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Abstract

Large Language Models (LLMs) have trans-
formed natural language processing, yet their
internal mechanisms remain largely opaque.
Recently, mechanistic interpretability has at-
tracted significant attention from the research
community as a means to understand the inner
workings of LLMs. Among various mechanis-
tic interpretability approaches, Sparse Autoen-
coders (SAEs) have emerged as a promising
method due to their ability to disentangle the
complex, superimposed features within LLMs
into more interpretable components. This pa-
per presents a comprehensive survey of SAEs
for interpreting and understanding the internal
workings of LLMs. Our major contributions
include: (1) exploring the technical framework
of SAEs, covering basic architecture, design
improvements, and effective training strategies;
(2) examining different approaches to explain-
ing SAE features, categorized into input-based
and output-based explanation methods; (3) dis-
cussing evaluation methods for assessing SAE
performance, covering both structural and func-
tional metrics; and (4) investigating real-world
applications of SAEs in understanding and ma-
nipulating LLM behaviors.

1 Introduction

Large Language Models (LLMs), such as GPT-
4 (OpenAI et al., 2024), Claude-3.5 (Anthropic,
2024), DeepSeek-R1 (DeepSeek-AI et al., 2025),
and Grok-3 (xAI, 2025), have emerged as powerful
tools in natural language processing, demonstrating
remarkable capabilities in tasks ranging from text
generation to complex reasoning. However, their
increasing size and complexity have created signif-
icant challenges in understanding their internal rep-
resentations and decision-making processes. This
“black box” nature of LLMs has sparked a grow-
ing interest in mechanistic interpretability (Bereska
and Gavves, 2024a; Zhao et al., 2024a; Rai et al.,

2024; Zhao et al., 2024b), a field that aims to break
down LLMs into understandable components and
systematically analyze how these components in-
teract to understand their behaviors.

Among the various approaches to interpreting
LLMs, Sparse Autoencoders (SAEs) (Cunningham
et al., 2023; Bricken et al., 2023; Gao et al., 2025;
Rajamanoharan et al., 2024b; Galichin et al., 2025)
have emerged as a particularly promising direction
for addressing a fundamental challenge in LLM
interpretability: polysemanticity. Many neurons in
LLMs are polysemantic, responding to seemingly
unrelated concepts or features simultaneously. This
is a phenomenon likely resulting from superposi-
tion (Elhage et al., 2022), where LLMs represent
more independent features than they have neurons
by encoding each feature as a linear combination
of neurons. SAEs address this issue by learning
an overcomplete, sparse representation of neural
activations, effectively disentangling these super-
imposed features into more interpretable units. By
training a sparse autoencoder to reconstruct the ac-
tivations of a target network layer while enforcing
sparsity constraints, SAEs can extract a larger set
of monosemantic features that offer clearer insights
into what information the LLM is processing. This
approach has shown promise in transforming the
often-inscrutable activations of LLMs into more
human-understandable representations, potentially
creating a more effective vocabulary for mechanis-
tic analysis of these complex systems.

1.1 Contribution and Uniqueness
Our Contributions. In this paper, we provide a
comprehensive overview of SAE for LLM inter-
pretability, with major contributions listed as fol-
lowing: (1) We explore the technical framework
of SAEs, including their basic architecture, vari-
ous design improvements, and effective training
strategies (Section 2). (2) We examine different ap-
proaches to analyzing and explaining SAE features,
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Figure 1: (a) This figure illustrates the fundamental framework of a Sparse Autoencoder (SAE). SAE is trained
to take a model representation z as input and project it to an overcomplete sparse activation h(z) by learning to
reconstruct the original input ẑ. The SAE typically comprises an encoder, a decoder, and a loss function for training.
(b) The development of the SAE progresses through multiple stages. Note that we only list some representative
SAE models in this timeline rather than providing an exhaustive compilation.

categorized broadly into input-based and output-
based explanation methods (Section 3). (3) We dis-
cuss evaluation methodologies for assessing SAE
performance, covering both structural metrics and
functional metrics (Section 4). (4) We discuss real-
world applications of SAEs in understanding and
manipulating LLMs (Section 5). (5) Additionally,
in the appendix, we also introduce key motivations
for SAE, discuss connection of SAEs to the broader
field of mechanistic interpretability, provide exper-
imental evaluations, and highlight current research
challenges and promising future directions.

Differences with Existing Surveys. Several ex-
isting surveys take a broad perspective on LLM
interpretability. For instance, some surveys provide
comprehensive overviews of general explainability
methods for LLMs (Ferrando et al., 2024; Zhao
et al., 2024a), while others focus specifically on
mechanistic interpretability as a whole (Rai et al.,
2024; Bereska and Gavves, 2024b). In contrast,
our work uniquely focuses exclusively on SAEs as
a specific and promising approach within the mech-
anistic interpretability landscape. By narrowing
our scope to SAEs, we are able to provide a much
more comprehensive and detailed analysis of their
principles, architectures, training methodologies,
evaluation techniques, and practical applications.

2 Technical Framework of SAEs

2.1 Basic SAE Framework

SAE is a neural network that learns an overcom-
plete dictionary for representation reconstruction.
As shown in Figure 1a, the input of SAE is the rep-
resentation of a token from LLMs, which is mapped

onto a sparse vector of dictionary activations.

Input. Given a LLM denoted as f with a total
of L transformer layers, we consider an input se-
quence x = (x0, . . . , xN ) with N tokens, where
each xn ∈ x represents a token in the sequence.
As the sequence x is processed by the LLM, each
token xn produces representations at different lay-
ers. For a specific layer l, we denote the hidden
representation corresponding to token xn as z

(l)
n ,

where z
(l)
n ∈ Rd indicates the embedding vector

of dimension d. Each representation z
(l)
n serves as

input to SAEs. In the following, we may omit the
superscript (l) of layers to simplify the notation.

After extracting the representation z
(l)
n , the SAE

takes it as input, decomposes it into a sparse rep-
resentation, and then reconstructs it. The SAE
framework is typically composed of three key com-
ponents: the encoder, which maps the input repre-
sentation to a higher-dimensional sparse activation;
the decoder, which reconstructs the original repre-
sentation from this sparse activation; and the loss
function, which ensures accurate reconstruction
while enforcing sparsity constraints.

Encoding Step. Given an input representation
z ∈ Rd, the encoder applies a linear transformation
using a weight matrix Wenc ∈ Rd×m and a bias
term benc ∈ Rm, followed by an activation func-
tion σ to enforce sparsity. The encoding operation
is defined as:

h(z) = σ (z ·Wenc + benc) , (1)

where h(z) ∈ Rm represents the sparse activation
vector, which helps disentangle superposition fea-
tures. The σ activation function could take differ-
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Table 1: Taxonomy of SAE Frameworks: An Overview of Basic and Variant Architectures.

Category Examples Activation Citations

Basic SAE Framework (§2.1) l2-norm SAE ReLU Ferrando et al. (2024)

Improve Architecture (§C.1)

Gated SAE Jump ReLU Rajamanoharan et al. (2024a)
TopK SAE TopK Gao et al. (2025)
Batch TopK SAE Batch TopK Bussmann et al. (2024)
ProLU SAE ProLU Taggart (2024)
JumpReLU SAE Jump ReLU Rajamanoharan et al. (2024b)
Switch SAE TopK Mudide et al. (2024)

Improve Training Strategy (§C.2)

Layer Group SAE Jump ReLU Ghilardi et al. (2024)
Feature Choice SAE TopK Ayonrinde (2024)
Mutual Choice SAE TopK Ayonrinde (2024)
Feature Aligned SAE TopK Marks et al. (2024)
End-to-end SAE ReLU Braun et al. (2025)
Formal Languages SAE ReLU Menon et al. (2024)
Specialized SAE ReLU Muhamed et al. (2024)

ent formats (see Table 1). For example, σ could
be ReLU (x) = max (0, x), ensures that only non-
negative values pass through, encouraging sparsity
by setting negative values to zero.

Since the SAE constructs an overcomplete dic-
tionary to facilitate sparse activation, the number
of learned dictionary elements m is chosen to be
larger than the input dimension d (i.e., m ≫ d).
This overcompleteness allows the encoder to learn
a richer and more expressive representation of the
input, making it possible to reconstruct the original
data using only a sparse subset of dictionary ele-
ments. The output h(z) from the encoder is then
passed to the decoding stage, where it is mapped
back to the original input space to reconstruct z.

Decoding Step. After the encoding step, the next
stage in the SAE framework is the decoding pro-
cess, where the sparse activation vector h(z) is
mapped back to the original input space. This step
ensures that the sparse features learned by the en-
coder contain sufficient information to accurately
reconstruct the original representation. The decod-
ing operation is defined as:

ẑ = SAE(z) = h(z) ·Wdec + bdec, (2)

where Wdec ∈ Rm×d is the decoder weight matrix.
bdec ∈ Rd is the decoder bias term. ẑ ∈ Rd is the
reconstructed output, which aims to approximate
the original input z.

The accuracy of the reconstruction and the in-
terpretability of the learned representation depends
heavily on the effectiveness and sparsity of the ac-
tivation vector h(z). Therefore, the SAE is trained

using a loss function that balances minimizing the
reconstruction error and enforcing sparsity. This
trade-off ensures that the learned dictionary ele-
ments provide a compact yet expressive representa-
tion of the input data.

Loss Function. The activation vector h(z) is en-
couraged to be sparse, meaning that most of its
values should be zero. Take the ReLU activation
for example, while the activation function after the
encoder enforces basic sparsity by setting negative
values to zero, it does not necessarily eliminate
small positive values, which can still contribute to
a dense representation. Therefore, additional spar-
sity enforcement is required. This is achieved using
a sparsity regularization term in the loss function,
which further promotes a minimal number of ac-
tive features. Beyond enforcing sparsity, the SAE
must also ensure that the learned sparse activation
retains sufficient information to accurately recon-
struct the original input z. The loss function for
training the SAE consists of two key components:
reconstruction loss and sparsity regularization:

L(z) = ∥z− ẑ∥22 + α∥h(z)∥1, (3)

where reconstruction loss ensures that the SAE
learns to reconstruct the input data accurately,
meaning the features encoded in the sparse rep-
resentation must also be present in the input acti-
vations. On the other hand, sparsity regularization
enforces sparsity by penalizing nonzero values in
h(z), and α is a hyper-parameter to control the
penalty level of the sparsity. Specifically, without
the sparsity loss, SAEs could simply memorize the
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training data, reconstructing the input without dis-
entangling meaningful features. However, once
the sparsity loss is introduced, the model is forced
to activate only a small subset of neurons for re-
constructing the input activation. This constraint
encourages the SAE to focus on the most informa-
tive and critical features to reconstruct the input
activation. A higher value of α enforces stronger
sparsity by shrinking more values in h(z) to zero,
but this may lead to information loss and degraded
reconstruction quality. A lower value of α priori-
tizes reconstruction accuracy but may result in less
sparsity, reducing the interpretability of the learned
features. Thus, selecting an optimal α is crucial for
achieving a balance between interpretability and
accurate data representation.

2.2 Different SAE Variants

As SAEs continue to emerge as a powerful tool for
interpreting the internal representations of LLMs,
researchers have increasingly focused on refining
and extending their capabilities. Various SAE vari-
ants have been proposed to address the limitations
of traditional SAEs, each introducing improve-
ments from different perspectives. In this section,
we categorize these advancements into two main
groups: Improve Architectural, which modify the
structure and design of the traditional SAE, and
Improve Training Strategy, which retain the orig-
inal architecture but introduce novel methods to
enhance training efficiency, feature selection, and
sparsity enforcement. A taxonomy of represen-
tative SAE frameworks is presented in Table 1.
Due to page limitations, examples for each group
are provided in Appendix C.1 (Improved Archi-
tectural) and Appendix C.2 (Improved Training
Strategy). We also discuss challenges encountered
during SAE training in Appendix C.3.

3 Explainability Analysis of SAEs

This section aims to interpret the learned feature
vectors from a trained SAE with natural language.
Specifically, given a pre-defined vocabulary set V ,
the goal of the explainability analysis is to extract
a subset of words Im ⊂ V to represent the mean-
ing of wm = Wdec[m], for m = 1, ...,M . Hu-
mans can understand the meaning of wm by read-
ing their natural language explanations Im. There
are two lines of work for this purpose, namely the
input-based and output-based methods. Figure 2
visualizes generated explanations of using different

methods to interpret a learned feature vector.

3.1 Input-based Explanations
MaxAct. The most straightforward way to collect
natural language explanation is by selecting a set of
texts whose hidden representation can maximally
activate a certain feature vector we are interpret-
ing (Bricken et al., 2023; Lee et al., 2023). For-
mally, given a large corpus X where each text span
x ∈ VN consists of N words, the MaxAct strategy
finds K text spans that could maximally activate
our interested learned feature vector wm:

Im = argmax
X ′⊂X ,|X |=K

∑

x∈X ′
f<l(x) ·w⊤

m, (4)

where f<l(x) indicates generating the hidden rep-
resentation of input text x at the l-th layer, and l is
the layer our SAE is trained for. This strategy is
reasonable for interpreting weight vectors of SAEs
because of the sparse nature of SAEs, which indi-
cates that a learned feature vector should only be
activated by a certain pattern/concept. Therefore,
summarizing the most activated text spans can give
us a clue to understanding the semantic meaning
encoded by the learned feature vector.

PruningMaxAct. While MaxAct collects text
spans that maximally activate a feature vector,
these spans often contain extraneous or redundant
phrases that can obscure the underlying concept.
Building on the Neuron-to-Graph approach (Foote
et al., 2023), researchers (Gao et al., 2025) intro-
duce a pruning operation to remove irrelevant to-
kens from each text span, thereby retaining only
the minimal context necessary to preserve strong
activation. Formally, let p(·) be a pruning strategy
that maps text x to p(x), and let p−1(·) recover
the original text from its pruned version. The final
pruned spans are then gathered via:

Im = argmax
X ′⊂p(X ), |X ′|=K

∑

x∈X ′
f<l(x) ·w⊤

m,

s.t. ∀x ∈ p(X ),
f<l(p

−1(x)) ·w⊤
m

f<l(x) ·w⊤
m

≥ 0.5,

(5)

where the condition enforces that the pruned text
p(x) retains at least half of the original activation.
In practice, p(·) can be instantiated by removing
selected tokens or replacing them with padding.
According to Gao et al. (2025), this PruningMax-
Act technique yields higher recall (i.e., finds more
relevant examples) but lower precision compared
to the original MaxAct strategy.
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Figure 2: The figure illustrates the interpretation of a learned SAE feature using VocabProj and MaxAct. VocabProj
lists words with the highest logits in “Positive Logits” column, and lowest logits in “Negative Logits” column.
The upper histogram in Statistical Analysis shows the distribution of randomly sampled non-zero activations, with
the y-axis representing the number of sampled activations and the x-axis indicating activation scores. The lower
histogram depicts the logit density, where the y-axis represents the number of tokens and the x-axis corresponds
to logit scores. MaxAct highlights tokens in an input text that strongly activate the learned feature. The figure
references the Neuronpedia website (Lin, 2023).

3.2 Output-based Explanations
VocabProj. Output-based explanations project the
learned feature vectors to the output word embed-
dings of words to compute the activations. Math-
ematically, fout(w) : V → Rd denotes the out-
put word embedding layer that returns the output
embeddings of a word w, and we can collect the
natural language explanations by:

Im = argmax
V ′⊂V, |V ′|=K

∑

w∈V ′
fout(w) ·w⊤

m. (6)

This mapping process makes sense for decoder-
only LLMs because the layers in such models share
the same residual stream, enabling the representa-
tions in the intermediate layers to be linear cor-
related to the output word embeddings (Nostal-
gebraist, 2020). Recently, researchers (Wu et al.,
2025b; Gur-Arieh et al., 2025) find that output-
based explanations show a stronger promise in in-
terpreting and controlling LLM behaviors (i.e., gen-
erated texts) compared to the input-based ones.

MutInfo. The VocabProj assumes that the output
embeddings that maximally activate an interested
feature vector can best describe the meaning of the
learned feature. However, this assumption may fail
for frequent words, whose embeddings often have
large l2 norm (Gao et al., 2019). To address this,
Wu et al. (2025b) proposes extracting a vocabulary

subset that maximizes mutual information with the
learned feature. Formally, let C denote knowledge
encoded by wc, the explanations are extracted by

Im = argmax
V′⊂V,|V′|=M

MI(V ′; C) ∝ argmin
V′⊂V,|V′|=M

H(C|V ′)

∝ argmax
V′⊂V,|V′|=M

∑

w∈V′
p(w|wm) log p(wm|w),

(7)

where MI(·; ·) indicates mutual information be-
tween two variables (Cover, 1999), H(·|·) is the
conditional entropy, and U(C) includes all possible
vectors that express the knowledge C. Practically,
the conditional probabilities can be estimated by:

p(w|wm) =
exp(fout(w) ·w⊤

m)∑
w′∈V exp(fout(w′) ·w⊤

m)
,

p(wc|w) =
exp(fout(w) ·w⊤

c )∑
c′∈C exp(fout(w) ·W⊤

c′)
.

(8)

Compared with VocabProj, that only considers
p(w|wm), this mutual-information-driven objec-
tive highlights the need to normalize the raw activa-
tion with p(wm|w). That is, if a word whose output
embedding consistently activates various feature
vectors, it loses specification for interpretation.

4 Evaluation Metrics and Methods

Evaluating SAEs is inherently challenging due to
the absence of ground truth labels. Unlike tradi-
tional machine learning tasks where performance
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can be directly measured against labeled data, the
quality of an SAE must be inferred through a di-
verse set of metrics. These metrics assess both
the internal structure of the model and its func-
tional utility. To provide a comprehensive evalu-
ation framework, we categorize SAE evaluation
methods into two main groups: structural metrics
and functional metrics. This categorization ensures
a holistic assessment of SAEs, covering both their
training behavior and real-world applicability.

4.1 Structural Metrics
Structural metrics focus on assessing whether an
SAE behaves as intended during training. SAEs
are designed to optimize both reconstruction fi-
delity and sparsity, as these properties are explic-
itly enforced in the training loss. Therefore, natural
evaluation metrics assess reconstruction accuracy
and sparsity in the model’s learned representations.
Reconstruction Fidelity. The most fundamental
way to evaluate reconstruction fidelity is through
Mean Squared Error (MSE) and Cosine Similar-
ity (Ng et al., 2011), which directly compare the
original activations with SAE-reconstructed acti-
vations. Additional metrics such as Fraction of
Variance Unexplained (FVU) (also known as nor-
malized loss) (Gao et al., 2025) and Explained Vari-
ance (Karvonen et al., 2024) measure how much
variance in the original data is retained after SAE
reconstructs. Beyond direct reconstruction com-
parisons, researchers also evaluate how SAEs af-
fect the probability distribution of model outputs.
Cross-Entropy Loss (Shannon, 1948) and KL Di-
vergence (Kullback and Leibler, 1951) measure
the shift in probability distributions when substitut-
ing original model activations with SAE-generated
activations. If the SAE faithfully reconstructs acti-
vations, the probability distributions should remain
similar. Similarly, Delta LM Loss (Lieberum et al.,
2024) quantifies the difference between the original
language model loss and the loss incurred when
replacing activations with those from the SAE. An-
other important aspect of reconstruction fidelity is
magnitude preservation. The L2 Ratio (Karvonen
et al., 2024) compares the Euclidean norms of dif-
ferent activations to ensure that the SAE does not
systematically alter activation magnitudes.
Sparsity. A key design objective of SAEs is spar-
sity, which ensures that only a small subset of la-
tent neurons activate for any given input. The most
direct metric for sparsity is L0 Sparsity (Louizos
et al., 2017), which measures the average number

of nonzero activations per input. However, sparsity
is not just about minimizing activations; it also re-
quires ensuring that the active features are meaning-
ful. To assess feature usage patterns, Latent Firing
Frequency (He et al., 2024) and Feature Density
Statistics (Karvonen et al., 2024) track how often
each SAE latent is activated across different inputs,
ensuring that features are neither too frequent nor
inactive. Additionally, the Sparsity-fidelity Trade-
off (Gao et al., 2025) evaluates whether adjusting
sparsity affects reconstruction quality, helping to
determine the optimal balance between sparsity
and fidelity.

4.2 Functional Metrics
While structural metrics ensure that an SAE fol-
lows its design principles, functional metrics assess
whether the SAE is useful for real-world analy-
sis. These include interpretability, which assesses
whether the SAE’s learned features correspond to
meaningful and distinct concepts, and robustness,
which evaluates whether the learned representa-
tions are stable and generalizable.
Interpretability. One of the primary motivations
for SAEs is to enhance interpretability by disen-
tangling LLM activations into meaningful features.
A crucial property for interpretability is monose-
manticity, where each feature should encode a sin-
gle concept. RAVEL and Automated Interpretabil-
ity (Karvonen et al., 2024) automatically evaluate
monosemanticity by using a language model to gen-
erate and assess feature descriptions. These meth-
ods analyze the most activating contexts for each
feature and assign interpretability scores. Sparse
Probing and Targeted Probe Perturbation (TPP)
(Karvonen et al., 2024) evaluate whether SAE fea-
tures align with specific downstream tasks. In
sparse probing, a linear probe is trained using only
a small subset of SAE activations, while TPP mea-
sures how much perturbing individual latents im-
pacts probe accuracy. If a small number of active
features enable strong performance, the SAE has
learned disentangled and meaningful representa-
tions. Beyond evaluating feature alignment, it is
also crucial to assess the faithfulness of feature
descriptions. Input-Based Evaluation and Output-
Based Evaluation (Gur-Arieh et al., 2025) provide
a framework for verifying whether feature descrip-
tions accurately reflect what a feature represents.
Input-Based Evaluation tests whether a given fea-
ture description correctly identifies which inputs
activate the feature by generating activating and
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neutral examples and measuring activation differ-
ences. Output-Based Evaluation assesses whether a
feature description captures the causal influence of
the feature on model outputs by modifying feature
activations and comparing the resulting generated
texts. Feature Absorption (Karvonen et al., 2024)
assesses whether a feature is capturing multiple in-
dependent concepts instead of a single interpretable
concept. If adding more features does not signifi-
cantly improve representation quality, it suggests
that the extracted features are already sufficient.
Another approach to detecting whether each neu-
ron is monosemantic is checking for redundancy
or overlap with other neurons. Feature Geometry
Analysis (He et al., 2024; Bricken et al., 2023; Tem-
pleton et al., 2024) detects redundancy among SAE
latents by measuring cosine similarity between de-
coder columns. If two features have high cosine
similarity, they may represent redundant concepts
rather than independent units.
Robustness. In addition to being interpretable,
a well-designed SAE should be robust in various
contexts. Robustness ensures that SAEs do not
overfit to a specific dataset or condition but in-
stead generalize effectively. Generalizability (He
et al., 2024) assesses whether SAEs remain effec-
tive when applied to out-of-distribution data. Two
common tests for generalizability include evaluat-
ing whether SAEs trained on shorter text sequences
still perform well on longer sequences and check-
ing whether SAEs trained on base LLM activations
generalize to instruction-finetuned models. Un-
learning (Karvonen et al., 2024) measures whether
an SAE can selectively forget specific features
while preserving useful information. This is crucial
for applications that require privacy-focused mod-
els, where sensitive information needs to be erased.
Spurious Correlation Removal (SCR) (Karvonen
et al., 2024) tests whether an SAE can eliminate
biased correlations in downstream models. If re-
moving certain latents reduces unwanted correla-
tions without harming performance, the SAE has
learned to capture and remove spurious patterns.

Moreover, we provide a comprehensive compar-
ison of SAEs using both structural and functional
metrics in Appendix D.

5 Applications in Large Language Models

The latents learned by SAEs represent a collection
of low-level concepts. Each SAE latent can be
interpreted through gathering its activating exam-

ples (Lin, 2023). This approach enables latents to
be interpreted in a human-understandable manner,
thereby enhancing our comprehension of how mod-
els perform tasks and facilitating more effective
control of model behaviors.

5.1 Model Steering
Unlike supervised concept vectors, such as probing
classifiers (Belinkov, 2022; Zhao et al., 2025; Jin
et al., 2025), SAEs can simultaneously learn a large
volume of concept vectors. The learned vectors can
then be utilized to steer model behaviors in ways
similar to supervised vectors (See Figure 3). A
detailed comparison between SAEs and probing-
based methods is provided in Appendix F.

As previously mentioned, SAE latents can be
employed to produce steering vectors that control
model outputs related to toxicity, sycophancy, re-
fusal, and emotions. Other steering applications
have also proven feasible. Recently, a study shows
that SAE latents are able to capture instructions
such as translations. These identified latents are
effective in manipulating models to translate inputs
according to specific instructions (He et al., 2025).
Another investigation focusing on semantic search
demonstrates that SAEs can learn fine-grained se-
mantic concepts at various levels of abstraction.
These concept vectors can be used to steer mod-
els toward related semantic (O’Neill et al., 2024).
Alternatively, SAEs trained on biological datasets
can provide biology-related features that enable
the unlearning of biology-relevant knowledge with
fewer side effects than existing techniques (Far-
rell et al., 2024). Given that steering effects are
generally challenging to control, SAE-TS further
utilizes SAE latents to optimize steering vectors by
measuring the changes in SAE feature activation
caused by steering, thereby helping construct vec-
tors that target relevant features while minimizing
unwanted effects (Chalnev et al., 2024). Moreover,
explanations based on SAE latents risk prioritiz-
ing linguistic features over semantic meaning. Wu
et al. (2025b) propose a novel approach that pro-
motes diverse semantic explanations, which has
been demonstrated to enhance model safety.

5.2 Model Behavior Analysis
SAEs construct a dictionary of concepts through
their latents, providing a more fine-grained per-
spective for concept interpretation. This capability
enables the analysis of the model’s internal repre-
sentations and learned knowledge in greater detail.
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(b) Steering LLM Behavior

Write a brief angry review in 10 words for the smartphone 'Apple 52 Pro 
Max'.

Overpriced junk! Laggy, terrible battery, useless updates, worst purchase 
ever!

Steer Happiness Feature:
Amazing phone! Fast, stunning display, great battery, worth every 
penny!
Steer Confusion Feature:
Great camera, but lags? Expensive, yet feels cheap? I?m lost.
Steer Fact Feature:
Apple 52 Pro Max doesn?t exist yet, so no review possible.

(c) Steered Output Example

Example Input:

Original Output:

Steered Output:

...

...

Figure 3: The figure illustrates the process of using a SAE to steer the behavior of a LLM, with an example of
the resulting steered output. In part (a), normally people use SAE to extract a steering vector by comparing two
representations: z, which lacks a certain feature, and z′, which contains that feature. In part (b), this steering
vector is added to the input representation, modifying the LLM’s behavior to align with the desired feature. Part (c)
demonstrates the example results of this process, where the steered output reflects the steered feature, even when the
original input prompt is neutral or contradictory to the feature being introduced.

A recent study utilizes SAEs to reveal the mech-
anism of hallucination, where entity recognition
plays a pivot role in recalling facts. A direction
distinguishing whether the model knows an en-
tity is identified, which is usually used for hallu-
cination refusal in chat models (Ferrando et al.,
2025). Some studies focus on interpreting how
in-context learning (ICL) is performed within mod-
els. One study focuses on general ICL tasks, and
task-related function vectors were successfully iso-
lated (Kharlapenko et al., 2024). Another study fo-
cuses on reinforcement learning (RL) tasks. Their
experiment shows that an LLM’s internal represen-
tations are capable of capturing temporal difference
errors and Q-values that are essential in RL com-
putations (Demircan et al., 2025). Besides, one
study attempts to examine the working mechanism
of instruction following. Their analysis on trans-
lation tasks shows that instructions are composed
of multiple relevant concepts rather than individual
ones (He et al., 2025).

Moreover, SAEs have been employed to study
behaviors related to toxicity, sycophancy, refusal,
and emotions. One recent study shows that fea-
tures captured by SAEs can be used to construct
probes to classify cross-lingual toxicity (Gallifant
et al., 2025). By examining SAE latents that ac-
tivate on anger-related tokens, researchers have
identified steering vectors that control angry out-

puts (Nanda et al., 2024). Additionally, other re-
search demonstrates that SAEs can reconstruct vec-
tors responsible for refusing to answer harmful
questions as well as directions that produce syco-
phantic responses (neverix et al., 2024). Please
refer to Appendix E for more LLM applications.

6 Conclusions

In this survey, we provided a comprehensive exam-
ination of SAEs as a promising approach to inter-
preting and understanding LLMs. SAEs effectively
address the challenge of polysemanticity through
learning overcomplete, sparse representations that
disentangle superimposed features into more inter-
pretable units. We have systematically explored
the foundational principles, technical frameworks,
evaluation methodologies, and real-world appli-
cations of SAEs in the context of LLM analysis.
While SAEs have demonstrated considerable suc-
cess in revealing the internal mechanisms of LLMs,
several challenges remain. In Appendix G, we
discussed detailed research challenges, including
the incompleteness of concept dictionaries, lim-
ited theoretical foundations, persistent reconstruc-
tion errors, and substantial computational require-
ments. Despite these challenges, SAEs continue
to evolve through architectural innovations and im-
proved training strategies, offering deeper insights
into the inner workings of complex LLMs.
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Limitations

Many concepts central to SAEs, such as polyse-
manticity, superposition, and feature disentangle-
ment, have been extensively studied under differ-
ent frameworks including distributed representa-
tions, disentangled representation learning, and
sparse coding in computer vision and signal pro-
cessing. This paper focuses specifically on intro-
ducing SAEs during the LLM era, examining their
applications in interpreting transformer-based lan-
guage models, and does not extensively cover these
concepts’ history in adjacent fields.
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A Why Sparse Autoencoders?

As LLMs continue to grow rapidly in size, interpre-
tation becomes more challenging, as the complex-
ity of their latent space and internal representations
also expands exponentially. SAEs have emerged as
a powerful tool to understand how LLMs make de-
cisions. This ability is known as mechanistic inter-
pretability, which aims to reverse-engineer models
by breaking down their internal computations into
understandable, interpretable components. SAE
is designed to learn a sparse, linear, and decom-
posable representation of the internal activations
of a LLM. It enforces a sparsity constraint so that
only a few features are active at any given time.
This encourages each active feature to correspond
to a specific, understandable concept. This simpli-
fication allows researchers to focus on a few key
features rather than being overwhelmed by the full
complexity of the model. Below, we discuss the
development history of the SAE for LLMs and
present Figure 1b to visually depict this progress.
Due to page limitations, we do not attempt to pro-
vide an exhaustive history of SAEs, but instead
focus on highlighting key milestones in the devel-
opment of SAEs for mainstream LLMs.

Explaining Individual Neurons.
The development of interpretability techniques for
LLMs has progressed in stages rather than as a
single step. From 2022 to 2023, researchers at
OpenAI and Anthropic focused on understanding
LLMs by examining individual neurons. OpenAI,
for instance, leveraged GPT-4 to generate natu-
ral language explanations for neurons in models
like GPT-2, attempting to map specific neuron ac-
tivations to concrete linguistic or conceptual fea-
tures (Bills et al., 2023). Similarly, Anthropic built
small toy models trained on synthetic data to ob-
serve how features are stored in neurons. These
early investigations showed that analyzing single
neurons can provide initial insights (Elhage et al.,
2022). In addition, it is worth noting that the study
of explaining individual neurons by labeling in-
terpretable features to them has been extensively
explored in studies (Radford et al., 2017; Donnelly
and Roegiest, 2019; Nguyen et al., 2019; Szegedy
et al., 2013) prior to the introduction of mechanistic
interpretability.

However, they soon discovered that analyzing
individual neurons had significant limitations, as
neurons in LLMs often exhibit polysemanticity,
i.e., responding to multiple unrelated inputs within

the same neuron. For instance, a single neuron
might simultaneously activate for academic cita-
tions, English dialogue, HTTP requests, and Ko-
rean text (Bricken et al., 2023). This phenomenon
is largely attributed to superposition, where neu-
ral networks represent more independent features
than available neurons by encoding each feature as
a linear combination of neurons (Ferrando et al.,
2024). While this architectural efficiency allows
models to encode vast amounts of knowledge, it
makes individual neurons difficult to interpret since
their activations represent entangled mixtures of
different concepts. This fundamental challenge
with neuron-level analysis motivated researchers
to explore more sophisticated approaches for dis-
entangling these superimposed features, leading to
the development of sparse autoencoders (SAEs) as
a promising solution for extracting interpretable,
monosemantic features from the model’s complex
internal representations.

SAEs for Small-size Language Models.
In late 2023, Anthropic advanced transformer in-
terpretability by moving beyond raw neuron activa-
tions to decompose model activations into single-
concept, monosemantic features, addressing the
polysemanticity of individual neurons in LLMs
(Cunningham et al., 2023; Bricken et al., 2023).
They trained SAEs on transformer activation data
by optimizing a reconstruction loss with a strong
sparsity constraint. This training forces the au-
toencoder to represent each activation as a sparse
combination of basis vectors, with each basis vec-
tor ideally capturing a distinct, interpretable con-
cept. SAEs transform the overlapping signals of
individual neurons into a set of clean, monose-
mantic features that are much easier to understand.
This approach offers a clear advantage over tradi-
tional neuron-based methods by isolating the key
features that drive model behavior. The promis-
ing experimental results on simpler transformer
models demonstrated that SAEs provide a more
effective and scalable route for interpreting model
internals. Building on this success, later works
Bloom (2024) and Samuel et al. (2024) applied
SAE techniques to smaller models such as GPT-
2 (Radford et al., 2019) and Pythia-70m (Biderman
et al., 2023), thereby paving the way for their even-
tual extension to full-scale billion size LLMs.

SAEs for Large Language Models.
After witnessing the success of SAEs on smaller-
scale models, the third stage of their development
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emerged in 2024, when Anthropic (Templeton
et al., 2024) and OpenAI (Gao et al., 2025) be-
came the first groups to apply SAEs to their latest
proprietary LLMs, Claude 3 Sonnet and GPT-4,
respectively. This marked a significant step for-
ward in understanding these closed-source, black-
box models, even for the researchers who built
them. However, scaling SAEs from small models
to full-scale LLMs introduced several new chal-
lenges. One major issue was the sheer scale of
activations in models with billions of parameters,
which made training and extracting interpretable
features computationally expensive. Additionally,
ensuring that extracted features remained monose-
mantic became increasingly difficult, as feature
superposition is more prevalent in larger models
(Templeton et al., 2024). Despite these challenges,
researchers found that SAEs could effectively de-
compose polysemantic neurons into monosemantic
features, revealing meaningful and interpretable
latent representations within the models. For in-
stance, Anthropic demonstrated that certain neu-
rons in Claude 3 Sonnet encode high-level concepts
such as “sycophantic praise”, where phrases like “a
generous and gracious man” strongly activate this
feature. Similarly, OpenAI’s research on GPT-4
identified a “humans have flaws” feature, which
activates on phrases like “My Dad wasn’t perfect
(are any of us?) but he loved us dearly.” These find-
ings not only deepen our understanding of model
behavior but also provide powerful interpretability
tools, allowing the practitioners to better analyze,
refine, and steer language model outputs.

As the architecture and mechanisms of SAEs
become clearer, more researchers have begun to
follow this approach, applying SAEs to interpret
open-source models. For example, Google Deep-
Mind (Lieberum et al., 2024) used SAEs to analyze
Gemma 2 (Team et al., 2024), while He et al. (2024)
applied similar techniques to LLaMA 3.1 (Dubey
et al., 2024). This growing adoption highlights
the increasing role of SAEs in mechanistic inter-
pretability, paving the way for broader transparency
in both close- and open-source LLMs.

B Connection of SAEs to the Broader
Field of Interpretability

The field of mechanistic interpretability (MI) has
been critiqued for its insufficient engagement with
the broader interpretability and NLP research lit-
erature (Bereska and Gavves, 2024a; Saphra and

Wiegreffe, 2024). Many of the research topics
within MI, such as polysemanticity, superposition,
and SAEs, have been investigated in prior and con-
current non-MI fields, often under different termi-
nologies while addressing the same fundamental
challenges (Saphra and Wiegreffe, 2024; Elhage
et al., 2022). For instance, the study of polyseman-
ticity and superposition, which aims to understand
how features are encoded in the model activations,
have been studied in the context of distributed rep-
resentations (Hinton, 1984; Mikolov et al., 2013b,a;
Arora et al., 2018; Olah, 2023), disentangled rep-
resentations (Higgins et al., 2018; Kim and Mnih,
2018; Locatello et al., 2019), and concept-based
interpretability (Nicolson et al., 2024; Kim et al.,
2018). Similarly, SAEs are closely related to and
draw inspiration from earlier lines of research on
sparse coding and dictionary learning (Olshausen
and Field, 1997; Gregor and LeCun, 2010; Faruqui
et al., 2015; Subramanian et al., 2018). These meth-
ods, like SAEs, posit the feature sparsity hypothe-
sis (Elhage et al., 2022) and aim to learn an over-
complete representation to disentangle the features
from activation in superposition. Since these fields
pursue similar goals or study the same research
problems, the current disconnect causes issues such
as missing relevant literature, hindering collabo-
ration, unintentionally redefining established con-
cepts, rediscovering existing techniques, and over-
looking well-known baselines. Therefore, it is im-
perative for the MI community to bridge these gaps
and more actively integrate findings from related
non-MI research.

C Different SAE Variants

C.1 Improve Architecture

Gated SAE. The Gated SAE (Rajamanoharan
et al., 2024a) is a modification of the standard SAE
that aims to improve the trade-off between recon-
struction fidelity and sparsity enforcement. Tradi-
tional SAEs suffer from shrinkage bias (Wright and
Sharkey, 2024), where the L1-norm regularization
systematically underestimates feature activations,
leading to reduced reconstruction accuracy. In-
spired by Gated Linear Units (Dauphin et al., 2017;
Shazeer, 2020), Gated SAEs replace the standard
ReLU encoder with a gated ReLU encoder, which
separates the roles of detecting which features are
active and estimating their magnitudes. Compared
to traditional SAEs, this architectural separation ad-
dresses the shrinkage effect caused by L1 regular-
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ization, which adds a linear penalty to all nonzero
activations, leading to systematic underestimation
of feature magnitudes.

h̃(z) = 1
[
πgate(z) > 0

]
⊙ ReLU(πmag(z)), (9)

where πgate(z) = Wgate(z−bdec)+bgate is the gat-
ing function that determines which features should
be activated. Wgate is a weight matrix for feature
selection. πmag(z) = Wmag(z−bdec)+bmag is the
magnitude estimation function that determines the
strength of the active features. Wmag is a weight
matrix for magnitude estimation. 1[·] is the Heavi-
side step function that binarizes activations and ⊙
denotes element-wise multiplication. In this case,
Gated SAEs introduce independent pathways for
determining which features are activated and their
respective strengths, reducing bias and improving
interpretability.

To optimize the Gated SAE, the
authors introduce an auxiliary loss
∥z − ẑfrozen

(
ReLU

(
πgate(z)

))
∥22 on top of

the traditional loss function. This encourages the
gating path to produce useful feature selections
for reconstruction, without affecting the learned
decoder weights. Here, ẑfrozen is a copy of the
decoder with frozen weights.

TopK SAE. The TopK SAE (Gao et al., 2025) is
an improvement over the traditional SAE, designed
to directly enforce sparsity without requiring L1-
norm regularization. Instead of penalizing all acti-
vations, which can introduce shrinkage bias, TopK
SAEs enforce sparsity by retaining only the top K
largest activations and setting the rest to zero. This
ensures that only the most important features con-
tribute to the learned representation. The encoder
applies a linear transformation followed by a hard
TopK selection:

h̃(z) = TopK
(
Wenc(z− bpre)

)
, (10)

where Wenc ∈ Rd×m is the encoder weight matrix,
and bpre ∈ Rm is a pre-normalization bias term
applied before the TopK selection.

Since the sparsity constraint is explicitly en-
forced through the TopK operation, there is no need
for an additional sparsity regularization term in the
loss function. The training objective reduces to
minimizing the reconstruction loss:

L(z) = ∥z− ẑ∥22 + αLaux, (11)

where Laux is an auxiliary loss scaled by the coeffi-
cient α, designed to stabilize training and prevent
dead latents (Templeton et al., 2024).

BatchTopK SAE. The BatchTopK SAE is a mod-
ification of the TopK SAE, designed to address the
limitations of enforcing a fixed number of active
features per sample. Bussmann et al. (2024) iden-
tified two key inefficiencies in the standard TopK
SAE. First, it forces every token to use exactly
K features, even when some tokens may require
fewer or more active features. It also does not allow
flexibility across a batch, leading to inefficient spar-
sity control. To overcome these issues, BatchTopK
SAEs apply the TopK selection globally across the
entire batch instead of enforcing it per token. This
means that BatchTopK selects the top K × B ac-
tivations across the entire batch, where B is the
batch size. The encoder is modified to:

h̃(Z) = BatchTopK
(
Wenc(Z− bpre)

)
, (12)

where Z ∈ RB×d is the input batch matrix, and
B is the batch size. Similar to TopK SAE, Batch-
TopK directly controls sparsity through the selec-
tion mechanism, it eliminates the need for explicit
sparsity regularization: L(Z) = ∥Z−Ẑ∥22+αLaux.

ProLU SAE. The ProLU SAE (Taggart, 2024)
introduces a novel activation function called Pro-
portional ReLU, which serves as an alternative to
ReLU in traditional SAEs. ProLU SAE provides a
Pareto improvement over both standard SAEs with
L1-norm regularization, which suffer from shrink-
age bias, and SAEs trained with a Sqrt(L1) penalty,
which attempt to mitigate shrinkage but still do not
fully address inconsistencies in activation scaling.
In contrast to ReLU, which applies a fixed thresh-
old at zero, ProLU introduces a learnable threshold
for each activation, allowing the model to deter-
mine the optimal activation boundary dynamically.
The ProLU activation function is defined as:

ProLU(mi, bi) =

{
mi, if mi + bi > 0 and mi > 0

0, otherwise
,

(13)

where mi is the pre-activation output from the en-
coder, and bi is a learnable bias term that shifts
the activation threshold. The encoding process in
ProLU SAE replaces the standard ReLU activa-
tion with ProLU, leading to the following encoding
function:

h̃(z) = ProLU((z− bdec)Wenc,benc). (14)

The ProLU SAE training objective consists of
the standard reconstruction loss combined with an
auxiliary sparsity term:

L(z) = ∥z− ẑ∥22 + λP (h̃(z)), (15)
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where λ is the sparsity penalty coefficient, and
P (h̃(z)) is a sparsity-inducing function. The au-
thors found that using a Sqrt(L1) penalty, defined
as P (h) = ∥h∥1/2, provided better sparsity control
compared to the standard L1-norm.

JumpReLU SAE. The JumpReLU SAE (Raja-
manoharan et al., 2024b) is a modification of the
traditional SAE that replaces the standard ReLU
activation function with JumpReLU. The ReLU
activation function sets all negative pre-activation
values to zero but allows small positive values, lead-
ing to false positives in feature selection and un-
derestimation of feature magnitudes. JumpReLU
introduces an explicit threshold θ that zeroes out
pre-activations below this threshold, ensuring that
weak activations do not contribute to the recon-
struction. The JumpReLU activation function is
defined as:

JumpReLUθ(z) = z ·H(z− θ), (16)

where θ is a learnable threshold and H(x) is the
Heaviside step function, which is 1 when x > 0
and 0 otherwise. The encoder in JumpReLU SAE
follows a standard linear transformation followed
by JumpReLU activation:

h̃(z) = JumpReLUθ(Wencz+ benc). (17)

Unlike traditional SAEs that use L1-norm for spar-
sity regularization, JumpReLU SAEs directly op-
timize the L0-norm, which counts the number of
nonzero activations: L(z) = ∥z− ẑ∥22+α∥h(z)∥0.

Switch SAE. Inspired by Mixture of Experts
(MoE) models (Shazeer et al., 2017), Switch SAE
(Mudide et al., 2024) introduces a more compu-
tationally efficient framework for training SAEs.
Instead of training a single large SAE, Switch
SAE leverages multiple smaller “expert SAEs”
E1, E2, ..., EN and a routing network that dynam-
ically assigns each input to an appropriate expert.
This approach enables efficient scaling to a large
number of features while avoiding the memory and
FLOP bottlenecks of traditional SAEs. Each “ex-
pert SAE” follows a standard TopK SAE formula-
tion:

Ei(z) = W
(i)
dec · TopK(W

(i)
encz), (18)

where W(i)
enc and W

(i)
dec are the encoder and decoder

weight matrices for expert i. The routing network
determines which expert is assigned to each input

by computing a probability distribution over the
experts:

p(z) = softmax(Wrouter(z− brouter)), (19)

where Wrouter is the routing weight matrix. brouter
is the bias term. p(z) represents the probability of
selecting each expert. The final reconstruction is
computed as:

ẑ = pi∗(z)Ei∗(z)(z− bpre) + bpre, (20)

where i∗(z) is the selected expert for input z.
To ensure balanced expert utilization and avoid

expert collapse, Switch SAE incorporates an auxil-
iary loss for load balancing:

Laux = N

N∑

i=1

fi · Pi, (21)

where fi is the fraction of activations assigned to
expert i, and Pi is the fraction of router probability
assigned to expert i. This auxiliary loss is then
added to the traditional reconstruction loss function
to form the final learning objective.

C.2 Improve Training Strategy
Layer Group SAE. Traditionally, one SAE is
trained per layer in a transformer-based LLM, re-
sulting in a substantial number of parameters and
high computational costs. To address this ineffi-
ciency, the Layer Group SAE (Ghilardi et al., 2024)
clusters multiple layers into groups based on acti-
vation similarity and trains a single SAE per group.
This significantly reduces training time while pre-
serving reconstruction accuracy and interpretability.
To determine which layers should be grouped to-
gether, the method measures the angular similarity
between layer activations, defined as:

dangular(z
p
post, z

q
post) =

1

π
arccos

(
zppost · z

q
post

∥zppost∥2∥z
q
post∥2

)
,

(22)

where zppost and zqpost represent post-MLP residual
stream activations for layers p and q. Using this
similarity metric, layers with highly correlated ac-
tivations are clustered together through a hierar-
chical clustering strategy. The number of groups
K is chosen based on a computational trade-off,
balancing efficiency and reconstruction accuracy.
Once the layer groups are formed, a single SAE
is trained per group instead of one per layer. The
SAE architecture and training objective remains
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similar as in traditional SAEs, optimizing for both
reconstruction accuracy and sparsity.

Feature Choice SAE. Traditional SAEs face sev-
eral limitations, including dead features, fixed spar-
sity per token, and lack of adaptive computation.
Feature Choice SAEs (Ayonrinde, 2024) address
these issues by imposing a constraint on the num-
ber of tokens each feature can be active for, rather
than restricting the number of active features per
token. This approach ensures that all features are
utilized efficiently, preventing feature collapse and
improving reconstruction accuracy. This sparsity
allocation constraint is defined as:

∑

j

Si,j = m,∀i,where M = mF, (23)

where Si,j is a binary selection matrix, indicating
whether feature i is active for token j. Each feature
must be activated for exactly m tokens, enforcing
uniform feature utilization.

Mutual Choice SAE. Mutual Choice SAE (Ay-
onrinde, 2024) remove all constraints on sparsity
allocation, allowing the model to freely distribute
its limited total sparsity budget across all tokens
and features. Unlike TopK SAEs, which enforce a
fixed number of active features per token, or Fea-
ture Choice SAEs, which constrain the number
of tokens each feature can be assigned to, Mutual
Choice SAE introduce global sparsity allocation.
This means that instead of enforcing a per-token
or per-feature selection, the model selects the top
M feature-token matches across the entire dataset,
ensuring that sparsity is allocated adaptively based
on reconstruction needs. Mathematically, the acti-
vation selection process is defined as:

S = TopKIndices(Z′,M), (24)

where Z′ represents the pre-activation affinity ma-
trix between tokens and features. M is the global
sparsity budget, denoting the total number of ac-
tive feature-token pairs allowed. TopKIndices(·)
selects the top M activations globally, instead of
enforcing a fixed K per token.

Feature Aligned SAE. The Feature Aligned SAE
(Marks et al., 2024) introduces Mutual Feature
Regularization (MFR), a novel training method de-
signed to improve the interpretability and fidelity of
learned features in SAEs. Traditional SAEs often
suffer from feature fragmentation, where meaning-
ful input features get split across multiple decoder

weights, and feature entanglement, where multi-
ple independent input features are merged into a
single decoder weight. These issues reduce the in-
terpretability of SAEs and limit their effectiveness
in analyzing neural activations. The key insight be-
hind MFR is that features learned by multiple SAEs
trained on the same dataset are more likely to align
with the true underlying structure of the input data.
To enforce this, Feature Aligned SAE trains mul-
tiple SAEs in parallel and applies a MFR penalty
that encourages them to learn mutually consistent
features:

LMFR = α


 1

N(N − 1)

N−1∑

i=1

N∑

j=i+1

(1 − MMCS(W(i)
dec,W

(j)
dec))


 ,

(25)

where W
(i)
dec and W

(j)
dec are the decoder weight ma-

trices of different SAEs. Mean of Max Cosine
Similarity (MMCS) measures the degree of align-
ment between the learned features across SAEs. α
is a hyperparameter that controls the strength of
the regularization. This mutual feature regulariza-
tion is then combined with the traditional SAE loss
to form the final training objective of the Feature
Aligned SAE.

End-to-end SAE. Traditional SAEs often prior-
itize minimizing reconstruction error rather than
ensuring that learned features are functionally im-
portant to the model’s decision-making. This often
leads to feature splitting, where a single meaningful
feature is divided into multiple redundant compo-
nents. To address this, End-to-end SAE (Braun
et al., 2025) modifies the training objective to en-
sure that the discovered features directly influence
the network’s output. They propose minimizing
the Kullback-Leibler (KL) divergence between the
original network’s output distribution and the out-
put distribution when using SAE activations, for-
mulated as:

Le2e = KL(ŷ, y) + α∥h(z)∥1. (26)

To further ensure that activations follow similar
computational pathways in later layers, they pro-
pose E2e + Downstream SAE, which introduces an
additional downstream reconstruction loss, leading
to the formulation:

Le2e+ds = KL(ŷ, y)+α∥h(z)∥1 +β
L∑

k=l+1

∥â(k) − a
(k)∥2

2. (27)

By shifting the training focus from activation re-
construction to output distribution preservation,
this method ensures that learned features are more
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aligned with the actual computational processes of
the network while maintaining interpretability.

Formal Languages SAE. Traditional SAEs effec-
tiveness remains questionable in language models
due to their reliance on correlations rather than
causal attributions. While SAEs often recover fea-
tures that correlate with linguistic structures, such
as parts of speech or syntactic depth, interventions
on these features frequently do not influence the
model’s predictions, suggesting that current train-
ing objectives fail to ensure causal relevance. To
address this, Formal Languages SAE (Menon et al.,
2024) introduce a causal loss term that explicitly
encourages SAEs to learn features that impact the
model’s computation. Their proposed loss function
is given by:

L = Lrecon + αLsparse + βLcaus, (28)

where Lrecon is the standard reconstruction loss,
Lsparse enforces sparsity, and Lcaus ensures that in-
terventions on learned features result in predictable
changes in model output.

Specialized SAE. Traditional SAEs struggle to
capture rare and low-frequency concepts, which are
critical for understanding model behavior in spe-
cific subdomains. To address this, Specialized SAE
(SSAE) (Muhamed et al., 2024) focuses on learning
rare subdomain-specific features through targeted
data selection and a novel training objective. In-
stead of training on the full dataset, SSAE uses
high-recall dense retrieval methods, such as BM25,
Contriever, and TracIn reranking, to identify rel-
evant subdomain data, ensuring that rare features
are well-represented. Additionally, they introduce
Tilted Empirical Risk Minimization (TERM), an
objective that optimizes for worst-case reconstruc-
tion loss rather than average loss. This is achieved
by modifying the standard SAE loss function to:

LTERM(t;w) =
1

t
log

(
1

N

N∑

i=1

et·Lw(zi)

)
, (29)

where Lw(zi) is the standard SAE loss for repre-
sentation zi. N is the size of a minibatch, and t
is the tilt parameter that controls emphasis on rare
concept reconstruction.

C.3 SAE Training
Even though the framework of SAEs is conceptu-
ally straightforward, training SAEs is both compu-
tationally expensive and data-intensive. The com-
plexity arises due to the overcomplete dictionary

representation, large-scale data requirements, and
the layer-wise training paradigm necessary for in-
terpreting LLMs. Each of these factors contributes
to the substantial computational cost associated
with training SAEs at scale.
Overcomplete Dictionary Representation. A
defining characteristic of SAEs is their overcom-
plete dictionary, where the number of learned fea-
tures far exceeds the dimensionality of the LLM’s
latent space. This overcompleteness is what en-
ables SAEs to enforce sparsity, allowing them to
isolate and extract meaningful feature activations
from high-dimensional representations. The en-
forced sparsity is crucial for LLM interpretabil-
ity, as it helps decompose complex neural activa-
tions into more semantically meaningful features.
Empirical studies highlight the scale of overcom-
pleteness; for example, LLaMa-Scope (He et al.,
2024) trained SAEs with 32K and 128K features,
which are 8× and 32× larger than the hidden size
of LLaMa3.1-8B. This extreme overparameteriza-
tion provides a highly expressive feature space but
significantly increases the computational burden
during training.
Large-Scale Data Requirements. Since the in-
put to an SAE consists of representations from
LLMs, an enormous amount of data is required
to ensure that the model learns a diverse and rep-
resentative set of activations. To effectively train
an SAE, it is essential to activate a wide range of
neurons in the LLM, which necessitates process-
ing large-scale datasets covering diverse linguistic
structures. Moreover, because SAEs are overcom-
plete, they require significantly more training data
to converge. Empirical results from Gemma-Scope
(Lieberum et al., 2024) illustrate this requirement:
SAEs with 16.4K features were trained on 4 bil-
lion tokens, while 1M-feature SAEs required 16
billion tokens to reach satisfactory performance.
This highlights the immense data demands neces-
sary for training effective SAEs. Another challenge
arises when scaling up the training data, which is
how to efficiently shuffling massive datasets across
distributed systems. Shuffling is crucial to prevent
models from learning spurious, order-dependent
patterns. However, as datasets grow to terabyte or
petabyte scales, performing a distributed shuffle be-
comes a significant engineering hurdle (Anthropic,
2024).
Layer-Wise Training. Interpreting an LLM re-
quires understanding its representations at each
layer, which necessitates training separate SAEs
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for different layers of the model. The standard
approach is to train one SAE per layer, meaning
that for deep models, this process must be repeated
across dozens or even hundreds of layers, com-
pounding the computational cost. The necessity of
layer-wise training is further evidenced by ongoing
research efforts attempting to reduce the number
of SAEs required. For example, Layer Group SAE
(Ghilardi et al., 2024), which we discussed previ-
ously, clusters multiple layers into layer groups and
trains a single SAE per group instead of per layer.
The emergence of such strategies demonstrates the
significant computational burden imposed by layer-
wise SAE training and the ongoing efforts to opti-
mize it.

D Evaluation and Comparison of SAEs

As shown in Table 2, we evaluate three series of
SAEs: LLaMa Scope, Pythia SAE, and Gemma
Scope. For LLaMa Scope, we use the llama-
scope-lxa-8x SAE trained on layer 12 of the
LLaMa 3.1 8B model. For Pythia, we evaluate
the sae-bench-pythia70m-sweep-standard-ctx128-
0712 SAE, trained on layer 5 of the Pythia 70M
model. Within the Gemma Scope, we conduct an
internal comparison across five gemma-scope-2b-
pt-res SAEs, all trained on layer 12 of the Gemma2
2B model. These five SAEs differ only in their
training L0 sparsity settings, meaning they were
trained to activate different numbers of latents per
input.

We report both structural and functional eval-
uation metrics. The structural metrics, listed at
the top, include L0 Sparsity, Mean Squared Er-
ror (MSE), Cross-Entropy Loss, KL Divergence,
and Explained Variance. The functional metrics,
shown below, including Absorption, Spurious Cor-
relation Removal (SCR), and Sparse Probing. In
the Absorption metric, mean absorption captures
the fraction of cases where the correct SAE latents
fail to activate for a known feature, while another
latent with similar semantics activates instead. Full
absorption refers to the stricter case where none
of the correct latents activate and the feature is en-
tirely absorbed by an unintended latent. In SCR, we
assess how well the SAE reduces unwanted correla-
tions. The Top-5, Top-50, and Top-500 SCR scores
measure how much debiasing can be achieved by
removing top 5, 50, 500 latents respectively. Fi-
nally, Sparse Probing evaluates whether the SAE
has learned interpretable and disentangled concepts.

We compare the performance of sparse probes us-
ing SAE activations against a baseline probe using
the LLM’s original dense activations. Higher score
indicates that the SAE has successfully learned
concept-specific features.

Shown in Table 2, the LLaMa Scope SAE shows
significantly higher L0 sparsity (869.3) compared
to the others. The Gemma Scope SAEs span a
range of sparsities, from highly sparse (L0:22 with
22.1 active latents) to relatively dense (L0:445 with
472.2). Within the Gemma Scope series, we ob-
serve that as sparsity denser, the MSE also de-
creases, indicating improved reconstruction accu-
racy. Similarly, both the cross-entropy loss and KL
divergence scores increase toward 1, suggesting
that denser SAEs preserve the model’s original pre-
dictive behavior more. The explained variance also
improves with denser sparsity, rising from 0.824 at
L0:22 to 0.941 at L0:445, which shows that denser
SAEs are better at capturing the variance of the
original activations.

In functional metrics, LLaMa Scope exhibits
extremely low mean and full absorption values
(0.0028 and 0.00047), likely due to its high re-
dundancy from overactivation. Among the Gemma
Scope models, L0:176 achieves the lowest mean
(0.055) and full (0.038) absorption, suggesting a
good trade-off between sparsity and disentangle-
ment. Later, absorption increases again at L0:445,
indicating that overly dense SAEs may begin to
recombine multiple concepts into the same latent.
Looking at SCR, all SAEs’ performance improves
with top-k increase. However, SCR scores begin to
decrease at Top-500, indicating that over-ablation
may unintentionally remove useful features. For
Sparse Probing, we can see that across all models,
SAE probes perform nearly as well as LLM-based
probes, with accuracies consistently above 0.95
for Gemma Scope. Notably, the Pythia SAE and
Gemma Scope L0:445 achieve sparse probing accu-
racies that even exceed the LLM baseline, suggest-
ing that these models successfully capture clean,
task-relevant features using a small set of latents.

E Other Applications of SAEs in LLMs

E.1 Model Training

SAEs are trained to obtain more sparse and in-
terpretable features. The learned concepts and
sparsity are both beneficial in model transparency,
which can be utilized in model training to align
the model with human understanding and improve
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Table 2: Evaluation of SAEs

LLaMa Scope Pythia SAE Gemma Scope
L0:22 L0:41 L0:82 L0:176 L0:445

Structural Sparsity 869.318 112.888 22.141 41.422 80.472 174.74 472.199
MSE 4.9E-5 0.015 2.125 1.836 1.539 1.203 0.707
CE Loss 1.00 0.940 0.974 0.984 0.988 0.993 0.998
KL Div 0.898 -1 0.975 0.984 0.990 0.994 0.997
Variance 0.863 0.918 0.824 0.848 0.875 0.902 0.941

Absorption Mean 2.8E-3 0.227 0.287 0.267 0.105 0.055 0.1347
Full 4.7E-4 0.199 0.333 0.275 0.091 0.038 0.045

SCR Top 5 0.137 0.330 0.206 0.217 0.210 0.184 0.243
Top 50 0.713 0.414 0.376 0.385 0.407 0.417 0.384
Top 500 -0.727 0.232 0.316 0.309 0.359 0.339 0.384

Sparse Probing LLM 0.904 0.922 0.958
SAE 0.885 0.929 0.952 0.955 0.955 0.957 0.958

model performance. Since SAEs include feature-
level constraints, Yin et al. (2024) leverage these
constraints to enable sparsity-enforced alignment
in post-training. Their experiments demonstrate
that this approach achieves superior performance
across benchmark datasets with reduced computa-
tional costs. Similarly, combine learned concepts
with next-token prediction training to build more
transparent models. Specifically, they extract in-
fluential concepts on outputs from SAEs, then in-
corporate these concept vectors into hidden states
by modifying token embeddings. Results show
that models trained with this method perform bet-
ter and exhibit greater robustness on token predic-
tion and knowledge distillation across benchmark
datasets (Tack et al., 2025). Moreover, SAEs’ abil-
ity to provide large-scale explanations has been
well explored. By examining the diversity of ac-
tivated features, Yang et al. (2025) developed a
new approach to augment data diversity. Another
work uses task-specific features learned in SAEs
to mitigate unintended features within models, sig-
nificantly improving model generalization on real-
world tasks (Wu et al., 2025a).

F SAE and Probing-Based Methods

In addition to SAEs, probing-based methods have
emerged as a prominent family of techniques for
interpreting and steering the internal representa-
tions of LLMs (Giulianelli et al., 2018; Vig et al.,
2020; Meng et al., 2022; Guerner et al., 2023;
Geiger et al., 2023). These methods operate un-
der the assumption that meaningful concepts are
linearly separable within the model’s representa-
tion space (Mikolov et al., 2013b; Pennington et al.,

2014; Park et al., 2023; Nanda et al., 2023). Prob-
ing formulates steering as a supervised learning
problem, which given a small set of labeled exam-
ples, the method learns low-rank projection vectors
that can both detect and influence the presence of
target concepts during generation.

Based on the recent research, SAEs show cer-
tain limitations compared to linear probes for lan-
guage model interpretation. First, the AXBENCH
study (Wu et al., 2025c) demonstrates that even
simple linear probe baselines like difference-in-
means consistently outperform SAEs on concept
detection tasks, with SAEs falling behind on both
concept detection and model steering benchmarks.
Second, Kantamneni et al.’s comprehensive evalua-
tion (Kantamneni et al., 2025) across 113 probing
datasets reveals that SAEs fail to provide consis-
tent advantages in challenging regimes like data
scarcity, class imbalance, label noise, and covari-
ate shift. There remains a long way for the SAE
research community to go in making sparse au-
toencoders more robust, generalizable, and useful
in practical applications before they can reliably
outperform simpler interpretability approaches.

G Research Challenges

In this section, we outline several critical research
challenges with SAEs. Although SAEs have
emerged as promising tools for providing large-
scale, fine-grained interpretable explanations, these
challenges could threaten the faithfulness, effec-
tiveness, and efficiency of their applications.
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G.1 Incomplete Concept Dictionary

SAEs are trained on large corpora of data encom-
passing various concepts. However, achieving
comprehensive concept coverage remains challeng-
ing (Muhamed et al., 2024). Additionally, the learn-
ing process of SAEs functions as a black box where
learned concepts cannot be predetermined. Conse-
quently, controlling the completeness of input and
output concepts is nearly impossible. Furthermore,
explanations provided by SAEs may be incomplete
or misleading due to the conceptual gaps. This lim-
itation can result in unreliable interpretations when
applying SAEs to complex reasoning tasks that
require comprehensive knowledge representation.

G.2 Lack Theoretical Foundations

The development of SAEs is indeed based on as-
sumptions of superposition and linear concept rep-
resentation. Empirically, we’ve found it effective
to construct high-level features through linear com-
binations of low-level features. However, our un-
derstanding of how these concepts are represented
in hidden spaces and their spatial relationships re-
mains limited. This limitation explains why we
must derive combination parameters empirically
rather than mathematically. The validity and ad-
vancement of SAEs may remain unclear until we
can properly demonstrate the correctness of these
fundamental assumptions about concept represen-
tation and superposition in neural networks.

G.3 Reconstruction Errors

SAEs are trained by minimizing the reconstruction
errors between original and reconstructed activa-
tions. However, these errors persist and remain
poorly understood. Recent research by (Gao et al.,
2025) demonstrates that reconstruction errors can
produce significant performance degradation com-
parable to using a model with only 10% of the pre-
training compute. This finding raises substantial
concerns about SAE accuracy as interpretability
tools. Furthermore, the impact of these reconstruc-
tion errors on model generations has not been ad-
equately measured. The field lacks output-centric
metrics that could precisely quantify how recon-
structed activations affect a model’s final outputs.
To advance our understanding of SAEs and their re-
liability as interpretability tools, developing metrics
that directly measure the effect of reconstruction
errors on generated content is essential.

G.4 Computational Burden
SAEs operate at the layer level for each model,
mapping original activations to a much higher-
dimensional representation space before recon-
structing them back to the original space. This
architecture necessitates that SAE parameters for a
specific layer significantly outnumber the parame-
ters of that original layer itself. Consequently, the
overall training computation exceeds that of the
original model training, particularly problematic
for LLMs with billions of parameters. The exten-
sive computational resources required create a sub-
stantial barrier for researchers interested in investi-
gating these methods. Furthermore, SAEs exhibit
limited transferability across models, they must
be trained specifically for each model and each
layer, exacerbating the computational burden. This
layer-specific and model-specific training require-
ment multiplies the already significant resource
demands, further restricting accessibility for the
broader research community.
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