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Abstract

Designing a generalist scientific agent capa-
ble of performing tasks in laboratory settings
to assist researchers has become a key goal
in recent Al research. Unlike everyday tasks,
scientific tasks are inherently more delicate
and complex, requiring agents to possess a
higher level of reasoning ability, structured
and temporal understanding of their environ-
ment, and a strong emphasis on safety. Ex-
isting approaches often fail to address these
multifaceted requirements. To tackle these
challenges, we present DAVIS!. Unlike tradi-
tional retrieval-augmented generation (RAG)
approaches, DAVIS incorporates structured and
temporal memory, which enables model-based
planning. Additionally, DAVIS implements
an agentic, multi-turn retrieval system, simi-
lar to a human’s inner monologue, allowing
for a greater degree of reasoning over past ex-
periences. DAVIS demonstrates substantially
improved performance on the ScienceWorld
benchmark compared to previous approaches
on 8 out of 9 elementary science subjects. In
addition, DAVIS’s World Model demonstrates
competitive performance on the famous Hot-
potQA and Musique dataset for multi-hop ques-
tion answering. To the best of our knowledge,
DAVIS is the first RAG agent to employ an
interactive retrieval method in a RAG pipeline.

1 Introduction

A core focus of current Artificial Intelligence
(AI) research is the development of artificial agents
capable of autonomously performing human tasks
requiring high decision-making autonomy (Ahn
et al., 2022; Zhao et al., 2024; Wang et al., 2024;
Putta et al., 2024). While Reinforcement Learning
(RL) has traditionally been used to create goal-
oriented agents in Markovian environments (Mnih
et al., 2013; Schrittwieser et al., 2020; Hafner
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Figure 1: Visualization of DAVIS’s inner monologue
during decision-making. This process involves itera-
tively querying its knowledge graph to fill knowledge
gaps in order to plan its next action.

et al., 2020), it often suffers from sample inef-
ficiency, limited generalizability, and poor inter-
pretability, making real-world deployment chal-
lenging (Dulac-Arnold et al., 2019). Recently, large
language models (LLMs) (Radford et al.; Touvron
et al., 2023) have revolutionized the creation of au-
tonomous agents by leveraging natural language un-
derstanding to enhance interpretability and general-
ization. These LLM-based agents have shown great
promise in critical domains such as healthcare (Qiu
et al., 2024) and scientific research (Schmidgall
et al., 2025) by mimicking human decision-making
processes and enabling more intuitive reasoning
and actions.

Several approaches have enhanced agentic rea-
soning and decision-making. SwiftSage (Lin et al.,
2023) emulates the fast and slow thinking of hu-
mans with fine-tuned language models for plan-
ning. SayCan (Ahn et al., 2022) decomposes tasks

2QOriginal ScienceWorld graphic incorporated into this fig-
ure under CC BY-SA 4.0.
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Figure 2: Overview of DAVIS’s decision-making process. The World Model generates a feasible course of actions,
which are translated by the actor and executed sequentially by the agent in the environment. The critic detects
discrepancies between expected and actual outcomes, identify failures, and suggest replanning. >

into subgoals, while ReAct (Yao et al., 2023) 3
integrates reasoning into execution. RAG-based
systems like Reflexion (Shinn et al., 2023) and
RAP* (Kagaya et al., 2024) retrieve past experi-
ences via semantic search, but their unstructured
memory limits multi-hop reasoning and causal un-
derstanding. These systems retrieve static infor-
mation rather than engaging in agentic, multi-turn
retrieval, preventing dynamic adaptation.

Humans do not retrieve past knowledge stati-
cally; instead, we actively reflect, question our un-
derstanding, and refine our knowledge through in-
ternal dialogues. Inspired by this, we introduce
DAVIS, an agentic multi-turn retrieval system that
mirrors human cognition by enabling iterative inter-
actions between the agent and its memory during
the planning stage, a process we call inner mono-
logue. DAVIS actively engages with its World
Model (WM), a temporal knowledge graph-based
QA system, to refine its understanding before plan-
ning and execution. DAVIS engages in conver-
sation with its WM to retrieve past experiences,
evaluate actions, identify gaps, and optimize strate-
gies.

DAVIS proves to be effective for iterative reason-
ing within scientific domains. Specifically, DAVIS
outperforms 4 other baselines (Ahn et al., 2022;
Kagaya et al., 2024; Yao et al., 2023; Shinn et al.,
2023) on 8 out of 9 science subjects in the Science-

3SwiftSage, Reflexion, SayCan, and ReAct are used under
MIT license
4RAP is used under MIT license

World (Wang et al., 2022) environment.” DAVIS’s
WM achieves competitive performance on the Hot-
potQA (Yang et al., 2018) and MusiqueQA (Trivedi
et al., 2022) dataset ©. Our contributions can be
summarized as follows:

* We introduce DAVIS, an agentic reasoning
framework that leverages multi-turn retrieval and
self-reflection to improve decision-making.

* Unlike static retrieval methods, DAVIS leverages
a structured temporal knowledge graph memory
system to enable multi-hop reasoning and causal
understanding.

* Empirical evaluations show that DAVIS outper-
forms prior agentic reasoning models across sci-
entific benchmarks, demonstrating superior plan-
ning and execution.

2 Background & Related Work

2.1 Text-Based Scientific Environments

Text-based simulation environments provide a
flexible, language-driven interface for training in-
telligent agents in open-ended settings. Notably,
TextWorld (C6té et al., 2019) offers structured tasks
within interactive fiction environments, enabling
agents to learn through inventory tracking, natural
language feedback, and symbolic state transitions.
Its lightweight interface supports high-throughput
simulation, with TextWorldExpress achieving up to

SScienceWorld is used under Apache 2.0 license

The HotpotQA dataset is distributed under the CC BY-SA
4.0 license. The MusiqueQA dataset is distributed under CC
BY 4.0 license
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Figure 3: DAVIS’s retrieval and reasoning process. Left: subgraph with relevant entities and their relationships.
Middle: temporal reordering of the retrieved information to establish a coherent sequence of actions. Right: DAVIS

generates a structured and interpretable response.

4 million steps per second (Jansen and Coté, 2023),
making it an ideal testbed for large-scale training.

Building on this paradigm, ScienceWorld ex-
tends text-based simulation to procedural scientific
tasks. Unlike typical interactive fiction environ-
ments, ScienceWorld emphasizes tasks that mirror
real-world laboratory scenarios, such as growing
plants, operating microscopes, or conducting chem-
ical experiments. These tasks introduce a set of
multifaceted requirements:

1. Multi-hop scientific reasoning over domain-
specific procedural knowledge;

2. A temporal and structured understanding
of how the environment evolves over time,
especially when actions have delayed or com-
pounding effects;

3. An emphasis on safety and interpretability,
where agents must reason about physical con-
sequences and justify their behavior;

4. Operation under partial observability, requir-
ing internal modeling to compensate for lim-
ited real-time feedback.

DAVIS is designed to explicitly address these
challenges. In Section 3, we show how each ar-
chitectural module supports one or more of these
multifaceted requirements.

2.2 LLM agentic systems

Recent advancements in LLM-based agentic sys-
tems have drawn heavily from human decision-
making processes and generally fall into two
paradigms: direct interaction via chain-of-thought
(CoT) reasoning or Retrieval-Augmented Genera-
tion (RAG).

The first paradigm involves agents interacting di-
rectly with their environment using CoT reasoning

(Yao et al., 2023; Ahn et al., 2022; Lin et al., 2023).
Chain-of-Thought prompting (Wei et al., 2023) en-
ables large language models to decompose complex
tasks into smaller, interpretable reasoning steps.
However, CoT-based systems lack robust memory
for long-term learning and adaptability across mul-
tiple tasks. The absence of memory has been linked
to increased hallucination and stochasticity in task
planning (Guerreiro et al., 2023), posing risks in
domains such as scientific research.

The second paradigm, RAG-based systems, inte-
grates retrieval mechanisms with generative capa-
bilities, enabling agents to access relevant external
knowledge during task execution. In the Minecraft
domain, extensive work has been done on RAG-
based agents, with JARVIS-1 (Wang et al., 2023b)
and Voyager (Wang et al., 2023a) representing the
state-of-the-art. Since Minecraft is one of the most
popular video games in the world, these agents
leverage the extensive in-domain knowledge of
LLMs but face significant limitations in scientific
environments, where tasks often involve unknown
skills and cannot rely on pre-existing knowledge.
In such cases, a more general and iterative approach
involving multiple trials is necessary.

Recent systems such as Reflexion (Shinn et al.,
2023) and RAP (Kagaya et al., 2024) address some
of CoT’s limitations by incorporating episodic
memory and semantic retrieval. Reflexion lever-
ages trial histories to guide decision-making, while
RAP uses nearest-neighbor search to ground deci-
sions in past experience. However, both approaches
rely on unstructured vector databases, which frag-
ment information and limit the agent’s ability to
perform multi-hop or causal reasoning. Further-
more, they lack temporal modeling capabilities and
do not support iterative plan refinement. While
prior frameworks such as Reflexion use the term
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“actor” to denote a module that generates an entire
action trajectory upfront, followed by a separate
“evaluator” or “critic” that assesses success post
hoc, DAVIS departs from this sequential model. In-
stead, DAVIS adopts an actor-critic architecture
that operates during task execution. The actor
grounds high-level plans into fine-grained actions
in the environment, while the critic continuously
evaluates each step by comparing real-time obser-
vations to expectations derived from the plan and
temporal knowledge graph. In light of these limi-
tations, there is a growing need for hybrid systems
that integrate structured memory, iterative retrieval,
and real-time validation. DAVIS addresses this gap
by combining a temporal knowledge graph with
multi-turn agentic reasoning and critic-guided con-
trol, offering a more interpretable and adaptable
framework for complex scientific environments.

2.3 Graph Question Answering (Graph QA)

Graph Question Answering (Graph QA) sys-
tems have become effective tools for structured
reasoning and information retrieval. GraphReader
(Li et al., 2024) constructs a graph from docu-
ment chunks and deploys an agent for exploration.
HOLMES (Panda et al., 2024) extracts relevant doc-
uments, builds an entity-document graph, prunes it,
and uses cosine similarity for answers. GraphRAG
(Edge et al., 2024) generates an entity knowledge
graph, pregenerates community summaries, and
synthesizes responses. By encoding knowledge in
a graph format, these systems excel at multi-hop
reasoning over interconnected concepts, making
them particularly valuable for domains that require
relational understanding, such as scientific research.
Unlike unstructured vector-based retrieval systems,
Graph QA systems enable iterative retrieval, al-
lowing agents to retrieve information, reason over
it, and perform subsequent queries based on the
refined context.

3 DAVIS

DAVIS adopts a model-based planning approach
(Sutton and Barto, 1998), where the agent uses a
World Model (WM) as an internal representation
of its surrounding environment.

3.1 Problem Formulation

We define the planning problem for DAVIS in
a textual environment as a Partially Observable
Markov Decision Process (POMDP):

P = (87 ‘A7T7R7 Q? 07’7)

Algorithm 1 Planning with Retrieval-Augmented

World Model
Input: 7,R  Parameters: L, k. Output: 7
1: fort =1to L do

2: 8¢+ f(7) > State estimation
3: at (*W(ét,R, k))

4: T4 TUady

5: Ot4+1, Ft+1 < TRANSITION(S¢,G¢) > Algorithm 2
6: T4 17U {6t+1,7%+1}

7: if (7) violates safety constraints (optional) then

8: Alert supervisor

9: end if

10: end for

11: return 7

In this formulation, S denotes the set of true
environment states, which are not directly observ-
able. A represents the set of available actions.
T (St41 | st,a¢) is the state transition probability
function, modeling the dynamics of the environ-
ment. R(s;, a;) is the reward function, specifying
the immediate reward received after taking action
ag in state s;. € is the set of possible observations.
O(0¢4+1 | St+1,a¢) is the observation probability
function, defining the likelihood of observing o¢41
given the new state s;y; and action a;. y € [0,1) is
the discount factor, determining the present value
of future rewards.

Since the true state s; is not directly observable,
the agent maintains a belief state b;, which is a
probability distribution over all possible states, rep-
resenting the agent’s estimate of the environment’s
state at time ¢. The belief state is updated based on
the agent’s actions and received observations. The
agent selects an action a; € A based on its current
belief state, following a policy 7:

as = ﬂ(bt)

After executing the action a;, the agent receives
areward 1, = R(s¢,a;) and transitions to a new
state s;y1 according to the transition function 7.
The objective of the agent is to find an optimal
policy 7* that maximizes the expected cumulative
discounted reward over time:

o
Z yire | w]

t=0

7% = argmax E
s

3.2 World Model (WM)

The World Model (WM) of DAVIS is repre-
sented as a Temporal Knowledge Graph (TKG),
constructed through a combination of Stanford
CoreNLP’ (Manning et al., 2014) for coreference

"We used default hyperparameters provided by the Stanza
package for CoreNLP
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resolution and LLM prompting for knowledge ex-
traction. In textual environments, where state rep-
resentations are conveyed in natural language, con-
structing an effective WM requires methods that
can process and represent textual information effi-
ciently and accurately.

State representation methods in text-based en-
vironments include text encoding techniques us-
ing recurrent neural networks (Narasimhan et al.,
2015, He et al., 2016, Hausknecht et al., 2020),
transformers (Kim et al., 2022), and knowledge
graph (KG) representations (Ammanabrolu and
Hausknecht, 2020). KGs offer structured and in-
terpretable representations without requiring exten-
sive training. Ammanabrolu and Riedl’s (2021)
framed KG construction in text-based games as a
question-answering problem, where agents iden-
tified objects and their attributes. This approach
demonstrated that higher-quality KGs led to im-
proved control policies. DAVIS generalizes this
paradigm by introducing Temporal KGs, which ex-
plicitly incorporate time-sensitive information to
model environment dynamics. Rather than captur-
ing a static snapshot of world knowledge, the TKG
continuously evolves with the agent’s interactions.
This enables causal and temporal reasoning: agents
can infer the effects of specific actions, reason over
state transitions, and plan with respect to how enti-
ties evolve over time, addressing the temporal and
structured understanding requirement.

Temporal reasoning is critical in such settings
and, as noted in (Lee et al., 2023), LLMs are highly
effective in extrapolating TKGs using in-context
learning.

Let Gy = (£, R, T) denote the Temporal Knowl-
edge Graph (TKG) at time ¢, where £ is the set of
entities at ¢, R is the set of relations representing
relationships between entities at ¢, and T is the set
of timestamps associated with each relation e;.

During training, when DAVIS executes an action
a and receives the subsequent observation o;41,
the transition is stored as:

(o¢ ||l ar || 01+1)

We prompted an LLM to summarize the concate-
nated transition and applied Stanford CoreNLP for
coreference resolution. The resolved text is then
analyzed to extract entities V; and relations tuples
using LLM-based parsing.

Each extracted tuple (v;, e;, vk, 7) is added to
the TKG, where the timestamp 7 records the time

at which the fact was introduced:
Gir1 = G U {(vi, €5, 08, 7)}

3.3 Retrieval-Augmented Model
Approximation

As demonstrated in Lee et al.’s (2023), LLMs ex-
cel at recognizing temporal patterns and extrapolat-
ing future events based on past data. DAVIS lever-
ages this capability to approximate future states
and rewards. For example, if sufficient past data
indicates that opening a cupboard often reveals a
kettle, the LLM can infer such transitions purely
from learned patterns without requiring explicit
pre-programmed rules. Unlike prior works (Ka-
gaya et al., 2024; Shinn et al., 2023) that rely on
vector-based retrieval of experiences, DAVIS em-
ploys a more agentic approach. DAVIS engages in
an internal conversational process with its graph-
powered WM, a process we term inner monologue.
This process involves iteratively querying its knowl-
edge graph to fill knowledge gaps while retrieving
relevant subgraphs to generate informed responses.
The graph-powered inner monologue retrieval sys-
tem is described in Section 3.4.

Although the true state s; is not directly ob-
servable as mentioned in Section 3.1, it is theo-
retically possible to maintain a statistic f(7) that
approximates the belief state from the trajectory
history. The statistic is updated recurrently and
captures all relevant information necessary for opti-
mal decision-making (Nguyen et al., 2021; Astrom,
1965). Applying this to DAVIS, we approximate
the belief state I;t with equation:

l;t = f(Tt’:t)a

where f(-) is a prompted LLM that extracts rele-
vant information from the trajectory history and
is updated recurrently with new observations and
actions. To further refine decision-making, DAVIS
maintains an inner monologue My, a running list
of iterative queries and answers exchanged between
DAVIS and its WM, as illustrated in Figure 1. This
monologue allows the system to dynamically up-
date its WM based on retrieved insights.

DAVIS optimizes its policy while simultane-

ously learning approximations of the transition and
reward models using its WM. The learned func-
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tions incorporating the inner monologue are:

Policy: m(az | by, M) (1)
Transition Model: %(Ot+1 | Bt,at,Mt) 2)
Reward Model: 7%(7‘,5 | by, ag, My) 3)

With the approximated belief b, DAVIS’s WM
estimates the transition and reward models using
prior experiences retrieved from a TKG. DAVIS
leverages previous experiences to directly inform
its policy as defined in Equation (1). This retrieval-
driven approximation enables DAVIS to construct
an adaptive and context-aware model of the world,
allowing for informed decision-making in complex,
temporally dependent environments through multi-
hop reasoning.

3.4 Inner Monologue Retrieval System

Given a query q, such as "Where can I find wa-
ter?", the WM first narrows its search to relevant
entity types such as Person (PER) and Location
(LOC) . It then selects the two most relevant entities
from the available options. Limiting the scope to
two entities is computationally efficient and ensures
a manageable search space without sacrificing rel-
evant context. The query is then expanded and
processed as follows and illustrated in Figure 3:

1. We iteratively expand the current list of se-
lected entities by adding their neighbors, form-
ing a maximal subgraph, as ignoring temporal
information might result in an infeasible path.

2. We reorder the edges in the maximal subgraph
based on timestamps. This reordering shows the
proper sequence of events.

3. The temporal sequence is then passed to an
LLM as in-context examples for extrapolation
and summarization, enabling the LLM to gener-
ate a coherent response.

3.5 Planning and Execution with a WM

With the reward model and transition model ap-
proximated, we can now plan action trajectories
within the WM. Algorithm 1 describes the WM-
incorporated planning process used in DAVIS.

For plan execution, we employ an actor-critic
structure, consisting of two distinct models: the
actor R, and the critic R., both integrated with
the WM architecture. The process is illustrated in
Figure 2.

World Model (WM). The primary objective of
the WM is to generate a comprehensive plan or

Algorithm 2 Transition Prediction

Input: by, G, k Output: 0¢y1, P11

I: M« 0 > Initialize inner monologue set
2: 1+ 0

3: while ¢ < k or not predicted do

4 ét+17q<_j;(lzt7dt7M)

5: ft+1,q<—R(bt,&t,M)

6: if ¢ # () then

7: M MU {(q,graphQA(q))}
8: end if

9: i 1+1

10: end while

11: return 6¢y1, 7141

trajectory for achieving a specific task within the
environment. Given an initial observation estimate
0t, the WM generates a predicted trajectory

Teerr = { (04, G, 5i+1,fi+1)}§:f_l
of length L. This trajectory 74,y is passed to
the actor-critic model for execution in the envi-
ronment. The WM generates high-level, natural
language plans that outline the intended sequence
of actions. These plans are explicit, interpretable,
and can be validated prior to execution, allowing
the agent to reason in advance about safety and
correctness. Thus, this module addresses the safety
and interpretability requirement.

Actor. The actor R, decomposes each high-level
action a; € T into executable commands within
the given environment domain. It also predicts
intermediate state transitions between actions:

7A't:t+L’ =R, (Tt:t+L)

where L' > L accounts for the expanded trajec-
tory with executable low-level actions. The actor
model is prompted with permissible commands in
the current environment. After decomposition, the
expanded trajectory 7y.. 1 iS executed step-by-step
in the environment, producing actual environment
responses:

(0,71, 0041) = E(Gy)
where £ is the environment transition function that
maps the executed action a; to the resulting obser-

vation o;11 and reward r;. These results are passed
to the critic model.

Critic. The critic R, evaluates the actual execu-
tion results against the predicted trajectory 7. The
comparison is performed through an LLM-based
evaluation function, which assesses the semantic
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consistency between the expected and actual ob-
servations. At each timestep ¢, the critic receives
the predicted state transition (¢, 7, 6,41 ) and the
actual environment response (o, 7', 0¢+1 ) obtained
from executing a; in the environment.

The LLM-based critic compares these compo-
nents via a prompted evaluation function R.:

Ay = Rc((ét, Tt,0t41), (04, Tt 0t+1))

where A; is a qualitative feedback score repre-
senting the level of agreement between the pre-
dicted and actual transitions. We called this re-
flection as the agent "reflects" on the differences
between predictions and actual environment re-
sponses. Based on the LL.M’s response, the critic
determines whether replanning is necessary. If the
predicted and actual observations deviate signifi-
cantly, the critic updates its list of reflections R;
(which the world model uses as additional context
for future replannings within the current execution)
and then triggers replanning.

Rep1 = Re U {(o0r, 8, Ar) }

Algorithm 1 is then called to replan the new subtask.
For example, if the task is "using the stove to heat
water" and the agent encounters an exception (e.g.,
the stove is broken), the LLM evaluates the excep-
tion, updates M, and suggests a revised subtask
such as "find an alternative heating method."

The actor-critic system bridges high-level plan-
ning and low-level execution. The actor converts
the plan into concrete actions in the environment,
while the critic evaluates the results and checks
whether the outcomes match expectations. If devi-
ations occur, the critic can trigger replanning. This
allows for robust operation under partial observ-
ability.

4 Experiment

4.1 ScienceWorld environment

We selected ScienceWorld (Wang et al., 2022) as
the primary benchmark to evaluate DAVIS, as it is
currently the only environment designed for interac-
tive scientific reasoning. It features 30 tasks across
9 grade-school science subjects, set in a simulated
lab where agents must navigate 8 functional rooms
and use scientific tools to complete tasks. Each task
includes more than 100 variations, some of which
significantly alter the setup by masking rooms or
removing equipment—requiring strong generaliza-
tion and adaptability. The environment demands

common sense reasoning, deduction, and procedu-
ral knowledge. Scores reflect progress toward task
completion (e.g., 75 indicates 75% progress before
failure), enabling structured and interpretable eval-
uation. Full details are included in Appendix A.

4.2 Performance

We evaluated DAVIS on the ScienceWorld
benchmark, comparing its performance against
state-of-the-art baseline agents: SayCan, ReAct,
Reflexion, and RAP. The baselines were selected
based on their competitive performance, available
implementations, and relevance to Science World.
The current state-of-the-art method on Science-
World, SwiftSage (Lin et al., 2023), was excluded
from our replication baselines because discrep-
ancies between the available code and the docu-
mented evaluation methods made direct replication
infeasible. For consistency, all baselines were reim-
plemented to align with the latest ScienceWorld
version. For fairness, both RAP and DAVIS uti-
lized memory constructed from five episodes of
golden trajectories rather than the ReAct-based ap-
proach proposed in Kagaya et al.’s (2024). Perfor-
mance was averaged across subjects for compari-
son, with details on tasks and subjects provided in
Tables 4 and 6 in the appendix. Figure 4 shows
DAVIS outperforming all baselines in 8 out of
9 subjects, achieving an overall average score of
65.06—approximately 1.8 times higher than com-
peting methods. Full results for each task, includ-
ing standard deviations, are in the appendix Table 7.

Overall, DAVIS took fewer steps before converg-
ing to the final score when compared to SayCan,
ReAct, and Reflexion. Compared to RAP, DAVIS
was better at transferring knowledge from its train-
ing to execution despite differences among varia-
tions of the same task. Its World Model allows for
multi-hop reasoning and inferences based on past
training data.

4.3 Ablation Study

We systematically evaluate the system with indi-
vidual modules removed—specifically the World
Model (WM), Actor, and Critic—and compare
their impact on performance using two metrics: (1)
average task score (i.e., task progress before time-
out) and (2) average number of steps per replanning
cycle (steps/replan). To ensure representative cov-
erage across task complexity, we select two tasks
from each category of task length (short, medium,
and long). For each task, the results are averaged
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Figure 4: Performance comparison of different agents (SayCan, ReAct, Reflexion, RAP, and DAVIS) across multiple
scientific domains. For full results, view table 7 in the Appendix.

Task D D+W
Long Tasks

Melt (1-2) 3.00 70.00
Determine Melting Point Unk. (2-3) 5.00 92.33
Medium Tasks

Mix Paint Secondary (6-1) 40.00 36.37
Test Conductivity (3-3) 55.00 58.33
Short Tasks

Lifespan Longest-Lived (7-1) 66.67 100.00
Find Living Thing (4-1) 25.00 100.00

Table 1: DAVIS performance with WM (D + W) and
without WM (D)

over three different environment variations.

World Model: Table 1 compares DAVIS with
and without its WM. The WM serves as structured
external memory in the form of a temporal knowl-
edge graph, enabling grounded and long-horizon
planning. Without this, the agent has to rely solely
on the internal capabilities of the LLM, lacking
access to temporal or multi-hop context.

The WM consistently improves performance
across all tasks, particularly in complex and tem-
porally grounded settings like Melt and Find Liv-
ing Thing, demonstrating that temporal and struc-
tured grounding is critical for high-fidelity decision-
making in scientific domains.

Actor-Critic. 'We ablate DAVIS in Table 2 by re-
moving the Actor or Critic module. In the no-Actor
setup, the World Model directly outputs executable
actions, skipping high-level goal decomposition. In
the no-Critic setup, reflection and subtask updates
are disabled, though replanning triggers remain.

* No Actor: The agent struggles to produce

Table 2: Ablation study: Full model (D+W), w/o Actor
(D-A), and w/o Critic (D-C).

Type Task D+W D-A D-C
Lon 12 704.38) 25(1.12) 23.3(3.20)
€ 23 923(151) 79.7(1.19) 33.3(1.29)
.61 364(3.22) 100 (1.49) 86 (2.49)
Medium 5 3 5g3271) 28(1.32) 49.3(1.72)
Shot | 7-1 833(2.00) 66.7(2.00) 83.3(2.00)
4-1 100 (2.50) 44.7 (2.94) 25 (2.50)

valid commands despite access to action for-
mats, resulting in low task scores and near-1.0
steps/replan—indicating constant replanning and
poor multi-step coherence. In task 6-1, the agent
correctly and luckily guessed the critical action
‘focus on’ within the first 5 steps, skipping all
the intermediate steps and resulting in a strong
performance in the D-A and D-C agents.

* No Critic: The agent can execute longer action
chains without an Actor module but struggles
to recover from errors due to a lack of intro-
spective feedback provided by the Critic. While
performance differences are minimal on short
tasks—typically solvable within one or two re-
planning cycles—the gap widens on longer tasks
that require more adaptive reasoning. Compared
to the no-Actor condition, both task performance
and steps per replan improve, but remain below
those of the full DAVIS system.

The Actor enables structured execution, and the
Critic enhances adaptivity. A higher average steps
per replan ratio, paired with strong task scores,
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Table 3: WM comparison against SotA baselines.

Method HotpotQA | MusiqueQA
EM Fl |EM Fl
GPT-40 463 64.1/19.0 344
GPT-4-turbo 443 604(20.5 34.7
GraphReader (GPT-4) 550 70.0(38.0 474
HOLMES (GPT-4) 66.0 78.0(48.0 58.0
GraphRAG (GPT-40-mini) 58.7 63.3/40.0 53.5
DAVIS (GPT-40) 56.25 73.8|33.8 48.5
DAVIS (GPT-4-turbo) 55.25 71.0|34.0 47.1

demonstrates coherent, cost-efficient planning.

4.4 Multi-hop Q&A

We evaluated the performance of DAVIS’s World
Model (WM) on the multi-hop QA benchmarks
HotpotQA and MusiqueQA using 400 randomly
sampled instances, following the evaluation pro-
tocol of Li et al.’s (2024). Table 3 shows that
DAVIS (GPT-40) achieves strong results, surpass-
ing GraphReader and GraphRAG on HotpotQA
with an F1 score of 73.8 and a competitive EM of
56.25, approaching the state-of-the-art HOLMES.
On MusiqueQA, DAVIS maintains strong perfor-
mance (F1: 48.5, EM: 33.8), further demonstrating
the effectiveness of its structured, temporal mem-
ory in reasoning tasks. While HOLMES achieves
the highest overall scores, its static hyper-relational
graph architecture lacks DAVIS’s ability to support
dynamic updates during inference, which is cru-
cial for agents operating in evolving or interactive
environments. Due to costs and the proprietary up-
date schedules of commercial LLMs, we chose to
report the best results as reported by the original
authors. We note that Table 3 is not intended to
claim state-of-the-art performance but to illustrate
how DAVIS’s architectural design generalizes to
multi-hop QA tasks. For each system, we report
results using the best-performing language model
configuration as documented in the respective orig-
inal papers. We qualitatively observe that retrieval-
based systems are highly sensitive to the under-
lying LLM: DAVIS performs better with GPT-40
than with GPT-4-turbo, despite the latter’s gener-
ally stronger performance claims, which should be
examined in future work.

5 Conclusion

DAVIS is an agent designed for scientific inter-
active reasoning tasks in complex environments.
DAVIS represents a novel approach that leverages
a structured World Model (WM) in the form of a

temporal knowledge graph, enabling iterative re-
trieval and reasoning over past experiences. This
structured representation allows DAVIS to approxi-
mate both the transition dynamics and reward mod-
els of its environment, facilitating more informed
decision-making. DAVIS also uniquely uses an
interactive retrieval process, which combines it-
erative querying with contextual reasoning to fill
knowledge gaps and refine understanding. This is
augmented by DAVIS’s ability to perform internal
planning and validation before interacting with the
environment. By engaging in pre-execution delib-
eration, DAVIS enables clearer inspection of its
planned actions, making it easier for human super-
visors to review its decision-making process. This
transparency facilitates stronger safeguards com-
pared to reinforcement learning (RL) agents, whose
policies are often opaque. DAVIS is ideal for scien-
tific tasks that demand precision, adaptability, and
strict adherence to experimental protocols.

Evaluations in the ScienceWorld environment
across several scientific domains, including ther-
modynamics, biology, and physics, demonstrate
the efficacy of DAVIS’s structured knowledge rep-
resentation and retrieval methods compared to base-
line agents. DAVIS combines robust planning with
iterative reasoning capabilities, enabling it to gener-
alize effectively from demonstrations to new tasks.
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7 Limitations & Future works

While DAVIS demonstrates strong reasoning ca-
pabilities and improved performance over previous
agentic approaches, it has several limitations that
should be addressed in future research.

7.1 High operational cost

DAVIS relies extensively on Large Language
Models (LLMs), resulting in significant computa-
tional overhead. Due to its multi-step reasoning
process—particularly the structured inner mono-
logue interaction with a Temporal Knowledge
Graph; each action involves sending and receiv-
ing approximately 43,000 tokens, leading to an
average cost of $0.43 per action. For tasks requir-
ing 100 actions, this can scale to $43 per episode,
totaling over $3,000 across the 90 experimental
variations. While this cost is nontrivial, it reflects
a deliberate trade-off between depth of reasoning
and operational efficiency. Our goal in this study is
to explore the combinations of agent frameworks
and language models that best support structured
interactive reasoning. To make the experiments
more accessible, we use GPT-40 and GPT-4-turbo,
which are considerably more affordable than previ-
ous GPT-4 models while maintaining stable, high-
quality outputs. Looking forward, we see promis-
ing opportunities to reduce cost via distillation and
fine-tuning of DAVIS’s inner monologue architec-
ture onto smaller, open-source models; paving the
way for lower-cost, scalable deployments of struc-
tured agents in real-world settings.

7.2 Sensitive to LLM performance

DAVIS’s performance is closely tied to the be-
havior of the underlying Large Language Mod-
els (LLMs), making it sensitive to fluctuations in
model quality, API changes, and prompt compati-
bility. Updates to commercial LLMs can introduce
inconsistencies in reasoning accuracy, output struc-
ture, and response latency—affecting the agent’s
ability to plan and act reliably in dynamic environ-
ments. This sensitivity highlights a key limitation
of relying on closed-source LLMs for long-term
deployment. To address this, future development
of DAVIS will prioritize model-agnosticism by in-
tegrating smaller, open-source language models.

7.3 Biased Planning & Knowledge
Dependence

DAVIS’s decision-making process is heavily
influenced by the Temporal Knowledge Graph

(TKG), which serves as its structured memory.
However, this dependence can lead to biased plan-
ning, as DAVIS prioritizes information within the
graph. Although efforts were made to increase
data diversity by populating the knowledge graph
with 150 different ScienceWorld task variations,
the model still struggles when encountering novel
scenarios or incomplete knowledge. Future work
should explore adaptive knowledge integration to
mitigate bias.

7.4 Lack of multimodal capabilities,
evaluation in safety-critical contexts

DAVIS operates exclusively in textual environ-
ments, limiting its applicability as an embodied
agent. The absence of visual, auditory, or sen-
sory perception restricts its ability to interact with
real-world multimodal tasks. This is especially nec-
essary in safety-critical contexts. Future research
should focus on integrating visual and sensor-based
input processing to enhance generalization and de-
ployment in multimodal Al systems.

Additionally, robust evaluation in real-world
and safety-critical contexts is necessary to validate
the framework’s reasoning abilities under noisy,
high-stakes conditions. This includes benchmark-
ing against embodied QA tasks, robotic planning
datasets, and interactive simulations in domains
such as remote surgery, chemical lab automation,
or aerospace systems. These settings require the
agent not only to retrieve and reason, but also to
react in real time with awareness of physical con-
straints, ethical concerns, and safety protocols.

7.5 Need for Open-Source, Model-Agnostic
Evaluation Protocols

In Table 3, we evaluate DAVIS’s World Model
(WM) using the HotpotQA and MusiqueQA
datasets, reporting F1 and EM scores across sys-
tems. To ensure fair comparison, we use re-
sults reported by prior work (e.g., GraphReader,
HOLMES), rather than re-running those systems.
This decision was made due to the high cost of
large-scale inference and the instability of com-
mercial APIs, many of which lacks publicly dis-
closed updates, making exact reproduction infea-
sible. While informative, this reliance introduces
a limitation in terms of reproducibility and trans-
parency.

Moreover, our experiments revealed a high de-
gree of sensitivity to the underlying LLM: DAVIS
performed better on QA tasks using GPT-40 than
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GPT-4-turbo, contrary to general performance
claims. Such discrepancies underscore the volatil-
ity of relying on commercial LLMs, whose archi-
tectures, weights, and behaviors may change with-
out notice. We believe that this volatility highlights
a broader challenge in LLM-based research and
advocate for a shift toward open-source, model-
agnostic evaluation. Future works should replicate
DAVIS’s pipeline using smaller, open-source lan-
guage models with standardized evaluation proto-
cols, transparent logs, and fixed model checkpoints.
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A ScienceWorld

ScienceWorld (Wang et al., 2022) is a bench-
mark designed to evaluate interactive reasoning in
digital agents through a realistic laboratory simu-
lation. Developed by the Allen Institute for Al, it
provides a text-based environment that emulates
scientific experiments, requiring agents to inter-
act with objects, collect observations, and apply
reasoning skills to solve tasks. The framework
consists of approximately 40,000 lines of SCALA
code with a PYTHON interface, following standard
RL benchmarking practices.

The ScienceWorld environment consists of 10
interconnected locations (Fig. 5), each populated
with up to 200 distinct object types, including scien-
tific instruments, electrical components, biological
specimens, substances, and common environmen-
tal elements such as furniture and books. Agents
can interact with objects through a predefined ac-
tion space of 25 high-level actions, categorized into
domain-specific operations (e.g., using a thermome-
ter, measuring conductivity) and general interac-
tions (e.g., moving, opening containers, picking
up items). At each step, approximately 200,000
possible action-object combinations exist, though
only a subset is relevant based on the context.

ScienceWorld tasks are designed to assess sci-
entific reasoning across multiple disciplines. The
dataset includes 30 distinct tasks (Table 4), cov-
ering a range of experimental procedures and
problem-solving scenarios. These tasks are further
grouped into 9 science domains (Table 6), includ-
ing physics, chemistry, biology, and environmen-
tal science, allowing for targeted evaluation of an
agent’s ability to reason through various scientific
concepts, making ScienceWorld a robust bench-
mark for testing multi-step reasoning in dynamic,
interactive environments.

B DAVIS Implementation Details

We utilized GPT-4-turbo for reasoning, GPT-40
for question answering, and LLaMA3-7@B for the
Knowledge Graph construction pipeline. Agents

Task

Changes of State (Boiling)

Changes of State (Melting)

Changes of State (Freezing)
Changes of State (Any)

Use Thermometer

Measuring Boiling Point (Known)
Measuring Boiling Point (Unknown)
Create a Circuit

Renewable vs Non-Renewable Energy
Test Conductivity (Known)

Test Conductivity (Unknown)

Find a Living Thing

Find a Non-Living Thing

Find a Plant

Find an Animal

Grow a Plant

Grow a Fruit

Mixing (Generic)

Mixing Paints (Secondary Colours)
Mixing Paints (Tertiary Colours)
Identify Longest-Lived Animal
Identify Shortest-Lived Animal
Identify Longest-Then-Shortest-Lived Animal
Identify Life Stages (Plant)

Identify Life Stages (Animal)
Inclined Planes (Determine Angle)
Friction (Known Surfaces)

Friction (Unknown Surfaces)

10-1 Mendelian Genetics (Known Plants)
10-2 Mendelian Genetics (Unknown Plants)

\O\OOOOO\]\I\]O\O\O\UIUI-P-I}-P#U)UJU)UJNNN»—»—»—H:u:
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Table 4: Tasks in ScienceWorld.

were run for a maximum of 80 steps per task. All
RAG-based agents were initialized with five vari-
ations, a total of 150 variations, of rollouts using
the golden trajectory for training, while three ran-
domly sampled test variations, a total of 90 varia-
tions, were drawn from the ScienceWorld test set.
In contrast, all CoT agents were evaluated directly
on the randomly drawn test set as intended.

All experiments were conducted on a system
equipped with a NVIDIA RTX 3060 GPU, an
AMD Ryzen 9 7900X CPU, 64GB RAM, running
Ubuntu 23.04 with Python 3.11.0. The full table
of hyperparameters and settings for DAVIS is pro-
vided in Table 5. The results are available in table 7,
and all our code and prompts are available in the
attached repository.

16502


https://doi.org/10.48550/arXiv.2402.15809
https://doi.org/10.48550/arXiv.2402.15809
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/0022-247X(65)90154-X

Figure 5: The ScienceWorld environment as presented in (Wang et al., 2022)

Hyperparameter Value
Maximum Steps per Task 100
Simplification Level Easy
Knowledge Graph Pipeline | LLaMA3-70B-Instruct
Reasoning Model GPT-4-Turbo
Maximum QA Turns 5

Predicted Trajectory Length 5

Table 5: Hyperparameter settings for DAVIS.
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Subject Description Tasks

Agents perform experiments to change the state of various 1-1, 1-2,

Matt . ..
atter materials, such as transforming ice to water or water to steam 1-3, 1-4
Thermodynamics Agepts copduct experlmen'ts 1nV01V1ng temperature 2-1,2-2,
manipulation, such as heating or cooling objects. 2-3
.. Agents relocate to a workshop and construct electrical 3-1, 3-2, 3-3
Electricity S . . .
circuits to achieve specific objectives. 3-4
. Agents relocate to a garden and identify animals 4-1,4-2,4-3
Biology . .
based on various queries. 4-4
A 1 h fi k
ety gents re ocz.lte to a greenhouse z.lnd perform tasks 51,52
such as growing plants or observing their growth.
. A i hemi ks, such
Chemistry ge.ntS engage in standard chemistry tasks, such as 6-1,6-2. 6.3
mixing substances to create new compounds
Lifespan and Agents observe and report the life stages of plants and 7-1,7-2,7-3
Life Stages animals, such as germination, flowering, or molting. 8-1, 8-2
Physics Agents use physics knowledge to measure angles or 9-1,9-2
y explore physical properties of materials 9-3
. Agents identify genetic traits of plants, such as dominant 10-1
Genetics . . .
or recessive characteristics, based on observations. 10-2

Table 6: Description of subjects and corresponding tasks in ScienceWorld. Each subject represents a unique domain of inquiry,
with tasks designed to evaluate agents’ reasoning, planning, and execution capabilities in diverse scientific scenarios.
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Task | SayCan | ReAct | Reflexion | RAP | DAVIS

| Mean Std | Mean Std | Mean  Std | Mean  Std | Mean  Std
State of Matter 15.42 17.92 20.83 5.42 49.58
1-1 (L) 1.67 1.5 2.67 2.5 27.67 410 | 13.33 20.55 | 2567 19.6
1-2 (L) 2333 404 | 25.67 40.2 1.00 1.7 1.67 2.89 70.00 0.0
1-3 (L) 3.33 5.8 19.33 253 19.33 253 6.67 5.78 32.00 27.7
1-4 (L) 3333 57.7 | 2400 39.0 | 3533 56.0 | 0.00 0.00 70.67 0.6
Thermodynamics 24.89 12.67 10.67 20.44 85.00
2-1 (M) 6.00 3.0 4.00 3.5 9.00 0.0 | 3033 4743 | 83.00 294
2-2 (M) 7.67 0.6 6.33 0.6 17.33 18.8 8.67 15.02 | 79.67 352
2-3 (L) 61.00 483 | 27.67 39.3 5.67 0.6 | 2233 2040 | 9233 133
Electricity 21.58 27.00 36.08 43.42 68.50
3-1(S) 30.33 404 | 30.33 404 | 2333 345 | 39.00 33.05| 8233 157
3-2(M) 22.67 264 | 1933 29.3 1433 20.6 | 35.33 27.31 68.67 27.1
3-3 (M) 2333 275 | 5.00 5.0 39.00 345 | 38.00 35.03 | 58.33 2.9
Biology 29.92 41.83 91.00 44.42 95.83
4-1(S) 1133 98 | 17.00 0.0 7233 479 | 61.00 38.1 100.00 0.0
4-2 (S) 36.00 34.8 | 58.33 289 | 100.00 0.0 19.33 9.8 83.33 14.4
4-3(S) 2233 4.6 | 75.00 0.0 91.67 144 | 5833 36.0 | 100.00 0.0
4-4 (S) 50.00 433 | 17.00 0.0 | 100.00 0.0 | 39.00 38.1 100.00 0.0
Botany 14.83 40.83 38.17 33.00 26.83
5-1(L) 16.67 14.4 | 9.00 3.6 3.67 4.6 | 50.00 73.99 | 35.67 2.9
5-2 (L) 13.00 4.6 | 72.67 473 | 7267 47.3 | 16.00 13.89 | 18.00 6.2
Chemistry 15.78 19.44 51.44 51.00 53.44
6-1 (M) 16.67 11.5 | 2333 115 | 56.67 379 | 5333 5.78 36.67 5.8
6-2 (S) 2633 23 | 20.67 18.0 | 83.33 289 | 22.67 21.60 | 53.67 40.5
6-3 (M) 4.33 2.3 1433 5.1 14.33 7.5 | 77.00 0.00 70.00 0.0
Lifespan and Life Stages 44.40 35.67 22.47 17.67 57.80
7-1(S) 75.00 43.3 | 66.67 28.9 | 50.00 0.0 | 16.67 28.86 | 100.00 0.0
7-2(S) 83.33 289 | 66.67 289 | 3333 144 | 16.67 28.86 | 8333 289
7-3(S) 33.00 0.0 | 22.00 19.1 | 22.33 9.2 5.67 9.81 83.00 0.0
8-1(S) 1333 6.1 15.00 22.6 4.00 4.0 | 38.00 25.98 2.67 2.3
8-2(S) 1733 4.6 8.00 0.0 2.67 46 | 11.33 9.81 20.00 0.0
Physics 7.78 3.89 27.78 34.48 64.44
9-1(L) 5.00 5.0 0.00 0.0 36.67 54.8 | 30.00 30.00 | 76.67 404
9-2 (L) 6.67 7.6 | 11.67 12.6 8.33 2.9 | 30.00 0.00 60.00 34.6
9-3 (L) 11.67 16.1 | 0.00 0.0 38.33 535 | 43.44 2328 | 56.67 379
Genetics 5.83 25.17 6.33 6.83 72.33
10-1 (L) 6.00 9.5 | 39.00 53.5 6.33 9.2 3.33 5.78 | 100.00 0.0
10-2 (L) 5.67 9.8 | 11.33 9.8 6.33 9.2 | 1033 10.50 | 44.67 479

Table 7: Full results on ScienceWorld. The average score for each category is displayed in the grey bar on the same

row as the category label.
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