broadway shows, and various products... Notable 
advertisements, such as those from Disney and 
other prominent entertainment companies, add to 
the commercial appeal of the scene. One of the 
tallest buildings prominently displays a clock and a 
digital screen showing promotional content, making 
it a distinctive feature in the skyline.

Qwen2-VL:
This image depicts a vibrant and bustling scene from 
Times Square in New York City. Buildings and 
Advertisements:… Notable signs include those for "Coca-
Cola," "Disney," and "ABC News.“… Traffic and 
Vehicles:… There are also a few other cars and possibly a 
bus or two visible in the background. The road has 
multiple lanes, and there are crosswalks marked on the 
pavement. Pedestrians: The sidewalks are crowded with 
people walking and standing. Some pedestrians appear to 
be tourists, as indicated by their casual attire and the fact 
that they are taking photos or looking around. Street 
Elements: There are several potted plants lining the 
sidewalk…

DeepSeek-VL2: 
This image depicts a bustling urban scene, likely in a 
major city. The image is filled with vibrant colors and a 
busy street lined with tall buildings. The buildings are 
adorned with numerous large, brightly lit billboards and 
advertisements. The advertisements for various products, 
movies, and brands. The street is filled with yellow taxis, 
cars, and pedestrians. The street is marked with white 
lines and has a "NO"NO" sign…

LLaVa-1.5:
The image depicts a busy city street filled with traffic, 
including several cars and taxis. There are multiple cars 
driving down the street, with some positioned closer to the 
foreground and others further away. Two taxis are also 
visible, with one near the center of the scene and another 
towards the right side. Numerous pedestrians can be 
seen walking along the sidewalks, with some closer to the 
foreground and others further back. The street is bustling 
with activity, and the presence of tall buildings in the 
background adds to the urban atmosphere.

Object Misalignment Attribute Misalignment Relational Misalignment

Figure 5: This figure presents examples of descriptions generated by different LVLMs when given the image shown
in the upper left corner. The highlighted text segments in the descriptions represent different types of misalignment.
Specifically, red highlights indicate object misalignment. Yellow highlights represent attribute misalignment. Blue
highlights denote relational misalignment.
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ChatGPT-4o:
The image shows a busy classroom filled with 
students engaging in various creative activities… 
The chairs are mostly pink, with a few beige ones 
mixed in, and they are positioned haphazardly 
around the tables… To the right, another student 
with blonde hair and a black hoodie is seated, 
concentrating on a piece of paper with art supplies 
spread out in front of them. Several black pencil 
cases are visible on the tables, along with scissors, 
glue, and other art tools. In the middle of the 
image, a group of students is gathered around a 
table… Towards the back of the room, a 
whiteboard covered with colorful posters, drawings, 
and notes serves as a focal point... An American 
flag is displayed in the upper right corner... On the 
far left, a student wearing a black shirt stands near 
a ladder, possibly looking for something or 
observing their classmates. Another student in a 
pink sweater is seated at a desk, seemingly 
immersed in their task. In the foreground, bottles of 
hand sanitizer and cleaning supplies are placed on 
a table, suggesting an emphasis on hygiene and 
cleanliness within the classroom. 

Qwen2-VL:
The image depicts a classroom setting with several 
students engaged in various activities… Students:… A 
student in a red shirt is standing near the right side of the 
room, looking down at something on the floor. Tables:… 
Some tables have laptops or tablets open, indicating that 
digital work is being done… Chairs: The chairs are mostly 
orange and are positioned around the tables… Windows: 
The room has large windows on the right side, allowing 
natural light to enter. The windows have blinds, which are 
partially open. Additional Items: There are several bottles 
of hand sanitizer placed on the tables… Floor: The floor is 
carpeted, providing a comfortable environment for the 
students…

DeepSeek-VL2: 
The image depicts a classroom setting with multiple 
students engaged in various activities. All students are 
seated at tables, working on different tasks. The tables 
are equipped with chairs. The classroom has shelves 
filled with supplies. There are posters and papers on the 
walls. The students are wearing casual clothing. The 
classroom appears to be well-lit.

LLaVa-1.5:
The image depicts a classroom setting with a group of 
children sitting at tables, working on various projects... 
The children are engaged in activities such as using 
laptops, working on papers, and possibly drawing.
The room is filled with numerous books scattered across 
the tables and the floor... In addition to the children and 
their belongings, there are a few bottles placed around the 
room, possibly containing drinks for the children. A TV is 
mounted on the wall, which could be used for 
presentations or educational purposes.

Object Misalignment Attribute Misalignment Relational Misalignment

Figure 6: This figure presents examples of descriptions generated by different LVLMs when given the image shown
in the upper left corner. The highlighted text segments in the descriptions represent different types of misalignment.
Specifically, red highlights indicate object misalignment. Yellow highlights represent attribute misalignment. Blue
highlights denote relational misalignment.
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