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Abstract

Large Language Models (LLMs) encounter
challenges in efficiently answering long-text
questions, as seen in applications like enter-
prise document analysis and financial report
comprehension. While conventional solutions
employ long-context processing or Retrieval-
Augmented Generation (RAG), they suffer
from prohibitive input expenses or incomplete
information. Recent advancements adopt con-
text compression and dynamic retrieval loops,
but still sacrifice critical details or incur iter-
ative costs. To address these limitations, we
propose OkraLong, a novel framework that flex-
ibly optimizes the entire processing workflow.
Unlike prior static or coarse-grained adaptive
strategies, OkraLong adopts fine-grained or-
chestration through three synergistic compo-
nents: analyzer, organizer and executor. The
analyzer characterizes the task states, which
guide the organizer in dynamically scheduling
the workflow. The executor carries out the ex-
ecution and generates the final answer. Ex-
perimental results demonstrate that OkraLong
not only enhances answer accuracy by 5.7%-
41.2%, but also achieves cost savings of 1.3x-
4.7x.

1 Introduction

Large Language Models (LLMs) have been exten-
sively utilized to handle external knowledge and
unseen data, which is a common scenario in real-
world applications such as enterprise search and
data analysis (Gao et al., 2023; Hui et al., 2024). A
critical challenge in these domains, however, lies in
querying and comprehending long-form text (Bai
et al., 2024). For example, a company may need to
query its proprietary technique documents; a finan-
cial expert may need to extract insights from the
latest corporate reports; and a research group may
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Figure 1: Comparison of OkraLong with two prevalent
advanced paradigms for processing long-text questions.

need to assimilate cutting-edge academic papers to
guide their innovations.

To tackle long-text questions, two prevalent
methodologies are typically utilized: long-context
(LC) and Retrieval-Augmented Generation (RAG)
(Li et al., 2024b; Xu et al., 2024b). The LC ap-
proach leverages the LLM’s inherent ability to
process extensive texts by inputting entire con-
tent, enabling responses grounded in global contex-
tual awareness (Xu et al., 2024b; Fei et al., 2024).
In contrast, RAG employs a lightweight retriever
to first identify question-relevant text segments,
which are then analyzed by the LLM to get the
answer (Lewis et al., 2020; Jeong et al., 2024; Asai
et al., 2024).

However, when deployed in practical settings,
these strategies encounter significant limitations
in cost-effectiveness and accuracy. First, given
that the cost of LLMs escalate with data volume,
employing LC with voluminous text may prove
prohibitively expensive (e.g., a financial report may
span hundreds of pages) (Li et al., 2024d; Jiang
et al., 2024). While RAG reduces input length by
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filtering irrelevant text, the context content still in-
curs moderate costs and risk omitting critical infor-
mation (Gao et al., 2023). Furthermore, real-world
queries vary widely, from simple fact extraction to
multi-step reasoning. Rigid approaches like static
retrieval struggle to adapt to this diversity, leading
to information loss and inaccuracies (Shao et al.,
2023; Zhuang et al., 2024).

Recent efforts to mitigate these limitations pri-
marily focus on two paradigms: context compres-
sion and dynamic RAGs. As shown in Figure 1,
compression-based approaches typically operate on
extensive text segments, removing non-informative
tokens or iteratively summarize the content us-
ing small generative models (Jiang et al., 2024;
Jiang et al., 2023a; Yoon et al., 2024). How-
ever, these methods risk losing critical specific
details and incur latency overhead due to heavy
reliance on small models (Hwang et al., 2024). Dy-
namic RAG approaches employ iterative retrieval-
generation cycles to adaptively make retrieval de-
cisions (Asai et al., 2024; Jiang et al., 2023b; Su
et al., 2024). However, iterative workflow requires
frequent LLM calls, escalating financial costs, and
the existing adaptive mechanisms remain coarse-
grained, failing to optimize the performance effec-
tively in varied scenarios.

To address these limitations, we propose Okra-
Long, a novel retrieval-augmented framework that
systematically optimizes long-text question answer-
ing. Unlike above approaches that rely on fixed
workflow patterns, OkraLong flexibly orchestrates
various pipelines according to different task sce-
narios. As illustrated in Figure 2, our framework
comprises three synergistic components: (1) Ana-
lyzer: a fine-tuned lightweight model that proac-
tively characterizes task states, utilizing question
semantics and preliminary retrieved contexts; (2)
Adaptive Organizer: a dynamic scheduler that gen-
erates optimized execution plans, based on previ-
ous analysis; (3) Executor: a modular operator suite
that supports the execution of diverse processing
pipelines and strategies.

Distinct from prior adaptive RAG methods
(Jiang et al., 2023b; Jeong et al., 2024) that make
coarse-grained decisions (e.g. whether to generate
iteratively or retrieve additional data) , OkraLong
is designed to fine-grainedly optimize the entire
processing workflow, covering multiple modules
and various pipelines. First, to improve accuracy
performance, OkraLong constructs the flexibility
to tailor strategies for different tasks. For example,

comparative tasks (e.g., Who won the most awards,
A, B or C?) demand separate entity retrieval, while
multi-step questions (e.g., What is the place of birth
of the director of film Clowning Around?) trigger
iterative reasoning process. Second, for financial ef-
fectiveness, our cost-aware organizer dynamically
allocates token budgets and information resources.
For instance, general summarizing questions re-
ceive multiple aggregated contexts, whereas fact
extraction questions utilize targeted context slicing.
It is worth noting that these flexible orchestrations
are facilitated by the task-understanding analyzer
and we also develop several innovative executing
operators to support tailored strategies.

We evaluate OkraLong using an extensive col-
lection of long-text question-answering datasets,
spanning multiple domains, covering various ques-
tion types. The experimental results demonstrate
that OkraLong not only enhances answer accuracy
by 5.7%-41.2%, but also provides superior cost
savings of 1.3x-4.7x.

2 Related Work

2.1 Long-Text Processing

Understanding and reasoning over long-form text
have always been crucial in natural language pro-
cessing. Considerable efforts have been made to en-
hance LLMs to handle long contexts (Tworkowski
et al., 2023; Liang et al., 2023; Chen et al., 2023).
Besides, increasingly powerful LLMs such as Gem-
ini (Team et al., 2024) and GPT-4 (Achiam et al.,
2023), have achieved remarkable large context ca-
pability, yet directly processing full-length content
incurs high financial expenses.

To address this issue, context compression has
emerged as a practical solution for handling large
prompts. Extractive compression methods directly
select informational tokens or sentences from the
context. For instance, RECOMP-Extr (Xu et al.,
2024a) performs sentence-level selection based on
similarity scores, while LLMlingua (Jiang et al.,
2023a; Pan et al., 2024) and Longllmlingua (Jiang
et al., 2024) employ token-level filtering through
information entropy. Abstractive approaches lever-
age generative models for content summariza-
tion, as exemplified by RECOMP-Abst(Xu et al.,
2024a), CompAct (Yoon et al., 2024), and Refiner
(Li et al., 2024c). However, these methods still
exhibit critical limitations : (1) heavily calling aux-
iliary models that introduce latency overhead, (2)
potential loss of specific information during com-
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Figure 2: Architecture of OkraLong with an example. After the primary retrieval, the analyzer assesses the current
task states in three aspects. Based on the analysis, the organizer dynamically provides execution plans: the "multi-
source" task activates the question-splitter (i.e., prompting the LLM to get two university-specific sub-questions),
followed by separate retrieval; then the retrieved contexts should be processed and merged, which are then fed into
the LLM for answering. For the configurations, inadequate evidence demands the extended retrieval, while semantic
info-pattern favors embedding-based semantic retrieval. Finally, the executor carries out the planned workflow. A
more detailed example is provided in Appendix B.

pression.

2.2 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) is a preva-
lent technique for enhancing LLM capabilities with
external knowledge (Lewis et al., 2020). Con-
ventional RAG pipelines always segment text into
chunks, embed them, and retrieve question-relevant
content for the LLM generation (Gao et al., 2023).
However, basic RAG systems are prone to infor-
mation loss, particularly in multi-hop queries, lead-
ing to suboptimal accuracy (Tang and Yang, 2024;
Zhuang et al., 2024; Shao et al., 2023).

Some advances propose iterative and adaptive re-
finement mechanisms to mitigate these issues. For
instance, FLARE (Jiang et al., 2023b) and DRA-
GIN (Su et al., 2024) activate the search engine
when LLMs output tokens with low probability.
Self-RAG (Asai et al., 2024) and MIGRES (Wang
et al., 2024) prompt LLMs to make decision on
iterative retrieval. Adaptive-RAG (Jeong et al.,
2024) and MBA-RAG (Tang et al., 2025) employ
adaptive routing strategies to enhance effectiveness.
Press et al. (2023) and Gao et al. (2024) improve
RAG performance utilizing self-asking and self-
correcting. Despite these advancements, in practi-
cal settings, existing iterative methods often incur
high costs due to extensive LLM calls, and the

adaptive strategies remain coarse-grained, failing
to account for diverse application scenarios.

More recently, a burgeoning trend involves em-
ploying agent-based or multi-agent frameworks to
tackle RAG and long-context tasks (Zhang et al.,
2024; Li et al., 2024a). These systems may orches-
trate specialized agents, powered by the LLM, to
collaboratively analyze and solve problems (Singh
et al., 2025; Nguyen et al., 2025). While such
approaches can achieve remarkable performance,
their reliance on extensive inter-agent communi-
cation and numerous LLM invocations typically
leads to substantial cost and latency overhead (Guo
et al., 2024). In contrast to these frameworks that
prioritize peak performance, our work targets the
dual objectives of competitive accuracy and cost-
effectiveness.

3 Methodology

3.1 Framework Overview

In this section, we introduce OkraLong, a flexi-
ble and efficient retrieval-augmented framework
for long-text question answering. As depicted in
Figure 2, OkraLong comprises three core modules:
analyzer, organizer and executor. Given a question
and the long-form text, OkraLong initiates with
primary question-relevant context retrieval. The
context and the question are subsequently fed to
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our lightweight analyzer (implemented as a fine-
tuned language model) for real-time task character-
ization. This analysis covers multiple dimensions,
including question types, evidence containing, and
information patterns. These analytical results then
drive our organizer to dynamically schedule spe-
cific execution plans with corresponding configura-
tions. Finally, the executor conducts the optimized
processing pipeline through a composition of oper-
ators, ultimately generating the final response.

With this architecture, OkraLong facilitates flex-
ible and efficient processing workflows. For flex-
ibility, we develop multiple execution operators
as the core infrastructure, and the analyzer pro-
vides a comprehensive characterization of task
states. These allow for adaptive and fine-grained
organization. For efficiency, OkraLong orches-
trates the appropriate processing workflow and bud-
gets, optimizing both response quality and cost-
effectiveness. Besides, the lightweight analyzer
and the compact framework architecture prevent
unaffordable latency, an issue often neglected in
previous iterative and generative methodologies.

3.2 Analyzer
The Analyzer constitutes the cognitive foundation
of OkraLong, performing real-time assessment of
the task states. Its analytical outputs drives dy-
namic workflow scheduling.

Initially, the analyzer activates the retriever to
fetch question-relevant contexts, dispatched along-
side the question for assessment. Compared to the
pure-question analysis, this inclusive strategy al-
lows for a holistic assessment of both the question
requirements and the overall context environment.

The derived analysis results cover three key as-
pects: (1) Question type (θq): Queries with dif-
fering objectives demand diverse processing tech-
niques. To organize these, we classify the tasks
into five categories: arithmetic, extractive, summa-
rizing, multi-source, and multi-bridge. The multi-
source tasks require information from various enti-
ties or sources, whereas multi-bridge tasks involve
several interconnected procedural steps (more ex-
amples in Table 5). (2) Information Pattern (ψi):
The requisite information can manifest in different
forms, such as semantically correlated or exactly
matched patterns. We classify these patterns as
either semantic, exact, or a combination of both,
utilizing it to guide retrieval strategies. (3) Evi-
dence Identification (ϕe): We confirm whether the
initially retrieved context includes clear evidence to

address the question, which also reveals the task’s
complexity.

Therefore, given long-from text D and the ques-
tion q, the analyzer can be formulated as:

Cq = {c1, c2, ..., ck} = Retriever(q,D) (1)

{θq, ψi, ϕe} = Analyzer(Instruct(q, Cq)) (2)

where the question q and the retrieved chunks Cq

are combined into the instructing prompt. The an-
alyzer returns the θq, ψi, ϕe, which represent the
question, information and evidence terms in analyt-
ical results.

To implement the analyzer, we refine a light-
weight language model via supervised fine-tuning.
The training dataset is derived from public datasets.
Data entries with human annotations are processed
and integrated, while unannotated entries are la-
beled utilizing the advanced LLM like GPT-4o
(more implementation details in Appendix A).

3.3 Organizer
The Organizer serves as the pivotal decision engine
that transforms analytical insights into executable
plans. It employs a task-aware heuristic orchestra-
tion to dynamically optimize and configure the pro-
cessing pipeline. The organization covers three crit-
ical dimensions: workflow construction, retrieval
granularity, and evidence aggregation.

Workflow construction utilizes question-type
(θq) to organize task-specific processing pipelines,
enhancing the targeted handling. We adopt a model-
decoupled orchestration paradigm: the workflow
for a given task is heuristically pre-defined, while
certain parameters (e.g., question-type) are de-
rived from the analyzer’s model. This supports
the seamless integration of new strategies without
re-training. For example, after the analyzer, multi-
bridge questions, requiring sequential reasoning
across interdependent facts, are routed to a step-
wise iterative pipeline that decomposes the task
into chained sub-tasks with interleaved retrieval.
Multi-source questions trigger a split-aggregate
pipeline that independently processes evidence re-
trieval for distinct entities before final aggrega-
tion. Arithmetic questions activate a pipeline with
context-extension after the specific retrieval, ensur-
ing both precise detail matching and expansive con-
textual inclusion. These typology-adaptive work-
flows guarantee an efficient alignment between
query requirement and processing strategy, enhanc-
ing both flexibility and efficiency.
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Retrieval granularity is adaptively governed
through a dual-criteria mechanism. First, the ques-
tion type (θq) naturally dictates the basic retrieval
scope and granularity. Contextual tasks (e.g., sum-
marizing questions) would activate extensive con-
text scope, whereas factoid tasks (e.g., extrac-
tive questions) and iterative augmented tasks (e.g.,
multi-bridge questions) adopt more focused narrow
context. Additionally, the evidence state (ϕe) trig-
gers dynamic granularity adjustments: insufficient
evidence initiates a scale extension and granularity
expansion to incorporate broader evidential infor-
mation (more details in Appendix C.3).

Evidence aggregation integrates scores from var-
ious retrieval strategies, as no single strategy is
universally effective. These strategies primarily in-
clude exact sparse retriever (e.g., BM25 (Robertson
et al., 2009)) and semantic dense retriever (e.g., var-
ious embedding models). Each provides a match
score between the question and a candidate text
chunk. Guided by the analyzed information pat-
tern (ψi), these scores are combined using tailored
weights. Specifically, for tasks dominated by ex-
act keywords (e.g., entity lookup), a higher weight
we is applied to Sexact. Conversely, for semantic-
centric tasks, the semantic score receives a higher
weight ws. The final aggregated score is computed
as: S = we · Sexact + ws · Ssemantic. This score,
adaptively adjusted to the information pattern, is
used to rank and determine the final retrieval re-
sults.

Overall, the organizer optimizes both the pro-
cessing workflow and the modular configurations.
These strategic and flexible approaches help to ro-
bustly manage complex task scenarios.

3.4 Executor

The executor serves as the core processing engine
of OkraLong, comprising multiple distinct opera-
tors. Its primary function is to accomplish retrieval-
augmented processing, which necessitates basic
modules: indexing, retrieval, and generation. To
enable more flexible processing pipelines, we en-
hance these core functionalities and develop the fol-
lowing operators (more details in Appendix C.3):

• Fundamental Operators: Basic text chunking,
indexing, context retrieval, and LLM generation.

• Assembled Retriever: This operator integrates
multiple retrieval strategies. It normalizes the
matching scores and performs weighted aggre-
gation to produce improved context.

• Context Processor: Instead of merely concatenat-
ing retrieved text chunks, this operator provides
functionalities for context merging, context ex-
tension, and table recovery. This ensures both
precise detail matching and enriched contextual
information.

• Question Splitter: For questions spanning mul-
tiple entities, this tool divides the original ques-
tions into sub-questions, which are then indepen-
dently processed and subsequently merged (cf.
Table 9).

• Step-wise Reasoner: Complex queries may re-
quire step-by-step reasoning. Inspired by itera-
tive processes, it prompts the LLM to perform
the current reasoning step and produce next-
query for subsequent retrieval operations (cf. Ta-
ble 10).

These operators, guided by the organizer’s execu-
tion plans and configurations, empower the execu-
tor to support both linear and complex branching
processing topologies, thus effectively adapting to
diverse task characteristics.

4 Experiment Setups

4.1 Datasets

To evaluate the performance of OkraLong compre-
hensively, we conduct experiments on six long-text
question-answering datasets, spanning various do-
mains and multiple question types:

(1) FINQA (Chen et al., 2021) is a financial nu-
merical reasoning dataset, constructed from earn-
ings reports. (2) TAT-DQA (Zhu et al., 2022) is
another financial dataset, derived from annual re-
ports, covering diverse question types. (3) Qasper
(Dasigi et al., 2021) is a reading comprehension
dataset based on NLP research papers, containing
summarizing and extractive questions. (4) Multi-
fieldQA (Bai et al., 2024) has question-answering
pairs sourced from diverse fields, including le-
gal documents, government reports, etc. (5) Hot-
potQA (Yang et al., 2018) involves two-hop ques-
tions based on Wikipedia paragraphs. (6) 2Wiki-
MultihopQA (Ho et al., 2020) consists of multi-
hop questions, also based on Wikipedia content.

Detailed characteristics of these datasets are pre-
sented in Table 6. To align with practical long-text
settings, such as unsegmented full content, we de-
rived these datasets from the processed data collec-
tions UDA (Hui et al., 2024) and LongBench (Bai
et al., 2024) (further details in Appendix C.1).
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4.2 Baselines and Setups
Baselines. We select the following six ap-
proaches as the baselines: (1) Standard RAG
utilizes a traditional chunking, retrieval and gen-
eration workflow. (2) Standard Long-Context
Strategy processes the entire long-text using a
LLM without additional context refinement. (3)
LongLLMLingua (Jiang et al., 2024), a con-
text compression approach that filters tokens
based on informational significance according to
a lightweight model. (4) CompAct (Yoon et al.,
2024), another compression approach, employing
a lightweight model to iteratively generate the sum-
marized text content. (5) FLARE (Jiang et al.,
2023b), a dynamic RAG method that adapts re-
trieval based on token probabilities during iterative
text generation. (6) Adaptive-RAG (Jeong et al.,
2024), another dynamic RAG method, adaptively
conducting multi-step or single-step retrieval based
on question complexity.

Evaluation Metrics. To assess the quality of the
generated responses, we adopt the original evalua-
tion metrics from the source benchmarks (Hui et al.,
2024; Bai et al., 2024). For FINQA’s numerical-
oriented tasks, we employ Exact Match (EM) ac-
curacy, while using F1 scores for all other datasets.
Consistent with prior research (Xu et al., 2024a;
Li et al., 2024d), we estimate the financial costs
by measuring the total token usage of the LLM, as
the small retrievers cost negligible in overall eval-
uation. The latency overhead is recorded as the
end-to-end execution time from query submission
to final response generation.

Experimental Settings. In all experiments, we
utilize the GPT-4o (Hurst et al., 2024) as the back-
bone LLM for generating answers. Following pre-
vious works (Xu et al., 2024a; Asai et al., 2024), we
use Contriever-MSMARCO (Izacard et al., 2021)
as the basic retrieval model, with a default chunk-
size of 512 tokens. For the RAG pipelines, the
top-5 chunks are fetched, and for the compression-
based pipelines, we fed the top-30 chunks into sub-
sequent compression stages (Yoon et al., 2024).

Implementation Details. We perform supervised
fine-tuning on the Llama-3.2-1B-Instruct (Dubey
et al., 2024) model to serve as the lightweight an-
alyzer. The fine-tuning dataset was constructed
by sampling from the train splits of the Hot-
potQA, TAT-DQA, and Qasper datasets. This
makes the evaluation on the other three datasets
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Figure 3: Average performance of end-to-end question
answering across six datasets. Superior approaches are
left and top positioned, indicating lower cost and higher
accuracy. And the execution time is represented by the
colors (the dark color denotes reduced latency).

out-of-distribution. We employ BM-25 (Robertson
et al., 2009), a widely used sparse retriever, for
exact retrieval augmentation.

Further details on experiments and implementa-
tion are provided in Appendix C.

5 Results and Analysis

5.1 Main Results

Table 1 presents the main experimental results, sup-
ported by a visualization of averaged results in Fig-
ure 3. Overall, OkraLong demonstrates significant
effectiveness in both answering accuracy and cost
efficiency. The basic OkraLong maintains decent
performance across diverse datasets, although occa-
sional suboptimal results on Multi-FieldQA. This
may be attributed to the implicit semantic patterns
among its factoid questions, which occasionally
challenges the OkraLong’s analyzer in task charac-
terization.

Analysis of the baselines reveals two extreme
cases: While compression-based CompAct min-
imizes token usage, its aggressive content sum-
marization causes severe information loss (with
39.9% accuracy degradation). Conversely, leverag-
ing the capability of GPT-4o, long-context process-
ing achieves peak accuracy through exhaustive con-
text retention, but incurs prohibitive costs (16.8x
higher than the basic OkraLong).

Aside from these extremes, the basic OkraLong
enhances answer accuracy by 5.7%-41.2% while
achieving cost savings of 1.3x-4.7x compared to
prior advancement. Furthermore, we also introduce
the OkraLong with Precise-Mode, which automat-
ically apply full context to initially unanswerable
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Method
Average TAT-DQA FINQA Qasper M-FieldQA HotpotQA 2WikiMQA

Score Cost F1 Cost EM Cost F1 Cost F1 Cost F1 Cost F1 Cost

Std-RAG 46.2 2.5 43.3 2.9 45.0 2.8 33.8 2.4 55.6 2.2 47.0 2.2 52.3 2.3
LC 57.8 32.0 54.4 79.8 56.5 74.1 44.9 10.5 56.9 7.2 63.7 12.9 70.1 7.4

Longllmlingua 42.1 2.6 43.5 3.5 41.4 3.4 34.5 2.5 39.5 1.9 54.0 2.4 39.7 1.9
Compact 30.9 0.5 19.0 0.6 11.9 0.6 19.4 0.3 44.3 0.3 45.8 0.5 45.0 0.5
Ada-RAG 48.6 3.9 42.6 5.3 43.9 4.9 36.5 2.7 51.2 2.4 56.3 3.9 60.9 4.2
FLARE 36.4 9.0 31.7 11.2 41.4 10.9 34.8 10.4 45.9 7.4 37.7 6.8 27.0 7.6

OkraLong 51.4 1.9 53.3 1.9 45.3 2.4 36.6 1.8 51.0 1.5 59.5 1.9 62.8 2.2
w/ Precise Mode 57.8 7.2 56.7 9.5 56.1 17.8 44.4 4.3 53.5 1.6 63.4 3.1 72.5 2.8

Table 1: End-to-end question answering performance across six datasets. Evaluation scores (F1/EM) are normalized
to 0-100 scale for clarity, with the cost quantified as token consumption (×103 tokens) for LLM generation.
Performance rankings are indicated with bold (for best) and underline (for second best), where the augmented
OkraLong with Precise-Mode is independently marked.
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Figure 4: Average end-to-end latency results across
various methods. The execution time (per question)
comprises context processing time and LLM generation
time.

questions 1. This cascading augmentation achieves
the equivalent answer quality with the long-context
processing, while maintaining a 4.4x cost advan-
tage. The integration of both modes establish a
Pareto-optimal frontier in the cost-accuracy spec-
trum (shown in Figure 3), enabling highly efficient
deployment in practical long-text query processing.

5.2 Latency Overhead

We conduct a comprehensive latency analysis
among different approaches. Figure 4 summarizes
the average end-to-end latency results with decom-
position.

The overall execution time can be divided into
two primary components: context processing and
LLM generation. For traditional approaches, the

1The generating LLM is prompted to respond "unanswer-
able" if encountering a lack of evidence.

context processing of the standard RAG entails
basic indexing and retrieval. The long-context
mechanism requires no operations on context, but
encounter substantial delays during LLM genera-
tion with lengthy input. For compression-based
methods, the latency increases as they often rely
on small models for iterative compression. Mean-
while, dynamic RAG approaches involve iterative
LLM service calls, extending the generation time.
Our OkraLong framework adaptively adjusts the
workflow with a modest overhead for task analysis
and extended indexing. Given the improvements in
accuracy and cost efficiency, this marginally extra
time is justifiable.

More specific results are shown in Table 2.
While standard RAG typically achieves the low-
est latency, its rigid processing causes informa-
tion loss. The financial reports in TAT-DQA
and FINQA datasets spanning hundreds of pages,
which raises the latency overhead across all meth-
ods due to heavy indexing or lengthy full context.
For HotpotQA and 2Wikimqa, which require multi-
step reasoning, OkraLong spends more time than
Qasper and M-FieldQA due to iterative LLM calls.
This also reflects the OkraLong’s capacity to adapt
to diverse demanding.

5.3 Ablation Study

We conduct ablation studies to assess the contribu-
tion of various optimizations within OkraLong, us-
ing the TAT-DQA dataset for its diverse task charac-
teristics. Table 3 displays the performance changes
when removing a specific optimization.

First, disabling adaptive workflow constructions
(i.e., using a fixed retrieval-generation pipeline for
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Method TAT FIN Qasper M-Field Hotpot 2Wiki

Std-RAG 7.2 7.2 2.0 1.7 2.0 1.9
LC 55.5 57.4 4.7 3.5 6.6 3.7

L-Lingua 16.5 15.8 8.5 6.1 8.5 6.3
CompAct 29.7 32.9 22.3 17.6 20.1 16.3
Ada-RAG 8.9 7.7 3.2 2.4 3.6 2.8
FLARE 31.3 27.7 14.6 6.9 6.0 7.8

OkraLong 8.9 10.5 2.3 2.3 3.6 3.7

Table 2: End-to-end execution latency of different meth-
ods across six datasets. Performance rankings are in-
dicated with bold (for best) and underline (for second
best).

Method F1 Score Cost

Std-RAG (baseline) 43.3 2.94

OkraLong 53.3 1.93
w/o workflow orchestration 49.4 1.59
w/o retrieval adjustment 45.8 1.95
w/o aggregated retrieval 49.9 1.91

Table 3: Ablation studies on the OkraLong framework,
assessing the contributions of diverse optimizations.

all tasks) reduces accuracy by 7.3%. While this
may reduce token costs, it critically lacks situa-
tional adaptability, leading to inefficient process-
ing for diverse tasks. Second, maintaining a fixed
moderate retrieval granularity, without dynamically
adjusting, results in a 14.1% decrease in accuracy.
This significant loss stems from failing to capture
critical contextual information. Third, replacing
our aggregated retrieval approach with a direct
dense retriever causes a 6.4% F1 score drop. This
decline is primarily because a single dense retriever
struggles to precisely retrieve evidence for specific
query details.

These results demonstrate that our synergistic
approaches each provide different yet complemen-
tary benefits, collectively enhancing OkraLong’s
overall performance.

5.4 Analyzer Performance

The analyzer forms OkraLong’s cognitive core. In
this section, we evaluate its performance across
three terms: question type classification, informa-
tion pattern prediction, and evidence identification.
Table 4 shows the analyzer’s prediction results on
the combined validation datasets (more dataset de-
tails in A.2).

Compared to directly prompting the small model,
supervised fine-tuning significantly improves the
prediction performance. Question-type classifi-

Question Information Evidence

Analyzer 86.4 64.6 79.4
w/o fine-tuning 22.9 15.2 67.5

Table 4: Prediction accuracy (exact-match scores)
across various terms, using fine-tuned analyzer or direct
model answering.

cation achieves a high precision of 86.4%, as a
non-trivial five-class categorization task. This ef-
ficiency aids in constructing the appropriate work-
flows, thereby enhancing the overall performance.
Evidence identification also performs well with an
exact-match score of 79.4%. This facilitates the ef-
fective retrieval through dynamic scope adjustment
and granularity control. However, the prediction on
information pattern shows reduced effectiveness.
We attribute this to the inherent complexity to di-
rectly predict the optimal retrieval pattern (exact,
semantic or both) from the question and contexts,
which could exceed the capabilities of a lightweight
language model. To mitigate potentially biases, we
adopt conservative fusion-weights when integrat-
ing the two retrieval strategies (cf. Appendix C.3).

5.5 Robustness and Generalization
OkraLong exhibits robustness and generalization
across several dimensions. First, for the patterns, its
analyzer is fine-tuned on the heterogeneous dataset
(combining HotpotQA, TAT-DQA and Qasper),
mitigating over-fitting to specific patterns. This
is evidenced by decent end-to-end Q&A perfor-
mance, across both in-distribution and three unseen
out-of-distribution datasets. Moreover, our com-
prehensive evaluation covers a wide range: (1)
target fields including finance, academia, govern-
ment reports and general knowledge; (2) long-text
forms containing varied single document and con-
catenated multi-documents; (3) questions ranging
from extractive, summarizing, arithmetic, to multi-
step reasoning. This extensive range, showcasing
its generalization across multiple scenarios.

For enhanced robustness, OkraLong offers a pre-
cise mode (Section 5.1) where uncertain or un-
solved questions fall back to full-context process-
ing, improving resilience. Additionally, the modu-
lar and plug-in design further enhances general-
ization. OkraLong features non-fixed workflow, en-
abling seamless integration of new operations and
heuristics for various real-world requirements. For
example, when a small model with limited math-
ematical capabilities is employed, a code-aided
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generation operator can be easily incorporated for
arithmetic tasks. This ensures OkraLong’s extend-
ability for diverse real-world application.

6 Conclusion

In this paper, we propose OkraLong, a flexible and
efficient retrieval-augmented framework for long-
text question answering. This innovative frame-
work adaptively orchestrates the entire workflow
through its three synergistic components: analyzer,
organizer, and executor. OkraLong characterizes
task states, dynamically organize the workflow, and
carries out the execution to generate final answers.
We conduct comprehensive evaluations across six
diverse datasets, spanning multiple domains and
task types. The experimental results indicate that
OkraLong not only enhances answering quality but
also delivers significant cost-effectiveness. Com-
pared to pre-existing methods, OkraLong demon-
strates superior performance in handling long-text
questions, thereby providing a highly efficient so-
lution for practical deployment.

Limitations

While OkraLong demonstrates significant improve-
ments in long-text question answering, we acknowl-
edge its limitations: First, to balance accuracy and
efficiency, the current analyzer employs supervised
fine-tuning of a lightweight model, which relies on
annotated training datasets for refinement. Future
research could explore semi-supervised or weakly
supervised paradigms to further reduce annotation
dependence while maintaining effectiveness. Sec-
ond, while OkraLong efficiently processes textual
content, some long-form documents may also re-
quire additional multi-modal integration. We cur-
rently focus on text-centric workflows, as it remains
the primary information carrier. Exploring effi-
cient strategies for querying long-form multi-modal
content represents a promising direction for future
work.
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A Training Details of the Analyzer

A.1 Question Type

We classify the questions into five categories, en-
compassing a wide range of practical situations.
The detailed descriptions and examples are pre-
sented in Table 5.

A.2 Dataset Construction

The training and validation datasets for the analyzer
were sampled from the training splits of the Hot-
potQA, TAT-DQA, and Qasper datasets. Detailed
statistics are provided in Table 7.

Each training instance’s input consists of the
question and relevant document segments, format-
ted with a specific prompt detailed in Table 8.

Regarding the output terms: (1) Question types,
annotated in the original datasets, are standardized
into five predefined categories. (2) The informa-
tion pattern guides retrieval policy selection. First,
retrieval is performed independently using exact
and semantic methods. Then the context contain-
ing more pertinent evidence is designated as the
preferred pattern (exact, semantic, or same). (3) Ev-
idence containing is directly labeled according to
the annotated evidence and the provided contexts.
For datasets without usable evidence annotations
(e.g., TAT-DQA), evidence identification was la-
beled using GPT-4o.

A.3 Training Configuration

We conduct the supervised fine-tuning on Llama-
3.2-1B-Instruct model, with LoRA using the fol-
lowing settings:

• Gradient accumulation steps: 64

• Learning rate: 1e-4

• Training epochs: 5

• LoRA rank: 8

• LoRA scaling: 16

• LoRA dropout: 0.1

B Detailed Example of OkraLong
Workflow

This section provides a detailed illustration of the
OkraLong workflow using a specific example.

• The process begins by inputting the long-text
content and the question (e.g., "Which campus
is larger, University of New Haven or University
of West Florida?"). OkraLong first chunks the

context and primarily retrieves relevant chunks
related to the question.

• Based on the input question and retrieved chunks,
the fine-tuned analyzer outputs the task states,
including question type, information pattern, and
evidence identification. In this example, the task
type is identified as multi-source (requiring in-
formation from two separate universities), the
information pattern may be semantic-matching,
and the initial evidence may be inadequate.

• Based on these states, the organizer will heuristi-
cally organize the execution pipeline. The multi-
source task activates the question splitter, which
prompts the LLM to separate two entities for par-
allel retrieval. And the semantic-matching pat-
tern favors embedding-based semantic retrieval,
while inadequate evidence demands the addi-
tional retrieval with extended granularity. After
the parallel retrieval, the multi-source informa-
tional contexts should be processed and merged.
Then the LLM should extract the evidence and
generate the final answer.

• Following the above plans, the executor will ex-
ecute the corresponding operations and output
the final answer.

C More Implementation Details

C.1 Experimental Dataset

In our experiments, we utilize the datasets origi-
nating from the long-form aligned UDA collection
(Hui et al., 2024) and LongBench collection (Bai
et al., 2024), adhering to their established configu-
rations.

The UDA collection is released under the CC-
BY-SA 4.0 license, while the LongBench collec-
tion is covered by the MIT license. Our academic
utilization aligns with their designated purposes.
These widely-recognized public collections are
risk-free without offensive content.

UDA preserves the complete, unsegmented doc-
uments along with the source question-answering
data points. And LongBench aggregates multiple
Wikipedia articles to furnish expansive long-form
contexts. The statistics of the test datasets is de-
tailed in Table 6 , illustrating the distribution across
two benchmarks.

C.2 Experimental Settings

In our experiments, we employ the GPT-4o model
through the AzureOpenAI API (AzureOpenAI,
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Question Type Description Example Question

Arithmetic Performing mathematical calculations. What is the percentage increase in interest expanse
and penalties in 2019?

Extractive Extracting specific information directly from the
context.

What crowd-sourcing platform is used?

Summarizing Involving condensing information from large
contexts.

How does the researcher improved the neural
network architectures for image recognition?

Multi-Source Requiring information from various distinct
entities or sources.

Which film has the director who was born first,
Hell Up In Harlem or The Soviet Story?

Multi-Bridge Involving a sequence of interconnected procedural
steps.

Who is the spouse of the director of film
Emergency Wedding?

Table 5: Description of different question types with examples.

Dataset UDA Long Bench

TAT-DQA FIN-QA Qasper M-FieldQA HotpotQA 2WikiMQA

Test Size 210 278 232 150 200 200

Data Source Finance Finance Arxiv papers Multi-field Wikipedia Wikipedia

Avg Word Count 72,041 74,170 6,121 4,559 9,157 4,887

Question Types Arithmetic
Extractive

Summarizing

Arithmetic Extractive
Summarizing

Extractive Multi-Souce
Mult-Bridge

Multi-Souce
Mult-Bridge

Table 6: Detailed characteristics across different datasets. Avg-Word-Count indicates the average number of words
in each long-text input.

Dataset #Train #Valid

TAT-DQA 3.2k 0.3k
HotpotQA 3.6k 0.4k
Qasper 2.6k 0.3k
Total 9.4k 1.0k

Table 7: Statistics of the training dataset for analyzer.
The size of the balanced total dataset is restricted due to
limited records in Qasper.

2025), with the API version of 2024-08-06. When
evaluate the token cost, we apply a cost-weight to
output tokens four times higher than input tokens
(OpenAI, 2025). Other small open-source mod-
els (serving as the retrieval models or compressing
models) are sourced from Huggingface. For our
retrieval processes, we utilize ChromaDB (Chroma,
2025) as the vector database. The fine-tuning of
our analyzer is conducted on an NVIDIA A100
GPU for an hour, while small model deployments
operate on an NVIDIA A10 GPU. The above setup
mirrors the general scenario where average individ-
uals deploy lightweight models on limited-capacity
GPUs while accessing more powerful LLMs via
remote APIs. Following extensive prior works, we
conduct experiments with a single run, due to the

significant computational cost of LLMs.
When conducting the long-context processing,

issues may raise where the complete context sur-
passes the 128k token limit of the GPT-4o context
window. In such cases, we implement a fallback
strategy that involves retrieving the top 200 most
relevant text chunks with the dense retriever, ap-
proximately aggregating to 100k tokens.

C.3 Supplementary Details of OkraLong

Before the analysis, OkraLong primarily retrieves
three segments, each comprising 150 tokens, to
perform analysis. Subsequent to the analysis, the
organizer assigns extended eight text segments
to contextual tasks (e.g., summarizing questions),
whereas factoid tasks cover five segments. In in-
stances where evidence is analyzed to be absent,
the granularity of retrieval-segments scales to 400
tokens for contextual tasks and 256 tokens for fac-
toid tasks.

The execution module of OkraLong comprises
multiple operators: (1) In the assembled retriever,
we deploy dual retrieval strategies: the semantic
dense retriever and the exact sparse retriever. We
normalize the relevance scores of the top 20 text
chunks using min-max normalization and aggre-
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gate them based on semantic or exact information
preferences. These preferences influence the fi-
nal scoring, applying a conservative weight to de-
termine the top-ranked chunks: 3:2 for preferred
aggregation or 1:1 for uniform aggregation. (2)
The context processor supports context merging,
context extension, and table recovery. It maintains
essential metadata such as positions and index num-
bers of text chunks. Utilizing this metadata, it
merges neighboring chunks and extends their pre-
ceding and succeeding contexts if required. Ad-
ditionally, it includes a mechanism to detect and
recover incomplete tables within the text, lever-
aging structural markers such as spacing and line
breaks. (3) Inspired by previous works (Trivedi
et al., 2023; Jiang et al., 2023b; Ma et al., 2023),
we prompt the LLM to perform question splitting
and step-wise reasoning. The detailed instructions
are shown in Table 9 and Table 10.
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System:
Given a question and the document context, please answer three questions:

1. What type of question is being asked? The types include: extractive, abstractive, arithmetic, multi-bridge, and multi-
source. Extractive means the query is directly factoid; summarizing means the query needs large context and conclusion;
arithemtic means the query needs numerical calculation; multi-bridge means the answer requires multiple bridging steps to
get the answer;multi-source means the answer requires information from multiple facts (e.g. comparison questions).

2. Is the key information of the question more exact or semantic (according to both the question and the context)? The
answer should be "exact", "semantic" or "same".

3. Does the provided context contain the enough information to answer the question? The answer should be either "yes" or
"no".

The final answer should be in the format of a dictionary:

{"question-type": "extractive", "info-type": "exact", "containing": "yes"}.

Please strictly follow the format and no explanation is needed.

User:
### Context: {context} ### Question: {question} ### Answer:

Table 8: The instructed prompt for the task analyzer.

System:
Given a question, and this question may need the information from multiple sources.

Please split this question into multiple sub-questions, each of which can be answered by a single source. The final answer
should be several sub-questions separated by the line-breaker.

Demonstration:
User:

Which university has the larger campus, University of New Haven or University of West Florida?

Assistant:

What is the campus size of University of New Haven?

What is the campus size of University of West Florida?

User:
{question}

Table 9: The instructed prompt for the question splitting operator.

System:
Given a question, which may need multiple steps to get the final answer. Please first get the existing evidence for the
question based on the given context, and then generate a next-step query to query additional information. If the question
can already be totally answered, you should output ’### Answer: The answer is: <answer>’ at the end. Otherwise, output
’None’. The answer should be based only on the context. """

Demonstration:
User:

### Context: 100 Rifles is directed by Tom Gries and starring Jim Brown and Raquel Welch. ### Question: 100 Rifles is a
western film, starring an actress of what nationality?

Assistant:

### Evidence: The main actress in 100 Rifles is Raquel Welch. ### Next-Query: What is the nationality of Raquel Welch?
### Answer: None

User:
### Context: {context} ### Question:{question}

Table 10: The instructed prompt for the step-wise reasoning operator.
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