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Abstract

As large language models (LLMs) are increas-
ingly applied to real-world scenarios, it be-
comes crucial to understand their ability to
follow multiple instructions simultaneously.
To systematically evaluate these capabilities,
we introduce two specialized benchmarks for
fundamental domains where multiple instruc-
tions following is important: Many Instruction-
Following Eval (ManyIFEval) for text genera-
tion with up to ten instructions, and Style-aware
Mostly Basic Programming Problems (StyleM-
BPP) for code generation with up to six in-
structions. Our experiments with the created
benchmarks across ten LLMs reveal that per-
formance consistently degrades as the number
of instructions increases. Furthermore, given
the fact that evaluating all the possible com-
binations of multiple instructions is computa-
tionally impractical in actual use cases, we de-
veloped three types of regression models that
can estimate performance on both unseen in-
struction combinations and different numbers
of instructions which are not used during train-
ing. We demonstrate that a logistic regression
model using instruction count as an explanatory
variable can predict performance of following
multiple instructions with approximately 10%
error, even for unseen instruction combinations.
We show that relatively modest sample sizes
(500 for ManyIFEval and 300 for StyleMBPP)
are sufficient for performance estimation, en-
abling efficient evaluation of LLMs under vari-
ous instruction combinations. !

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various
tasks (Brown et al., 2020; OpenAl, 2024a; Google,
2023; Llama Team, 2024; Gemma Team, 2024,

* Equal contribution

"ManyIFEval/StyleMBPP data and evaluation codes
are available at https://github.com/kenoharada/
Multiple-Instructions-Following

Anthropic, 2024; Gemini Team, 2024). However,
their practical utility depends on their ability to si-
multaneously follow multiple instructions. Simple
task descriptions such as “Write a piece of code”
or “Summarize this text” typically produce outputs
with limited practical value. Adding specific in-
structions transforms these basic prompts into prac-
tically useful tools - for instance, code generation
with style guide compliance enables effective team
collaboration, while text summarization with for-
matting requirements (e.g., bullet points, length
limits) ensures human-readable outputs. These
kinds of instructions are ubiquitous in real-world
applications, and models must be able to follow
multiple instructions to be useful in practice.

While some existing benchmarks have made
valuable contributions to evaluate multiple-
instructions-following capabilities for real-world
applications, there are several limitations towards
accurate and fair evaluation. For instance, IFE-
val (Zhou et al., 2023) and ComplexBench (Wen
et al., 2024) assign a different task description
across different number of instructions, which pre-
vents from isolating the effect of instruction counts
as a controlled variable. FollowBench (Jiang
et al., 2024) utilized LLM-as-a-judge for measur-
ing multiple-instructions-following performance,
which prevents from reliable and stable verifica-
tion compared to rule-based and programmable
one. Without controlled experimental design, it
becomes difficult to systematically and precisely
analyze how the number of instructions impacts
model performance.

Our work focuses on measuring the simultane-
ous multiple-instructions-following performance,
which we consider crucial in real-world applica-
tions. Specifically, we introduce two specialized
benchmarks: ManyIFEval for text generation (up to
10 instructions) extended from IFEval (Zhou et al.,
2023) and StyleMBPP for code generation (up to 6
instructions) extended from MBPP (Austin et al.,

16506

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 16506—16526
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/kenoharada/Multiple-Instructions-Following
https://github.com/kenoharada/Multiple-Instructions-Following

2021). Our benchmarks maintain consistent task
descriptions while varying the number of instruc-
tions, allowing us to isolate and analyze the effect
of instruction counts on model performance (Fig-
ure 1 and Table 1). Our benchmarks also can ob-
jectively measure multiple-instructions-following
ability of LLMs with a programmatically verifiable
approach (Table 1). In addition, our benchmarks
have balanced and sufficient sample sizes for each
instruction count (Figure 2).

Based on the created benchmarks, we con-
ducted a broad range of experiments to evaluate
the multiple-instructions-following performance
with a wide variety of LLMs. Specifically, our
experiments used ten state-of-the-art LLMs includ-
ing API based models (GPT-40, Claude3.5 Son-
net, Gemini 1.5 Pro, 03-mini) and open models
(Llama3.1-8B, Gemma2-9B, Gemma2-2B, Qwen-
2.5 72B, DeepSeek-V3, DeepSeek-R1), revealing
that performance consistently and drastically de-
grades as the number of instructions increases.

Furthermore, given the fact that evaluating all
the possible combinations of multiple instructions
is computationally impractical in actual use cases,
we developed regression models that can estimate
performance on both unseen instruction combina-
tions and different numbers of instructions which
are not used during training. Specifically, we ex-
plore three modeling approaches: naive estimators,
beta-binomial, and logistic regression. Through
this estimation, we demonstrate that a logistic re-
gression model using instruction count as an ex-
planatory variable can predict performance with
approximately 10% error, even for unseen instruc-
tion combinations. The approach generalizes effec-
tively to unseen numbers of instructions, achieving
a mean absolute error of 0.03 £ 0.04 when predict-
ing performance on 10 instructions using training
data from up to 9 instructions. Our experiments
reveal that relatively modest sample sizes are suf-
ficient for accurate performance estimation - 500
samples for ManyIFEval and 300 for StyleMBPP.
This suggests that our benchmarks can provide re-
liable performance estimates for LLMs under var-
ious instruction combinations, enabling efficient
evaluation and guiding future model development.

2 Related Work

2.1 Instruction-Following Benchmarks

Instruction-following capability is a crucial aspect
of large language models (LLMs) as it influences

ManylFEval

Write an advertisement for a company called
"Drags and Races"
Your response should follow the instructions
below:
Instruction 1 - Your answer must contain a title, wrapped in
double angular brackets.
- The response must contain at least 1
Instruction 2 Placeholders represented by square brackets,
such as [address].

StyleMBPP

You are an expert Python programmer, and here is
your task: Write a python function to remove first
and last occurrence of a given character from the
string. Your code should pass these tests:
assert remove_Occ("hello","I") == "heo"
assert remove_Occ("abcda","a") == "bcd"
assert remove_Occ("PHP","P") == "H"
Your response should follow the instructions below:
Instruction 1 - Ensure the file includes the MIT License notice.
- Indent all code blocks using exactly two spaces; do
not use tabs.

Instruction 2

Figure 1: Examples from our proposed ManyIFEval
(top) and StyleMBPP (bottom) benchmarks. Task de-
scription defines the primary objective (e.g., text gen-
eration, code creation), while instructions specify ad-
ditional constraints (e.g., formatting rules, style guide-
lines) that must be simultaneously followed. Our con-
trolled experimental design, where the core task de-
scription is kept consistent while varying the number of
instructions, allows us to systematically investigate the
impact of instruction counts on LLM performance.

how well they can meet human expectations. Many
early benchmarks focused on evaluating responses
to different types of instructions, using relatively
simple prompts (Wang et al., 2022; Li et al., 2023;
Zheng et al., 2023).

As LLMs are increasingly expected to handle
more complex real-world tasks, studies have at-
tempted to evaluate models’ instruction-following
capabilities from various aspects (Xu et al., 2024;
Hayati et al., 2024; He et al., 2024a; Li et al., 2024;
Wen et al., 2024; Jiang et al., 2024; Zhang et al.,
2024; Qin et al., 2025; He et al., 2024b; Yan et al.,
2025). ComplexBench (Wen et al., 2024) catego-
rizes instructions into four types based on their char-
acteristics: “And” (requiring multiple conditions
to be satisfied simultaneously), “Chain” (following
steps in a specific order), “Selection” (choosing
actions based on conditions), and “Nested” (com-
bining And, Chain, and Selection in a hierarchical
structure). The “And” type closely aligns with our
focus on satisfying multiple instructions simultane-
ously. Additionally, there are existing benchmarks
that assess LLMs’ multiple-instructions-following
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Same task description

Rule-based verifier Rule-based verifier

Benchmark #Samples pef_I::g;l:: l((:::X) with various for for
# of instructions all instructions task description

FollowBench (Mixed) 85 5 Yes X No X No
IFEval 541 3 X No Yes X No
CELLO 523 6 X No Yes X No
CFBench 1000 14 X No X No X No
ComplexBench 1150 14 X No X No X No
InfoBench 500 15 X No X No X No
CodelF 1200 21 X No X No X No
ManyIFEval (Ours) 2160 10 Yes Yes X No
StyleMBPP (Ours) 3000 6 Yes Yes Yes

Table 1: Benchmarks for evaluating multiple-instructions-following ability of LLMs. Our benchmarks (ManyIFEval
and StyleMBPP) can conduct fair evaluation with the same task description across different number of instructions.
In addition, ours can objectively measure the ability with rule-based, programmatically verifiable approach.

Bl ManylFEval (Ours)
500
400
300
200
100

# of Samples

1 2 3 4

StyleMBPP (Ours)

B FollowBench

6 7 8 9 10

IFEval W CELLO

# of instructions per sample

Figure 2: Comparison of sample size distribution per instruction count between our proposed ManylFEval and
StyleMBPP benchmarks and existing benchmarks (FollowBench, IFEval, and CELLO). Our benchmarks ensure
balanced and sufficient sample sizes for each instruction count, enabling a robust analysis of the performance trends

as the number of instructions increases.

ability, as described in Table 1 and Appendix A.
Multi-turn benchmarks such as Multi-IF (He et al.,
2024b) and SysBench (Qin et al., 2025) evaluate
whether all instructions are followed throughout
the entire conversation. In contrast, our benchmark
focuses on a more fundamental single-turn prob-
lem setting, which is the basis for the multi-turn
instruction following ability.

While existing benchmarks use different termi-
nology to refer to the additional requirements that
models must satisfy, with some using "constraint"
as in ComplexBench (Wen et al., 2024) and Fol-
lowBench (Jiang et al., 2024), and others using
"instruction" as in IFEval (Zhou et al., 2023) and
Multi-IF (He et al., 2024b), we adopt the term "in-
struction" following IFEval’s convention through-
out this paper.

2.2 Instruction-Following Performance with
Multiple Instructions

While results of previous benchmarks have sug-
gested that following multiple instructions be-
comes more challenging as their number increases,
existing evaluations face limitations in isolating
and measuring this effect. For instance, Com-

plexBench (Wen et al., 2024) shows lower perfor-
mance on Chain, Selection, and Nested instruc-
tion types which contain more instructions, but
this could be attributed to various factors beyond
instruction count, such as task complexity. Fol-
lowBench’s Mixed dataset (Jiang et al., 2024),
while conceptually similar to our focus, has lim-
ited samples (17 per instruction count) and relies
on model-based evaluation, leading to inconsistent
results where higher instruction levels sometimes
outperform lower ones. IFEval (Zhou et al., 2023)
provides objective programmatic verification but
varies both instruction count and task descriptions
across samples, making it difficult to attribute per-
formance changes specifically to increased instruc-
tion count. In summary, existing benchmarks have
the following three limitations: (1) unbalanced or
insufficient sample sizes across instruction counts,
(2) reliance on LLLM-based evaluation methods that
lack objectivity and reliability (Zhou et al., 2023;
Zeng et al., 2024; Zheng et al., 2023; Wang et al.,
2024), and (3) inconsistency in task descriptions
across varying instruction counts.

Our benchmarks are specifically designed to ad-
dress these limitations by systematically varying
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the number of instructions added to each task de-
scription, ensuring balanced sample sizes across
different instruction counts. In addition, by employ-
ing programmatic rule-based verification for each
added instruction, we enable objective and reliable
assessment of the relationship between instruction
count and instruction-following performance. See
Table 1 and Figure 2 for details.

2.3 Performance Estimation

As parameters of language models grow, the com-
putational cost of evaluation on benchmarks in-
creases. While some studies attempt to reduce
evaluation costs through strategic sampling (Perlitz
et al., 2024; Vivek et al., 2024; Maia Polo et al.,
2024) or combining existing benchmarks (Ni et al.,
2024), we focus on modeling and estimating how
instruction-following performance degrades as the
instruction count increases, using our benchmarks.

3 Benchmark Creation

To systematically investigate multiple instructions-
following capabilities of LLMs, we introduce
two benchmarks: ManylFEval for general writ-
ing task with up to ten instructions and StyleM-
BPP for code generations with up to six instruc-
tions. Both benchmarks are constructed with pro-
grammatically verifiable instructions to ensure ob-
jective and reliable evaluation. Our benchmarks
are specifically created using sets of instructions
that are non-conflicting and simultaneously sat-
isfiable. The primary goal is to investigate how
performance degrades as the number of instruc-
tions increases, keeping the instructions them-
selves compatible. We ensured this compatibility
through careful curation. ManyIFEval extends IFE-
val (Zhou et al., 2023), while StyleMBPP builds
upon MBPP (Austin et al., 2021). ManyIFEval and
StyleMBPP are under the CC BY 4.0 International
license same as original MBPP and IFEval.

3.1 ManyIFEval

ManylIFEval (Many Instruction-Following Eval)
is designed to evaluate text generation tasks un-
der multiple instructions, and is an extension of
IFEval (Zhou et al., 2023), which comprises task
descriptions such as "Write a blog post about a
trip to Japan." and a set of objectively verifiable
instructions shown in Figure 1 (top).

We started with the 25 instructions from the orig-
inal IFEval dataset. We removed instructions that

# Instructions Rule-based LLM-as-a-Judge
(Ground Truth) (GPT-40)
5 0.574 0.815
10 0.213 0.657

Table 2: Comparison of Prompt-level Accuracy on
ManyIFEval using rule-based verification vs. LLM-
as-a-Judge (GPT-40 zero-shot). LLM-as-a-Judge tends
to inflate accuracy scores and makes it difficult to accu-
rately measure performance degradation as instruction
count increases.

were inherently difficult to combine or prone to con-
flict (e.g., specifying the output language, repeating
the prompt, generating two distinct responses) or
had very low individual success rates (e.g., specify-
ing first word in i-th paragraph). This resulted in
a set of 15 instructions. We mapped out potential
conflicts between these 15 (e.g., character count
limits vs. paragraph count requirements; uppercase
vs. lowercase). When generating samples for our
benchmark, we algorithmically ensured that only
mutually compatible instructions were selected and
combined for any given prompt.

Finally, we selected 216 task descriptions from
IFEval. For each task description, we generated
samples with varying numbers of non-conflicting
and simultaneously satisfiable instructions, ranging
from 1 to 10. The instructions in ManyIFEval fall
into six categories: (1) keyword requirement for
including/excluding specific words, (2) length in-
structions for controlling text length, (3) formatting
requirements like bullet points and placeholders,
(4) letter case specifications for uppercase/lower-
case usage, (5) text beginning/ending requirements
like quotation marks, and (6) punctuation rules for
allowing/prohibiting specific marks. Table 5 in
Appendix E shows the success rates of individual
instructions.

To demonstrate that rule-based verification is
more reliable than LLM-as-a-Judge, we compared
both evaluation methods on ManyIFEval. As
shown in Table 2, LLM-as-a-Judge tends to in-
flate accuracy scores, particularly as instruction
count increases. This inflation makes it difficult to
accurately measure the true degradation in multiple-
instructions-following capabilities, reinforcing the
importance of objective, programmatic verification
for reliable benchmark evaluation.
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3.2 StyleMBPP

StyleMBPP (Style-aware Mostly Basic Program-
ming Problems) is designed for evaluating code
generation tasks under multiple style-related in-
structions, as shown in Figure 1 (bottom). This
benchmark extends MBPP (Austin et al., 2021),
a code generation benchmark focused on basic
Python programming problems, such as "Write a
Python function to sort the given array by using
merge sort.”. While MBPP assesses code correct-
ness based on test cases, StyleMBPP adds instruc-
tions to evaluate models’ adherence to coding style
guidelines while maintaining functional correct-
ness. We selected common Python coding style
guidelines, primarily focusing on those verifiable
using Pylint (Pylint contributors, 2003). We chose
non-conflicting instructions and filtered out any
with extremely low individual success rates. Fi-
nally, we add a new instruction to this original set,
where we require the model to incorporate a “MIT
License notice” to the generated code.

For StyleMBPP, we augmented the 500 test prob-
lems from MBPP with style instructions. For each
MBPP problem, we created samples with instruc-
tion counts ranging from 1 to 6, resulting in 3,000
samples. The style instructions require specific
code formatting aspects: (1) Generated code files
must include the MIT License notice. (2) Code
must follow strict indentation rules, using spaces
instead of tabs. (3) Functions must include doc-
strings. (4) Specific conditional comparison op-
erators may be required or prohibited. (5) Lines
must not exceed a maximum character length. (6)
Variable names must adhere to length restrictions.
Table 6 in Appendix E shows the success rate of
following individual instructions.

4 Evaluation

4.1 Setup

To evaluate the multiple-instructions-following
capabilities of LLMs, we conducted experi-
ments using both closed and open models.
For closed models (accessed via APIs), we
evaluated GPT-4o (gpt-40-2024-05-13) (OpenAl,
2024b), Claude 3.5 Sonnet (claude-3-5-sonnet-
20240620) (Anthropic, 2024), Gemini 1.5 Pro
(gemini-1.5-pro-002) (Gemini Team, 2024) and
03-mini (OpenAl, 2025). For open models, we
assessed Gemma 2 (gemma-2-9b-it,gemma-2-2b-
it) (Gemma Team, 2024), Llama 3.1 (Meta-Llama-
3.1-8B-Instruct) (Llama Team, 2024), Qwen2.5-

72B (Qwen2.5-72B-Instruct) (Qwen Team, 2025),
DeepSeek-V3 (DeepSeek-V3-0324) (DeepSeek-
Al, 2025b) and DeepSeek-R1 (DeepSeek-Al,
2025a). All models were evaluated using zero-
shot prompting presenting the task description
along with varying numbers of instructions. See
Appendix C for the detailed evaluation setup.
We report results of Qwen2.5-72B, DeepSeek-V3,
DeepSeek-R1 and 03-mini in Appendix F.

4.2 Evaluation Metrics

To evaluate instruction-following performance, we
adopted metrics based on IFEval (Zhou et al., 2023)
and FollowBench (Jiang et al., 2024).

Prompt-level Accuracy Prompt-level Accuracy
is the the success rate of following all given in-
structions simultaneously for a particular prompt
(Equation 1). This assesses the model’s capabil-
ity to handle multiple instructions at once. This
is Hard Satisfaction Rate (HSR) in FollowBench.
Prompt-level Accuracy is defined as follows:

1 m n .
Prompt-level Accuracy (n) = - Z H s7, (1)
i=1 j=1

where m represents the number of prompts and n
represents the number of instructions per prompt,
s{ represents a binary metric if the target instruc-
tion j € m in a task ¢ € m is successfully fol-
lowed. Therefore, H?Zl sg = 1 if all instructions
for prompt ¢ are satisfied, and O otherwise. In other
words, this metric computes whether all the instruc-
tions in a prompt have been followed.

Instruction-level Accuracy (Inst-level accuracy)
Instruction-level Accuracy is the success rate of
following individual instructions in its response
(Equation 2). This metric assesses the model’s
ability to adhere to each instruction separately. This
is Soft Satisfaction Rate (SSR) in FollowBench.
This accuracy is defined as follows:

1 m n .
Inst-level A = — J 2
nst-level Accuracy (n) . ; ]Z:; s, (2)

where sz = 1 if the j-th instruction of the i-th task
is satisfied, and sg = 0 otherwise.

4.3 Result

ManyIFEval Figure 3 shows the Instruction-
level Accuracy (left panel) and Prompt-level Accu-
racy (right panel) across different instruction counts
for ManylFEval. Results consistently demonstrate
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Figure 3: Evaluation results on ManyIFEval. The left
panel shows Instruction-level Accuracy (the average suc-
cess rate of following individual instructions), and the
right panel shows Prompt-level Accuracy (the success
rate of satisfying all instructions in a prompt simulta-
neously). Prompt-level Accuracy consistently shows a
degrading trend as the number of instructions increases,
while Instruction-level Accuracy remains relatively.

performance degradation across all evaluated mod-
els as the number of instructions increases, for both
metrics. While models exhibit relatively high ac-
curacy in following individual instructions in iso-
lation, their ability to satisfy all instructions simul-
taneously diminishes significantly as the instruc-
tion count rises. Notably, the relative performance
ranking among models remains consistent between
Instruction-level and Prompt-level accuracy met-
rics - models that perform better at following indi-
vidual instructions also demonstrate superior per-
formance when required to follow multiple instruc-
tions simultaneously. This indicates that the pres-
ence of multiple instructions introduces complexity
for LLMs, even when the individual instructions
are intrinsically simple. Figure 14 in Appendix E
shows detailed results of following individual in-
structions. Through comparison with experimental
results from IFEval and FollowBench, we demon-
strated that our benchmark provides more stable
performance measurement across a higher number
of instructions (see Figure 10 in Appendix B).

StyleMBPP Secondly, we evaluated perfor-
mance on StyleMBPP, which requires models to
follow multiple style guide instructions while gen-
erating Python code to pass test cases. Result in
Figure 4 shows similar degradation patterns as in
ManylIFEval. While models exhibit relatively high
accuracy in following individual instructions in iso-
lation, their performance of following all instruc-
tions degrade as the instruction count rises.
Compared to GPT-40, both Gemini 1.5 Pro and
Claude 3.5 show much lower Prompt-level Accu-
racy when given six instructions simultaneously.
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Figure 4: Evaluation results on StyleMBPP. Similar
to ManyIFEval, the Prompt-level Accuracy shows con-
sistent degradation trend as the number of instructions
increases.
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Figure 5: Evaluation results of code generation success
rate on StyleMBPP. Left panel: success rate of passing
all test cases for the task description, which remains
relatively stable even as more instructions are added.
Right panel: success rate of passing all test cases and
satisfying all instructions simultaneously ("Test cases +
all insts"), which shows a significant performance drop
as instruction count increases.

This performance gap is attributed to certain in-
structions becoming significantly more challeng-
ing for these models as the instruction count in-
creases. Specifically, while both models can fol-
low the “Characters per line” instruction with high
success rates (99% for Gemini 1.5 Pro and 97%
for Claude 3.5) when it is presented in isolation,
their performance drops dramatically to 20% and
2% respectively when this instruction is combined
with five other instructions. For open models like
Gemma 2 and Llama 3.1, we observe that their
success rate for the "Indentation" instruction is ex-
tremely low, making it difficult for these models
to follow all instructions successfully when this
instruction is included in the prompt. Figure 15
in Appendix E shows detailed results of following
individual instructions.

As shown in Figure 5, the functional correct-
ness of the generated code measured by passing all
test cases remains relatively stable even as more
style instructions are added (left panel). However,

16511



for more practical cases where a base task descrip-
tion must be executed while following multiple in-
structions simultaneously, we observe performance
degradation as the number of instructions increases
(right panel). This indicates that while models
can maintain their core programming capabilities,
their ability to simultaneously satisfy multiple style
guide instructions becomes increasingly challeng-
ing with more instructions.

Improvements by Reasoning As shown in Ta-
bles 8,9, 11, 12 of Appendix F, we observed that
reasoning models outperform non-reasoning mod-
els (DeepSeek-V3 vs DeepSeek-R1, GPT-40 vs
03-mini). We observed that setting "reasoning ef-
fort" in 03-mini to "high" yielded the best results.
In reasoning traces, DeepSeek-R1 explicitly checks
each given instruction one by one to formulate a
plan of approach as shown in Table 14. This sug-
gests that reasoning helps models better understand
and adhere to multiple instructions.

Comparison with General Benchmarks While
models show comparable performance on standard
benchmarks such as MMLU (Hendrycks et al.,
2021), our benchmarks reveal substantial perfor-
mance gaps on the instruction-following capabil-
ities. For instance, DeepSeek-V3, GPT-40, and
Qwen2.5-72B achieve similar scores on standard
benchmarks but there are performance gaps mea-
sured by Prompt-level Accuracy on ManylFEval
(n=10) and on StyleMBPP (n=6). See Appendix H
for detailed comparison.

5 Performance Prediction

As parameters of models grow, their evaluation
becomes increasingly computationally expensive.
In multiple-instruction settings, evaluating all of
them would require substantial computational re-
sources because the number of possible instruction
combinations are massive. To address this chal-
lenge, we develop models capable of estimating
performance on both unseen instruction combina-
tions and different numbers of instructions. We
explore three modeling approaches: Naive Esti-
mators, Beta-Binomial, and Logistic Regression,
each offering different perspectives on modeling
multiple-instructions-following behavior.

5.1 Models

Naive Estimators We model the success or fail-
ure of following a single instruction as a Bernoulli

trial with probability p € [0, 1]. For multiple in-
structions presented together, the simplest approach
assumes independent Bernoulli trials. The proba-
bility of successfully following all n instructions
is the product of their individual success probabil-
ities, H?:l pi, where p; represents instruction ¢’s
success probability. We explore two variants of
this estimator. In the first variant, which we refer
to as Product(Each, n=1), we use the empirical
success rates of following individual instructions
when each instruction is presented in isolation. In
the second variant, referred to as Product(Each,
n=n), we use the empirical success rates of follow-
ing individual instructions when the instruction is
presented together with n — 1 other instructions.

Beta-Binomial Similar to Naive Estimators, the
Beta-Binomial approach models each instruction’s
success as a Bernoulli trial with probability p, but
treats p itself as a random variable drawn from a
Beta distribution p ~ Beta(q, /3), and estimates «,
5 via maximum likelihood from the training data.

Logistic Regression We train logistic regression
models that predict the probability of following all
instructions successfully, based on features such as
the number of instructions and instruction identi-
fiers. We investigate several configurations of the
model. One configuration, denoted as Logistic (w/
n), includes only the instruction count as a feature.
Another, referred to as Logistic (w/ n) (trained
n<Kk), is trained on data containing at most k in-
structions, also using instruction count as a fea-
ture. A third configuration, Logistic (w/ n, IDs),
incorporates both the instruction count and instruc-
tion identifiers, unique numerical labels assigned
to each distinct type of instruction, as features.
Beta-Binomial and Logistic (w/ n) models do
not account for each instruction’s difficulty, while
Product and Logistic (w/ n, IDs) incorporate this
information through instruction identifiers.

5.2 Training and Evaluation Setup

For all methods, we evaluate performance using
the predicted probability of successfully following
all instructions, compared to the actual success rate
measured by Prompt-level Accuracy on the test set.
This allows us to assess how well each approach
generalizes to both unseen instruction combina-
tions and different number of instructions. For both
ManyIFEval and StyleMBPP benchmarks, we split
the datasets into train and test sets to fit the models
on the train split and evaluate their performance on
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the test split. When splitting the data, we focused
on task descriptions and instruction combinations.
Specifically, for ManyIFEval, we created sets of
instruction combinations with 5 instructions, while
for StyleMBPP, we created sets with 3 instructions.
We then divided these combination sets between
train and test splits ensuring no overlap in combi-
nations. The splits were created such that there
were no shared task descriptions between train and
test sets, and no shared instruction combinations
for the 5-instruction cases in ManylIFEval and 3-
instruction cases in StyleMBPP. This resulted in
1,070 training samples and 1,090 test samples for
ManylIFEval, and 1,458 training samples and 1,542
test samples for StyleMBPP.

We estimate parameters for the Beta-Binomial
model using NumPy and SciPy (Harris et al., 2020;
Virtanen et al., 2020), while the logistic regression
model is trained with statsmodels (Seabold and
Perktold, 2010). We used GPT-40, Claude 3.5 Son-
net, Gemini 1.5 Pro, Gemma 2 (2B, 9B) and Llama
3.1 for experiments.

5.3 Results

Figure 6 illustrates the empirically-observed
Prompt-level accuracy and the values predicted by
models on ManyIFEval and StyleMBPP. As shown
in Table 3, despite its simplicity, the Logistic (w/ n)
model achieves mean absolute errors consistently
within 0.1 across both ManyIFEval and StyleM-
BPP benchmarks, demonstrating effective general-
ization to unseen instruction combinations.

To assess the relationship between sample size
and estimation error, we conducted an analysis
varying the size of the training set, as shown in
Figure 7. For each training sample size, we run
five iterations changing random seeds. Our results
demonstrate that relatively modest sample sizes
are sufficient for reliable performance estimation.
Specifically, ManyIFEval requires approximately
500 samples (50 task descriptions for each number
of instructions) to achieve stable estimates, while
StyleMBPP needs around 300 samples (50 task
descriptions for each number of instructions). Be-
yond these thresholds, increasing the sample size
yields diminishing returns in terms of estimation ac-
curacy. This finding has practical implications for
future benchmark development and evaluation, sug-
gesting that comprehensive multiple-instructions-
following assessment can be achieved with man-
ageable dataset size that saves computational re-
sources.
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o
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Figure 6: Comparison of empirical Prompt-level Accu-
racy data (points) and predictions from various estima-
tion models (lines) on ManyIFEval (top) and StyleM-
BPP (bottom) for GPT-40. Simple models such as Beta-
binomial, Logistic regression model using instruction
count as a feature capture the performance degradation
trend as the number of instructions increases.

For unseen number of instructions, we evaluated
the Logistic (w/ n) model on ManyIFEval. Table 4
shows that the model exhibits a consistent decrease
in estimation error as the number of instructions
used for training increases. Same trend is observed
for StyleMBPP (See Table 13 in Appendix F).

5.4 Discussion

Although our study has systematically analyzed
multiple-instructions-following ability of LLMs,
several important questions remain for future work.
First, whether similar relationships between instruc-
tion count and performance hold for more com-
plex instruction types not covered in our bench-
marks, such as semantic instructions, conditional
logic, or multi-step procedures. Second, further
investigation is needed into the mechanisms be-
hind the performance degradation observed with
increasing instruction count. Based on previous
works (Venkateswaran and Contractor, 2025; Heo
et al., 2025; Stolfo et al., 2025) which suggested a
relationship between instruction following and the
activation values of specific neurons or attention
scores, understanding these failure modes through
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Method ManyIFEval StyleMBPP

n=>5 n=10 Corr (1) n=3 n=6 Corr (1)
Product (Each, n=1) 0.21+0.07 0.34+0.13 0.904 0.15+0.09 0.31+0.32 0.728
Product (Each, n=n) 0.04 +£0.03 0.02+0.02 0.994 0.054+0.01 0.014+0.01 0.996
Beta-binomial 0.05+0.05 0.064+0.03 0974 0.05£0.02 0.19£0.13 0.922
Logistic (w/ n) 0.04 £0.03 0.024+0.03 0993 0.06£0.05 0.05£0.03 0.980
Logistic (w/n,IDs) 0.03£0.04 0.02£0.03 0.994 0.05+0.05 0.03+£0.02 0.988

Table 3: Mean absolute error + standard deviation and Pearson correlation (r) of Prompt-level Accuracy predictions

by various performance estimation models.
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Figure 7: Train sample size variation and estimation
error of ManyIFEval (top) and StyleMBPP (bottom)
tested on GPT-40. ManyIFEval requires 500 samples
(50 task descriptions for each # of instructions) and
StyleMBPP requires 300 samples (50 task descriptions
for each # of instructions) to achieve stable estimates.

analysis of attention patterns and internal model
representations could inform the development of
models more robust to multiple simultaneous in-
structions.

6 Conclusion

We introduced two benchmarks, ManyIFEval and
StyleMBPP, to evaluate models’ ability to follow
multiple instructions simultaneously. Our exper-
iments have demonstrated that performance de-
grades as the number of instructions increases, with
the degradation pattern varying across models and
instruction types. We also showed that this degra-

Logistic (w/n) Abs Err (n=10) Corr ()
trained n<5 0.154+0.16 0.944
trained n<7 0.09 +0.09 0.989
trained n<9 0.03 £ 0.04 0.988

Table 4: Result of estimation for unseen number of
instructions. Absolute error between predictions and
empirical result of successfully following all instruc-
tions on unseen number of instructions aggregated over
six LLMs on ManyIFEval.

dation can be modeled using simple approaches
like logistic regression, enabling accurate predic-
tion of model performance on unseen instruction
combinations with relatively small sample sizes.
These findings provide insights for understanding
and improving models’ ability to handle multiple
instructions simultaneously, an essential capability
for real-world applications.

Limitations

While our benchmarks cover a range of instruc-
tion types, they are still limited in scope. We fo-
cused on relatively simple instructions that can be
objectively evaluated, such as keyword inclusion,
character counts, and formatting rules. More com-
plex instruction types involving semantic under-
standing, conditional logic (e.g., if/then rules), or
multi-step procedures (e.g., first summarize then
analyze) were not included. Second, our analysis
of performance degradation mechanisms is primar-
ily empirical; we observe the patterns but cannot
fully explain the underlying causes. A deeper in-
vestigation of model internals, such as analyzing
attention scores between instruction tokens and out-
put tokens, studying activation patterns in different
model layers, and examining how token representa-
tions evolve during the generation process, would
be valuable for understanding why certain models
struggle more with multiple instructions.
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A Relationship between Multi-turn
Benchmarks and Our Benchmarks

Multiple instructions following is a practically im-
portant capability, and in recent years, benchmarks
have been proposed in multi-turn settings to evalu-
ate whether all instructions are followed throughout
the entire conversation such as Multi-IF (He et al.,
2024b) and SysBench (Qin et al., 2025). In con-
trast, our benchmark focuses on a more fundamen-
tal single-turn problem setting, which is the basis
for the multi-turn instruction following ability.

Our benchmarks can be easily extended to the
problem setting where instructions are added turn
by turn, as seen in Multi-IF and SysBench. The
results are presented in Figure 8 and Figure 9. Sim-
ilar to the single-turn setting, we observed that
performance in following instructions declines as
the number of instructions increases.
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Figure 8: Evaluation results on ManyIFEval in multi-
turn settings. Similar to the single-turn setting, we ob-
served that performance in following instructions de-
clines as the number of instructions increases.

B Reliable Performance Measurement
with Increasing Instruction Counts
using ManyIFEval

Evaluating the capability of Large Language Mod-
els (LLMs) to follow an increasing number of si-
multaneous instructions requires benchmarks that
ensure both reliable verification and sufficient data.
Previous benchmarks, such as IFEval and Follow-
Bench, while valuable, have sometimes faced lim-
itations due to smaller sample sizes for certain in-
struction configurations or reliance on evaluation
methods that can introduce variability.

Our benchmarks are specifically designed to ad-
dress these challenges by combining (1) program-
matic, rule-based verification for objective assess-
ment of instruction following, and (2) a substantial
and balanced number of samples for each count
of instructions. This design ensures that perfor-
mance changes can be confidently attributed to the
model’s ability to handle an increasing instruction
load, rather than artifacts of small sample sizes or
subjective evaluation.

To illustrate the reliability of ManyIFEval in
measuring performance degradation, we evaluated
the GPT-40-mini model. Figure 10 presents the
average Prompt-level Accuracy and standard devi-
ation across three different random seeds on IFE-
val, FollowBench and ManyIFEval. The consistent
trend and minimal standard deviation observed un-
derscore the benchmark’s capacity to provide a sta-
ble and dependable measure of how an LLM’s per-
formance on a given task description is impacted
by the addition of multiple, concurrent instructions.

C Details of Evaluation Setup

We used transformers (Wolf et al., 2020) and
vLLM (Kwon et al., 2023) libraries for Gemma
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Figure 9: Evaluation results on StyleMBPP in multi-turn
settings. Similar to the single-turn setting, we observed
that performance in following instructions declines as
the number of instructions increases.

2, Llama 3.1 models’ inference. For inference
of Qwen2.5-72B, DeepSeek-V3 and DeepSeek-
R1, we used endpoints cloud hosted by Fireworks
Al (Fireworks Al, 2023). All models were evalu-
ated using zero-shot prompting presenting the task
description along with varying numbers of instruc-
tions to each model. During decoding, we em-
ployed greedy decoding (top-k=1) to ensure deter-
ministic outputs across models, except for GPT-40,
03-mini due to API limitations. For open models
we tesed locally, we used one H100 GPU(80 GB)
and inference for each model takes within 1 hour.

D Task Description

We manually selected 216 task descriptions from
the original IFEval (Zhou et al., 2023) benchmark
for ManylIFEval. Original IFEval’s task descrip-
tions are collected by few-shot prompting and man-
ual curation. For StyleMBPP, we used all 500 task
descriptions from MBPP benchmark (Austin et al.,
2021). MBPP’s task descriptions are collected
from crowdworkers who have basic knowledge of
Python. Details of how the task descriptions are
collected can be found in Section 2.1 of MBPP
paper (Austin et al., 2021).

We show some example task descriptions
in Figure 11 and Figure 12. All data are
available at https://github.com/kenoharada/
Multiple-Instructions-Following.

E Success Rate of Each Instruction
Following

We present the success rates of following each in-
struction in isolation (when it is the only instruc-
tion given alongside the task description) using the
GPT-40 model.

Table 5 lists the success rates for each type of

IFEval

Prompt-level Accuracy
o o o o =
N = (o] (o] o

o©
o

2 4 6 B
Number of Instructions
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o] o

o
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o
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ManyIFEval

Prompt-level Accuracy
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Figure 10: Average Prompt-level accuracy and standard
deviation for GPT-40-mini on IFEval, FollowBench and
ManyIFEval across 3 random seeds. The shaded area
represents the standard deviation. The results demon-
strate ManyIFEval’s ability to reliably measure perfor-
mance trends as instruction counts increase, facilitated
by rule-based verification and ample sample sizes.

instruction within ManyIFEval benchmark when
presented individually to GPT-40. Please refer to
Table 1 in IFEval paper (Zhou et al., 2023) for each
instruction’s description. We used the same rule-
based verifier as Zhou et al. (2023), which are writ-
ten in Python. Every instruction has its program
to judge the instruction is successfully followed or
not. We show example rule-based verification code
in Figure 13. Table 6 lists the success rates for each
type of instruction within StyleMBPP benchmark
when presented individually to GPT-40. Table 7
shows each instruction’s description in StyleMBPP.
Similar to ManyIFEval, we used rule-based veri-
fiers written in Python to evaluate whether each
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ManyIFEval Task Descriptions

Example 1: Write a blog post about the
best way to get a good night’s sleep.
Example 2: Are the weather conditions in
the Arctic very cold most of the year?

Figure 11: Example task descriptions from ManyIFEval
benchmark.

StyleMBPP Task Descriptions

Example 1: Write a python function to find
the maximum sum of elements of list in a
list of lists. Your code should pass these
tests: ... (omitted for brevity) ... assert max-
imum_Sum([[0,1,3],[1,2,1],[9,8,2],
[0,1,01,[6,4,8]]) == 19

Example 2: Write a python function to
check whether the first and last characters
of a given string are equal or not. Your
code should pass these tests: ... (omitted for
brevity) ... assert check_Equality("mad")
== "Not Equal"

Figure 12: Example task descriptions from StyleMBPP
benchmark.

instruction is successfully followed or not using
Pylint (Pylint contributors, 2003).

Instructions that require inserting specific text
(Keywords, Title, MIT License, Quotation, Func-
tion docstring) or maintaining a simple pattern (Up-
perCase, Lowercase, Indentation) are easier for the
model to follow. In contrast, instructions related
to length or count (e.g., character count, number
of sentences, variable name length) tend to have
lower success rates.

F Detailed Experimental and Estimation
Results

In this section, we present detailed aggregate ex-
perimental results for Prompt-level Accuracy and
Instruction-level Accuracy across all evaluated
LLM:s on both ManyIFEval and StyleMBPP bench-
marks. Additionally, we show detailed results for
our performance estimation models when predict-
ing performance on an unseen number of instruc-
tions for StyleMBPP.

Instruction Success Rate
Keywords to include 0.98
Keyword occurrence count 0.96
Forbidden keywords 0.95
Specific character count 0.62
Character count 0.81
Sentence count 0.73
Paragraph count 0.87
Placeholder 0.95
Bullet points 0.88
Title 1.0
Uppercase 0.97
Lowercase 0.97
Uppercase word count 0.87
Quotation marks 1.0
Comma prohibition 1.0

Table 5: Single instruction following success rates for
ManylIFEval instructions using GPT-4o.

Instruction Success Rate
MIT License notice 1.000
Indentation 1.000
Function docstring 1.000
Conditional comparison 0.992
Characters per line 0.868
Variable name length 0.794

Table 6: Single instruction following success rates for
StyleMBPP instructions using GPT-4o.

F.1 ManyIFEval Evaluation Results

Table 8 and Table 9 provide Prompt-level Accu-
racy and Instruction-level Accuracy, respectively,
for all evaluated LLMs on ManyIFEval benchmark
across varying numbers of instructions. Figure 14
shows the success rate of following each specific
instruction type in ManylIFEval changes as the total
number of simultaneously presented instructions
increases. We show an example of GPT-40’s re-
sponse in Table 10.

F.2 StyleMBPP Evaluation Results

Table 11 and Table 12 provide Prompt-level Accu-
racy and Instruction-level Accuracy, respectively,
for all evaluated LLMs on StyleMBPP benchmark
across varying numbers of instructions. Figure 15
shows the success rate of following each specific
instruction type in StyleMBPP changes as the total
number of simultaneously presented instructions
increases.
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class BulletListChecker(Instruction):
"""Checks the bullet list in the prompt."""
(omitted for brevity)

def check_following(self, value):
"""Check if the number of bullet lists meets the requirement.

Args:
value: A string representing the response. The response is expected to
contain some bullet lists that start with “\x°

Returns:
True if the actual number of bullet lists in the response meets the
requirement.
bullet_lists = re.findall(r”"*\s*\x[*\*].%x$"  value, flags=re.MULTILINE)
bullet_lists_2 = re.findall(r"*\sx-.%$", value, flags=re.MULTILINE)
num_bullet_lists = len(bullet_lists) + len(bullet_lists_2)
return num_bullet_lists == self._num_bullets

Figure 13: Python code for evaluating ‘Bullet points‘ instruction in ManyIFEval. We used the same code as
IFEval (Zhou et al., 2023).

F.3 Estimation for Unseen Number of
Instructions (StyleMBPP)

Table 13 shows the performance of logistic regres-
sion model in estimating the Prompt-level Accu-
racy for an unseen number of instructions (n=6) on
the StyleMBPP benchmark, based on training with
fewer instructions.

G Reasoning Trace Example

Table 14 demonstrates how reasoning models
like DeepSeek-R1 approach multiple-instructions-
following tasks. The reasoning trace reveals that
the model explicitly identifies and processes each
instruction separately, developing a plan before
generating the response.

H Performance Gap Between Standard
and Multiple-Instructions-Following
Benchmarks

To better understand the capability differences be-
tween models, we compared their performance
on standard benchmarks versus our multiple-
instructions-following benchmarks. Table 15
presents results for three representative models
across different evaluation tasks. On standard
benchmarks (results from DeepSeek-Al (2025b))
such as MMLU (general knowledge), HumanEval-
Mul (coding), and IFEval, the three models demon-
strate comparable performance. However, our eval-
uation on benchmarks reveals substantial perfor-
mance gap.
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Instruction Name

Instruction

MIT License notice

Ensure the file includes the MIT License notice.

Indentation

Indent all code blocks using exactly two spaces; do
not use tabs.

Function docstring

Ensure each function has a docstring describing its
purpose.

Conditional comparison

Avoid comparing against True, False, or None using
== or !=. Instead, use the variable’s truthiness (e.g.,
‘if variable:‘) or ‘is None‘/‘is not None* for None
checks.

Characters per line

Limit all lines to a maximum of 79 characters.

All variable names should be at least three charac-

Variable name length

ters long.

Table 7: The list of 6 instructions in StyleMBPP.

Model n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
Claude 3.5 Sonnet 0.95 090 088 0.79 0.72 068 0.67 062 0.58 048
Gemini 1.5 Pro 096 089 086 078 071 063 058 057 045 0.39
GPT-40 094 085 073 064 057 046 039 039 029 0.21
Gemma2-9B 091 075 059 047 037 025 023 0.12 006 0.04
Llama3.1-8B 082 078 062 046 032 022 0.18 0.08 0.05 0.02
Gemma2-2B 0.80 056 036 015 008 005 001 0.00 0.00 0.00
Qwen2.5-72B 095 083 071 052 040 028 0.19 0.12 0.04 0.02
DeepSeek-V3 096 090 085 070 063 048 043 033 029 0.19
DeepSeek-R1 095 08 081 074 071 064 059 049 044 0.38
03-mini (low) 097 093 092 084 081 075 069 070 0.64 0.53
03-mini (medium) 098 095 094 089 087 083 078 073 073 0.64
03-mini (high) 1.00 096 095 093 090 088 0.83 082 079 0.78
Table 8: Prompt-level Accuracy for ManyIFEval
Model n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
Claude 3.5 Sonnet 0.95 095 096 094 094 094 094 094 094 093
Gemini 1.5 Pro 096 094 095 094 094 093 093 094 092 092
GPT-4o 094 092 090 090 089 088 0.88 0.89 0.87 0.85
Gemma2-9B 091 087 084 082 081 080 079 077 075 074
Llama3.1-8B 082 088 0.8 083 081 079 080 077 075 0.72
Gemma2-2B 080 075 071 065 065 0.62 060 058 057 0.55
Qwen2.5-72B 095 091 090 08 085 082 0.80 078 077 0.75
DeepSeek-V3 096 095 095 092 091 089 089 0.8 089 0.87
DeepSeek-R1 095 094 094 092 093 092 093 092 092 092
03-mini (low) 097 09 097 096 096 095 095 09 095 094
03-mini (medium) 0.98 097 098 097 097 097 097 096 096 096
03-mini (high) 1.00 098 098 098 098 098 097 098 098 098

Table 9: Instruction-level Accuracy for ManylIFEval
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Figure 14: ManyIFEval instruction-following success rate of each instruction.
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Example response of GPT-40 zero-shot for S instructions

Write a blog post about the best way to get a good night’s sleep.

Your response should follow the instructions below:

- Your answer must contain exactly 2 bullet points. Use the markdown bullet
points such as: * This is point 1. * This is point 2

Prompt | - In your response, the letter m should appear at least 6 times.

- The response must contain at least 2 placeholders represented by square
brackets, such as [address].

- Answer with at least 400 words.

- Do not include keywords ['reason’, ‘review’] in the response.

# The Best Way to Get a Good Night’s Sleep

Getting a good night’s sleep is essential for maintaining overall health and
well-being.

... (omitted for brevity) ...

* *#*Create a Relaxing Bedtime Routine:** Developing a calming pre-sleep
routine can signal to your body that it’s time to wind down. ... (omitted for
brevity) ...

* **] imit Caffeine and Alcohol Intake:** What you consume during
the day can significantly impact your sleep quality. ... (omitted for brevity) ...
Response
... (omitted for brevity) ...

* **Invest in a Comfortable Mattress and Pillows:** The quality of your
mattress and pillows can make a significant difference in your sleep quality.
... (omitted for brevity) ...

* *%Control the Room Temperature:** The temperature of your bedroom
can also affect your sleep. ... (omitted for brevity) ...

... (omitted for brevity) ...
For more personalized advice, feel free to reach out to [healthcare
professional] or visit [website] for additional resources.

Table 10: Example response of GPT-40 zero-shot for 5 instructions. Red text indicates instructions that are not
being followed. Tested on ManylIFEval.
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Model n=1 n=2 n=3 n=4 n=5 n=6

Claude 3.5 Sonnet 096 0.84 0.67 048 029 0.01
Gemini 1.5 Pro 097 090 079 0.68 045 0.13

GPT-40 093 086 076 072 0.68 0.68
Gemma?2-9B 0.87 060 034 010 0.00 0.00
Llama3.1-8B 0.65 040 024 0.08 0.00 0.02
Gemma?2-2B 0.69 057 048 036 021 0.02
Qwen2.5-72B 08 064 039 019 013 0.11
DeepSeek-V3 092 077 056 032 0.18 0.01
DeepSeek-R1 090 0.82 066 048 030 0.12
03-mini (low) 096 086 0.68 056 034 0.18

03-mini (medium) 095 0.84 0.69 057 038 0.15
03-mini (high) 095 089 0.79 068 058 0.37

Table 11: Prompt-level Accuracy for StyleMBPP

Model n=1 n=2 n=3 n=4 n=5 n=6

Claude 3.5 Sonnet 096 091 0.88 086 0.84 0.80
Gemini 1.5 Pro 097 095 092 091 087 0.82

GPT-40 093 093 092 093 093 094
Gemma?2-9B 087 079 072 066 0.63 0.61
Llama3.1-8B 0.65 062 064 064 0.64 0.63
Gemma?2-2B 0.69 077 078 078 076 0.73
Qwen2.5-72B 086 081 076 072 0.72 0.69
DeepSeek-V3 092 089 084 080 0.77 0.74
DeepSeek-R1 090 0.8 086 083 079 0.74
03-mini (low) 096 093 0.89 088 0.85 0.82

03-mini (medium) 095 092 0.89 0.89 085 0.82
03-mini (high) 095 095 093 091 090 0.87

Table 12: Instruction-level Accuracy for StyleMBPP
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Figure 15: StyleMBPP instruction-following success rate of each instruction.

Logistic (w/n) Abs Err (n=6) Corr (1)

trained n<3 0.14+0.22 0.282
trained n<5 0.09 + 0.07 0.924

Table 13: Result of estimation for unseen number of instructions. Absolute error between predictions and empirical
result of successfully following all instructions on unseen number of instructions aggregated over six LLMs on

StyleMBPP.

16525



Example reasoning trace of DeepSeek-R1 zero-shot for 5 instructions

Write a blog post about the best way to get a good night’s sleep.

Your response should follow the instructions below:

- Your answer must contain exactly 2 bullet points. Use the markdown bullet
points such as: * This is point 1. * This is point 2

Prompt | - In your response, the letter m should appear at least 6 times.

- The response must contain at least 2 placeholders represented by square
brackets, such as [address].

- Answer with at least 400 words.

- Do not include keywords ['reason’, ‘review’] in the response.

<think>

Okay, the user wants me to write a blog post about the best way to get a
good night’s sleep. Let me start by understanding the requirements. They
need exactly two bullet points using markdown, the letter "'m’ has to appear
at least six times, include two placeholders in square brackets, and the
total should be over 400 words. Also, I must avoid the words 'reason’ and
‘review’.

... (omitted for brevity) ...

Let me think of words with *m’—maybe ’mindfulness’, ’environment’,
’calming’, 'moment’, 'maximum’, minimize’.

Reasoning| ... (omitted for brevity) ...

trace Placeholders: For the first bullet, maybe [specific time] and in the second,
[ideal temperature].

... (omitted for brevity) ...

First bullet: Consistent schedule.

Second bullet: Environment. Mattress, lighting, temperature, mindfulness.
... (omitted for brevity) ...

Okay, that should meet all requirements. Now write it out, keeping
paragraphs concise but detailed enough for the word count.

</think>

Table 14: Example reasoning trace of DeepSeek-R1 zero-shot for 5 instructions. Tested on ManyIFEval.

Model Standard Benchmarks Multiple Instructions

MMLU HumanEval-Mul [FEval ManyIFEval (n=10) StyleMBPP (n=6)
DeepSeek-V3 88.5 82.6 86.1 0.19 0.01
GPT-40 87.2 80.5 84.3 0.21 0.68
Qwen2.5-72B 85.3 77.3 84.1 0.02 0.11

Table 15: Performance comparison across standard benchmarks and multiple-instructions-following benchmarks.
While models show comparable performance on standard benchmarks (MMLU for general knowledge, HumanEval-
Mul for coding, IFEval for single instruction following, results from DeepSeek-Al (2025b)). However, our evaluation
on benchmarks reveals substantial performance gap.
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