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Abstract

Neural topic modeling has substantially im-
proved topic quality and document topic dis-
tribution compared to traditional probabilis-
tic methods. These models often incorporate
multiple loss functions. However, the dis-
parate magnitudes of these losses can make
hyperparameter tuning for these loss functions
challenging, potentially creating obstacles for
simultaneous optimization. While gradient-
based Multi-objective Optimization (MOO) al-
gorithms offer a potential solution, they are
typically applied to shared parameters in multi-
task learning, hindering their broader adoption,
particularly in Neural Topic Models (NTMs).
Furthermore, our experiments reveal that naive
MOQO applications on NTMs can yield subopti-
mal results, even underperforming compared to
implementations without the MOO mechanism.
This paper proposes a novel approach to inte-
grate MOO algorithms, independent of hard-
parameter sharing architectures, and effectively
optimizes multiple NTMs loss functions. Com-
prehensive evaluations on widely used bench-
mark datasets demonstrate that our approach
significantly enhances baseline topic model per-
formance and outperforms direct MOO appli-
cations on NTMs.

1 Introduction

Traditional topic models (Hofmann, 1999; Blei
et al., 2003; Blei and Lafferty, 2005; Wang et al.,
2008) have become widely used due to their ability
to uncover hidden topics from unstructured data
and their interpretability. Although such models
have achieved some success, they often suffer from
inefficient and laborious parameter inference (Wu
et al., 2024). To address these limitations, neural
topic models (NTMs) have emerged as a promis-
ing solution, achieving effectiveness in various do-
mains such as content organization (Valero et al.,
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Figure 1: Illustration of the magnitudes of training loss
components. We recorded the training losses in the final
iteration when training ECRTM on three datasets: Ya-
hooAnswers, 20NG, and AGNews. These losses include
Reconstruction Loss, Kullback-Leibler Divergence, and
Embedding Clustering Regularization Loss, which ex-
hibit significant differences in magnitude.

2022), text mining (Linh et al., 2017; Valero et al.,
2022; Ha et al., 2019), health research (Gao and
Sazara, 2023) and streaming learning (Nguyen
et al., 2019; Van Linh et al., 2022; Tuan et al.,
2020; Nguyen et al., 2021).

Based on  Variational  Autoencoders
(VAEs) (Kingma and Welling, 2013a), neu-
ral topic models (Dieng et al., 2020; Wu et al.,
2023; Pham et al., 2024; Nguyen et al., 2025b;
Vuong et al., 2025; Nguyen et al., 2025¢e) enhance
traditional topic modeling techniques (Hofmann,
1999; Griffiths et al., 2003) by utilizing the power
of neural network architectures. To significantly
improve both the quality of discovered topics and
the effectiveness of document representations,
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most neural topic models typically optimize
multiple loss functions simultaneously (e.g., recon-
struction loss (Wu et al., 2023), KL divergence
(Pham et al., 2024), contrastive loss (Nguyen and
Luu, 2021), Wasserstein distance (Nguyen et al.,
2025a)). Therefore, they may encounter challenge
in optimizing multiple objective functions at the
same time.

The substantial disparities in the magnitudes of
these loss components, as evident in Figure 1, intu-
itively suggest that such an imbalance could lead
to certain objectives dominating the training pro-
cess, consequently degrading overall performance.
Therefore, a mechanism to regulate the influence of
each loss function during training is extremely nec-
essary. A solution to balance this trade-off involves
assigning fixed linear weights to each loss function
(Rybkin et al., 2021). However, this method neces-
sitates an exhaustive and computationally expen-
sive manual hyperparameter search. Moreover, the
magnitudes of these loss functions can fluctuate un-
predictably during training, rendering pre-defined
weights potentially ineffective. Furthermore, if the
objectives are conflicting, a simple linear combina-
tion may not suffice (Liang et al., 2021; Mahapatra
and Rajan, 2020; Nguyen et al., 2024, 2025d). In-
stead, we propose framing the training of NTMs
as a multi-objective optimization (MOQ) problem.
This optimization considers the gradients of the
individual objectives to achieve a Pareto station-
ary solution, attaining an optimal balance among
them. However, most gradient-based MOO algo-
rithms are designed for hard-parameter sharing ar-
chitectures. Modern models, including NTMs, may
deviate from this architectural constraint.

In earlier work, (Nguyen et al., 2024) applied
MOQO to contrastive topic modeling, comparing
methods such as GradNorm (Chen et al., 2018),
PCGrad (Yu et al., 2020), Random Weighting (Lin
et al., 2022), and MGDA (Sener and Koltun, 2018).
However, except for MGDA, these methods gen-
erally did not yield improvements and, in some
cases, even underperformed compared to baselines
without MOO. Even with MGDA, the improve-
ments were not particularly significant. This led
us to hypothesize that a direct and naive applica-
tion of MOO algorithms to NTMs might not be
universally effective. To validate this hypothesis,
we conducted experiments with a range of state-of-
the-art MOO algorithms and NTM architectures.
As shown in tables 1 and 2, our findings indicate
that this direct approach often produces negligible

improvements, and can sometimes even degrade
performance compared to the baseline. Several fac-
tors could contribute to this phenomenon: first, the
loss imbalance issue discussed earlier; and second,
the architectural differences between modern Neu-
ral Topic Models (NTMs) and the hard-parameter
sharing paradigm commonly used in many MOO
algorithms.

To address the first issue, we propose construct-
ing surrogate losses, as presented in Equation 3,
which are linear combinations of the original loss
functions. Instead of directly optimizing the origi-
nal objectives by MOO algorithm, we apply them
to these newly surrogate losses. These surrogate
losses are designed to exhibit more balanced mag-
nitudes and are influenced not only by the original
loss components but also by the overall loss. Specif-
ically, our approach aligns well with the principles
of ensemble learning, where each surrogate loss
is associated with a learner, and multiple learners
collaborate to enhance overall performance. The
MOO mechanism aggregates the gradients of learn-
ers to update the model parameters, ensuring that
all learners perform well and no surrogate loss in-
creases during the ensemble process. Regarding
the second issue, with this approach, each surro-
gate loss function depends on the model’s entire
parameters. Therefore, neural topic models can
easily satisfy hard-parameter sharing architectures.

We summarize the contributions of this paper as
follows:

* Comprehensive experiments with direct MOO
approaches indicate their limitations on neural
topic models.

* We propose a novel optimization method
called MSOQO (Multi-Surrogate-Objective Op-
timization), which introduces new surrogate
objectives and applies Multi-objective Opti-
mization algorithms to these objectives.

* Empirical evidence shows that MSOO not
only improves baseline neural topic models
performance but also outperforms prior direct
MOQO approaches.

2 Background

Denote X = {x4}2_, represent the Bag-of-Words
(BoW) vectors for D documents, based on a vo-
cabulary containing V' words. The objective of
neural topic modeling targets to discover K latent
topics. We have B = (B1,...,8k) € RV*E is
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the topic-word distribution matrix of all K topics.
Given word embedding dimension L, we define
W = (wq,...,wy) € RV*L as the word embed-
ding matrix and T = (ty,...,tx) € REXL as the
topic embedding matrix. Recent state-of-the-art
neural topic models (Wu et al., 2023; Pham et al.,
2024; Vu et al., 2025; Nguyen et al., 2025¢) no
longer decompose (3 into two components: word
embeddings W and topic embeddings T’; but in-
stead represent (3 as:

exp (—|[wi = t]*/7)
Bij = —x ;
Zj’:l exp (_Hwi - tj’||2/7')
where 7 is a temperature hyperparameter. For each
document d, another objective of neural topic mod-
els is to estimate the topic proportions g € RX, in-
dicating the distribution of topics present in the doc-
ument. Specifically, the topic proportion 6 is depen-
dent on a latent variable z, which follows a logistic-
normal distribution defined as p(z) = N (z|uo, 00)-
Then the BoW representation of a document x4 is
encoded through neural networks. The parame-
ters of the Gaussian distribution are computed with
mean . = hy,(x4,7) and the diagonal covariance
matrix is X = diag(hx(z4,7)), where v is the
parameter of these inference networks.

Latent variable z is subsequently sampled from
the posterior distribution ¢(z|z4) = N (z|u,X)
employing the reparameterization trick proposed
by (Kingma and Welling, 2013b). The topic pro-
portions are then derived by using the softmax
function, resulting in # = softmax(z). Next,
BoW representation is reconstructed through topic-
word distribution matrix 8 and topic proportion
0 from a multinomial distribution: Xpow ~
Multi(softmax(30)). Finally, the objective func-
tion for the topic model comprises two components:
a reconstruction term and a regularization term, de-
fined as follows:

Lrm = XZBow)T log(softmax(/36;))

5

+ “MU

KL(q(z[x)[|lp(2))
ey

Recent modern neural topic models frequently
integrate multiple objective functions into their
overall objective to enhance both the performance
of topic quality and document representations. For

instance, ECRTM (Wu et al., 2023) adds the Em-
bedding Clustering Regularization objective Lgcr
to effectively mitigate topic collapsing. Neuro-
Max (Pham et al., 2024) adds three objectives: Em-
bedding Clustering Regularization Lgcr, Group
Topic Regularization Lgg, and Information Noise-
Contrastive Estimation LiyoNCE-

To effectively manage these multiple objec-
tives, gradient-based Multi-objective Optimization
(MOO) methods are employed. Several notable
frameworks, including MGDA (Sener and Koltun,
2018), PCGrad (Yu et al., 2020), IMTL (Liu et al.,
2021b), FairGrad (Ban and Ji, 2024), and Ex-
cessMTL (He et al., 2024), propose gradient-based
MTL methods aimed at finding solutions on the
Pareto front. Let K represent the total number of
tasks. We define §°M®"® as the shared parameters
while 61,62, ..., 6% denote task-specific parame-
ters. These approaches commonly seek the update
direction as a linear combination of individual task
gradients:

K
ASC = N 0,V ganare L3 (8177, 67)(2)

i=1

where £; (512 §%) denotes the loss for i-th task
and w represents a dynamic weighting vector that
adapts based on the model’s current state at each
optimization step. The primary difference among
these methods lies in the strategy used to select
w. More details regarding MOO can be found in
Appendix A.

3 Methodology

3.1 Redefining Objectives for Multi-objective
Optimization

Multi-objective Optimization methods are widely
recognized as effective techniques for optimiza-
tion of multiple loss functions simultaneously. As
discussed earlier, with each loss function £; con-
tributing its gradient g; = V.L;, direct MOO ap-
proaches directly operate on these individual gra-
dients. However, these gradients are inherently
objective-specific and lack awareness of the gen-
eral objective. Furthermore, in NTMs, the varying
magnitudes of the loss components can lead to cer-
tain objectives exhibiting a significantly higher loss
decreasing rate compared to others. This imbal-
ance may hinder the optimization of less dominant
objectives, making it difficult to learn the dynamic
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Figure 2: The overall workflow of MSOO when applied to topic models.

weighting vector of the objectives. To address these
limitations, we propose new surrogate objectives
that not only focus on the corresponding objective
L; but also incorporate overall information from
other objectives, formulated as follows:

LYSO0 =L+ X)) Ly, 3)
j=1

where )\; > 0 governs the influence of the aggre-
gated objectives Z;‘:l L; with corresponding ob-
jective. It acts as a balancing mechanism, ensuring
that individual objectives contribute meaningfully
while aligning with global optimization goals. The
specific strategy for selecting the weighting coef-
ficients (A1, Ao, ..., Ay,) is detailed in Section 3.2.
The complete workflow of MSOO, as applied to
standard topic models, is illustrated in Figure 2.
The algorithm is described in detail in Algorithm
1.

3.2 Multi-Surrogate-Objective Optimization
for Topic Model

The proposed surrogate losses are particularly im-
pactful for topic models, where balancing multiple
objectives is essential for achieving high-quality
topic representations. The choice of A can affect
the performance of the model. In this section, we
provide a detailed discussion on the selection strate-
gies for A and the integration of our approach into
topic modeling. Specifically, we introduce two
methodologies for selecting . The first adopts a
straightforward approach where ) is treated as a
constant, while the second explores an adaptive
strategy to dynamically adjust A during the training
process. To provide a clearer explanation, we out-
line the specifics of how our approach is applied to
ECRTM (Wau et al., 2023) which has three different

losses corresponding to Reconstruction Loss (Re-
con Loss), Kullback-Leibler Divergence (KL), and
Embedding Clustering Regularization Loss (ECR
Loss), with the MOO algorithm is FairGrad (Ban
and Ji, 2024).

3.2.1 Static Multi-Surrogate-Objective
Optimization

With this strategy, we simply consider \; =

A, Vi e {1,2,...n}; where X\ is a hyper-

parameter. These surrogate objectives can be for-

mulated as:

LMSOO = ERecon + )\ﬁTotal

Recon

LMSO0 = £y 4+ ALrotal 4

M
LMEO = Lrcr 4+ ALrotal

where Lrotal = LRecon + LI + LECR. Now,
instead of directly optimizing the original losses,
we feed these surrogate objectives into a Multi-
objective Optimization algorithm. Let § represent
the model parameters. For each surrogate objec-
tive LM5O0 we can calculate its gradient with
respect to the model parameters, which we call
gMS00 = v LMSOO  Think of this gradient as a
direction in the parameter space that, if followed,
we would reduce the corresponding surrogate loss.
Our goal is to find a single update direction, d,
that improves all surrogate objectives simultane-
ously. This direction should lie within a small
region around the current parameters, which we de-
fine as a ball B, of radius €. This constraint ensures
that we do not make drastic changes to the parame-
ters in a single step, promoting stable optimization.
To find this direction d, we adopt a utility function
called the "a-fair" utility function, inspired by fair
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Algorithm 1 Static Multi-Surrogate-Objective Op-
timization algorithm

Algorithm 2 Adaptive Multi-Surrogate-Objective
Optimization algorithm

Input: Model parameters 4, learning rate 7, total number of
training epochs N, hyperparameter A
Output: Updated model parameters &

1: fort=1,2,..., N do

2:  Compute original objectives {L1, L2, ..., Ly}

3:  Compute surrogate objectives £M5°9C with \; = X
using Equation 3; fori=1,2,...,n

4: Compute gradients gMSO0 = v MO0, for ¢ =
1,2,...,n

5:  Calculate o« = (a1, a2, ..., an) by:

a = MOO_algorithm(g}59° . . .| gMS©O0)

6:  Calculated, = >, , a; gMSo0

7: Update the parameters: 641 = 0¢ — nd:
8: end for

resource allocation in communication networks, as
in (Ban and Ji, 2024). This utility function helps
us balance the improvement across different ob-
jectives fairly. Formally, we want to find d that
maximizes the following:
n ((gZMSOO)Td)l_a

max

deB
€i=1

o s.t. (gMSONTa >0

(&)

Here, (g%\/ISOO)Td represents the improvement
along the direction d for the i-th surrogate objec-
tive, and o € [0, 1)U(1, +00) controls the different
ideas of fairness. The constraint (g}599)Td >0
ensures that the direction d improves (or at least
does not worsen) each surrogate objective. Fol-
lowing (Ban and Ji, 2024)’s methodology, we can
indicate that the best direction d* lies on the edge
of our small region B.. This best direction also
aligns with the gradient of the overall a-fair utility.

Mathematically, this means:

S (@MS00) Ta) g0 =i ()

=1

for some positive constant c. For simplicity, we
set ¢ = 1 (as in (Ban and Ji, 2024)). Now, we
can express this optimal direction d as a weighted
combination of the individual surrogate gradients:
d =" wigMS90. The weights w; determine
how much each surrogate objective contributes to
the final update direction. Specifically, by substi-
tuting d = S, w;gM59© into Equation 6 and
setting ¢ = 1, we obtain:

G Gw =w Ve 7

Input: Model parameters ¢, learning rate ), total number of
training epochs N
Output: Updated model parameters &
1: fort =1,2,..., N do

2: Compute original objectives {£1, L2,..., Ly}

3: if t = 1,2 then

4: vi(t) =1; fori =1,2,...,n

5: else

6: Compute v;(t) using Equation 9; for 1 =

1,2,...,n

7: end if

8:  Compute \;(¢) using Equation 9; fori =1,2,...,n

9:  Compute surrogate objectives £LM5°° with \; = \;(2)
using Equation 3; fori =1,2,...,n

10: Compute gradients gM5°° = vLMSOO. for j =
1,2,...,n

11: Calculate @« = (a1, v, ..., ) by:

a = MOO_algorithm(gM5©0 ... gMSO0)
12:  Calculate d; = >0 | a;g)"59°

13:  Update the parameters: §:+1 = 0+ — nd:
14: end for

where G = [gMSO0 ... ¢MSOO] is a ma-

trix whose columns gZMSOO represent the gradi-
ents of the i-th surrogate objective, and w :=
(wy,--- ,wy) | € R’ denotes the set of weights.
We address Equation 7 directly as a constrained
nonlinear least squares problem. Specifically, we
aim to find w that minimize the following objective
function:

min > f(w)}

st. f(w) =G Guw—wV* we R?

®)

By updating our model parameters J using this
direction d, we take a step towards optimizing all
objectives simultaneously, guided by our surrogate
losses and the principle of a-fairness. This method
helps us avoid situations where some objectives
dominate the optimization process, leading to a
more balanced and overall better solution.

3.2.2 Adaptive Multi-Surrogate-Objective
Optimization

Treating A as a hyperparameter and selecting its
value appropriately often requires both experience
and extensive experimentation. In this section, we
introduce a variant of MSOO that adaptively se-
lects A\ instead of fixing it. We call this variant
MSOO-Adaptive (MSOO-A). Intuitively, if in a
given training iteration, the i-th loss function, £;,
demonstrates a more substantial decrease compared
to other loss components, it implies that the relative
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priority of £; should be reduced in the subsequent
iteration. We propose a simple yet effective adap-
tive weighting method inspired by Dynamic Weight
Averaging (DWA) (Liu et al., 2019). For each orig-
inal loss function £; and surrogate loss function
[%\/ISOO, we choose \; as an adaptive weighting
over time by continuously recalibrating \; based
on the rate of change of loss from one iteration to
the next. Specifically, our formula is as follows:

exp(v;(t —1)/T)

Ai(t) == — ,
Sewlye-0m
where v;(t —1) = Zg:?;

where ¢ is an iteration index, T’ represents a temper-
ature which controls the softness of \; and £;(t)
is the value of i-th loss function £; at iteration ¢.
For ¢t = 1, 2, we initialize v;(t) = 1. For DWA, at
each iteration, the weight coefficient \;(¢) for the
loss term £;(t) is determined by the ratio of the
losses for the corresponding objective across the
previous two iterations, t — 1 and ¢ — 2. Specifi-
cally, if the weight v;(¢ — 1) is higher relative to
other weights v;(t — 1) for j # 4, it indicates that
at iteration ¢ — 1 the model prioritizes £; more
heavily compared to other components £;. In con-
trast, our method does not seek the coefficient \;(¢)
for £;(t), but rather adjusts the weight of the to-
tal loss term Lrqt, Within the ¢-th surrogate loss.
More concretely, if at iteration ¢ — 1 the model
prioritizes £;(t), then in the surrogate loss £LM590,
the weight of the L., component should be in-
creased. Consequently, in terms of underlying
semantics, the determination of v;(t — 1) in our
method calculates the relative ascending rate, i.e.,
vi(t — 1) = Li(t — 2)/L;(t — 1). Finally, these
surrogate objectives at iteration ¢ can be formulated
as:
EMSOO = ﬁRecon + )\Recon(t)ETotal

Recon

LMO0 = £y + AkL(t) Lrotal (10)

LMERO = Lrcr 4+ ABcR () LTotal

These surrogate losses are then similar to Static
MSOO, they are used as the input for the MOO
algorithms. The detailed training algorithms for
MSOO-Static and MSOO-Adaptive are provided
in Algorithms 1 and 2 respectively.

4 Experiments

4.1 Settings

Datasets. We employ some well-known datasets,
including three standard datasets: 20 News Groups
(20NG) (Lang, 1995), a popular benchmark for
topic modeling with 20 labels, YahooAnswers
(Zhang et al., 2015), which contains question titles,
contents, and the best answers from the Yahoo! An-
swers platform, and AGNews (Zhang et al., 2015)
includes news articles and descriptions from over
2,000 sources. The preprocessing steps and statis-
tics of all datasets are detailed in Appendix B.3.

Evaluation Metrics. We follow the evaluation
framework from (Wu et al., 2023) to assess topic
quality and document-topic distributions using
topic coherence (Cv), Topic Diversity (TD), NMI,
and Purity. Detailed descriptions of these evalua-
tion metrics are provided in the Appendix B.1.

Baseline models. We assess the performance of
our approach by applying it to two recent state-
of-the-art neural topic modeling frameworks. In
particular, we consider ECRTM (Wu et al., 2023),
which generates diverse and coherent topics while
ensuring high-quality topic distributions for docu-
ments by forcing each topic embedding to be the
center of a separately aggregated word embedding
cluster; and NeuroMax (Pham et al., 2024), which
regularizes document-topic distributions by lever-
aging pre-trained language model embeddings to
maximize mutual information, and employs opti-
mal transport to learn the relationships between
topics.

Multi-objective Optimization Algorithm Our
experiments are conducted on two methods for
Multi-objective Optimization. These models in-
clude MGDA (Sener and Koltun, 2018), which
computes a Pareto-stationary descent direction by
finding the minimum-norm convex combination
of per-task gradients; and FairGrad (Ban and Ji,
2024), a recent advanced method which model as a
utility maximization problem, where each task is
associated with a-fair utility function and different
« yields different ideas of fairness.

4.2 Main Results

To demonstrate the performance of MSOO meth-
ods and the ineffectiveness of traditional MOO
approaches, we conducted experiments on stan-
dard datasets using two advanced MOO algo-
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Models AGNews YahooAnswers 20NG

TD15 NMI Purity Cvl5 TD15 NMI Purity Cvl5 TD15 NMI Purity Cvl15
ECRTM 0.961 0.367 0.802 0466 0.985 0.295 0.550 0.405 0.964 0.524 0.560 0.431
+ FairGrad (MOO) 0.844 0375 0.772 0.465 0.896 0.301 0.543 0.404 0945 0.506 0.549 0422
+ FairGrad (MSOO-S) 0976 0.369 0.815 0.471 0.985 0.317 0.577 0.416 0.901 ' 0.548 0.584 0.447
+ FairGrad (MSOO-A) 0984 0.399 0.834 0.469 0.955 0.328 0.567 0.409 0.951 0.527 0.569 0.445
NeuroMax 0.952 0.410 0.804 0.385 0.979 0.331 0.588 0.404 0912 0.570 0.623 0.435
+ FairGrad (MOO) 0.917 0.350 0.701 0.468 0.997 0.295 0.545 0.407 0.815 0.529 0.610 0.436
+ FairGrad (MSOO-S) 1 0.992 0.415 0.827 0.430 0979 0.332 0.590 0414 0.857 0.578 0.645 0.439
+ FairGrad (MSOO-A) 0939 0416 0.827 0432 0984 0.335 0.591 0.407 0916 0.577 0.629 0.437

Table 1: Evaluation of ECRTM and NeuroMax performances on AGNews, YahooAnswers, and 20NG, measured
using TD15, NMI, Purity, and Cv15 with FairGrad under MOO, MSOO-Static, and MSOO-Adaptive.

Models AGNews YahooAnswers 20NG

TD15 NMI Purity Cvl5 TD15 NMI Purity Cvl5 TD15 NMI Purity Cvl5
ECRTM 0.961 0.367 0.802 0.466 0.985 0.295 0.550 0.405 0.964 0.524 0.560 0.431
+ MGDA (MOO) 0.895 0.362 0.762 0.456 0.906 0.303 0.551 0.384 0.909 0.511 0.527 0.418
+ MGDA (MSOO-S) 0.992 0.387 0.820 0476 0.977 0.319 0.550 0.384 0.926 0.528 0.563 0.432
+ MGDA (MSOO-A) 0989 0.391 0.817 0463 0.891 0.310 0.555 0.393 0.891 0.544 0.602 0.440
NeuroMax 0.952 0410 0.804 0.385 0.979 0.331 0.588 0.404 0912 0.570 0.623 0.435
+ MGDA (MOO) 0.900 0.364 0.749 0467 0.995 0.310 0.554 0.406 0.717 0.559 0.597 0.434
+ MGDA (MSOO-S) 0965 0413 0.816 0436 0.981 0.338 0.586 0.404 0.841 0.585 0.645 0.449
+ MGDA (MSOO-A) 0939 0423 0.833 0432 0.995 0.334 0.589 0.404 0.836 0.582 0.642 0.442

Table 2: Evaluation of ECRTM and NeuroMax performances on AGNews, YahooAnswers, and 20NG, measured
using TD15, NMI, Purity, and Cv15 with MGDA under MOO, MSOO-Static, and MSOO-Adaptive.

rithms: MGDA (Sener and Koltun, 2018) and Fair-
Grad (Ban and Ji, 2024). We compared the baseline
models with their corresponding MOO, MSOO-
Static (MSOO-S), and MSOO-Adaptive (MSOO-
A) variants. Tables 1 and 2 present the mean results
for ECRTM and NeuroMax when using FairGrad
and MGDA, respectively, highlighting the signifi-
cant improvements brought by MSOO methods and
the limited effectiveness of directly applying tradi-
tional MOO approaches to these models. The full
results, including standard deviations, are reported
in detail in Appendix C.5.

In general, both the static and adaptive variants
of MSOO improved the quality of the topic models
compared to the baseline and outperformed the di-
rect MOO approach. Specifically, our MSOO meth-
ods considerably enhanced the quality of document-
topic distributions, as demonstrated by the superior
Purity and NMI scores, particularly in advanced
models such as ECRTM and NeuroMax.

4.3 A Toy Example

To validate the effectiveness of our proposed ap-
proach beside its application in topic modeling, we

assess its ability to achieve superior or comparable
performance under stochastic conditions, we per-
form an empirical study on the two-objective toy
example introduced in CAGrad (Liu et al., 2021a).

We consider three different initializations: x €
{(-8.5,7.5), (—8.5,5), (9,9)}, which are em-
ployed for the various methods under consideration.
The corresponding optimization trajectories are vi-
sualized in Figure 3. In Figures 3d-3i, the starting
point of each trajectory is denoted by the @ symbol,
while the trajectory color gradually transitions from
red to . The Pareto front is illustrated by the
gray line, with the global optimum marked by the *
symbol at its center. We implement MGDA (Sener
and Koltun, 2018), PCGrad (Yu et al., 2020), and
CAGrad (Liu et al., 2021a). Each algorithm is im-
plemented both in its original form (MOQ) and in
conjunction with MSOO-S (A = 0.6). In order to
replicate the stochastic setting, we add zero-mean
Gaussian noise to the gradient of each objective
for all methods except MGDA. For each experi-
mental run, we employ the Adam optimizer with a
learning rate of 0.002 over 100,000 iterations. We
can observe that, except for MGDA (Figure 3d),
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Figure 3: A two-objective toy example
PCGrad (Figure 3e) and CAGrad (Figure 3f) fail A |TDI5 NMI Purity Cvl5
to converge to the Pareto front in some initializa- 0.001 | 0463 0.021 0260 0.382
tions. Although MGDA consistently reaches the : ) ) ) )
o . 0.01 | 0.525 0.020 0.264 0.340
Pareto front across all three initializations, it does
. . 0.05 | 0.100 0.381 0.692 0.482
not reliably converge to the global optimum (x). 01 | 0141 0399 0.804 0473
In contrast, when using the MSOO framework, all 0‘2 0'232 0‘370 0'794 0.546
three algorithms—MGDA, PCGrad, and CAGrad ’ ) ’ ) )
. . 0.4 10980 0.369 0.844 0.470
(Figure 3g, 3h and 3i)—successfully converge to
. 0.8 [0.956 0.369 0.843 0.465
the global optimum.
1.5 | 0.887 0.357 0.826 0.478
4.4 Effect of \ Hyperparameter 3.0 |0.829 0.360 0.829 0.483
6.0 |0.833 0.351 0.815 0.471

In Equation 3, the hyperparameter A in our MSOO
framework plays a crucial role in balancing the in-
fluence between the original loss components and
the total loss within the surrogate objectives. As A
approaches zero, the surrogate losses converge to
their original counterparts, diminishing the impact
of Lrota1. Conversely, larger values of A cause the
surrogate losses to more closely resemble Loty
To investigate the effect of A, we conducted ex-
periments using ECRTM on the AGNews dataset,
evaluating performance across a range of A val-
ues: [0.001,0.01,0.05,0.1,0.2,0.4,0.8,1.5, 3, 6]
in the MSOO-Static strategy and using FairGrad as
MOO algorithm. Table 3 presents the performance
metrics TD15, NMI, Purity, and Cv15.

The results demonstrate that both extremely
small and large values of A\ lead to suboptimal
performance. When A is very small (e.g., 0.001
or 0.01), the model’s performance is significantly
degraded, as evidenced by the low values across
all metrics. On the other hand, when )\ is exces-
sively large, the surrogate losses become overly
dominated by Lrota1, and while some metrics may
appear high, they do not reflect a genuine improve-
ment in topic quality.

Table 3: Effect of A on the performance of ECRTM
using AGNews dataset. TD15, NMI, Purity, and Cv15
are the evaluation metrics.

Optimal performance is often achieved within a
moderate range of \ values (e.g. between 0.4 and
0.8, as evidenced by the results in Table 3). Within
this range, the model benefits from the balancing
effect of the surrogate loss formulations without
being overly constrained by Lrota1. This highlight
the importance of selecting A values that are neither
too high nor too low. In our experiments, the \;(¢)
values determined by MSOO-Adaptive consistently
fall within this moderate range.

5 Conclusion

This paper introduces a novel approach to address
the challenge of optimizing multiple loss functions
in NTMs. Directly applying MOO methods is often
ineffective in this context. Our proposed method,
MSOOQ, overcomes this limitation by employing
surrogate loss functions with more balanced mag-
nitudes, which consider not only individual ob-
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jectives but also the total loss. Comprehensive
experiments demonstrate that MSOQO significantly
improves the performance of baseline topic models,
outperforming direct applications of MOO. We ex-
plore both static and adaptive strategies for weight-
ing the surrogate losses, with the adaptive approach
showing particularly strong potential.

Limitations

While MSOO demonstrates significant improve-
ments, some limitations warrant consideration.
First, MSOO may introduce a higher computa-
tional cost, which increases training time compared
to baseline models. This could be a concern for
resource-constrained large-scale or real-time appli-
cation scenarios, and further research is necessary
to improve its computational efficiency. Second,
the current surrogate loss formulation, which relies
on a linear combination of objectives, could poten-
tially be enhanced with more sophisticated in the
future.
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A Gradient-based Multi-objective Optimization for Multi-task Learning

Multi-task learning (MTL) can be formulated as a Multi-objective Optimization problem. With K be the
total number of tasks, let 55" are shared parameters while others 6', 62, ..., 6% denote task-specific
parameters within the feasible set ©, £; represent the training loss associated with task <. The objective is
to minimize all K losses simultaneously:

min [El(éshare’51)’£2(5Share752)’ o ’[/K((Sshare’(sK)] (11)

gshare

Given two feasible solutions d; and do to problem (11).

Definition 2.1 (Pareto dominance). We state that §; dominates d5 if and only if £;(61) < £;(d2) for all
i € {1,..., K} and there exists at least one j € {1,..., K} such that £;(61) < L;(d2) with the notation
01 < 6o.

Definition 2.2 (Pareto optimal). A feasible solution is considered Pareto-optimal if it is not dominated by
any other solutions. The set of all Pareto-optimal solutions is known as the Pareto front. Achieving Pareto
optimality is the purpose of Multi-objective Optimization.

There can be multiple Pareto optimal solutions, which collectively form the Pareto set. A weaker condition
known as Pareto stationarity and all Pareto optimal points are Pareto stationary; however, the converse
does not hold true.

Definition 2.3 (Pareto stationary). A point § € R is considered Pareto stationary if min,eyy ||G(d)w|| =
0, where G(0) = [g1(0),- -+ , gk (0)] € R™*K is a matrix whose columns g;(J) represent the gradients
of the i-th objective, and W denotes the probability simplex over [K|. Pareto stationarity serves as a
necessary condition for Pareto optimality.

B Experiment Details

B.1 Evaluation Metrics.

We follow the evaluation framework proposed in (Wu et al., 2023) to assess both topic quality and
document-topic distributions. Topic quality is evaluated using coherence and diversity metrics. With
coherence, we apply Cv15, where 15 denotes the top words in each discovered topic — this metric has
been shown to strongly align with human judgment (Roder et al., 2015). The coherence calculations
are based on the Wikipedia corpus' as an external reference corpus. To evaluate topic diversity, we
use Topic Diversity metric (Dieng et al., 2020) which computes the proportion of unique words in the
discovered topics. We select the top 15 words of discovered topics for the above topic quality evaluation.
For evaluating document-topic distribution, we employ Normalized Mutual Information (NMI) and Purity
(Manning et al., 2008), where the dominant topic of each document is used to assign it to a cluster. While
Cv15, Purity, and NMI assess the generalization performance on external and test data, TD15 ensures
that topics maintain sufficient diversity without overlap. In our experiments, we set the number of topics
to 50.

B.2 Implementation Details.

All experiments were conducted on a machine equipped with an NVIDIA GeForce RTX 3090 GPU
(24GB RAM), using PyTorch 2.1.0 with CUDA 12.1 in a Python 3.12 environment. Models were
trained for 500 epochs with a batch size of 200, employing the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.002. For MSOO-Static, the A hyperparameter was selected from the set
{0.3,0.4,0.5,0.6,0.8,1.0,1.5}.

B.3 Dataset Statistics

Our experiments utilized some well-known datasets, including three standard datasets: 20 News Groups
(20NG) (Lang, 1995), AGNews (Zhang et al., 2015), and YahooAnswers (Zhang et al., 2015). We applied
the pre-processing steps described in (Wu et al., 2023) to generate bag-of-words representations. These

"https://github.com/dice-group/Palmetto/
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#of average #of vocab

Dataset texts text length labels size
20NG 18,846  110.5 20 5,000
YahooAnswers 12,500 35.4 10 5,000
AGNews 12,500  20.1 4 5,000

Table 4: Dataset statistics after preprocessing.

pre-processing procedures were carried out using the TopMost tool”. The detailed statistics of all datasets
after processing are presented in Table 4.

C Additional Experiments
C.1 NPMI Coherence Evaluation

To further evaluate the coherence of discovered topics, we report Normalized Pointwise Mutual Informa-
tion (NPMI) (Bouma, 2009) scores for two topic models: ECRTM and NeuroMax across two benchmark
datasets (20NG and AGNews). The models are evaluated under the MSOO framework using MGDA as
the optimization method with K = 50 topics. Table 5 summarizes the comparison between the original
baseline models and their corresponding MSOO-Static (MSOO-S) variants. The results demonstrate that
MSOO-S consistently improves NPMI coherence across most configurations, highlighting its robustness
in topic quality enhancement.

Model Dataset Baseline MGDA (MSOO-S)

NeuroMax 20NG 0.061 0.118
NeuroMax AGNews 0.007 0.010
ECRTM 20NG -0.061 -0.023
ECRTM AGNews -0.092 -0.043

Table 5: NPMI coherence scores for baseline models and their MSOO-Static (MSOO-S) variants using MGDA
(K = 50). Results indicate that MSOO-S consistently improves topic coherence across both datasets and models.

C.2 Impact of Topic Count K

To assess the robustness of our method under varying topic dimensionality, we conduct additional
experiments on the YahooAnswers dataset using the ECRTM model as baseline. Specifically, we vary the
number of topics K € {50,100, 150,200} and report performance metrics across three training regimes:
baseline ECRTM, MSOO-S, and MSOO-A. The results are summarized in Table 6. Both MSOO-S and
MSOO-A generally improved performance compared to the baseline, particularly in NMI and Cvl15,
across different topic settings.

C.3 Perplexity Evaluation

To further assess model quality from a generative perspective, we conducted additional experiments
measuring perplexity (PPL). For consistency with prior work, we adopted the PPL computation method
from Nguyen et al. (Nguyen et al., 2022), where higher perplexity values indicate a better model fit. We
evaluated ECRTM and its MSOO-enhanced variants using three representative MOO algorithms—MGDA,
PCGrad, and FairGrad—across three benchmark datasets with K = 50 topics.

The results are reported in Table 7. These findings confirm that MSOO consistently achieves improved
perplexity scores across all tested datasets, further supporting its effectiveness from a generative modeling
perspective.

2https://github.com/bobxwu/topmost
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K Model TD1S NMI Purity CvlS

ECRTM (Baseline) 0.985 0.295 0.550 0.405
50 ECRTM + MGDA (MSOO-S) 0977 0.319 0.550 0.384
ECRTM + MGDA (MSOO-A) 0.891 0.310 0.555 0.393

ECRTM (Baseline) 0903 0.311 0.563 0.389
100 ECRTM + MGDA (MSOO-S) 0.921 0.318 0.566 0.391
ECRTM + MGDA (MSOO-A) 0905 0.313  0.568 0.389

ECRTM (Baseline) 0.888 0.310 0.573 0.376
150 ECRTM + MGDA (MSOO-S) 0.888 0.317 0.575 0.386
ECRTM + MGDA (MSOO-A) 0.851 0.318 0.577 0.376

ECRTM (Baseline) 0.832 0311 0573 0377
200 ECRTM + MGDA (MSOO-S) 0.843 0319 0572 0.383
ECRTM + MGDA (MSOO-A) 0.898 0310 0.578 0.379

Table 6: Performance of ECRTM on YahooAnswers with MGDA (MOO) across varying topic counts. Results are
shown for the baseline, MSOO-Static, and MSOO-Adaptive settings.

Model YahooAnswers AGNews 20NG
ECRTM -3.592 -3.383 -3.644
ECRTM + MGDA (MSOO-S) -3.540 -3.347 -3.634
ECRTM + MGDA (MSOO-A) -3.513 -3.324 -3.639
ECRTM + FairGrad (MSOO-S) -3.479 -3.288 -3.620
ECRTM + FairGrad (MSOO-A) -3.492 -3.296 -3.602

Table 7: Perplexity for ECRTM and MSOO variants across three datasets. Higher values indicate better model fit.
Bold highlights the best-performing model per dataset.

C.4 Loss Evaluation

We further evaluated the final values of each original loss component—Reconstruction Loss, KL Diver-
gence, and ECR Loss—for the baseline ECRTM and its MSOO variants under the MGDA optimizer. To
improve readability, we report results per dataset in Table 8, showing that both MSOO-S and MSOO-A
provide a more balanced loss distribution across objectives.

As observed across all datasets, the direct application of MGDA tends to prioritize minimizing Recon-
struction Loss, but often fails to jointly optimize KL Divergence and ECR Loss effectively. In contrast,
both MSOO-S and MSOO-A promote a more holistic trade-off, significantly reducing KL and ECR Loss
without sacrificing reconstruction performance. These results empirically validate the ability of MSOO to
mitigate loss imbalance and enhance optimization effectiveness.

C.5 Mean and Standard Deviation Results

In Tables 9 and 10, we report the mean and standard deviation of the performance metrics corresponding
to Tables 1 and 2, averaged over five independent runs.
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Dataset Model Recon KL ECR

ECRTM 235.908 30.411 7.396
ECRTM + MGDA (MOO) 225.367 31.355 5.399
YahooAnswers
ECRTM + MGDA (MSOO-S) 232.944 30.087 2.443
ECRTM + MGDA (MSOO-A) 222.754 29.373 2.448
ECRTM 135.243 7.389 1.722
AGNews ECRTM + MGDA (MOO) 128.559 7.167 1.844
ECRTM + MGDA (MSOO-S) 129.057 7.065 1.612
ECRTM + MGDA (MSOO-A) 131.774 6.998 1.529
ECRTM 619.238 34.807 14.186
2ONG ECRTM + MGDA (MOO) 608.642 32.067 15.295

ECRTM + MGDA (MSOO-S) 595.826 31.902 8.181
ECRTM + MGDA (MSOO-A) 611.020 29.957 8.813

Table 8: Final loss values of ECRTM and MGDA (MOO), MGDA (MSOO-S) and MGDA (MSOO-A) across
individual objectives: Reconstruction Loss (Recon), KL Divergence (KL), and ECR Loss (ECR). Lower values are
preferred.
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