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Abstract

Knowledge graph completion (KGC) aims to
predict missing triples in knowledge graphs
(KGs) by leveraging existing triples and textual
information. Recently, generative large lan-
guage models (LLMs) have been increasingly
employed for graph tasks. However, current
approaches typically encode graph context in
textual form, which fails to fully exploit the po-
tential of LLMs for perceiving and reasoning
about graph structures. To address this limita-
tion, we propose DrKGC (Dynamic Subgraph
Retrieval-Augmented LLMs for Knowledge
Graph Completion). DrKGC employs a flexi-
ble lightweight model training strategy to learn
structural embeddings and logical rules within
the KG. It then leverages a novel bottom-up
graph retrieval method to extract a subgraph
for each query guided by the learned rules. Fi-
nally, a graph convolutional network (GCN)
adapter uses the retrieved subgraph to enhance
the structural embeddings, which are then inte-
grated into the prompt for effective LLM fine-
tuning. Experimental results on two general
domain benchmark datasets and two biomed-
ical datasets demonstrate the superior perfor-
mance of DrKGC. Furthermore, a realistic case
study in the biomedical domain highlights its
interpretability and practical utility.1

1 Introduction

Knowledge graphs (KGs) are structured represen-
tations of real-world facts, typically formulated
as a set of triples that consist of entities and their
relationships (Nickel et al., 2015; Ji et al., 2021).
Biomedical Knowledge Graphs (BKGs) are spe-
cialized forms of KGs tailored to the biomedi-
cal domain. In a BKG, nodes represent biomed-
ical entities—such as molecules, diseases, and
genes—while edges capture various relationships

*Corresponding author.
1The code is available at https://github.com/

TheYKXiao/DrKGC.

among these entities, typically through functional
predicates relevant to the biomedical domain (e.g.,
“treats,” “inhibits,” and “causes”) (Walsh et al.,
2020). BKGs have proved instrumental in numer-
ous biological tasks, including drug repurposing,
side-effect prediction, and drug–drug interaction
detection (Himmelstein et al., 2017; Zitnik et al.,
2018; Lin et al., 2020).

BKGs, like other KGs, often suffer from incom-
pleteness, typically manifested as missing edges
between nodes (Chen et al., 2020) . This incom-
pleteness may arise because (1) the facts are absent
from the data source, or (2) they remain undis-
covered by humans. Such issues are particularly
prevalent in BKGs, as their data primarily origi-
nates from experimental results, clinical trials, and
scientific literature.

Inferring missing facts in knowledge graphs has
led to the development of a wide range of Knowl-
edge Graph Completion (KGC) models. These
include structure-based methods (e.g., TransE (Bor-
des et al., 2013) and R-GCN (Schlichtkrull et al.,
2018)), rule-based methods (e.g., Neural-LP (Yang
et al., 2017)), and text-based methods (e.g., KG-
BERT (Yao et al., 2019)). Recently, the advent
of generative large language models (LLMs) has
given rise to a new class of generation-based KGC
approaches. Unlike traditional text-based meth-
ods that encode entity and relation descriptions
into fixed embeddings, these approaches leverage
LLMs to generate missing triples in a sequence-to-
sequence manner, often relying on prompting or
fine-tuning strategies (e.g., KICGPT (Wei et al.,
2023), KoPA (Zhang et al., 2024)). Although
generation-based methods have shown promise in
KGC, they face several key limitations: ❶ Struc-
tural Information Loss: These methods often fail
to preserve the rich structural information inher-
ent in knowledge graphs. While graph paths or
subgraphs can be encoded as text prompts, overly
long inputs introduce noise and increase compu-
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tational costs. ❷ Static Embedding Limitations:
Incorporating structural embeddings into LLMs of-
fers a partial solution but remains limited, as such
embeddings are static and do not adapt to the query-
specific context or dynamic subgraph structure. ❸

Generic Responses from LLMs: In the absence
of additional constraints, LLMs tend to generate
generic predictions influenced by pretraining data.
This is especially problematic in biomedical KGs,
where high-degree entities and many-to-many rela-
tions make multiple answers plausible—yet not all
are contextually correct or desirable.

To tackle these challenges, we propose
Dynamic Subgraph Retrieval-Augmented LLMs
for Knowledge Graph Completion (DrKGC). Our
approach begins by converting incomplete triples
into natural language questions using an automati-
cally generated template lexicon. It then employs
lightweight models to learn global structural em-
beddings of entities, discover logical rules and
coarsely rank candidate entities based on their rel-
evance to the query. This anchors the reasoning
process in semantic and structural context with-
out requiring long or noisy text prompts (❶). To
overcome the limitations of static embeddings (❷),
DrKGC dynamically constructs a query-specific
subgraph using retrieved candidates and learned
logical rules. This enables the model to focus on
relevant local structures and incorporate adaptive,
context-aware structural cues during inference. Fi-
nally, to mitigate the risk of generic or irrelevant
responses (❸), DrKGC restricts the output space
by explicitly defining a candidate entity set. The
prompt is enriched with both global and local graph
signals, guiding the LLM to generate contextually
grounded and targeted predictions, especially in
cases involving complex, many-to-many relations.

The key contributions of our work are as follows:

• We propose DrKGC, a novel and flexible
framework for knowledge graph completion
that effectively supports both general KGs and
domain BKGs.

• We develop two critical components of
DrKGC to effectively integrate graph-
structural information into the generative
model. Specifically, we extend the standard
retrieval-augmented generation to the graph
scenario where we leverage logical rules to
obtain a local subgraph that represents entities
of potential interest. Then, we develop a
technique that applies graph convolutional

networks to the retrieved subgraphs to
further generate local embeddings of entities,
effectively supplying structural information
for LLM-based prediction.

• We perform comprehensive experiments on
both benchmark datasets and biomedical use
cases to evaluate the performance of DrKGC
and show its significant improvement over
state-of-the-art baseline approaches. We fur-
ther conduct a biomedical case study on drug
repurposing to demonstrate the practical ap-
plicability of DrKGC.

2 Related Work

2.1 Structure-based Methods
Structure-based KGC methods leverage the struc-
tural information of nodes and edges in large het-
erogeneous graphs. Early methods learn low-
dimensional embeddings for entities and relations
based on individual triples—for example, TransE
(Bordes et al., 2013) views a relation as a trans-
lation from the subject to the object, while Ro-
tatE (Sun et al., 2019) extends TransE into a com-
plex space to model symmetric relations. Semantic
matching approaches (e.g., ComplEx (Trouillon
et al., 2016), DistMult (Yang et al., 2015)) com-
pute the similarity of entity and relation representa-
tions. However, these triple-based methods handle
each triple independently and ignore higher-order
neighborhood information. To address this, GNN-
based methods, such as R-GCN (Schlichtkrull et al.,
2018) and CompGCN (Vashishth et al., 2020), in-
troduce message passing and neighborhood aggre-
gation to incorporate multi-hop context.

2.2 Rule-based Methods
Because two entities in a KG may be linked by a
few one-hop paths but numerous multi-hop paths,
rule-based methods have emerged to learn prob-
abilistic logic rules from these relation paths for
inferring missing triples. For example, Neural-LP
(Yang et al., 2017) offers an end-to-end differen-
tiable framework that jointly learns the parame-
ters and structures of first-order logical rules by
combining a neural controller with attention and
memory, composing differentiable TensorLog op-
erations. NCRL (Cheng et al., 2023) learns logical
rules by splitting rule bodies into smaller parts, en-
coding them via a sliding window, and then merg-
ing them recursively with an attention mechanism,
achieving efficient and scalable reasoning.
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2.3 Text-based Methods

Knowledge graphs often include extensive textual
information, such as names and descriptions of en-
tities and relations, which text-based methods can
exploit using pre-trained language models (PLMs)
to predict missing triples. For example, KG-BERT
(Yao et al., 2019) computes triple scores by feeding
the text of head entities, relations, and tail enti-
ties into a BERT model. SimKGC (Wang et al.,
2022) applies contrastive learning with three types
of negative samples to build more discriminative
KGC models. KGLM (Youn and Tagkopoulos,
2023) augments PLMs with entity and relation em-
beddings that capture KG structural information,
further improving link prediction performance.

2.4 Generation-based Methods

With the rise of generative large language models
(LLMs), generation-based approaches have gained
attention by reformulating KGC into a sequence-
to-sequence text generation task. These methods
still rely on textual information from KGs, but they
reframe a KGC query as a natural language ques-
tion, prompt the LLM for an answer, and map that
output back to KG entities. For example, KICGPT
(Wei et al., 2023) introduces an in-context learn-
ing strategy that uses explicit instructions to guide
LLM reasoning. KG-LLM (Yao et al., 2025) ap-
plies LLMs for triple classification and relation pre-
diction, highlighting their adaptability to diverse
KGC subtasks. KoPA (Zhang et al., 2024) intro-
duces the Knowledge Prefix Adapter to integrate
pre-trained structural embeddings into LLMs to en-
hance structure-aware reasoning. From a prompt-
ing perspective, LPNL (Bi et al., 2024) uses a two-
stage sampling and divide-and-conquer method for
scalable link prediction via prompts. KC-GenRea
(Wang et al., 2024) reformulates KGC as a LLM-
based re-ranking task, and DIFT (Liu et al., 2024)
implements KGC using discriminant instructions
to finetune LLMs.

2.5 Biomedical Knowledge Graph Completion

BKGs have gained substantial attention for model-
ing structured knowledge in complex biomedical
systems. Representative BKGs include Hetionet
(Himmelstein et al., 2017), unifying 29 databases
into a single network, PharmKG (Zheng et al.,
2021), integrating 6 databases plus text-mined
knowledge, and PrimeKG (Chandak et al., 2023),
a precision medicine–focused graph consolidating

20 resources. For BKGs, KGC is essential in iden-
tifying missing triples to generate new hypothe-
ses—for example, ICInet (Zhao et al., 2023) in-
tegrates GNNs, biological KGs, and gene expres-
sion profiles to predict cancer immunotherapy out-
comes, while FuseLinker (Xiao et al., 2024) fuses
pre-trained LLM text embeddings with Poincaré
graph embeddings for improved GNN-based link
prediction in drug repurposing.

3 Methodology

In this section, we introduce the proposed DrKGC.
We begin with the preliminary and an overview, fol-
lowed by a detailed description of each component.

3.1 Preliminary

Knowledge Graph (KG). A KG (or BKG) can
be represented as a directed multigraph, G =
(E ,R, T ), where E is the set of entities, R is the set
of relations and T = {(h, r, t)|h, t ∈ E , r ∈ R} is
the set of triples. Each triple (h, r, t), with h and t
denoting the head and tail entities, and r represent-
ing the relation between them, describes a fact in
the KG.
Knowledge Graph Completion (KGC). KGC
aims to infer novel or missing triples from
those already present in the graph. Let triples
{(h′, r′, t′)|h′, t′ ∈ E , r′ ∈ R}, with (h′, r′, t′) /∈
T , represent facts that are unobserved in the KG. In
this work, we cast KGC as the task of identifying
missing entities in incomplete triples (?, rq, tq) and
(hq, rq, ?), which are referred to as head prediction
and tail prediction, respectively. Here, hq or tq is
the query entity, and rq is the query relation.

3.2 Overview

For simplicity, we only consider the head predic-
tion scenario for illustration. Figure 1 illustrates
the overall framework of DrKGC. DrKGC first
employs a Question Generator to convert the in-
complete triples (?, rq, tq) into well-formed ques-
tion Q. Then, a pre-trained lightweight model
scores each entity {e ∈ E | (e, rq, tq) /∈ T } for
(?, rq, tq), and selects the top k entities, where
k is a hyperparameter, to form a candidates set
C = [e1, e2, e3, . . . , ek]. Subsequently, Subgraph
Retriever retrieves a subgraph G based on the query
entity tq, all entities in C and the logic rules of rq.
A GCN-based adapter then leverages G to refine
the embeddings of the tq and the entities in C. Fi-
nally, the LLM selects the most plausible entity
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Input:
1. tq           2. rq
Output:
Candidates

rq

Incomplete Triple

You are an excellent biomedical scientist. The task is
to predict the answer based on the given question,
and you only need to answer one entity. The answer
must be in ('Tretinoin', 'Pindolol', 'Niacin', 'vitamine
E', ....) 

You can refer to: 
'Hypertension': [Placeholder],
'Tretinoin': [Placeholder],
'Pindolol': [Placeholder],
'Niacin': [Placeholder],
'vitamine E': [Placeholder],
 ....

Question: What is treatable for hypertension?

Answer:  

 Embeddings

{
relation 1: question 1, 
relation 2: question 2,
relation 3: question 3,
....
}

Input:
1. Query entity:
2. Rules:

3. Candidates:
     [                 ....  ]
Output:

Input:
1. Text of the relation
2. A few example triples
Output:
Questions template 

Knowledge Graph

GPT

Question-Template 
LexiconQuestion Generator

Training Ranking Model 

Subgraph Retriever

Enhanced embedding 

Prompt Template

Example:  ( _ , treats, Hypertension)

Llama-3-8B
Mistral-7B
MedLlama-3-8B

LLM LoRA
Fine-tuning

LLM Response

Pindolol

Candidate Retriever

GCN
Adapter

Subgraph

Subgraph with
embeddings for query  

Graph Embeddings

Logic Rules 

Lightweight
Model(s)

(_, rq, tq)
?

(_, rq, tq): [entity 1,
entity 2, entity 3, ...,
entity k] 

Candiadtes

Figure 1: Overview of the DrKGC framework. Light-blue arrows denote the dataset-level workflow (run once per
KG); black arrows denote the per-triple workflow (run for each incomplete triple).

from the C, using both its own knowledge and the
structured embeddings, to answer the question Q.

3.3 Question Generator

To more accurately express the relations in the KG
and convey the specific functional semantics of re-
lations in BKGs, we reformulate the KGC task into
a question-answering paradigm that aligns with
LLMs. To achieve this, we introduce a simple
yet effective approach comprising two main stages:
Template Generation and Question Generation.
Template Generation. For each KG, we conduct a
one-time template generation process using GPT’s
few-shot in-context learning. Specifically, GPT-o1
is provided with a relation’s name, its textual de-
scription, and a small set of sample triples, and is
then instructed to generate a corresponding ques-
tion template (with a placeholder for the query en-
tity) via pattern induction. After processing each
relation, we compile a question-template lexicon L
(distinguishing between head and tail predictions)
covering the entire relations set. Appendix A.3
shows the lexicon for WN18RR as an example.
Question Generation. After obtaining the lexicon
L, we map the query relation rq to its correspond-
ing question template and then place the query en-
tity tq into the placeholder position to generate the
complete question Q, which can be expressed as
Q = P (L(rq), tq).

3.4 Candidate Retriever

To mitigate the issues of an excessively large search
space, limited LLM input capacity, and the ten-
dency of LLMs to produce generic responses, we
constrain the LLM’s input and output using can-
didates sets. Following prior works (e.g., (Zhang
et al., 2024; Wei et al., 2023; Liu et al., 2024)),
we employ lightweight KGC methods to produce
entity rankings, which are then used to collect can-
didate entities.

Lightweight Model Training. Unlike previous
work, we require more than just entity rankings.
Therefore, we train lightweight structure-based
models to obtain the structural embeddings of enti-
ties and lightweight rule-based models to learn the
logical rules of relations in the KG, which guide the
subsequent subgraph retrieval. By “lightweight,”
we refer to simpler, more resource-efficient ap-
proaches that do not rely on large-scale pretrain-
ing. This process is inherently flexible and any
advanced method that can generate structured em-
beddings and perform rule mining may serve as
a substitute. In our implementation, we focus on
leveraging open-source methods that have demon-
strated strong performance on the KGC task. The
best structure-based model, MS , generates embed-
dings for all entities, which we denote as the global
embeddings Eglobal = {eglobal | e ∈ E}. The best
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rule-based model, MR extracts logic rules for each
relation. For every relation r ∈ R, we denote the
corresponding set of rules as Lr.
Candidates Collection. The best performing
lightweight model is used to coarsely rank the
candidates. Specifically, for head prediction with
rq and tq, we replace the head with each entity
{e ∈ E | (e, rq, tq) /∈ T } for incomplete triple
(?, rq, tq), and compute a likelihood score for each
resulting triple, which reflects its plausibility. The
replaced entities in top k triples are then selected
to form the candidates set C = [e1, e2, e3, . . . , ek].

3.5 Dynamic Subgraph RAG
Retrieval-augmented generation (RAG) integrates
retrieval-based methods with generative models to
enhance the quality and accuracy of generated text
(Lewis et al., 2020). Inspired by this idea, we pro-
pose a dynamic subgraph RAG strategy tailored for
KGC tasks, which comprises two key components:
Dynamic Subgraph Retrieval and Structure-Aware
Embedding Enhancement.
Dynamic Subgraph Retrieval. To enable the
LLM to select the correct answer from C based
on the query entity tq and query relation rq, it is
crucial to retrieve an informative subgraph to aug-
ment the graph context. To this end, we propose
a bottom-up dynamic subgraph retrieval scheme,
which is dynamic in that it does not mechanically
retrieve the subgraph solely based on the tq and rq,
but rather adapts to variable candidates sets. Specif-
ically, we first retrieve the shortest paths connecting
each e ∈ C to the tq to ensure that both the tq and
all candidate entities e ∈ C are included in the
subgraph G and guarantee connectivity. Next, we
sort the logical rules in Lrq by their assigned confi-
dence scores and sequentially use them to search
the paths from the e ∈ C to tq, thereby enriching
the subgraph. This process continues until the num-
ber of triples reaches a preset threshold τ , which
serves to constrain the subgraph’s size. Finally, if
the number of triples remains below τ after these
steps, we augment the subgraph with additional
triples connected to other entities from e ∈ C and
tq via the rq and its logical rules. More details are
provided in Appendix A.4.
Structure-Aware Embedding Enhancement.

Unlike traditional RAG, integrating structured
subgraphs directly into the prompts is challenging.
Even if described in text, much of the structural
information is lost, and the text may be excessively
long due to the richness of the subgraphs. To over-

come this limitation, we exploit the subgraph’s
structural information to vectorize the graph con-
text. We refer to the resulting embeddings as local
embeddings Elocal = {elocal | e ∈ E}.

To obtain local embeddings and enhance the
overall structural representation, we design a graph
convolutional network (GCN)-based adapter. It
comprises a low-dimensional relational GCN and
a subsequent adapter that projects the resulting
vectors to the LLM input layer’s dimensionality.
Specifically, for each query subgraph, the GCN is
initialized with the global embeddings of all en-
tities and then updates these representations via
the neighborhood aggregation mechanism to pro-
duce the local embeddings. We concatenate the
global and local embeddings to form the final
enhanced structural embedding, i.e., eenhance =
[eglobal; elocal]. To reduce computational overhead
for graphs, GCN computations are performed in a
low-dimensional space. Consequently, we employ
an adapter to map the resulting structural embed-
dings to the LLM input dimension for seamless
integration. During LoRA fine-tuning, we allow
gradients to flow through the entire model, includ-
ing the GCN adapter.

3.6 Prompt Template

Appendix A.2 presents the detailed prompt tem-
plate. In summary, for each queried incomplete
triple, our prompt comprises the following compo-
nents: the instruction I for KGC; the candidates
set C; special [Placeholder] tokens for the struc-
tured embeddings, which are replaced by the ac-
tual enhanced structural embeddings of tq and each
e ∈ C after token vectorization; and the question
Q generated by the Question Generator.

4 Experiments

4.1 Experiment Setup

Dataset. We evaluate our proposed method on two
benchmark KG datasets, WN18RR (Dettmers et al.,
2018) and FB15k-237 (Toutanova et al., 2015), and
two widely used BKG datasets, PharmKG (Zheng
et al., 2021) and PrimeKG (Chandak et al., 2023).
Dataset statistics, detailed descriptions and process-
ing procedures are provided in Appendix A.1.
Baseline Methods. For the KG and BKG datasets,
we selected two sets of baselines.

(1) For the WN18RR and FB15k-237, we
consider baselines spanning multiple categories:
structure-based methods: TransE (Bordes et al.,
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Methods WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Structure-based

TransE 0.243 0.043 0.441 0.532 0.279 0.198 0.376 0.441
DistMult 0.444 0.412 0.470 0.504 0.281 0.199 0.301 0.446
RotatE 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533
CompGCN 0.479 0.443 0.494 0.546 0.355 0.264 0.390 0.535

Rule-based
Neural-LP 0.381 0.368 0.386 0.408 0.237 0.173 0.259 0.361
RLogic 0.470 0.443 – 0.537 0.310 0.203 – 0.501
NCRL 0.670 0.563 – 0.850 0.300 0.209 – 0.473

Text-based
KG-BERT 0.216 0.041 0.302 0.524 – – – 0.420
SimKGC 0.671 0.595 0.719 0.802 0.336 0.249 0.362 0.511
KGLM 0.467 0.330 0.538 0.741 0.298 0.200 0.314 0.468
GHN 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518

Generation-based
KICGPT 0.564 0.478 0.612 0.677 0.412 0.327 0.448 0.554
COSIGN 0.641 0.610 0.654 0.715 0.368 0.315 0.434 0.520
DIFT 0.686 0.616 0.730 0.806 0.439 0.364 0.468 0.586

Hybrid StAR 0.551 0.459 0.594 0.732 0.365 0.266 0.404 0.562
CoLE 0.587 0.532 0.608 0.694 0.389 0.294 0.430 0.574

DrKGC (Ours) 0.716 0.654 0.757 0.813 0.472 0.406 0.498 0.599

Methods PharmKG PrimeKG

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Structure-based

TransE 0.091 0.034 0.092 0.198 0.281 0.194 0.315 0.451
RotatE - - - - 0.382 0.285 0.419 0.588
DistMult 0.063 0.024 0.058 0.133 0.212 0.148 0.238 0.341
ComplEx 0.075 0.030 0.071 0.155 0.204 0.141 0.266 0.340
R-GCN 0.067 0.027 0.062 0.139 0.640 0.569 0.680 0.761
HRGAT 0.154 0.075 0.172 0.315 0.443 0.347 0.489 0.637

DrKGC (Ours) 0.266 0.183 0.293 0.436 0.658 0.592 0.705 0.770

Table 1: Comparison of DrKGC (using Llama-3-8B) and baselines on WN18RR, FB15k-237, PharmKG and
PrimeKG. For each metric, the best performance is highlighted in bold, and the second-best is underlined.

2013), DistMult (Yang et al., 2015), RotatE (Sun
et al., 2019) and CompGCN (Vashishth et al.,
2020); rule-based methods: Neural-LP (Yang et al.,
2017), RLogic (Cheng et al., 2022), and NCRL
(Cheng et al., 2023); text-based methods: KG-
BERT (Yao et al., 2019), SimKGC (Wang et al.,
2022), KGLM (Youn and Tagkopoulos, 2023) and
GHN (Qiao et al., 2023); generation-based meth-
ods: KICGPT (Wei et al., 2023), COSIGN (Li et al.,
2024) and DIFT (Liu et al., 2024); and hybrid meth-
ods: StAR (Wang et al., 2021) and CoLE (Liu et al.,
2022). The baseline comparisons in this paper are
based on the reported performance values of these
methods.

(2) Since textual information essential for text-
and generation-based methods is often sparse
and unbalanced in BKGs, we focus on structure-
based methods on PharmKG and PrimeKG, includ-
ing TransE, RotatE, DistMult, ComplEx, R-GCN
(Schlichtkrull et al., 2018), and HRGAT (Liang
et al., 2023), all of which are widely used as base-
lines for link prediction tasks on BKGs. The base-

line performance for PharmKG is taken from the
values reported in the original PharmKG (Zheng
et al., 2021) paper; while for PrimeKG, the baseline
comparisons were conducted by ourselves.

Implementation Details. In the lightweight model
training stage, we trained NCRL to mine logical
rules for the four datasets. For global structural
embeddings, we employed RotatE for WN18RR
and FB15k-237, and HRGAT for PharmKG, with
hyperparameters consistent with the original publi-
cations. For PrimeKG, we used R-GCN with our
optimal hyperparameter settings to obtain global
embeddings. For WN18RR and FB15k-237, we ad-
ditionally utilize the ranking results from SimKGC
and CoLE, whereas, for PharmKG and PrimeKG,
we directly employ HRGAT and R-GCN for rank-
ing. The candidates set size is set at 20. For the fine-
tuning stage, we compared Llama-3-8B (Dubey
et al., 2024), Llama-3.2-3B (Dubey et al., 2024),
MedLlama-3-8B (johnsnowlabs, 2024) and Mistral-
7B (Jiang et al., 2023) as our LLMs. We employed
LoRA for efficient parameter tuning, with the pri-

16437



mary hyperparameters set to r = 32, α = 32, a
dropout rate of 0.1 and a learning rate of 2× 10−4.
Model performance was evaluated using ranking-
based metrics, including Mean Reciprocal Rank
(MRR) and Hits@1, Hits@3, and Hits@10 under
the “filtered” setting (Bordes et al., 2013). Addi-
tional training details are in Appendix A.5.

All experiments were conducted on an AMD
EPYC 7763 64-Core CPU, an NVIDIA A100-
SXM4-40GB GPU (CUDA 12.4), and Rocky
Linux 8.10.

4.2 Main Results
Table 1 shows that DrKGC achieves state-of-
the-art performance on WN18RR, FB15k-237,
PharmKG, and PrimeKG across most metrics. On
WN18RR, although DrKGC trails NCRL and GHN
in Hits@10, it outperforms all generation-based
methods. For example, compared with DIFT (Liu
et al., 2024) which also uses SimKGC as a ranker,
DrKGC improves MRR by 4.37% and Hits@1 by
6.17%. The gap with the top-performing text-based
GHN in Hits@10 is also minimal (−0.97%).

For FB15k-237, DrKGC outperforms all base-
lines on every metric, with improvements of 7.5%
in MRR and 11.4% in Hits@1. Given FB15k-237’s
diverse set of relations and semantic patterns, these
results underscore the ability of DrKGC to capture
heterogeneous relational structures and semantic
nuances.

On PharmKG and PrimeKG, DrKGC consis-
tently outperforms all baselines, demonstrating
that even though BKGs lack extensive text infor-
mation and LLMs are not pre-trained on special-
ized biomedical corpora, DrKGC can still achieve
strong results by leveraging semantic understand-
ing together with structural embeddings.

4.3 Ablation Studies
We conducted ablation studies on all four datasets
to assess the contribution of each component in
DrKGC, with the results presented in Table 2. In
the first ablation study, we removed the rule re-
strictions during subgraph retrieval. The results
show that DrKGC’s performance declined across
all four datasets, with a more pronounced drop in
KGs than in BKGs. In the second study, we elimi-
nated local embeddings and relied solely on global
embeddings as the structural reference for entities.
This change also led to performance degradation
on all datasets. In the third study, we removed the
structural embeddings entirely, forcing the LLM

to select the correct answer directly from the can-
didates set without any structural reference. The
significant performance decline observed for both
KGs and BKGs confirms the importance of incorpo-
rating structural information into LLM predictions.
Finally, we omitted the question template and in-
stead directly instructed the LLM to complete the
incomplete triple. While it resulted in only a slight
performance drop on KGs, it had a substantial im-
pact on BKGs. This can be attributed to the fact
that relations in BKGs are inherently functional and
mechanistic; for instance, asking the LLM "What
gene causes Parkinson’s disease?" provides clearer
instruction than simply prompting it to complete
an incomplete triple such as (?, causes, Parkinson’s
disease).

w/o
WN18RR FB15k-237

MRR (∆%) Hits@1 (∆%) MRR (∆%) Hits@1 (∆%)

rules 0.684 ( -4.47) 0.612 ( -6.42) 0.448 ( -5.08) 0.375 ( -7.64)
local embedding 0.676 ( -5.59) 0.596 ( -8.87) 0.439 ( -6.99) 0.361 ( -11.1)
embedding 0.669 ( -6.56) 0.582 ( -11.0) 0.433 ( -8.26) 0.351 ( -13.5)
question template 0.711 ( -0.70) 0.647 ( -1.07) 0.469 ( -0.64) 0.401 ( -1.23)

DrKGC (raw) 0.716 0.654 0.472 0.406

w/o
PharmKG PrimeKG

MRR (∆%) Hits@1 (∆%) MRR (∆%) Hits@1 (∆%)

rules 0.264 ( -0.75) 0.181 ( -1.09) 0.648 ( -1.52) 0.578 ( -2.36)
local embedding 0.261 ( -0.88) 0.176 ( -3.83) 0.631 ( -4.10) 0.539 ( -8.95)
embedding 0.260 ( -2.26) 0.174 ( -4.92) 0.619 ( -5.93) 0.510 ( -13.9)
question template 0.258 ( -3.01) 0.172 ( -6.01) 0.613 ( -6.83) 0.510 ( -13.9)

DrKGC (raw) 0.266 0.183 0.658 0.592

Table 2: Ablation study results on four datasets.

4.4 DrKGC under Complex Conditions
To further verify DrKGC’s robustness, we evalu-
ated both its inductive prediction capability and
its resilience under noisy conditions on WN18RR.
Specifically, for the inductive setting, we extracted
all test triples whose entities or relation never ap-
pear in the training set and measured DrKGC’s
performance on those unseen-entity cases. For the
noise experiment, we replaced a fixed proportion
of triples in the training set with random negative
triples and then assessed the resulting impact on
DrKGC’s metrics. The results are summarized in
Figure 2. Under the inductive setting, our model
experiences only modest performance drops (MRR:
−5.4%; Hits@1: −6.7%), and even when injecting
noise into 20% of the KG, the reductions in MRR
and Hits@1 remain limited to −7.9% and −7.6%,
respectively, demonstrating DrKGC’s robustness.

4.5 Subgraph Size Sensitivity Analysis
We examine how varying the threshold τ , which
controls subgraph size, affects model performance
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Figure 2: Robustness evaluation on WN18RR. (a) Com-
parison of evaluation metrics under the inductive setting
versus the overall test set. (b) Impact of proportional
noise addition on model performance.

and efficiency on WN18RR. The results are pre-
sented in Figure 3. As τ increases, model perfor-
mance initially improves and then declines, with
optimal results observed at τ = 100 (our chosen
hyperparameter) or 125; conversely, runtime grows
linearly with τ . The performance trend is reason-
able: a smaller τ restricts the information available
in the subgraph, whereas an excessively large τ ad-
mits paths from low-confidence rules that degrade
the quality of the local embeddings.
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Figure 3: Impact of τ on DrKGC Performance and time
consumption on WN18RR.

4.6 Analysis of LLM Selection

In this section, we further investigate the impact
of employing other different LLMs within DrKGC
on prediction performance. In addition to Llama-
3-8B, we compare Mistral-7B and a biomedical-
focused instruction-tuning variant, MedLlama-3-
8B. The results of replacing the LLM component in
DrKGC are presented in Figure 4. Overall, Llama-
3-8B delivers the best performance, while Mistral-
7B underperforms, despite achieving the highest
Hits@10 on FB15k-237. Notably, MedLlama-
3-8B performs slightly worse than Llama-3-8B
even on two BKGs, only outperforming in Hits@1
on PharmKG. This suggests that domain-specific

LLMs like MedLlama-3, though enriched with
biomedical knowledge, may not generalize well to
structured relational reasoning tasks such as KGC.
MedLlama-3 is primarily optimized for biomedi-
cal question answering and clinical text generation,
rather than for link prediction or graph-based infer-
ence, which limits its effectiveness in this setting.
This also demonstrates the benefit of DrKGC’s
structure-aware design.
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Figure 4: Comparison of DrKGC performance using
different LLMs across four datasets.

4.7 Case Study
To illustrate the practical utility of our approach,
we conducted a drug repurposing case study for
"breast cancer" using the PrimeKG dataset. In this
study, we defined "Breast Cancer" as the query en-
tity and "indication" as the query relation for head
prediction. Recognizing that multiple drugs may
be effective in treating breast cancer, we employed
DrKGC to generate the top 10 predictions. This
process was executed iteratively.

To validate our results, we conducted a manual
evaluation by clinical trials and published literature
(Zheng et al., 2021; Xiao et al., 2024). Specifically,
if a predicted drug is documented on ClinicalTri-
als.gov, we record the corresponding NCT ID as
evidence. If not, we search PubMed for supporting
literature and record the corresponding PMID. In
the absence of evidence from either source, "No
evidence found" is recorded.

Table 3 shows the drug repurposing prediction re-
sults. Figure 5 illustrates a portion of the retrieved
subgraph from the first prediction iteration, where
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Predicted Drugs Evidence Source PMID or NCT ID

1 Enzalutamide Clinical Trial NCT02750358
2 Troglitazone Literature 31894283
3 Rosiglitazone Clinical Trial NCT00933309
4 Dichloroacetic Acid Clinical Trial NCT01029925
5 GTI 2040 Clinical Trial NCT00068588
6 Uridine Monophosphate Literature 32382150
7 Nimesulide Clinical Trial NCT01500577
8 Cardarine Literature 15126355
9 Drospirenone Clinical Trial NCT00676065
10 Vitamin A Literature 34579037

Table 3: Top 10 predicted drugs for Breast Cancer.
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SLC29A1

SLC39A12

ACSL4

Rosiglitazone

Cardarine

Figure 5: Example of multi-hop mechanism paths from
drugs to Breast Cancer: purple, blue, and orange nodes
represent drugs, diseases, and genes/proteins.

three drugs—Troglitazone, Rosiglitazone, and Car-
darine—share mechanism paths that are multi-hop
connected to the breast cancer entity. Consider
the paths "Troglitazone–PPARD–breast cancer"
and "Troglitazone–PPARD–HDAC7–breast can-
cer": Troglitazone targets PPARD, a druggable
protein and a key molecular target in metastatic
cancer (Zuo et al., 2017), and PPARD also inter-
acts with HDAC7, which regulates genes critical
for tumor growth and the maintenance of cancer
stem cells (Caslini et al., 2019). This mechanis-
tic insight provided by DrKGC’s subgraph both
supports and explains its biomedical predictions.

5 Conclusion

In this paper, we propose a novel KGC framework,
DrKGC. DrKGC fully exploits graph context in-
formation and flexibly integrates mechanisms such
as dynamic subgraph information aggregation, em-
bedding injection, and RAG, overcoming the lim-
itations of previous generation-based methods in
structural information loss, static entity representa-
tions, and generic LLM responses. Experimental
results demonstrate that DrKGC achieves state-of-
the-art performance on general KGs and performs
exceptionally well on domain-specific KGs such as
BKGs. By capturing graph context to generate in-
formative subgraphs, DrKGC also enhances model

interpretability, which is particularly valuable for
biomedical applications.

6 Limitations

DrKGC relies on fine-tuning large language mod-
els, a process that is computationally intensive, and
its performance is inherently constrained by the cur-
rent capabilities of LLMs and lightweight models.
Future work will focus on optimizing fine-tuning ef-
ficiency, enhancing LLM performance, and explor-
ing extensions to other graph tasks such as reason-
ing and question answering. Moreover, retrieving
more informative subgraphs may present additional
challenges. In this work, we adopt a lightweight
heuristic graph retrieval method; however, more rig-
orous rule-based detection and filtering techniques,
as well as alternative subgraph strategies, such as
learning-driven subgraph retrieval, merit further
investigation. We plan to explore these more so-
phisticated approaches in future research.
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A Appendix

A.1 Details of the Dataset

Table 4 presents the statistical details of the four
datasets used in our study.

Datasets Entities Relations Training Validation Testing

WN18RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466
PharmKG 7,601 28 400,788 49,536 50,036
PrimeKG 26,509 4 130,535 500 500

Table 4: Statistics of the four datasets.

WN18RR (MIT License), derived from WordNet
(Miller, 1995), contains word sense entities and
lexical-semantic relations like hypernymy. FB15k-
237 (CC BY 4.0), from Freebase (Bollacker et al.,
2008), consists of entities such as people and or-
ganizations with factual relations like affiliation
and location. PharmKG (Apache-2.0) focuse on
pharmaceutical data, capturing information about
genes, diseases, chemicals. PrimeKG (CC0 1.0)
is a multimodal BKG that unifies other biological
entities like phenotypes and pathways for precision
medicine analysis.

For WN18RR and FB15k-237, we adopted the
node and relation texts provided by KG-BERT
(Yao et al., 2019). For PharmKG, we utilized
the PharmKG-8k version from the original work
(Zheng et al., 2021),which filtered high-quality en-
tities based on criteria such as FDA approval and
MeSH tree classification and provided a partitioned
dataset.

The PrimeKG dataset used in our study is a sub-
set extracted from the original PrimeKG (Chan-
dak et al., 2023) tailored for drug repurposing task.
Specifically, we first selected triples from PrimeKG
that have a head node of type "drug", a tail node
of type "disease", and a relation of "indication".
There are 9,388 such triples in total. Next, we
randomly split them into 8,388 triples for train-
ing, 500 for validation, and 500 for testing, en-
suring that the entities in the validation and test
sets are also present in the training set. Finally,
we enriched the training set by adding additional
triples with the following (head, relation, tail) pat-
terns: (drug, target, gene/protein), (gene/protein,
associated with, disease), and (gene/protein, ppi,
gene/protein). First, we added triples linking the ex-
isting drug and disease entities to gene/protein enti-
ties; then, we added triples connecting gene/protein
entities to one another. In addition, to simplify the

problem, we imposed an upper limit on the degree
of gene/protein entities to mitigate the influence of
hub nodes.

A.2 Prompt Template
As shown in Table 5, for both the general KG
(WN18RR and FB15k-237) and the biomedical
KG (PharmKG and PrimeKG), the prompt tem-
plate remains consistent generally, comprising a
simple instruction, a candidates set, correspond-
ing structural embeddings (initially represented by
[Placeholder]) for reference, and a question. The
only difference is the role name assigned to the
LLM (either linguist or biomedical scientist).

You are an excellent {linguist, biomedical
scientist}. The task is to predict the answer
based on the given question, and you only need to
answer one entity. The answer must be in
(’candidate1’, ’candidate2’, ’candidate3’,
’candidate4’, ’candidate5’, ’candidate6’,
’candidate7’, ’candidate8’, ’candidate9’,
’candidate10’, ’candidate11’, ’candidate12’,
’candidate13’, ’candidate14’, ’candidate15’,
’candidate16’, ’candidate17’, ’candidate18’,
’candidate19’, ’candidate20’).
You can refer to the entity embeddings: ’query
entity’: [Placeholder], ’candidate1’:
[Placeholder], ’candidate2’: [Placeholder],
’candidate3’: [Placeholder], ’candidate4’:
[Placeholder], ’candidate5’: [Placeholder],
’candidate6’: [Placeholder], ’candidate7’:
[Placeholder], ’candidate8’: [Placeholder],
’candidate9’: [Placeholder], ’candidate10’:
[Placeholder], ’candidate11’: [Placeholder],
’candidate12’: [Placeholder], ’candidate13’:
[Placeholder], ’candidate14’: [Placeholder],
’candidate15’: [Placeholder], ’candidate16’:
[Placeholder], ’candidate17’: [Placeholder],
’candidate18’: [Placeholder], ’candidate19’:
[Placeholder], ’candidate20’: [Placeholder].
Question: (The generated question)

Answer:

Table 5: Prompt template for DrKGC

A.3 Question-Template Lexicon
For each of the four datasets, two question-template
lexicons are provided. One lexicon is designed to
use the head node and relation to predict the tail
node (corresponding to the tail prediction task),
while the other is designed to use the tail node and
relation to query the head node (corresponding to
the head prediction task). In practice, the appropri-
ate lexicon is selected based on the dataset and the
prediction task (head or tail). For each incomplete
triple, the corresponding question template is re-
trieved using the query relation, and then the query
entity is inserted into the "{}" placeholder, gener-
ating the final question. Tables 6 and 7 illustrate
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the two question-template lexicons for WN18RR
as examples.

# tail_prediction:
"also see":
"What is additionally relevant or similar to
{}?,"
"derivationally related form":
"What is a word or concept that is derivationally
related to {}?,"
"has part":
"What part does {} have?,"
"hypernym":
"What is a more general category or class that
includes {}?,"
"instance hypernym":
"Of what category or class is {} a specific
instance?,"
"member meronym":
"What is included as a member of {}?,"
"member of domain region":
"What is associated with {} in terms of regional
terms or concepts?,"
"member of domain usage":
"What is associated with {} in terms of specific
usage or context?,"
"similar to":
"What is similar to {}?,"
"synset domain topic of":
"What topic or field is {} associated with?,"
"verb group":

"What verb is in the same semantic or functional

group as {}?"

Table 6: Tail prediction question-template lexicon for
WN18RR.

A.4 Rule Mining and Subgraph Retrieval
Strategy

We first employ the lightweight NCRL model
to mine logical rules from the knowledge graph.
To further justify the use of NCRL, we evaluate
DrKGC by replacing NCRL with RNNLogic and
with randomly generated rules. The comparison
results are presented in Table 8.

The results show that using rules mined by RNN-
Logic causes a slight decrease in DrKGC’s perfor-
mance, demonstrating that the choice of rule min-
ing model can influence overall effectiveness. Em-
ploying randomly generated rules leads to a more
pronounced degradation and falls behind both the
NCRL and RNNLogic, which further validates the
appropriateness of NCRL as our rule miner.

To further ensure the quality and reliability of
the automatically learned rules, we apply a two-
stage post-processing pipeline comprising conflict
resolution and redundancy elimination. First, for
conflict resolution, we group rules by identical bod-
ies and, when a group yields more than one distinct
head, which indicates potential conflict, we retain

# head_prediction:
"also see":
"What is related or similar to {}?,"
"derivationally related form":
"What word or concept leads to {}?,"
"has part":
"What includes {} as a part?,"
"hypernym":
"What is a example or specific instance of {}?,"
"instance hypernym":
"What entity is classified under {}?,"
"member meronym":
"What larger group does {} belong to?,"
"member of domain region":
"What is associated with the region of {}?,"
"member of domain usage":
"What is used in the same context as {}?,"
"similar to":
"What is considered similar to {}?,"
"synset domain topic of":
"What is associated with the field or topic of
{}?,"
"verb group":

"What other verb is in the same functional or

semantic group as {}?"

Table 7: Head prediction question-template lexicon for
WN18RR.

Dataset
RNNLogic Random Rules

MRR (∆%) Hits@1 (∆%) MRR (∆%) Hits@1 (∆%)

WN18RR 0.706 (–1.40) 0.640 (–2.14) 0.682 (–4.75) 0.609 (–6.88)
FB15K-237 0.455 (–3.60) 0.384 (–5.42) 0.446 (–5.51) 0.376 (–7.39)
PharmKG 0.265 (–0.36) 0.182 (–0.55) 0.262 (–1.50) 0.180 (–1.63)
PrimeKG 0.652 (–0.91) 0.588 (–0.68) 0.637 (–3.19) 0.569 (–3.89)

Table 8: Performance of DrKGC with RNNLogic and
random rules (∆% values indicate differences from us-
ing NCRL).

only the rule with the highest confidence score.
Next, to eliminate redundancy, we examine pairs of
rules that share the same head: if the body of rule
A is a strict subset of the body of rule B and A’s
confidence exceeds B’s, we remove B as redundant.

During subgraph retrieval, we constrain the sub-
graph size by the hyperparameter τ , which lim-
its the number of triples and is set to 100 af-
ter comparing the DrKGC performance of tak-
ing {50, 100, 200}, and control its depth by the
length of the rule. The maximum rule length is de-
fined during the training of the logical rule learning
model; we set this to 3 to match the configuration
of the original NCRL work.

A.5 Model Training

Inspired by previous work (Wei et al., 2023; Liu
et al., 2024), our model training does not strictly
follow the traditional paradigm of using fixed train-
ing, validation, and test sets. Specifically, we first
use the KG dataset’s standard splits for training,
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validation, and testing to train a lightweight model.
We then employ this trained lightweight model to
perform head and tail predictions on every triple
in the validation set, generating candidate rankings
that are used to construct prompts. In the LLM
fine-tuning phase, we re-partition the validation set
(Liu et al., 2024) and utilize it to fine-tune the LLM.
Finally, model performance is evaluated on the test
set in the usual manner. For each triple in the test
set, both head and tail predictions are conducted to
ensure fairness. This approach not only reduces the
volume of training data required for fine-tuning but
also avoids the issue where the trained lightweight
model consistently ranks the correct answer for
incomplete triples in the training set first, which
could mislead the LLM selection.

In lightweight models training phase, for
WN18RR, FB15k-237, and PharmKG, we use
the hyperparameters consistent with the original
publications of their corresponding methods. For
PrimeKG, the optimal parameters identified via
grid search are provided in Table 9. In the LLM
fine-tuning phase, we adjust the learning rate
{2 × 10−3, 2 × 10−4}, the number of GCN lay-
ers {1, 2} and the size of GCN hidden dimension
{128, 256}, and set the epoch size to 15 with early
stopping. The time required for LLM fine-tuning
is detailed in Table 10.

TransE RotatE DistMult ComplEx R-GCN HRGAT

Batch Size 512 512 512 512 256 128
Learning Rate 2e-3 1e-4 1e-4 2e-3 1e-3 1e-3
Negative Sampling 512 512 512 512 512 40
Hidden Dimension 1000 2000 2000 1000 200 200

Table 9: Optimal hyperparameters for lightweight
model on PrimeKG.

WN18RR FB15k-237 PharmKG PrimeKG

Runtime 3:01:31 8:21:16 2:22:27 37:09

Table 10: LLM fine-tuning time statistics.

A.6 Impact of LLM Size and Generation

In this section, we first evaluate the impact of
the LLM’s size by comparing Llama-3-8B with
a smaller variant, Llama-3.2-3B. The comparison
results are presented in Table 11. Overall, the per-
formance achieved with the Llama-3.2-3B LLM is
inferior compared to that of the Llama-3-8B, which
is consistent with our expectations. This difference
arises from the reduced number of parameters in

the smaller model, inherently limiting its expres-
sive power and reasoning capabilities.

Dataset MRR (∆) Hits@1 (∆) Hits@3 (∆) Hits@10 (∆)

WN18RR 0.709 (-0.07) 0.644 (-0.10) 0.754 (-0.03) 0.811 (-0.02)
FB15k237 0.466 (-0.06) 0.397 (-0.09) 0.494 (-0.04) 0.596 (-0.03)
PharmKG 0.260 (-0.06) 0.172 (-0.11) 0.292 (-0.01) 0.436 (-0.00)
PrimeKG 0.656 (-0.02) 0.595 (+0.03) 0.691 (-0.14) 0.762 (-0.08)

Table 11: DrKGC Performance with Llama-3.2-3B (∆
values indicate differences from Llama-3-8B).

We also compared with Llama-2-7B, an earlier
generation model of similar size. Table 12 shows
the comparison results relative to Llama-3-8B.

Dataset MRR (∆) Hits@1 (∆) Hits@3 (∆) Hits@10 (∆)

WN18RR 0.706 (-0.10) 0.642 (-0.12) 0.749 (-0.08) 0.812 (-0.01)
FB15k237 0.464 (-0.08) 0.396 (-0.10) 0.494 (-0.04) 0.597 (-0.02)
PharmKG 0.262 (-0.04) 0.177 (-0.06) 0.290 (-0.03) 0.436 (-0.00)
PrimeKG 0.652 (-0.06) 0.587 (-0.05) 0.698 (-0.07) 0.765 (-0.05)

Table 12: DrKGC Performance with Llama-2-7B (∆
values indicate differences from Llama-3-8B).
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