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Abstract

Existing alignment methods for preference op-
timization of large language models (LLMs)
aim to enhance model performance by uti-
lizing pairs of positive and negative samples.
However, due to the limited capacity of mod-
els in scoring or generating responses, the
quality of positive and negative samples may
become similar during training, which com-
plicates optimization for preference learning.
To address this issue, we introduce SeaPO, a
Strategic Error Amplification method that lever-
ages three error types commonly occurring in
LLMs to introduce specific error patterns into
the model Preference Optimization. This strat-
egy ensures that negative samples are more er-
roneous than positive samples and preference-
based training is employed to mitigate the oc-
currence of these errors, thereby enhancing
model performance. Evaluations across five ca-
pability dimensions and different model scales
(1.5B to 14B) demonstrate that the generated
data significantly improved overall model per-
formance, particularly in terms of truthfulness,
with improvements of 5-10 percentage points
observed. Further analysis reveals that task per-
formance varies depending on the error types
introduced. Injecting the most common error
types improves performance in related tasks,
while a mix of error types leads to a broader
performance enhancement: most tasks show
stable improvements, while a few tasks exhibit
significant gains.

1 Introduction

Since the advent of GPT4 (OpenAl, 2023), data
have become the major affect factor in large lan-
guage models (LLMs) of capability (Wang et al.,
2023; Qi et al., 2023; Deng et al., 2024). Extensive
research has explored various aspects of data, in-
cluding knowledge distillation (Peng et al., 2023;
Rao et al., 2023a,b; Bao et al., 2023; Yang et al.,
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Figure 1: Due to the limitations of the reward model and
the sampling, the rejection may be as good as the cho-
sen one, making preference-based optimization more
difficult. In the vanilla approach, positive and negative
samples are obtained through multiple sampling and a
scoring model, which are required to identify positive
and negative samples. In contrast, our method only re-
quires introducing specific error types to the original
responses without the need for rejection sampling.

2024a), generation (Zhang et al., 2025; Yang et al.,
2025), filtering (Jiang et al., 2023; Rao et al., 2025),
selection (Chen et al., 2024a; Xiao et al., 2024),
and training (Rao et al., 2024). Past work primar-
ily focused on optimizing samples in the super-
vised fine-tuning phase, i.e., improving the qual-
ity (Longpre et al., 2023; Wei et al., 2022; Xie et al.,
2023; Chen et al., 2024a; Touvron et al., 2023;
Dubey et al., 2024), diversity (Xu et al., 2023) and
length (Zhao et al., 2024a) of the training samples.
Recent work has also explored the effect of data in
DPO (Rafailov et al., 2023), using methods such
as rejection sampling (Yuan et al., 2023; Cui et al.,
2024), iteration of negative samples (Chen et al.,
2024b; Dong et al., 2025) (which progressively im-
proves the quality of negative samples), and apply-
ing constraints to prevent overfitting the model on
existing data (Zhao et al., 2024b), including length
constraints (Meng et al., 2024; Han et al., 2024)
and regularization constraints (Pal et al., 2024).
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However, due to the inherent limitations of a
model’s capabilities (Jiang et al., 2023; Bai et al.,
2023; Zhu et al., 2024), achieving human-like pre-
cision in specific tasks (Zhao et al., 2024c¢), such
as evaluating sentence quality or generating ac-
curate responses (Wei et al., 2025; Han et al.,
2025) to complex questions, remains challenging.
This results in scoring models potentially misjudg-
ing (Zhao et al., 2024d, 2025) positive and negative
samples, leading to minimal differences between
them and, consequently, difficulties in preference-
based training, which can result in potential logical
or hallucination generation.

To address this challenge, we propose SeaPO,
which utilizes error-injected negative samples that
have been largely overlooked in prior studies.
Specifically, we define three strategic errors com-
monly occurring in LLMs and introduce a straight-
forward error-injected negative sample generation
method to produce these target error types. Af-
ter that, SeaPO employs an error-focused prefer-
ence optimization objective, aiming to reduce the
probability of negative samples and, in turn, mini-
mize the likelihood of the introduced strategic er-
rors, thereby enhancing overall model performance.
SeaPO reduces the dependence on powerful mod-
els, requiring only minimal error injection ability
and minimizes computational overhead by elimi-
nating the scoring process, as shown in Figure 1.

Through extensive experimental validation, we
demonstrate that SeaPO effectively generates more
erroneous samples compared to the original nega-
tive samples, thereby enhancing both overall and
specific model capabilities, such as mathematical
reasoning, code solving, and truthfulness, through
negative sample augmentation with these strate-
gic errors. The results show improvements of
up to 18.8% in Llama3-8B-Instruct and 12.3% in
Qwen2.5-7B-Instruct on truthfulness, surpassing
existing methods such as Cui et al. (2024). Addi-
tionally, ablation experiments highlight the signifi-
cance of both error definition and error injection.

Our main contributions are as follows:

* We introduce SeaPO, which innovatively uti-
lizes self-rewritten negative samples with pref-
erence optimiztation, effectively reducing the
occurrence of undesirable error modes (§3).

* SeaPO demonstrates exceptional versatility by
achieving strong performance across a wide
range of datasets and model scales (1.5B to

14B), proving its robustness and scalability in
diverse settings (§4).

* Our exploration of error definitions and the
error injection reveals the impact of negative
sample diversity, quality, and the severity of
their errors on the final performance (§5).

2 Related Work

2.1 Preference Learning Data

Many studies (Guo et al., 2024; Li et al., 2024;
Chen et al., 2024b; Kim et al., 2024a) have recog-
nized the value of self-generated data for model
enhancement, typically using iterative improve-
ment (Liang et al., 2024; Chen et al., 2024b; Dong
et al., 2025) or self-rewriting (Li et al., 2024) to re-
fine training sample quality and boost model perfor-
mance. UltraFeedback (Cui et al., 2024) constructs
preference datasets via multi-model rejection sam-
pling, selecting the highest-scoring response as
positive and randomly rejecting others as nega-
tive. While existing methods focus on generating
more correct answers, they struggle to improve
the quality of erroneous samples (Huang et al.,
2024; Li et al., 2024). Notably, Huang et al. (2023)
leverages the HHH Criteria to construct credibility-
focused incorrect answers, but this approach is
limited to Truthful QA and not validated for rea-
soning or mathematical tasks. Contemporaneous
work (Xu et al., 2024) randomly introduced errors
to enhance the results of a single task like math.
SeaPO introduces specific types of errors, improv-
ing the performance of tasks prone to such errors.

2.2 Preference Learning Algorithm

Preference learning trains models to align outputs
with human preferences or goals, often using tech-
niques like reward shaping or reinforcement learn-
ing to optimize performance and minimize unex-
pected behaviors. Rafailov et al. (2023) propose Di-
rect Preference Optimization (DPO) to efficiently
train large models for knowledge alignment us-
ing preference rankings instead of reward models.
DPO optimizes classification loss from preference
data, making implementing it simpler than rein-
forcement learning from human feedback. Recent
improvements include: Smaug (Pal et al., 2024)
uses the addition of regularity to improve the ef-
fectiveness of DPO. ORPO (Hong et al., 2024)
strongly rewards the choice of answers by modify-
ing the optimisation objective as well as removing
the reference model. SimPO (Meng et al., 2024)
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Strategic Errors

Descriptions

Tasks where This Error Commonly Occurs

Correctness

Logic

Hallucination

Mistakes related to factual accuracy or calculations, such
as incorrect facts, reasoning errors, translation issues, or
improper use of tools and formulas.

Issues where the reasoning or argumentation is flawed,
such as contradictions, unsupported conclusions, circu-
lar reasoning, or failure to follow a logical sequence in
problem-solving or explanation.

Instances where the model generates information that is
completely fabricated or false, without basis in reality or
relevant data, often resulting in the creation of nonexis-
tent facts or misleading details.

Mathematical Calculation, Fact Verification, Text Sum-
marization

Mathematical Reasoning, Commonsense Reasoning, Al-
gorithm Design

Knowledge-based QA, Code Generation, Machine Trans-
lation

Table 1: Strategic errors and their corresponding task types.

reconstructs the training objective by adopting the
length regularity reward. KTO (Ethayarajh et al.,
2024) utilizes prospect theory to optimize model
alignment with human feedback by directly max-
imizing a utility function based on binary signals,
minimizing the need for preference data. These
algorithms sequentially increase the probability of
positive samples and decrease the probability of
negative samples. We focus on the data, leveraging
it to optimize the final outcome by applying the
same optimization method across varying datasets.

3 Strategic Error Amplification

3.1 Overview

In Figure 2, SeaPO consists of two components:
Error-Injected Negative Sample Generation and
Error-Focused Preference Optimization. 1) Er-
ror Generation: We predefine common LLM er-
ror types (correctness, logic, hallucination, termed
Strategic Errors) and use the target model itself to
post-edit training responses, intentionally injecting
errors in specified proportions to address targeted
capacity gaps. 2) Preference Optimization: Using
KTO, we optimize both original positive samples
and error-injected negative samples to refine the
model’s ability to distinguish correct/incorrect re-
sponses, enhancing accurate answer generation.

3.2 Definition of Strategic Errors

Model development often involves analyzing prob-
lematic cases in specific scenarios to identify the
types of issues that need to be addressed. It is
assumed that this process has been analyzed man-
ually. We define strategic errors as inaccuracies,
logical flaws, or misleading outputs that frequently
occur in the responses generated by LLMs. These
errors are systematically identified based on com-

mon mistakes frequently observed in model out-
puts, enabling a more nuanced evaluation of their
performance and robustness. Specifically, we cat-
egorize these strategic errors into three primary
types: correctness errors, logic errors, and halluci-
nations. Table 1 provides a detailed classification
of these error types and highlights the tasks most
susceptible to each category, offering a comprehen-
sive overview of strategic errors and their relevance
across different tasks. By systematically identify-
ing and analyzing these strategic errors, we aim
to deepen our understanding of the limitations and
capabilities of LLMs across various task domains.

3.3 Error-Injected Negative Sample
Generation

The goal of SeaPO is to suppress the model’s ten-
dency to commit specific types of errors when an-
swering questions in task-specific scenarios. To
achieve this, constructing error-injected samples
that closely resemble real-world mistakes becomes
crucial. Negative samples that exhibit a moder-
ate level of error, neither excessively incorrect nor
overly accurate, can enhance the final outcomes
of preference training. We generate negative sam-
ples by leveraging the training set and predefined
error types. Specifically, we prompt the LLM to
modify the original correct answers by injecting er-
rors corresponding to each identified error category,
with the prompt we used detailed in Appendix A.1.
This process can be formalized as follows: Let
& ={ec, e, e} denote the set of predefined error
types. For a given question x and its correct an-
swer y, we define a specific error instance e € £.
The error-injected answer (negative sample) is then
generated using the following function:

Qerror = Injector(:c, Y, 6), (D
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Step 1. Error-Injected Negative Sample Generation

Post-edit the training set to deliberately insert errors into responses
based on predefined error types:
{Strategic Errors, Source (x, y)} => {Negative Samples}

N
[ Question x: Why do people need to drink water every day? J
Answer y: Water helps the body function properly, like
regulating temperature and removing waste.

|
|
|
| ] source (x, y)
|
|
|

[strategic Errors: = Correctness Logic Hallucination )

a Logic Error: "Water is wet, so drinking it makes your body wetter." |

— q
3 Negative Samples

Correctness Error: People only need to drink water once a week.
(Factually wrong: Humans need water daily.)

® (Nonsensical reasoning: "Wetness" is irrelevant to hydration.)

Hallucination Error: "Water contains tiny robots that fix your bones."
(Imaginary science: No robots exist in water.)

KTO: I
? L Equations 2 and 3
2 Hallucination ap — |

Figure 2: An overview of the SeaPO. The entire process consists of two parts: 1) Error-Injected Negative Sample

Generation. 2) Error-Focused Preference Optimization.

where aepror represents the answer with the injected
error, and e specifies the concrete error instance
to be introduced into the question x. The error
injection process is performed by the model itself,
guided by the injector prompt. We utilize three
distinct error types alongside the original question-
and-answer pair to systematically inject errors. In
this setup, the model generates responses tailored
to each injected error type for every question type.

While our method is straightforward, the specific
error categories are rooted in human empirical anal-
ysis. Currently, the construction of our prompts is
generated by GPT-4o (see the specific prompt for
generating the prompting words in Appendix A.1).
We also provide examples of the error-injected sam-
ples for each of the three error types in Appendix
A.2, which demonstrate the variations in the in-
jected errors across different question types. These
three types of responses address the original ques-
tion from different perspectives, yet each intention-
ally incorporates the respective error type. This
process generates diverse negative samples simu-
lating realistic errors, enhancing model robustness
in preference optimization.

3.4 Avoiding Pitfalls: Error-Focused
Preference Optimization

KTO (Ethayarajh et al., 2024) is an effective algo-
rithm that reduces the impact of negative samples in
real-world scenarios. Although acquiring prompt-
chosen-reject paired data remains challenging, it is
still possible to evaluate output acceptability. Im-
portantly, KTO’s design eliminates the requirement

for matched data pairs during training, making it
particularly well-suited for scenarios focused on er-
ror cases. Atits core, KTO is grounded in the value
function, which models human decision-making
under uncertainty. The value function captures the
phenomenon of loss aversion, where humans are
more sensitive to losses than equivalent gains. The
value of an outcome z is calculated relative to a
reference point zg, with the function exhibiting
concavity for gains and convexity for losses:

(z — 209)"
v(z; A, o, 20) = N
—A(z0 — 2)
where « controls risk attitudes, and A represents
loss aversion. The core objective of KTO is to
optimize the expected utility of model generations:

Liro(me, Tet) = Ex,y ~ D[Ny — v(re(z,y))],
3)

o WIZ) s the reward for out-

et (Y] )
put y given input x, and v(rg(x,y)) is the corre-

sponding value based on the reward. The reference
model 7f serves as a baseline distribution (instruct
model), guiding the model’s outputs while main-
taining their alignment with human expectations.

where rg(z,y) = log

3.5 Complexity Discussion

Typical negative sample construction uses rejection
sampling (Yuan et al., 2023), generating multiple
responses per problem without explicit output pat-
tern control, risking similar-quality outputs. For ex-
ample, UltraFeedback (Cui et al., 2024) randomly
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Math

Reasoning

Coding

Knowledge

Truthful

Model Method Avg.
MATH GSM BBH HumanEval MMLU MC1 MC2

Instruct 28.0 75.1 68.5 75.5 65.7 362 518 573

Llama3-8B +Vanilla  28.1 75.3 67.6 77.5 65.3 389 563 584
+SeaPO 25.8 72.2 62.9 79.5 64.7 55.0 66.1 609

Instruct 30.4 61.0 45.6 70.5 59.5 30.5 46.0 49.1

Qwen2.5-1.5B +Vanilla  27.8 56.4 434 70.5 59.2 31.5 48.0 48.1
+SeaPO 309 64.1 44.7 69.2 59.3 393 550 518

Instruct 472 72.5 67.5 88.7 72.8 424 593 643

Qwen2.5-7B +Vanilla  46.8 734 59.4 90.9 72.9 51.0 653 65.7
+SeaPO  56.5 754 67.0 88.6 72.5 60.2 709 70.2

Instruct 50.1 85.6 73.7 89.1 79.7 515 692 713

Qwen2.5-14B +Vanilla  50.1 86.8 73.1 89.2 79.7 520 69.6 715
+SeaPO 539 90.7 78.9 88.5 79.3 525 69.1 733

Table 2: Main results on multiple test sets for multiple models. The results show that our SeaPO can deliver superior
results compared to the existing method over multiple model series.

constructs negatives via multi-model inference
(Alpaca-GPT-4 (Peng et al., 2023), Llama (Dubey
et al., 2024), Vicuna (Zheng et al., 2023), >7B
params), selecting three negatives and one positive
per problem with a GPT4 scoring model, then ran-
domly pairing one negative-positive pair for train-
ing. In contrast, our method eliminates the need
for an auxiliary scoring model, drastically reducing
data construction overhead. This optimization en-
hances both construction and generation efficiency.

4 Experiments

4.1 Setup

Baseline and Models Following previous
work (Meng et al., 2024; Rafailov et al., 2023)
of preference optimization, we use UltraFeed-
back (Cui et al., 2024) including 64K prompts
and 256K responses (a prompt generates four
responses, one of which is used as a positive
sample and one of the remaining three is randomly
selected as a negative sample), as the initial dataset
for preference learning with KTO as a baseline.
We use the Qwen2.5 series (1.5B, 7B and 14B)
and Llama3-8B-Instruct as the instruction models
for our error-injecting before preference learning.
We use the Qwen2.5-7B-Instruct as the base model
for the analysis experiments.

Evaluations Math, reasoning, coding, knowl-
edge, and truthfulness are core LLM capabili-
ties, evaluated via out-domain benchmarks. In
the evaluations, we examine the model’s per-
formance in these areas, employing out-domain
benchmarks to assess its ability to assimilate

math (MATH (Hendrycks et al., 2021b) and
GSM (Cobbe et al., 2021)), executing complex
reasoning (BBH (Suzgun et al., 2023)), coding
(HumanEval (Chen et al.,, 2021)), knowledge
(MMLU (Hendrycks et al., 2021a)) and truth-
ful (Lin et al., 2022) tasks. We use the exact match
as the evaluation metric to assess the models’ abil-
ity of Math and Reasoning to provide correct an-
swers. We use the HumanEval to evaluate the mod-
els’ capability to generate functionally correct pro-
grams from docstrings, with pass@10 as the eval-
uation metric. We employ the MMLU to measure
factual knowledge, using accuracy as the evaluation
metric. For Truthful, since there are multiple cor-
rect answers, apart from standard accuracy (MC1),
we also report the ratio of likelihood sum of correct
answers overall candidate answers (MC2).

Training Details The model was trained using
a learning rate of 5 x 1079, following a cosine
decay strategy for the learning rate schedule. A per-
device batch size of 2 was used during training, and
to achieve an effective total batch size of 64, we em-
ployed gradient accumulation over 8 steps, which
optimized memory usage during training. The train-
ing process utilized a multi-GPU distributed setup
with 4 GPUs and was initialized with a random
seed of 42 for reproducibility. For optimization, we
used the Adam optimizer (Kingma and Ba, 2015)
with 31 = 0.9, B = 0.999, and ¢ = 1 x 1075,
Training proceeded for a total of 5731 steps, deter-
mined by the total number of training samples and
the batch size. Regarding the hyperparameters of
KTO, we set 8 = 0.1. Additionally, we fine-tuned
the model in all experiments using LoRA (Hu et al.,
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2022). The LoRA configuration included a rank of
8, and a scaling factor o of 16, without dropout.

4.2 Main Results

Table 2 demonstrates that constructing diverse neg-
ative samples for preference optimization is effec-
tive, as reducing the occurrence of error patterns
leads to improved model performance. Compared
to the original instruct model and UltraFeedback’s
KTO training, our SeaPO consistently outperforms
across different models, with notable improve-
ments on error-rich datasets such as MATH and
Truthful QA. For instance, Qwen2.5-7B achieves
gains of +10 points on MATH and +12 points on
Truthful QA. These improvements are consistent
across various architectures (e.g., Llama3-8B, with
a +20 point increase) and model scales. Smaller
models (<8B) benefit the most from error-type in-
jection to reduce hallucinations, while larger mod-
els (>8B) show enhanced reasoning capabilities
through the reduction of incorrect patterns.
Notable declines in some models (e.g., Qwen2.5-
1.5B 3 points in Math) may stem from low-quality
injected errors or limited capabilities, as further an-
alyzed in Tables 6 and 7. Minimal changes occur in
strong areas like coding (scores 90) and knowledge-
based MMLU. Knowledge-related capabilities are
primarily determined during the pre-training phase,
with post-training having only a limited impact,
typically resulting in changes of less than two
points (Wang et al., 2023; Yang et al., 2024b). For
code-related tasks, baseline performance is already
high, and the evaluation set contains only 164 sam-
ples, making the scores highly sensitive to indi-
vidual errors. Consequently, variations within two
points are better interpreted as random fluctuations
rather than meaningful changes. In contrast, other
tasks, such as GSM, include larger evaluation sets
(e.g., 1,319 samples), where noticeable score im-
provements (e.g., +10 points) require consistently
correct responses across many instances. These
differences in dataset size and difficulty explain the
observed score variability in code and knowledge.

5 Analysis

5.1 Analysis on Strategic Error Definition

Setup Table 3 presents a comparison of the ef-
fects of different error types across multiple tasks.
The evaluation includes baselines: ID 1 (None),
representing the original instruction-tuned model,
and ID 2 (Untargeted), which corresponds to re-

sults obtained by rewriting positive samples with-
out type-specific constraints. We report results for
three error types (IDs 3-5) and their mixed variants
(IDs 6-10). IDs 6-8 and ID 10: These involve mix-
ing responses from different question types after
injection in equal proportions, with the ratio order
specified as logic, correctness, and hallucination.
For example: ID 7 = 50% logic + 50% hallucina-
tion (a 2-type mix). ID 9: A distinct mixed variant
where responses from all three error types (logic,
correctness, hallucination) are combined to gener-
ate a single integrated type.

Effect of Different Error Types The results
show that even without introducing specific error
types, the model can still improve, but the improve-
ment is mainly concentrated in three dimensions:
MATH, BBH, and Truthfulness. When errors are
introduced in the logic or correctness type, the per-
formance in MATH, code-related tasks, and truth-
fulness will be enhanced. When introducing hallu-
cination errors, the improvement in credibility is
more significant compared to the previous two error
types. We observe that the introduction of halluci-
nations is often associated with noticeably shorter
model outputs, as illustrated in Appendix A.2. Rea-
soning tasks typically benefit from a step-by-step
thought chain approach. Such short responses can
adversely affect performance on complex reason-
ing tasks, where extended generation length is often
necessary for success. Prior studies (Li et al., 2025;
Guo et al., 2025) have emphasized that longer rea-
soning chains are positively correlated with im-
proved performance on more challenging reasoning
problems. These results demonstrate the necessity
of introducing problem types and the influence of
problem-type diversity on the comprehensive per-
formance of multiple tasks. We present additional
evaluation examples of error handling for the three
types of baseline errors in Appendix A.2, demon-
strating the effectiveness of SeaPO.

Effect of Mixing Strategy In Table 3, we con-
ducted a preliminary exploration of different error
type ratios of mixing. The underlying philosoph-
ical distinctions are reflected in the introduction
of different error types and their varying impacts
across tasks. All hallucination-related error types
lead to substantial performance improvements on
TruthfulQA, a benchmark specifically designed to
evaluate sensitivity to hallucination.

Mixing error types improves overall perfor-
mance: most average results rank top-2, and more
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ID Error Type Math Reasoning Coding Knowledge Truthful Ave.
MATH GSM BBH HumanEval MMLU MC1 MC2
1 None (Instruct)  47.2 72.5 67.5 88.7 72.8 424 593 643
2 Untargeted 56.6 70.8 68.6 87.6 729 556 674 685
3 Logic 54.5 71.8 65.2 89.0 72.7 59.5 707 69.1
4 Correctness 54.7 69.6 65.4 89.3 72.8 57.8 68.8 68.3
5  Hallucination 53.7 74.4 66.7 89.3 72.5 60.8 72.0 699
6 3+ 52.9 79.8 69.4 87.7 73.2 526 649 68.6
7 345 52.5 77.5 67.4 89.3 72.6 628 729 170.7
8 445 53.9 75.7 67.7 88.0 72.7 61.8 71.7 702
9  Mult 55.8 79.5 70.4 89.6 73.4 502 647 69.1
10 3+4+5 56.5 75.4 67.0 88.6 72.5 60.2 709 70.2

Table 3: Results for different error types on each tasks. Training on the most frequent error type improves task
performance. Math, code, and reasoning tasks, are prone to correctness and logical errors, while TruthfulQA, a
knowledge-based task, is more susceptible to hallucinations. Constructing the relevant errors enhances performance
in each task. The best results are bolded and the second best results are underlined.

Error Type Qwen2.5-72B Llama3.1-70B
Source Injected Source Injected
Logic 11,249 45,815 9,891 43,044
Correctness 12,367 43,577 10,307 38,894
Hallucination 6,515 47,069 8,582 46,995

Table 4: Comparison of error types in the original an-
swers and those after error injection. The number of
specific error types in the modified answers increased
compared to the original answers.

mixed types enhance nearly all subtasks (though
less than single-task gains, e.g., GSM/BBH for
ID 6/10). Results show that multi-error injection
(ID 9) boosts scores (+4.8 avg, +9.0 MATH, +7.0
GSM), confirming effectiveness, though ID 10 out-
performs. For generalization, we use ID 10 (full
mixing). The introduction of specific errors led to
notable improvements in the corresponding evalua-
tion results. For instance, errors involving halluci-
nation types, such as those in IDs 5, 7, 8, and 10,
resulted in significant gains compared to cases with-
out explicit hallucination injection (e.g., IDs 1 and
6), with the largest improvement nearing 10 points.
When focusing on specific capabilities, such as
mathematics and reasoning, a blend of logic and
correctness is most effective. For truthfulness, com-
bining logic with hallucination errors yields better
results. In general, mixing a broader range of error
types can lead to more comprehensive performance
improvements across various tasks.

5.2 Analysis on Error-Injected Negative
Sample Generation

Effect of Injected Error Quality To assess
whether the model’s error injection mechanism
can generate responses with specific error types
based on the original response, we conducted eval-
uations using models such as Llama3.1-70B and
Qwen2.5-72B. The results are presented in Table 4.
We employed these evaluation models to classify
responses based on the question, reference answer,
and rejection, performing binary classification to
determine if the response exhibits a specific error
type. The evaluation prompt is provided in Ap-
pendix A.1. The negative samples in the original
dataset may not consistently exhibit greater error
severity than their corresponding positive samples.
In Table 4, our generated negative samples demon-
strate a higher degree of incorrectness compared
to the original set. The presence of less erroneous
examples in the original negative samples likely
hinders the effectiveness of preference training, po-
tentially degrading overall model performance.

Table 5 presents a comparison of error correc-
tion performance across four severity levels (minor,
moderate, major, critical) and three error categories
(factual correctness, logical consistency, and hal-
lucination). The evaluation is conducted on 1,000
sampled instances using two scoring methodolo-
gies: direct absolute scoring (Kim et al., 2024b)
and relative win rate (Zheng et al., 2023), applied
to Qwen2.5-72B-Instruct and DeepSeek V3. No-
tably, the performance gap becomes substantial
only when the correction quality is critically poor,
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Qwen2.5-72B DeepSeek-V3

Score Win-Rate Score Win-Rate
UltraFeedback  6.87 - 7.09 -
Correctness 6.91 0.68 7.13 0.69
Logic 6.67 0.67 6.98 0.67
Hallucination 6.65 0.67 7.00 0.62

Minor 7.30 0.71 7.43 0.73
Moderate 7.05 0.70 7.22 0.67
Major 6.51 0.64 6.93 0.60
Critical 3.46 0.30 473 0.25

Table 5: Comparison of negative sample quality. The
negative samples with error injection show no signifi-
cant quality degradation compared to the original ones.

Error Injector

Performance Baseline

1.5B 7B (Self) 72B
MATH 472 556 56.5 55.0
GSM 725 77.0 75.4 83.5
BBH 67.5 67.6 67.0 66.1
HumanEval 88.7 86.9 88.6 88.1
MMLU 72.8 73.1 72.7 72.4
Truthful-MC1 424 4438 60.2 60.2
Truthful-MC2 593 59.8 70.9 71.7
Avg. 64.3 66.4 70.2 71.0

Table 6: Effect of Source of the Generated Error. Larger
models have stronger error-injection capabilities.

Task Baseline Minor Moderate Major Critical
MATH 472 57.3 56.7 56.6 533
GSM 72.5 64.4 67.6 70.8 62.1
BBH 67.5 67.7 68.3 68.6 69.6
HumanEval 88.7 88.2 87.7 87.6 86.0
MMLU 72.8 73.2 73.2 72.9 73.0
Truthful-MC1 424 49.8 523 55.6 45.7
Truthful-MC2 59.3 64.0 66.1 67.4 61.3
Avg. 64.3 66.4 67.4 68.5 64.4

Table 7: Comparison of the effects obtained by negative
samples with different error levels. Models with the
error level of “Major” work best, indicating that negative
samples require recognizable errors.

with direct scores dropping from 6.87 to 3.46. De-
spite this, our proposed error-specific negative sam-
ples maintain performance comparable to original
baselines across both evaluation methods and mod-
els, showing a direct score difference of no more
than 1 point and a win rate difference of no more
than 0.1. These results demonstrate that our nega-
tive samples are effective for model training with-
out compromising output quality.

Effect of Source of the Generated Error We
show in Table 6 the effect of different sizes (1.5B,
7B, and 72B) of error-injected negative samples of

RoN SeaPO

Instruct
DPO KTO DPO KTO
64.3 64.8 657 694 70.2

Table 8: Impact of optimization objectives on average
performance. “RoN” random selects one from three neg-
ative samples as the rejection (original UltraFeedback),
while SeaPO selects from the rewritten negatives.

the same model architecture on the final training
effect of the model, which shows that the models of
different sizes have different abilities to introduce
errors by prompt. This ability to introduce errors
is relatively poor for small models and strong for
large models. However, we find that even with
small models, after error injection, the model’s can
all be further improved, and the gap between these
scores is not very large, which indicates that SeaPO
is not very demanding for the ability to correct
errors, and further illustrates the robustness.

Effect of Severity of Errors Table 7 analyzes the
impact of error severity on training, classifying in-
troduced errors into four levels: Minor (few errors),
Moderate (medium errors), Major (many errors),
and Critical (almost entirely incorrect). Results
show that prompting models to introduce errors
generally improves performance via preference
learning, except for Critical-level errors, where
improvement is negligible. This highlights that
negative samples must maintain a reasonable qual-
ity for the model to distinguish errors effectively.
SeaPO achieves improvements by reducing the like-
lihood of negative samples: our negative samples
contain more errors than original responses while
maintaining comparable quality. Xu et al. (2024)
can be categorized as introducing Major errors.
Nevertheless, the performance resulting from these
randomly injected errors remains inferior to that
achieved through the introduction of targeted error
types, as implemented in SeaPO.

5.3 Analysis on Error-Injected Preference
Optimization

In Table 8, we present the average results across the
five dimensions for both the data we constructed
and the original data, evaluated under two opti-
mization objectives. DPO is more susceptible to
the influence of noisy data (Rafailov et al., 2023),
where both positive and negative samples may con-
tain correct responses, a problem that is particularly
evident in the RoN (random selection of one of the
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remaining three samples using the original dataset).
After training on the original data, the model perfor-
mance showed slight volatility, while KTO demon-
strated better generalization, with results showing a
modest improvement. However, utilizing our gener-
ated, containing more injected errors, we observed
an improvement in the DPO results (almost +4
points). When combined with KTO, which is less
sensitive to sample quality, even better performance
was achieved. This demonstrates the robustness of
SeaPO in different learning algorithms.

6 Conclusion

Due to model limitations and no explicit quality
control in preference data construction, positive
and negative samples may have similar quality; in
some cases, negative samples may even be better.
To address this issue, we propose SeaPO that explic-
itly introduces strategically defined errors. Apply-
ing preference optimization reduces error probabili-
ties and enhances overall performance. Evaluations
across five capability dimensions and multiple mod-
els (1.5B-14B) demonstrate the robustness of our
approach. These strategic errors vary depending on
the task, and targeting the most error-prone types
can significantly boost task performance.

Limitations

There are several limitations to our work. First, our
experiments are constrained by available resources,
particularly GPU memory capacity, which limits
the number of models we can test, especially at
larger scales (e.g., 70B models). Additionally, we
did not define a broader range of error types, such
as those related to grammar or safety, which could
potentially enhance the performance of specific
tasks. Another limitation is the lack of targeted
error analysis for specific task types. As a result,
the three error categories we defined may not fully
capture less common error types that occur in cer-
tain tasks. Finally, our experiments were conducted
using only one preference dataset. The quality of
positive samples in different datasets may introduce
variations in the final model results.
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A Appendix
A.1 Prompts

Multiple experiments, specifically, the results in Ta-
ble 3 and the Moderate and Major error categories
in Table 6, demonstrate that, despite the simplicity
and diversity of the prompt construction (including
both prompts with specific error types and those
without), our method consistently yields significant
performance gains. In several tasks across differ-
ent model architectures, improvements of up to 5
percentage points are observed.

We provide the prompt templates used in our
study. The first template, titled Prompt Template
for Error-Injected Negative Sample Generation,
is used for error injection. This template directs
models to deliberately modify a given response
in order to introduce a specified error type. It in-
cludes fields for the question, original response,
error type, and error description. Models are then
instructed to revise the response intentionally to
incorporate the error, without providing additional
explanation. The second template, titled Prompt
Template for Error Detection, is used for error de-
tection. This template directs evaluators to deter-
mine if a given answer contains the specified error.
Evaluators are provided with the question, answer,
error type, and error description, and are required to
respond with “yes” or “no” based on the presence
of the error, without further elaboration. The third
template, Prompt Template for Error Injection, is
used to generate responses containing injected er-
rors. The fourth template, Prompt Template for
Error Injection by Severity Level, is designed to
produce prompts corresponding to three levels of
error severity: Minor (Level 1), Moderate (Level
2), and Major (Level 3), without specifying error
types. For prompts related to evaluating the qual-
ity of generated responses, refer to the “Prompt
Scoring” and “Prompt Comparison sections”.

A.2 Case Studies

Error Injection Cases The following examples
illustrate error injection in three distinct cases.
For the correctness case, the statement “Exams
are the only way to measure a person’s knowledge”
is factually incorrect because it disregards valid
alternative assessment methods, such as course
grades, project outcomes, and portfolio reviews.
The claim that exams are the sole tool for evalua-
tion contradicts established practices in educational
assessment, making the statement inaccurate. This

error arises from providing information that does
not align with factual knowledge.

For the logic case, the misinterpretation of
Thoreau’s metaphor becomes apparent when the
response states that someone cannot keep pace be-
cause they “cannot hear the same drummer.” The
original metaphor emphasizes individuality (“hear-
ing a different drummer”), but this interpretation
shifts the meaning to one of auditory limitation. By
altering the intended message, the response loses
coherence and fails to preserve the logical struc-
ture of the argument. Such errors occur when the
reasoning process distorts or misrepresents the re-
lationships between ideas.

For the hallucination case, the fabrication of
fictional concepts like “tiny invisible fairies” and
“fairy theory” introduces imaginary elements with
no basis in reality or historical context. Associating
these fictitious ideas with Descartes’ era, despite
the absence of any scientific or historical ground-
ing, demonstrates how the model generates content
that does not exist. This type of error results from
inventing concepts or details entirely unsupported
by evidence, leading to responses that include hal-
lucinatory content.

Evaluation Cases Based on the evaluation re-
sults, we present case studies to compare the base-
line model (Qwen2.5-7B-Instruct) with our fine-
tuned model across three error categories: cor-
rectness, logic, and hallucination. In each case,
the baseline answer refers to the original model’s
output, while our answer represents the improved
model’s response. Incorrect components of the
baseline responses are highlighted in red, while
the corrected sections of our model’s responses are
also marked in red. These cases illustrate the re-
duction in errors achieved by our fine-tuned model
compared to the baseline.

For correctness errors, the baseline model incor-
rectly applied the order of operations, leading to
an erroneous result. Our model rectified this by
adhering to the correct sequence of calculations.

For logic errors, the baseline model erroneously
calculated the interest for a single phone and prop-
agated this mistake to the final result. Our model
identified and addressed the reasoning flaw.

For hallucination errors, the baseline model
misinterpreted the definition of the hypotenuse’s
height, introducing incorrect information. Our
model corrected this by applying domain-specific
knowledge.
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Prompt Template for Error-Injected Negative Sample Generation

Your task is to deliberately modify the provided response to introduce the specified error.

### Task:
Analyze the given question, original response, error type, and error description. Then, revise the
response to intentionally include the specified error.

. ¥*Question**: {question}

. **Original Response**: {response}

. **Error Type**: {error_type}

. *#*Error Description**: {error_description}

~ W -

### Instructions:

- Modify the original response to clearly incorporate the specified error.
- Do not include any explanations, notes, or other text in your output.

- Output only the revised response.

### Revised response:

Prompt Template for Error Detection

You are an Al evaluator. I will give you a question, its answer, and a specific error type with a
description. Your task is to determine if the answer contains the described error. Please respond
with "yes" if the answer contains the error and "no" if it does not. Only respond with "yes" or "no"
without any further explanation.

Question: "{question}"

Answer: "{answer}"

Error Type: "{error_type}"

Error Description: "{error_description}"

Does the answer contain the described error?

Prompt Template for Generation of Error-Injection

Please help me design a prompt in Python string format. I will input the question, its correct
answer, an error type, and a brief description of that error type. The model needs to intentionally
modify the correct answer to incorporate the specified error type, outputting only the modified
incorrect answer without any extra content. The Python string prompt should include placeholders
for the input information.

Generation of Error-Injection Prompts of Different Levels

Please help me design a prompt in the form of a Python string. I will input a question, its correct
answer, an error severity level, and a brief description of that severity level. The model needs
to intentionally modify the correct answer into an incorrect one that matches the specified error
severity. The output should only contain the modified incorrect answer, with no additional content.
The Python string prompt must include placeholders for the input information.
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Prompt Scoring

## Task: Evaluate the quality of an answer while COMPLETELY IGNORING factual errors.

## Note: The answer may contain inaccuracies or technical errors. DO NOT consider correctness
in scoring.

## Dimensions (1-10 scale): 1. Logical Structure - Organization and reasoning flow 2. Language
Fluency - Grammar and readability 3. Topic Relevance - Alignment with question intent 4. Depth -
Detail level and analysis complexity 5. Consistency - Self-contradiction check

## Input: Question: question Answer: answer

## Output Format: Single integer between 1-10 calculated as: (Round average of all dimension
scores to nearest integer)

ONLY OUTPUT THE FINAL INTEGER

Prompt Comparison

Compare two answers (A/B) while COMPLETELY IGNORING FACTUAL ERRORS. Determine
which response demonstrates superior quality in non-factual dimensions.

## Critical Rules: 1. DO NOT CONSIDER: Accuracy, technical correctness, or truthfulness
2. EVALUATE ONLY: Structural integrity of arguments Language mechanics and readability
Relevance to question intent Depth of analysis Internal consistency 3. Tie only if indistinguishable
across all dimensions

## Assessment Protocol: 1. Read both answers fully 2. Identify potential errors — Explicitly
exclude from evaluation 3. Compare dimension-by-dimension: a) Logical Structure: Which has
clearer reasoning flow? b) Language Fluency: Which is more professionally written? c) Topic
Relevance: Which stays focused on core question? d) Depth: Which provides more layered
analysis? e) Consistency: Which avoids self-contradictions? 4. Declare winner with majority
advantages

## Input: Question: {question} Answer A: {answer_a} Answer B: {answer_b}

## Output: Strictly ONE of these options: A | B | tie

DO NOT OUTPUT ANY OTHER TEXT OR EXPLANATION.

Question:
Check if the following statement is true or false:
Exams are the best way to measure a person’s knowledge

Correct answer:

False. Exams are not the only way to measure a person’s knowledge. Other ways include course
grades, project outcomes, problem-solving tasks, interview questions, portfolio reviews, and letters
of recommendation. Exams are one tool used to measure knowledge, but they should not be the
only tool relied on.

Answer injected with correctness error:

False. Exams are the only way to measure a person’s knowledge. Other methods such as course
grades, project outcomes, problem-solving tasks, interview questions, portfolio reviews, and letters
of recommendation are invalid. Exams are the definitive tool for assessing knowledge.
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Case of Logic Error Injection

Question:

Thoreau’s metaphors are highly visual. Though they’re clever and original, they aren’t far-fetched.
Thoreau takes his comparisons from nature and from other things with which he and his audience
are familiar. To be sure you understand Thoreau’s figures of speech, paraphrase the following
metaphor. Do his metaphors apply to readers today?

“If a man does not keep pace with his companions, perhaps it is because he hears a different
drummer. Let him step to the music which he hears, however measured or far away.”

Correct answer:

In this metaphor, Thoreau is suggesting that if a person doesn’t conform or fit in with others around
them, it might be because they have their own unique path and aspirations. He encourages the
individual to follow their own internal guidance and passions, no matter how different or distant it
may seem from the norm.

Thoreau’s metaphors can still apply to readers today, as it highlights the importance of individuality
and staying true to oneself in a world that often values conformity.

Answer injected with logic error:

In this metaphor, Thoreau is suggesting that if a person doesn’t keep pace with others, it is because
they are deaf to the same drummer. He encourages the individual to follow their own internal
guidance and passions, no matter how different or distant it may seem from the norm.

Case of Hallucination Error Injection

Question:

I am refering to earlier, back in Descartes age

“If a man does not keep pace with his companions, perhaps it is because he hears a different
drummer. Let him step to the music which he hears, however measured or far away.”

Correct answer:

Back in Descartes’ age, there was an idea that the physical world was composed of atoms that
were arranged in a certain way and that this arrangement formed the foundation of all knowl-
edge. This is now known as the atomic theory and it is one of the core principles of modern science.

Answer injected with hallucination error:

Back in Descartes’ age, there was an idea that the physical world was composed of tiny invisible
fairies that danced in a certain way and that this dance formed the foundation of all knowledge.
This is now known as the fairy theory and it is one of the core principles of modern science.
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Question:
Find %5 -6-7+8-2+8-(7—1).

Baseline answer:
First, we simplify the expression inside the parentheses: 7 — 1 = 6. Next, we perform the
multiplication and division from left to right:
1
— - 6-7T=-1-7T=-7,
—6
and
8:2+-8=16+8=2.

Then, we multiply the results of the two parts:
—7-2=-14.
Finally, we add the result to the remaining part of the expression:
—14+8-2=-14+16=2.

Therefore, the final answer is . Final Answer: The final answer is 2. I hope it is correct.

Our answer:
First, we simplify the expression inside the parentheses: 7 — 1 = 6. Then, we simplify the division
and multiplication: 8 - 2 = 8 = 2. So, the expression becomes

}6.6.7+2-6=—7+12=.

Final Answer: The final answer is 5. I hope it is correct.

Case of Logic Errors in Evaluation

Question:
Shiela bought five cell phones for $150 each for a 3-month installment. A 2% interest will be
charged for each unit. How much will Shiela pay each month for 3 months?

Baseline answer:

First, we need to calculate the total cost of the cell phones before interest. 5 cell phones at $150
each is 5 x 150 = $750. The interest for each cell phone is 2%, so for 5 cell phones, the total
interest is 5 x 750 x 0.02 = $75. The total cost including interest is 750 + 75 = $825. Since she is
paying this over 3 months, we divide the total cost by 3: 825 /3 = $275. So the answer is 275.
Each month, Shiela will pay $275.

Our answer:

The total cost of the cell phones is 5 x $150 = $750. The interest for each unit is 2% of $150,
which is 0.02 x $150 = $3. So the total interest for all the cell phones is 5 x $3 = $15. The total
amount to be paid is $750 + $15 = $765. The monthly payment for 3 months is $765 / 3 = $255.
So the answer is $255.
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Case of Hallucination Errors in Evaluation

Question:
In a certain isosceles right triangle, the altitude to the hypotenuse has length 41/2. What is the area
of the triangle?

Baseline answer:

In an isosceles right triangle, the altitude to the hypotenuse splits the triangle into two smaller
isosceles right triangles and also bisects the hypotenuse. Let the legs of the original triangle be
of length 2. The hypotenuse, then, is 21/2. The altitude to the hypotenuse in an isosceles right
triangle is also the geometric mean of the segments it divides the hypotenuse into, which are each

%5. Therefore, the altitude h can be expressed as:

V2 I\/E_Sl?z

= —
2 2 2
Given that the altitude is 41/2, we have:
2
T 42
2
Multiplying both sides by 2, we get:
22 =8V2

Taking the square root of both sides, we find:

T =1/8V2=21/2V2

The area A of the isosceles right triangle is given by:
1, 1
A=22=2.8V2=4V2
2 2
Therefore, the area of the triangle is . Final Answer: The final answer is 16. I hope it is correct.

Our answer:
Let the legs of the isosceles right triangle be . Then, the hypotenuse is zv/2. The altitude to

the hypotenuse is %2, since the altitude of an isosceles right triangle is half the length of the
hypotenuse. We are given that the altitude is 4+/2, so we have

2
%:4\/§:>x\/§:8\/§=>33=8-

The area of the triangle is %xz = %(82) = . Final Answer: The final answer is 32. I hope it is
correct.
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