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Abstract

Automatic understanding of figures in scien-
tific papers is challenging since they often con-
tain subfigures and subcaptions in complex
layouts. In this paper, we propose FigEx,
a vision-language model to extract aligned
pairs of subfigures and subcaptions from sci-
entific papers. We also release BioSci-Fig,
a curated dataset of 7,174 compound figures
with annotated subfigure bounding boxes and
aligned subcaptions. On BioSci-Fig, FigEx im-
proves subfigure detection AP’ over Ground-
ing DINO by 0.023 and boosts caption separa-
tion BLEU over Llama-2-13B by 0.465. The
source code is available at https://github.
com/Huang-AI4Medicine-Lab/FigEx.

1 Introduction

Compound figure separation enables semantically
consistent image-caption pairs for tasks like vi-
sual question answering and image captioning, yet
vision-only pipelines still struggle with ambiguous
panel borders and ignore caption text. Each year,
millions of scientific publications are published that
include figures with captions that summarize proto-
cols, quantitative results, and key findings. In the
biomedical domain, over 60% of figures contain
microscopy images, charts, heatmaps and annota-
tions (Meng et al., 2024). Consequently, treating a
composite as a single image forces all subfigures
to share one caption, violating the one-image-one-
caption assumption and degrading downstream per-
formance.

Captions for compound figures include both
overall explanations and notes for each subfig-
ure. To learn from these figures, we must sep-
arate each subfigure and align each panel with
its corresponding caption segment. Simple rules
from the ImageCLEF challenges used whitespace
and grid layouts (De Herrera et al., 2016). CNN
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Figure 1: FigEx separates a compound figure and cap-
tion into aligned subfigures and subcaptions.

models improved robustness (Tsutsui and Crandall,
2017; Zou et al., 2020). Multi-step methods com-
bined label detection with layout analysis (Jiang
et al., 2021). Recent YOLO-OCR systems sepa-
rate subfigures and read labels, and weakly super-
vised methods cut labeling effort (Yao et al., 2021).
Vision-only methods still fail when separators are
irregular or panels overlap, and without leveraging
caption text, they miss panel-level semantics (Sun
et al., 2024).

Vision-language methods offer a clear solu-
tion. Fusion models like Grounding DINO (Liu
et al.,, 2024) integrate text features via a cross-
modality decoder with language-guided queries
rather than simply inserting tokens into the back-
bone. Region-matching models such as GLIP (Li
et al., 2022b) unify object detection and phrase
grounding through grounded language-image pre-
training. Sequence models like Pix2Seq (Chen
et al., 2021) cast object detection itself as language
modeling. LL.M-based systems including Vision-
LLM (Wang et al., 2023), LISA (Lai et al., 2024)
and Lenna (Wei et al., 2025) combine detection and
reasoning. However, these methods still require ex-
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plicit text queries or separate vision and language
streams and fail to capture hidden links between
subfigures and captions in compound figures.

Motivated by these insights, we introduce FigEx,
a model guided by vision-language models (VLM)
that separates compound figures and aligns each
panel with its caption. This design first sends
the image and full caption into the VLM to pro-
duce VLM-guided features and extract subcaptions.
Next, it feeds the image and those features into a
DeiT (Fang et al., 2021) to predict bounding boxes
for each subfigure as in Figure 1. To connect these
stages, FigEx injects a special <DET> token (Wei
et al., 2025; Lai et al., 2024; Wang and Ke, 2024;
Yan et al., 2024) as a supervised VLM output token.
The hidden state of the <DET> token is used as
a bridge to the detection module, which outputs
boxes. FigEx also uses an attention mechanism to
highlight the correct caption snippet for each panel.

Existing benchmarks to evaluate these meth-
ods, including benchmarks such as ImageCLEF
biomedical (De Herrera et al., 2016), the MedICaT
subfigure separation subset (Subramanian et al.,
2020) and recent YOLO-OCR datasets (Meng et al.,
2024), are restricted by either licenses or are too
small to fully leverage large VLMs. They are also
limited to specific scientific fields such as medicine,
where the majority of the subfigures could be fixed
shapes with unique colored backgrounds (rectangle
and black, for example, in X-rays, CT scans, mi-
croscopy images, etc.) To address these gaps, we
created BioSci-Fig, a scientific figure separation
dataset, containing 7,174 compound figures with
43,183 manually annotated subfigure bounding
boxes. Captions were split into fine-grained sub-
captions using GPT-4.1 and then manually checked
to ensure correct alignment, yielding an increase
in publicly available compound figure separation
data.

Our FigEx-7B model achieves strong sub-
figure detection performance compared to
YOLOI11 (Jocher and Qiu, 2024), YOLOS (Fang
etal., 2021) and Grounding DINO (Liu et al., 2024)
baselines, and delivers superior caption separation
quality relative to Llama models (Touvron et al.,
2023; Grattafiori et al., 2024).

Our contributions are summarized as follows:

* We propose FigEx-7B, a compact vision-
language model that embeds a special <DET>
token into a ViT backbone and employs hier-
archical cross-attention for aligned extraction

of scientific figures and captions.

* We curate BioSci-Fig, a dataset of 7,174 com-
pound figures with meticulously annotated
bounding boxes and aligned subcaptions, pro-
viding a benchmark setting for compound fig-
ure separation in scientific documents.

* We evaluate FigEx-7B on both MedICaT and
BioSci-Fig, showing that it consistently out-
performs vision-only and language-only base-
lines in subfigure detection and caption sepa-
ration, and remains robust on long-tailed splits
with a compact 7B model.

2 Related Work

2.1 Scientific Compound Figure Separation

Extracting subfigures from compound figures is a
key preprocessing step for building image-caption
datasets and enabling hypothesis-driven discov-
ery (Zhou et al., 2024). The task emerged from
ImageCLEF challenges (De Herrera et al., 2016),
where early work relied on heuristics before shift-
ing to CNNs. Tsutsui et al. (Tsutsui and Crandall,
2017) introduced a data-driven separation method,
and Zou’s unified framework (Zou et al., 2020)
broadened generalization across figure styles. Hier-
archical pipelines followed: Jiang et al. (Jiang et al.,
2021) combined label detection with layout rea-
soning, while a recent YOLO-OCR system jointly
splits figures and recognizes labels, releasing a new
ImageCLEF-derived dataset. Weakly-supervised
schemes such as Yao et al. (Yao et al., 2021) cut
annotation costs via side losses and augmenta-
tion, achieving state-of-the-art ImageCLEF-2016
results.

Despite progress, current methods share three
limitations: (i) basic CNN backbones struggle
with intricate layouts, (ii) decomposition-centric
designs overlook contextual links among subfig-
ures, and (iii) purely visual cues ignore caption
guidance, causing semantic fragmentation (Sun
et al., 2024). Addressing contextual dependencies,
caption-driven guidance, and multimodal fusion
therefore remains essential for practical compound
figure separation.

2.2 Vision-Language Enhanced Object
Detection and Segmentation

Advances in vision-language research have pro-
duced three converging lines of work that pro-
gressively couple linguistic reasoning with open-
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vocabulary detection. First, architectural hybridiza-
tion augments classic detectors with language-
aware fusion. Grounding DINO (Liu et al., 2024)
integrates image-text cross-attention and language-
guided queries to enable open-set grounding, and
DQ-DETR (Liu et al., 2023b) advances cross-
modal grounding with dual queries. Later vari-
ants adopt related fusion modules and generally
condition detection on text to improve zero-shot
grounding. Second, task reformulation casts de-
tection as sequence generation. Pix2Seq (Chen
et al., 2021) tokenizes boxes and labels into an
autoregressive stream, and multitask sequence-to-
sequence frameworks such as OFA (Wang et al.,
2022) handle captioning and grounding, with OFA
also supporting detection within one model. Sep-
arately, GLIP (Li et al., 2022b) unifies phrase
grounding and detection via grounded pre-training.
These models are widely evaluated on referring-
expression comprehension and typically rely on
explicit prompts. Third, LLM-centric systems cou-
ple reasoning with perception modules. Vision-
LLM (Wang et al., 2023) connects an LLM to task-
specific decoders via routing tokens and super-link
queries, LISA (Lai et al., 2024) aligns language
reasoning with segmentation, DetGPT (Pi et al.,
2023) composes a VLM with an open-vocabulary
detector to follow natural-language instructions,
and Lenna (Wei et al., 2025) exposes a detection in-
terface to an MLLM. CogVLM (Wang et al., 2024)
introduces trainable visual-expert modules for deep
fusion, and VLRM (Dzabraev et al., 2024) treats
vision-language models as reward models to opti-
mize generation.

2.3 Multimodal Vision-Language Models

Multimodality has rapidly matured in vision-
language modeling (Wang et al., 2025; Zhao et al.,
2024; Li et al., 2022a). Multimodal integration
VLM has progressed through several design ap-
proaches. Connector-based models such as BLIP-
2 (Chen et al., 2024b) and mPLUG-OwL (Ye et al.,
2024) align vision and text by bridging frozen
encoders and LLMs with lightweight adapters.
They excel at captioning and retrieval but can
struggle with multi-step reasoning. Instruction-
tuned systems including LLaVA (Liu et al., 2023a),
MiniGPT-4 (Zhu et al., 2023) and Shikra (Chen
et al., 2023) leverage GPT-4-style synthetic instruc-
tion data or spatial coordinate prompts, aligning
pretrained vision encoders and LLMs via a pro-
jection or lightweight fine-tuning. MIMIC-IT (Li

et al., 2023) provides large-scale multimodal in-
struction data supporting such tuning. Hybrid ar-
chitectures preserve specialized vision processing:
VisionLLM (Wang et al., 2023) routes tasks to ex-
ternal detectors, while DetGPT (Pi et al., 2023)
converts detection outputs into language tokens,
maintaining detector accuracy at the cost of latency.
Yet balancing detection precision with deep rea-
soning remains an open challenge (Miyai et al.,
2024; Dzabraev et al., 2024). Emerging work
such as GSVA (Xia et al., 2024), LLMFormer (Shi
et al., 2025), TaskCLIP (Chen et al., 2024a) and
VLRM (Dzabraev et al., 2024) explores interfaces
between perception modules and language models
and introduces alignment or reinforcement mecha-
nisms to better couple visual recognition with lan-
guage.

3 Method
3.1 Architecture of FigEx

We introduce FigEx-7B, a multimodal model
that splits compound figures into subfigures and
matches each with its caption. Figure 2 shows the
overall design (Wen et al., 2023). FigEx-7B builds
on reasoning-based detection methods (Wei et al.,
2025; Lai et al., 2024; Yan et al., 2024; Dai et al.,
2025). It uses LLaVA-7B (Liu et al., 2023a) for lan-
guage understanding and a DeiT-S backbone from
YOLQOS-S for vision. To bridge these components,
we add a VLM-guided cross-attention module that
steers visual feature extraction with the subcaptions
and improves subfigure detection.

As shown in Figure 2, FigEx-7B first feeds the
compound figure image ;4 and full caption x4
into the VLM module . The VLM outputs the
detection-token hidden state hg.; and subcaption
features fsypeqp as

hdet, fsubcap = f(ximga l'ta:t) (D

A vision encoder F,,. then processes the image
to produce initial image features fi;, 4 as

fimg = Fenc (xzmg) ()

The VLM-guided cross-attention module pro-
duces a refined image feature as

fimg = ~Fvgm (fimgv hdeta fsubczzp) (3)

Finally, the MLP detection head F,,,;, predicts
bounding boxes ﬁpred from the refined feature as

DPTed = ]:mlp (fzmg) (4)
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Figure 2: Overview of the FigEx architecture.

3.2 VLM-Guided Cross-Attention

As illustrated in Figure 3, we refine image features
with two cross-attention modules.

First, the detection-text module Fo;-tert fuses
the detection-token hidden states h4.; with the sub-
caption feature fgy,pcqp as

fdet-te:vt = ‘Fdet-text(hdetv fsubcap) (5)

Next, the cross-attention module F,,,, refines
the encoded image feature fj;,; With fyes-teqt tO
produce

fimg = fimg(fimgv fdet-temt) (6)

This step follows the standard query-key-value
(Q, K, V) attention mechanism to highlight regions
most relevant to subcaptions.

fimg
OOoooc
t

Image Feature Cross-Attention J
X

K,V Q
[ Det-Text Cross-Attentiog Oooof
Q I K,V fl-mg
O OOoOononO
hdet f subcap

Figure 3: VLM-guided cross-attention.

3.3 Training Process

Our training pipeline, illustrated in Figure 4, con-
sists of three sequential phases: an initial LoORA
adaptation phase for tuning the language decoder,
a detection head training phase for fine-tuning the
vision encoder and MLP detection head, and a final

joint fine-tuning phase that optimizes both token
prediction and detection objectives together.

Stage 1: LoRA adaptation We freeze the vision
encoder and MLP detection head and update only
the LoRA layers in the VLM. The optimization
target is the standard token-level cross-entropy loss
as

L
1
Lok = I E 1 logp(yj | ?/<j>37img750txt) @)
J:

where L is the length of the target subcaption, y; is
the j-th ground-truth token, y; denotes all previ-
ous tokens, x;,,4 denotes image features, and
denotes the textual input embeddings.

Stage 2: Detection head training Freeze the
VLM and fine-tune both the vision encoder and the
MLP detection head, optimizing a loss combining
classification cross-entropy, box regression and the
Generalized Intersection over Union (GIoU) term
as

Laet = Aeis Lets + Nvvox Lovor + AG1oU LGIoU

(®)

Stage 3: Joint fine-tuning Unfreeze the LoRA
adapters, the VLM-guided cross-attention module,
and the MLP detection head, while the vision en-
coder remains frozen. Then jointly optimize the
token-prediction and detection objectives.

L = Mok Lok + Ndet Ladet 9

3.4 Dataset Formulation

BioSci-Fig is a large, manually curated dataset of
7,174 compound figures drawn from open-access
scientific publications. A team of three annota-
tors used Label Studio to place 43,183 precise
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Figure 4: Three-stage training of FigEx.

bounding boxes, ensuring that each subfigure la-
bel (A-Z, a-z) falls entirely within its correspond-
ing region. Annotation was especially challenging
due to ambiguous panel borders, overlapping ele-
ments, and diverse layout styles, requiring rigorous
cross-checking to maintain consistency and accu-
racy across all figures. This intensive effort yields
high-quality ground truth for subfigure detection
bounding boxes in complex scientific contexts.

In addition to BioSci-Fig, we train and evalu-
ate our model on MedICaT, which provides 2,089
human-verified compound figures with annotated
captions and bounding boxes. For BioSci-Fig, we
split each joint caption into fine-grained subcap-
tions using GPT-4.1 with the prompt in Appendix A
and manually verify every split to guarantee cor-
rect alignment. We then filter both datasets to retain
only figures labeled A-Z or a-z and divide each
into training, validation, and test sets in an 8:1:1
ratio as shown in Table 1.

Dataset Train Validation Test
MedICaT 1,671 209 209
BioSci-Fig 5,740 717 717

Table 1: Number of compound figures per split (train,
validation, test) for MedICaT and BioSci-Fig.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate subfigure detection by comparing pre-
dicted and ground-truth bounding boxes. Since the
subfigure label counts in the MedICaT subset and
BioSci-Fig follow a long-tailed distribution shown
in Appendix C, we employ both standard Average
Precision (AP) metrics and long-tail-aware metrics

using the Detectron2 LVIS evaluation (Wu et al.,
2019).

We report AP®, AP%, and AP? to evaluate over-
all detection quality. The metric AP" averages
precision across IoU thresholds from 0.5 to 0.95
in increments of 0.05. To assess performance un-
der class imbalance, we use long-tailed-aware met-
rics APy, AP, and AP,. These metrics follow the
same IoU averaging scheme as AP° but compute
precision separately for frequent labels, common
labels and rare labels as described by Dong et al
and Zhang et al (Dong et al., 2023; Zhang et al.,
2023). In our setup, subfigure labels A through D
are considered frequent, E through H are common
and all others are rare.

To evaluate subcaption quality, we use
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004)
and METEOR (Banerjee and Lavie, 2005) to mea-
sure lexical overlap between generated and refer-
ence text. We also include SPICE (Anderson et al.,
2016) and BERTScore (Zhang et al., 2019) to as-
sess semantic similarity. SPICE parses captions
into scene graphs and compares semantic propo-
sitions, while BERTScore computes token-level
cosine similarity between contextual embeddings.

4.2 Hyperparameters

We reference the hyperparameter settings from
Lenna (Wei et al., 2025) and adjust them on our
validation set.

In stage 1, we train the LoRA adapters for 10
epochs with a learning rate of 1 x 107> and batch
size 1. In stage 2, we fine-tune the vision encoder
and MLP for 50 epochs with a learning rate of
5 x 1079, batch size 1 and gradient accumulation
of 8 steps. In stage 3, we jointly fine-tune the model
for 20 epochs using a learning rate of 1 x 10~ and
batch size 1. We use AdamW as the optimizer and
run all experiments on two A100 80 GB GPUs.
The Ais, Avbozs AGIolU> Mok and Ages are set to 1,
5,2,0.5,0.5.

4.3 Comparison with Existing Methods

4.3.1 Evaluation of Subfigure Detection

We evaluate FigEx-7B against six established base-
lines shown in Table 2. YOLO11n and YOLO111
represent lightweight and large anchor-free detec-
tors. YOLOS-Ti, YOLOS-S and YOLOS-B scale a
vision transformer backbone from 6 M to 88 M pa-
rameters, providing a pure-vision transformer refer-
ence. Grounding DINO couples a Swin-T encoder
with text prompts and therefore serves as a strong
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Model Vision Backbone | Dataset AP? AP, AP AP, AP, APy
YOLOl1In / 0.052 0.065 0.054 0 0 0.110
YOLOLI11 / 0.156 0.160 0.160 0 0 0.334
YOLOS-Ti DeiT-Ti 0.155 0.183 0.168 0 0 0.332
YOLOS-S DeiT-S MedICaT | 0.156 0.188 0.180 0 0.003 0.332
YOLOS-B DeiT-B 0.150 0.170 0.157 0 0 0.321

Grounding DINO Swin-T 0.165 0.169 0.167 0 0.021 0.332
FigEx-7B DeiT-S 0.175 0.203 0.199 0 0.024 0.351
YOLO11n / 0.542 0.662 0.568 0.502 0.643 0.511
YOLOL11 / 0.557 0.645 0.583 0.519 0.625 0.555
YOLOS-Ti DeiT-Ti 0.370 0.486 0.416 0.176 0.417 0.663
YOLOS-S DeiT-S BioSci-Fig | 0.512 0.630 0.579 0.341 0.579 0.744
YOLOS-B DeiT-B 0.537 0.649 0.599 0.347 0.643 0.763

Grounding DINO Swin-T 0.572 0.601 0.600 0.437 0.683 0.697
FigEx-7B DeiT-S 0.595 0.753 0.687 0.463 0.655 0.767

Table 2: Subfigure detection results on MedICaT and BioSci-Fig. We report AP®, APY,, AP%, and AP,, AP.,
AP (rare, common, frequent). Baselines (YOLO11, YOLOS, Grounding DINO) are compared with FigEx-7B.

Bold indicates the best value in each column.

vision-language baseline. We compare FigEx-7B
with baselines on the MedICaT and BioSci-Fig
datasets.

On MedICaT, FigEx-7B achieves AP5bO of 0.203,
AP of 0.199 and AP® of 0.175, surpassing
Grounding DINO by 0.034 in AP%), 0.032 in AP
and 0.010 in APP. The long-tail metric AP for
frequent subfigures rises from 0.332 to 0.351 while
the AP, remains at 0.000, reflecting the challenge
of detecting rare labels in a small dataset. These
results show that both FigEx-7B and Grounding
DINO gain significant improvements on common
subfigures and that FigEx-7B also leads on fre-
quent subfigures. Although Grounding DINO out-
performs vision-only detectors in overall AP?, its
advantage comes almost entirely from common
samples and it offers no clear benefit on frequent
subfigures, limiting its practical impact. In contrast,
FigEx-7B outperforms all baselines consistently
across both frequent and common subfigures.

On BioSci-Fig, FigEx-7B records APE’))O of 0.753,
AP? of 0.687 and AP? of 0.595, outperforming
YOLOL111 by 0.108 in AP, 0.104 in APY% and
0.038 in AP®. The AP; increases from 0.555 to
0.767, while performance on rare categories re-
mains comparable. Although YOLOS-B narrows
the gap in AP, when more training examples are
available, it still falls behind on rare subfigures.
This shows that text input and vision-language en-
hanced features give a clear advantage for detecting
infrequent subfigures that are underrepresented in
the data. We also find that transformer-based de-
tectors outperform YOLO11 models on frequent

subfigures while YOLOI11 excels on rare subfig-
ures, demonstrating the higher data demand of
transformer architectures. In practical document
analysis tasks where frequent subfigures are the
most significant, FigEx-7B leads on frequent, is
competitive on common, and improves rare over
pure-vision transformers.

We further observe that the larger sample size
in BioSci-Fig raises the baseline performance of
pure-vision models, yet the gains from FigEx-7B
remain robust across both dataset scales. The per-
sistent advantage on rare subfigures underscores the
value of language-guided features for edge cases
and suggests that future work should explore tar-
geted augmentation of rare classes and deeper text
integration to close the remaining gaps.

4.3.2 Evaluation of Caption Separation

We compare FigEx-7B with zero-shot Llama mod-
els of various sizes including the text-only Llama-
3.1-8B, the multimodal Llama-3.2-11B and the
text-only Llama-2-13B on MedICaT and BioSci-
Fig shown in Table 3.

On MedICaT, FigEx-7B leads across most met-
rics. ROUGE-1 climbs to 0.382, surpassing
Llama-2-13B by 0.035 and Llama-3.1-8B by 0.060.
ROUGE-2 improves from 0.285 to 0.340 and
ROUGE-L from 0.324 to 0.366. BLEU reaches
0.157, closely matching the 0.160 of Llama-2-
13B and clearly outpacing Llama-3.2-11B at 0.133.
SPICE rises from 0.277 to 0.332, and BERTScore
increases from 0.858 to 0.878. These gains illus-
trate that incorporating visual context through mul-
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Model ‘ Dataset BLEU ROUGE-1 ROUGE-2 ROUGE-L METEOR  SPICE  BERTScore

Llama-3.1-8B 0.156 0.322 0.271 0.307 0.182 0.238 0.764
Llama-3.2-11B MedICaT 0.133 0.311 0.260 0.298 0.156 0.284 0.857
Llama-2-13B 0.160 0.347 0.285 0.324 0.274 0.277 0.858
FigEx-7B 0.157 0.382 0.340 0.366 0.204 0.332 0.878
Llama-3.1-8B 0.237 0.437 0.353 0.402 0.239 0.379 0.871
Llama-3.2-11B BioSci-Fi 0.183 0.351 0.274 0.319 0.156 0.267 0.849
Llama-2-13B £ 0.257 0.445 0.368 0.415 0.243 0.385 0.859
FigEx-7B 0.722 0.809 0.777 0.798 0.492 0.779 0.958

Table 3: Caption separation on MedICaT and BioSci-Fig. We report BLEU, ROUGE-1/2/L, METEOR, SPICE, and

BERTScore. Bold marks the best value in each column.

timodal fine-tuning helps smaller models match or
surpass larger, text-only baselines when training
data are limited. The improvement in semantic met-
rics like SPICE and BERTScore further indicates
that visual grounding contributes to more accurate
and meaningful caption separation, not merely im-
proved lexical matching.

On BioSci-Fig, the performance gap expands
significantly. FigEx-7B attains a BLEU of 0.722,
nearly triple the 0.257 achieved by Llama-2-13B,
the best-performing baseline. ROUGE-1 reaches
0.809, ROUGE-2 climbs to 0.777, and ROUGE-L
reaches 0.798, meaning each metric exceeds the
baselines by a wide margin. Additionally, ME-
TEOR improves dramatically from 0.243 to 0.492,
and SPICE nearly doubles, rising from 0.385 to
0.779. BERTScore, reflecting semantic precision,
climbs to an impressive 0.958. The consistent
lead across both lexical-overlap metrics like BLEU,
ROUGE and METEOR, and semantic-focused met-
rics like SPICE and BERTScore underscores that
FigEx-7B learns both precise textual alignment
and deeper semantic understanding through visual
grounding.

We further compare FigEx-7B with GPT-4.1
nano and GPT-4.1 mini on both datasets in Figure 5.
On MedICaT, FigEx-7B underperforms compared
to GPT-4.1 variants across all metrics, indicating
limitations in its ability to match the language-
generation capabilities of GPT-based models with
limited training data. In particular, GPT-4.1 mini
exhibits notable superiority, outperforming both
GPT-4.1 nano and FigEx-7B significantly in BLEU,
ROUGE, METEOR, SPICE, and BERTScore met-
rics.

Conversely, on the larger BioSci-Fig dataset,
FigEx-7B notably surpasses both GPT-4.1 nano
and GPT-4.1 mini across every evaluated metric.
Specifically, FigEx-7B achieves substantial im-

I GPT-4.1 nano
W GPT-4.1 mini

087 FigEx-7B

Score

Q}\B (‘I\ Q}Q« Qf\) OQ‘ \CQ) Oie‘
% \50 06 00 6‘@ N <S¢
P O O W &

Metrics

(a) Figex-7B vs. GPT-4.1 nano/mini on MedICaT

1.0 HEE GPT-4.1 nano
[ GPT-4.1 mini
I FigEx-7B

0.8

Score

0.6 1

0.4

O A 2 Y * Y &
AR AINTC C R\ SRR S
MR Q,@‘?S%

Metrics

(b) FigEx-7B vs. GPT-4.1 nano/mini on BioSci-Fig

Figure 5: Caption separation on MedICaT (a) and
BioSci-Fig (b). Bars compare GPT-4.1 nano, GPT-4.1
mini, and FigEx-7B over BLEU, ROUGE-1/2/L, ME-
TEOR, SPICE, and BERTScore.

provements in BLEU, ROUGE, METEOR, SPICE,
and BERTScore, demonstrating robust perfor-
mance gains in both lexical-overlap and semantics-
oriented metrics. These findings suggest that mul-
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Model | Dataset | AP’ AP}, AP} AP, AP, APy
FigEx-7B (VLM-guided) 0165  0.197 0192 0 0.013 0341
FigEx-7B (Text) MedICaT | 0.166  0.198  0.189 0 0.041 0316
FigEx-7B 0.175 0203 0.199 0 0.024  0.351
FigEx-7B (VLM-guided) 0528 0686 0618 0360  0.608  0.741
FigEx-7B (Text) BioSci-Fig | 0535 0672 0613 0374 0610 0741
FigEx-7B 0595 0753 0.687 0463  0.655  0.767

Table 4: Ablation of FigEx-7B variants on MedICaT and BioSci-Fig. We report AP®, AP, AP, and AP,, AP.,
APf (rare, common, frequent). Bold marks the best value in each column.

timodal fine-tuning enables FigEx-7B to signifi-
cantly exceed the caption-separation performance
of lightweight GPT-4.1 variants when training sam-
ples reach approximately 5,740 or more.

These observations highlight that under data-
limited conditions, FigEx-7B’s fine-tuned perfor-
mance remains weaker than zero-shot GPT-based
models. However, with an increased number of an-
notated examples, such as the 5,740 training sam-
ples available in BioSci-Fig, FigEx-7B clearly out-
performs lightweight GPT-4.1 models, indicating
that moderate-sized training datasets are sufficient
for multimodal methods to surpass lightweight
GPT-4.1 variants. Second, BioSci-Fig captions are
substantially longer and richer than those in Med-
ICaT, implying that FigEx-7B’s strength may lie
particularly in handling longer and more complex
captions. Future studies should further investigate
how caption length and complexity specifically in-
fluence the relative advantages of vision-language
integration.

4.3.3 Ablation Study

Table 4 compares three variants of FigEx-7B to
isolate the impact of language and vision features.
The VLM-guided branch variant keeps only the
VLM-guided detection token path, removing all
text cross-attention while the text-only branch vari-
ant keeps only the caption cross-attention branch,
discarding the VLM-guided detection token. On
MedICaT, the full model achieves AP of 0.175
which is 0.010 higher than the VLM-guided branch
variant at 0.165 and 0.009 higher than the text-only
variant at 0.166. The AP, for the full model is
0.024 which lies between the VLM-guided branch
score of 0.013 and the text-only score of 0.041.
These results show that combining VLM-guided
features and textual cues preserves the precise local-
ization of the complementary gains without losing
the detection strength of the VLM stream.

On BioSci-Fig, the combined model records

AP?, of 0.753 and AP of 0.687, exceeding the
VLM-guided variant by 0.067 and 0.069 respec-
tively, and AP® of 0.595, which is 0.067 above
VLM-guided and 0.060 above text-only. The AP,
rises to 0.463 compared with 0.360 for VLM-
guided and 0.374 for text-only, while the APy
climbs to 0.767. These gains reflect the comple-
mentary strengths of the two branches.

Our two-step attention first attends to associate
each subcaption token with the VLM-guided spa-
tial features, and then fuses the resulting semantic
signal into the image feature map before detection.
This simple fusion makes the detector focus on
regions that are both visually salient and semanti-
cally meaningful, delivering steady improvements
across datasets and effectively handling long-tail
imbalances in scientific figure layouts.

5 Conclusion

In this paper, we propose FigEx-7B, a compact
vision-language model for aligned extraction of
scientific figures and captions. The architecture
combines a lightweight ViT backbone with a vision-
language model, showing that careful multimodal
design can match or surpass much larger single-
modality systems for object detection and text sepa-
ration tasks. To foster progress in compound figure
analysis, we release BioSci-Fig, a curated dataset
of 7,174 scientific figures with precise bounding
boxes and aligned subcaptions, providing a new
benchmark for fine-grained document understand-
ing. Our experiments reveal that VLM-guided spa-
tial features and textual cues are complementary. In
addition, moderate amounts of paired data enable
multimodal fine-tuning to outperform larger mod-
els, and language guidance is especially valuable
for rare or ambiguous panels.
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Ethics Statement

BioSci-Fig figures were mined from open-access
PubMed Central (PMC) articles in the biomedical
literature and annotated by our team without involv-
ing any private or sensitive personal data. We note
that public checkpoints may have been exposed
to some evaluation samples during pre-training,
which could slightly inflate baseline results.

Limitation

Our work is confined to subfigure detection and
caption separation and does not assess open-ended
multimodal tasks such as visual question answering
or iterative subcaption refinement, and since all
experiments are conducted on biomedical figures
like MedICaT and BioSci-Fig, the model’s ability
to generalize to other domains, such as engineering
diagrams, remains unverified.
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A Prompt for Zero-Shot Caption
Separation

The prompt is inspired by the PathAsst prompt (Sun
etal., 2024).

Given a caption of an image containing sub-
images, please decompose the caption in accor-
dance with each sub-image. Be sure to adhere
to the following guidelines:

1. Preserve the original wording of the caption.
Refrain from adding new information, sum-
maries, or introductions.

2. Omit references to the index or number of
the sub-images, such as xx), (xx), left, right,
etc.

3. There might be a common caption shared
among all sub-images; please incorporate it into
each sub-image’s caption.

4. The final output must use the following
subcaption format:

A: <original or combined caption text for sub-
image A>

B: <original or combined caption text for sub-
image B>

C: <...etc...>

Input Caption: {caption}

Output:

B Annotation

A postdoc and two graduate students manually an-
notated compound figures retrieved via the PMC
API in Label Studio (Tkachenko et al., 2020-2025).

B.1 Annotation Instructions
Annotators should draw a bounding box around
each subfigure and include the subfigure label.

B.2 Inter-Annotator Agreement (IAA)

Three annotators labeled bounding boxes on 7,174
compound figures. Table 5 shows Cohen’s kappa
scores (Cohen, 1960) between annotator pairs.

A B C
A / 0.9500 0.9000
B 0.9221 / 0.8916
C 0.8911 0.8825 /

Table 5: Inter-annotator agreement (Cohen’s k).
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D Example

Caption: Single-cell level clustering in spatial tran-
scriptomics by STIE. Cell type specific transcrip-
tomic signature learning from 10X Visium mouse
brain hippocampus FFPE (a) and 10X Visium hu-
man breast cancer FFPE (b). Spot-level clustering
by K-means, SpaGCN, MUSE, subspot-level clus-
tering by BayesSpace and single-cell-level cluster-
ing by STIE on 10X Visium FFPE mouse brain
hippocampus (c), mouse brain cortex (e) and hu-
man breast cancer (g). Cell type deconvolution
of spot-, subspot-, and single-cell-level clustering-
derived CAGE in the mouse brain hippocampus (d),
mouse brain cortex (f), and human breast cancer
(h). For the mouse brain cortex, the cell types in
the transcriptomic signature, which are not cortex
layers and have small proportions, are not shown
in the barplot. The box plot (h) represents the de-
convoluted proportion of 9 cell types, where center
line represents median, lower and upper hinges rep-
resent first and third quartiles, and whiskers extend
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from hinge to £1.5 x IQR. The p-value was calcu-
lated based on one-sided Wilcoxon signed-rank test
without adjustment for multiple comparisons. i The
UMAP plot of human breast cancer scRNA-seq
data from 26 primary tumors. The top panel is the
original cell typing of 10,060 single cells, and the
bottom panel is the subset of cells that are mapped
to the six STIE clusters. Spot-level clustering by
K-means (left), SpaGCN (middle), and single-cell-
level clustering by STIE (right) on the simulated
high-resolution spot spatial transcriptome data of
the mouse brain hippocampus (j) and human breast
cancer (m). Cell type deconvolution of spot- and
single-cell-level clustering-derived CAGE in the
mouse brain hippocampus (k) and human breast
cancer (n). 1, o The consistency table of single-
cell clusters between the simulated high-resolution
spot-based STIE clustering and the original low-
resolution spot-based STIE clustering as ground
truth of the mouse brain hippocampus (c) and hu-
man breast cancer (g). Source data are provided as
a Source Data file. (Zhu et al., 2024)

GCN ML
‘f| o ||| ii|| i’ nEE
s e u .
“s it uuu:-zuan:u 12348
Gl type prop
fam— "1'"7"'
E E
A1
snz«l - i—l
x
Coll type
MUSE sns B L2or T I
= [ %) b
LS ‘ 11

HT 123455 12305

mLsPT
e ERE
=

lBod-
III|II -H“

lelvlll
“ T25%s 0 Mo

:é IMII

: '

s \'f"

3 r
a,,z.‘ el &
| ey Y
;{ > i

High resolion simulation (10um spot dismeter)

g I SR )
D sl
Y = = Obay
3o NiTs THi0en 1948,0 4 55 g/

Naw call cluster on high-rus spat

Figure 7: Example compound figure with human-verified subfigure boxes and labels (A-O).
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Subcaptions:

* A: Cell-type signature matrix learned from
10X Visium mouse brain hippocampus FFPE.

* B: Cell-type signature matrix learned from
10X Visium human breast-cancer FFPE.

* C: Spot-level clustering by K-means,
SpaGCN, MUSE; sub-spot-level clustering by
BayesSpace; and single-cell-level clustering
by STIE on 10X Visium FFPE mouse brain
hippocampus.

* D: Cell-type deconvolution of spot-, sub-spot-,
and single-cell-level clustering-derived CAGE
in the mouse brain hippocampus.

* E: Spot-level clustering by K-means,
SpaGCN, MUSE; sub-spot-level clustering by
BayesSpace; and single-cell-level clustering
by STIE on 10X Visium FFPE mouse brain
cortex.

¢ F: Cell-type deconvolution of spot-, sub-spot-,
and single-cell-level clustering-derived CAGE
in the mouse brain cortex (rare non-cortical
cell types omitted from barplot).

* G: Spot-level clustering by K-means and
SpaGCN; sub-spot-level clustering by
BayesSpace; and single-cell-level clustering
by STIE on 10X Visium FFPE human breast
cancer.

* H: Cell-type deconvolution of spot-, sub-spot-,
and single-cell-level clustering-derived CAGE
in human breast cancer. The box plot (h)
represents the deconvoluted proportion of 9
cell types, where center line represents me-
dian, lower and upper hinges represent first
and third quartiles, and whiskers extend from
hinge to 1.5 x IQR. The p-value was cal-
culated based on one-sided Wilcoxon signed-
rank test without adjustment for multiple com-
parisons.

* I: The UMAP plot of human breast cancer
scRNA-seq data from 26 primary tumors. The
top panel is the original cell typing of 10,060
single cells, and the bottom panel is the sub-
set of cells that are mapped to the six STIE
clusters.
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* J: Spot-level clustering by K-means (left),
SpaGCN (middle), and single-cell-level clus-
tering by STIE (right) on the simulated high-
resolution spot spatial transcriptome data of
the mouse brain hippocampus.

* K: Cell-type deconvolution of spot- and
single-cell-level clustering-derived CAGE in
the simulated high-resolution mouse hip-
pocampus dataset.

* L: The consistency table of single-cell clus-
ters between the simulated high-resolution
spot-based STIE clustering and the original
low-resolution spot-based STIE clustering as
ground truth of the mouse hippocampus.

* M: Spot-level clustering by K-means (left),
SpaGCN (middle), and single-cell-level clus-
tering by STIE (right) on the simulated high-
resolution spot spatial transcriptome data of
the human breast-cancer spatial transcrip-
tomes.

* N: Cell-type deconvolution of spot- and
single-cell-level clustering-derived CAGE in
the simulated high-resolution human breast-
cancer dataset.

* O: The consistency table of single-cell clus-
ters between the simulated high-resolution
spot-based STIE clustering and the original
low-resolution spot-based STIE clustering as
ground truth of human breast cancer.



