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Abstract

Retrieval-Augmented Generation (RAG) has
significantly mitigated the hallucinations of
Large Language Models (LLMs) by ground-
ing the generation with external knowledge.
Recent extensions of RAG to graph-based re-
trieval offer a promising direction, leveraging
the structural knowledge for multi-hop rea-
soning. However, existing graph RAG typ-
ically decouples retrieval and reasoning pro-
cesses, which prevents the retriever from adapt-
ing to the reasoning needs of the LLM. They
also struggle with scalability when performing
multi-hop expansion over large-scale graphs,
or depend heavily on annotated ground-truth
entities, which are often unavailable in open-
domain settings. To address these challenges,
we propose a novel graph retriever trained end-
to-end with LLM, which features an attention-
based growing and pruning mechanism, adap-
tively navigating multi-hop relevant entities
while filtering out noise. Within the extracted
subgraph, structural knowledge and semantic
features are encoded via soft tokens and the
verbalized graph, respectively, which are in-
fused into the LLM together, thereby enhanc-
ing its reasoning capability and facilitating in-
teractive joint training of the graph retriever
and the LLM reasoner. Experimental results
across three QA benchmarks show that our
approach consistently achieves state-of-the-art
performance, validating the strength of joint
graph—LLM optimization for complex reason-
ing tasks. Notably, our framework eliminates
the need for predefined ground-truth entities
by directly optimizing the retriever using LLM
logits as implicit feedback, making it especially
effective in open-domain settings.

1 Introduction

Large Language Models (LLMs) have shown re-
markable abilities in natural language processing
tasks (Brown, 2020; Dubey et al., 2024; Achiam
et al., 2023). Despite their success, LLMs often
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suffer from hallucinations, generating outputs that
may be factually incorrect, particularly in scenarios
requiring domain-intensive knowledge. To miti-
gate hallucinations and improve domain-specific
performance, recent approaches have explored the
Retrieval-Augmented Generation (RAG) frame-
work, which enhances LLMs by retrieving external
knowledge (Gao et al., 2023; Lewis et al., 2020;
Wu et al., 2023; Fan et al., 2024) and has proven
especially beneficial in tasks such as Knowledge
Graph Question Answering (KGQA) (Bao et al.,
2016; Huang et al., 2019; Zheng et al., 2017).
Unlike traditional knowledge bases such as docu-
ments and textbooks, knowledge graphs (KGs) pro-
vide cleaner and well-structured relational knowl-
edge, offering a more precise and efficient base
for navigating complex reasoning paths and reduc-
ing hallucinations compared to unstructured data.
Consequently, recent efforts have extended RAG
by incorporating graph retrieval, where knowledge
graphs—structured and domain-specific knowl-
edge bases—are used to guide retrieval and rea-
soning. Existing approaches use LLMs as a re-
triever for KGQA tasks (abbreviated as LLM-as-
Retriever) (Luo et al., 2023; Sun et al., 2023;
Wang et al., 2023), extracting relevant facts or rela-
tion paths from the KGs based on LLMs’ internal
knowledge. However, such LLM-as-retriever ap-
proaches are typically ill-equipped to fully exploit
the intricate structures within KGs, such as multi-
hop logical relations, and require multiple calls to
process different parts of the graph, which intro-
duces scalability issues when dealing with large-
scale KGs. There have also been attempts using a
graph neural network (GNN) during retrieval (ab-
breviated as GNN-as-Retriever) (He et al., 2024;
Hu et al., 2024; Mavromatis and Karypis, 2024).
However, one limitation is that most existing ap-
proaches train the retrieval and reasoning compo-
nents separately, resulting in a disjoint optimiza-
tion process where the retriever focuses solely on
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relevant facts without aligning with the reasoning
needs of the LLM. Moreover, many rely on ground
truth retrieval paths for retriever training, limiting
their applicability to open-domain scenarios where
the ground truth entities are not available.
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Figure 1: The landscape of existing methods. (/) LLM-
only and (2) GNN-only approaches use a single LLM
or GNN to predict the answer. (3) LLM (GNN)-as-
Retriever approaches rely on the RAG framework to
reduce the hallucination and improve the accuracy of
LLMs’ output. Different from previous approaches, we
utilize the LLM reasoner to supervise the GNN retriever,
improving the retrieval quality and reasoning accuracy.

To address these limitations, we propose GRIL,
a novel framework that enables Graph Retrieval-
Integrated Learning with LLM in an end-to-end
manner. As illustrated in Figure 1, our approach ex-
tends beyond conventional retriever-augmented rea-
soning by introducing a reverse feedback loop from
the LLM to guide the retriever. This LLM feedback
is essential for the model’s generalizability in open-
domain scenarios, by providing a complementary
supervision signal, thus eliminating its reliance on
answer entities during retriever training. Intuitively,
the reverse feedback shifts retrieval from mere rel-
evance to actual usefulness for LLM reasoning.
Moreover, we introduce a novel graph retriever that
iteratively grows and prunes the extracted knowl-
edge subgraph, which allows the retrieval process
to focus on the most relevant multi-hop entities
while filtering out irrelevant information, improv-
ing retrieval efficiency and accuracy. The proposed
integrated training ensures the graph retriever and
LLM reasoner are tightly coupled and jointly opti-
mized, fostering better synergy between retrieval
and reasoning and improving overall performance.

Our contributions are threefold. (1) We intro-
duce a novel framework that combines an adaptive
attention-based graph retriever with joint training
alongside the LLM reasoner, improving the accu-

racy and relevance of knowledge retrieval. (2) Ex-
periments demonstrate performance improvement
over competitive models, achieving state-of-the-
art results on KGQA benchmarks, and showing
strong open-domain generalizability, where most
baselines fail. (3) We address the inefficiency of
multiple LLM calls during the retrieval process and
enable small BERT-level language models to match
or even outperform 7B LLMs when paired with our
graph retriever, improving inference efficiency and
reducing deployment costs significantly.

2 Related Work

Knowledge Graph Question Answering aims to
answer natural language queries based on a struc-
tured knowledge graph (KG), which consists of
entities and their relationships. (Sun et al., 2019; Li
et al., 2023; Pan et al., 2024; Yani and Krisnadhi,
2021; Yasunaga et al., 2021; Reinanda et al., 2020).
The main challenge in KGQA is handling complex
reasoning and mapping it accurately to relevant sub-
graphs in the KG. Traditional approaches to KGQA
often utilize Graph Neural Networks (GNNs) to
learn embeddings for entities by aggregating infor-
mation from their neighbors, supervised by labels
that indicate whether a node is an answer for a
given question (Yasunaga et al., 2021; Mavroma-
tis and Karypis, 2022; He et al., 2021a). These
methods typically lack the ability to effectively
traverse long, complex paths and multi-hop rea-
soning, leading to limited expressivity in capturing
deeper structural information. Moreover, they can-
not generalize well to open-domain settings where
the ground-truth answers are not covered by the
KGs. Our method addresses this issue through a
dynamic, attention-based graph retriever that iter-
atively grows and prunes the subgraph, enabling
better exploration of multi-hop relationships while
eliminating the dependency on ground truth entities
during training of the graph retriever.

Retrieval-augmented LLM Reasoning. To ad-
dress the hallucination issue within the LLMs’
output, recent works have explored a retrieval-
augmented generation (RAG) framework, where a
retriever extracts relevant information from an ex-
ternal knowledge base (e.g., text corpus, a KG, or
other structured resources) and converts it into tex-
tual prompts for LLMs (Gao et al., 2023; Li et al.,
2024). Compared with traditional RAG systems ap-
plied to document-based knowledge bases (Robert-
son et al., 2009; Karpukhin et al., 2020), RAG
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on knowledge graphs (KGs) provide cleaner and
more well-structured relations with less ambiguity
for LLM reasoning. Some works focus on lever-
aging LLMs as retrievers to extract relevant facts
or relational paths from a graph (Wu et al., 2023;
Sun et al., 2023; Luo et al., 2023; Yu et al., 2022),
which are then used for reasoning. However, these
approaches often require multiple LLM calls, mak-
ing them computationally expensive and inefficient.
Recent works also attempt to amalgamate graph
retrievers and LLMs (Peng et al., 2024; He et al.,
2024; Hu et al., 2024; Mavromatis and Karypis,
2024), incorporating structural information during
the retrieval process to improve performance. How-
ever, the graph retriever and LLMs are typically
optimized separately, which limits their ability to
fully exploit the synergy between the graph struc-
ture and LLMSs’ reasoning capabilities. Our pro-
posed GRIL addresses the above issues by enabling
end-to-end training between the GNN retriever and
the LLM reasoner, optimizing both components in
an interactive way.

3 Preliminaries and Background

Knowledge Graph Question Answering (KGQA)
approaches aim to predict the correct answer a,
given a question ¢ and a KG G that provides rele-
vant reasoning information. To reduce hallucina-
tion, a graph retriever extracts a subgraph Gs C G
that is the most relevant and useful for answering
the question. The target is to learn a model that
optimizes the conditional probability:

p(a"g7q) = Zp¢(a‘|g5aq)p9(g5|q3G)a (1)
Gs

where pg estimates the prior distribution on an ex-
tracted subgraph G, conditioned on the given query
q, and pg indicates the likelihood of the answer a
given the query ¢ and the subgraph G, predicted
by a reasoner (e.g., LLMs). Maximizing the log-
likelihood decouples the retriever from the reasoner
as follows,

L= rr;aex Z log pg(alGs, q) + logpe(Gslq). (2)
" (0,0,65)

4 Methodology

The overall framework of GRIL is shown in Fig-
ure 2. In KGQA tasks, a given question q is typi-
cally associated with query entities (aka seed enti-
ties) in the knowledge graph G. These seed entities
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Figure 2: The framework of GRIL.

are either provided as part of the dataset annota-
tions or could be identified by standard linking
procedures (Neumann et al., 2019) when not ex-
plicitly available. A graph retriever based on the
attention-based growing and pruning mechanism is
used to extend the seed entities to a succinct multi-
hop subgraph G; C G (Sec. 4.1.) A bridge module
encodes the retrieved subgraph through (i) a soft
graph token for necessary structural supervision
and (ii) verbalized triples for semantic alignment
with the LLM (Sec. 4.2). These components en-
able seamless integration with the LLM reasoner,
where the LLM’s output logits serve as implicit
feedback to train the retriever, enabling end-to-end
optimization that encourages the retriever to se-
lect the most useful subgraphs for answering the
question (Sec. 4.3).

4.1 Attention-based Graph Retriever

Growing and Pruning Steps. The knowledge
graph can be represented as a set of NV fact triplets

= {(es , St ,et )}N1 where e and e() de-

note the source and target entities, and rgt) repre-

sents the relation, respectively. The attention-based
graph retriever dynamically constructs the most rel-
evant knowledge subgraph by employing a growing
and pruning mechanism guided by attention scores
between entities, as shown in Figure 3. Starting
with an initial set of seed entities F derived from
the question ¢, it computes attention scores ov;;
between each entity e; € Ej and its neighbors
e; € N(Ep), where the attention score is calcu-
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lated by

B exp(score(c;;))
2 keN () EXP(score(cik))’

Qi 3)
with score(c;;) = Linear([he,, he;, br,;, hgl), and
h, indicates the initial representation of x (in-
cluding entities, relations and the given question)
generated by language models, such as Sentence-
BERT (Reimers, 2019). In the growing step, each
relation r;;, between v, € N(Ep) and v; € Ejy
is associated with an attention score o, indi-
cating the probability that this relation would be
grown from the seed entity v;. Entities in the
neighbor set N (Ey) are added to the entity set
FEi1 = FEyU {vk\aik > 0;u, € N(Eo);vi € Eo}
for the next growing step. In the pruning step, en-
tities with probability scores higher than a certain
threshold o are retained in the subgraph, while oth-
ers are pruned out. The retained nodes will grow to
their neighbors in the next growing step. The grow-
ing and pruning steps are iteratively performed,
ensuring a balance between approaching multi-hop
relations and filtering out irrelevant noise.
Updating Entity Embedding. After each growing
and pruning iteration, the graph retriever updates
the entity embedding through a message-passing
mechanism to aggregate neighbor information.

Wy =Wihe, + Wa Y ajihe;, (4
JEN (v;)

where W and Wy are learnable weights and A,
denotes the embeddings of entity e;. «; is the at-
tention score calculated in the growing step (Eq. 3).
The updated embeddings h’ei are subsequently used
for recalculating attention scores in the next itera-
tion. The Entity Embedding Updating step ensures
that more relevant neighbors contribute more sig-
nificantly to the updated entity embeddings, and re-
fines the entity embeddings by incorporating multi-
hop contextual information from its neighborhood,
which is crucial for accurately modeling complex
relationships in the graph.
Subgraph Output. Let P € [0, 1]19! indicate the
output probability scores across all relations (i.e.,
edges) in G. The final subgraph G, is generated by
Gs = G ® M where the mask matrix M is sampled
conditioned on the probability scores through a
differentiable reparameterization trick (Jang et al.,
2016) as follows,

P;
M; =0 ((log 1; +log 5 —P-)/T> ®)
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Figure 3: Illustration of Attention-based Graph Re-
triever. Different colors indicate different steps of At-
tention Growing (AG Step). Numbers represent the
attention scores across neighboring edges. Edges with
low attention scores are pruned for model efficiency and
better retrieval quality.

for the i-th relation, where € ~ Uniform(0, 1), 7 is
the temperature and o is the sigmoid function. Note
that we use the approximately binary matrix M to
achieve the growing and pruning operations during
training to make it differentiable, enhancing both
model efficiency and training stability. The detailed
algorithm is given in Alg. | in Appendix C.1.
Complexity Assessment Module. Since questions
across datasets vary in difficulty, they require dif-
ferent amounts of knowledge triplets for reason-
ing. We thereby propose a Complexity Assessment
Module (CAM) that leverages an MLP to predict
question complexity, measured by the number of
reasoning hops required to reach answer entities.
This module takes query embeddings as input and
dynamically determines the number of knowledge
triplets to provide to the LLM based on the pre-
dicted complexity level. The module could be pre-
trained and treated as a preprocessing step, offering
advantages over using a fixed hyperparameter to
specify triplet count, as it automatically adjusts to
varying question complexities. We refer to Ap-
pendix C.2 for more details.

4.2 Semantic and Structural Graph Encoding

The bridge module connects the retriever and rea-
soner by encoding both semantic and structural
information, each addressing a distinct and nec-
essary challenge in retrieval-augmented reason-
ing (Samel et al., 2023). To encode structural
bias, we employ a self-attention graph pooling
(SAG) (Lee et al., 2019) to generate a dense graph-
level embedding from the extracted knowledge sub-
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graph Gs. The SAG layer computes self-attention
scores A* € RI9I¥! with A? indicating the im-
portance of entity e; € G,, and generates the
graph token hgr = MLP (3", g, Afhe,) that ag-
gregates global information, where A/, denotes the
retriever’s contextualized embedding of e;, and
an MLP module projects the contextual embed-
dings into the same embedding space as the LLM,
ensuring dimensional consistency. To incorpo-
rate semantic information and facilitate alignment
with the LLM’s language-based reasoning capabili-
ties (Mavromatis and Karypis, 2024), we construct
a verbali(z?d subgr(a;;)h by converting each retrieved

7 7

triple (es ,rg), e; ') into a natural language for-

mat, expressed as < €5 — r? — () > These
verbalized triples are concatenated with the original

question as follows.

[Graph Token] Based on the following
reasoning paths, please answer the

given question. \n Reasoning Paths:
(1) (1) .. .. .egN) (n) (n)

es’ —Tg —re; — Ty — €
\n Question: {Question} \n Answer:
{Answer}

[Graph Token] indicates the soft token derived by
the SAG bridge from the global structure within
the extract knowledge subgraph. {Question} and
{ Answer} are replaced by the question and answer
in a certain sample, respectively. In implementa-
tion, let his represent the token embeddings of the
verbalized triplets and the question. We prepend
the soft graph token to the embeddings of the in-
put sequence to form [hgr||h1s)] as the final LLM
input. The soft token is essential for end-to-end
training, as it enables the reasoner to influence sub-
graph selection by optimizing the retriever through
task-driven feedback. Together, the soft token and
verbalized subgraph allow the reasoner to lever-
age both structural and semantic information, fa-
cilitating coherent reasoning in complex question-
answering tasks.

4.3 Joint Training of Retriever and Reasoner

Extracting a sub-graph from a massive KG is a dis-
crete, non-differentiable operation. Previous GNN-
as-Retriever approaches (Mavromatis and Karypis,
2022, 2024; Jiang et al., 2022) circumvented this by
ranking candidate sub-graphs with a frozen GNN
and later fine-tuning an LLLM on question-answer
pairs. These methods typically rely on answer enti-
ties as the training labels, which requires additional
cost for the entity labeling and focus merely on rel-

evance regardless of whether the retrieved entities
are truly useful for LLM reasoning. Moreover, it
leads to a limitation in open-domain settings where
answers are often free-form text rather than explicit
KG entities. Instead, we propose to involve implicit
feedback from LLMs as a supervision signal that
not only optimizes the relevance of the retrieved
knowledge but also ensures its maximal utility for
the reasoning needs of the LLM. The training loss
for this joint system is defined as

Ejoint = Ig%px IOg P¢,1ZJ <a|gsa Q) (0)

+ max log(Py,y(alGs, ) Pa(Gslg))  (7)

¢ and 1 are associated with the LLM reasoner
and the SAG bridge, while 6 pertains to the
graph retriever. By Bayes’ rule, the second
part (Eq. 7) is equivalent to maximizing the pos-
terior pg . 0(Gs|q, @), which involves the addi-
tional information from the ground truth answer
a compared with the traditional objective Eq. 2.
log(Py (alGs, q)) is estimated by the LLM rea-
soner, reflecting its feedback on the quality of the
retrieved subgraph G;. We apply a stop-gradient
operator to stop updating the LLM reasoner and the
SAG bridge when computing log(Py (a|Gs, q)),
ensuring that the gradient flows correctly during
back-propagation. Therefore, the retriever and rea-
soner are enriched with the inductive bias from the
retrieved knowledge subgraph. The LLM (¢) is
finetuned with LoRA (Hu et al., 2021) conditioned
on the retrieved subgraph G, and question gq.

Graph Supervision. In scenarios where an-
swer entities are present in the given KG, prior
works (Mavromatis and Karypis, 2022; Yasunaga
etal., 2021) utilize answer entities as positive labels
to supervise the graph retriever. In contrast, our ap-
proach expands the set of positive labels to include
entities along the shortest paths between the query
and answer entities. Specifically, for each question-
answer pair (g, a), we extract P(q, a) as the set of
entities that lie on any shortest path between the
query entities (¢) and gold answer entities (a) in
the KG and supervise the retrieved subgraph G,
to cover P(q, a) with a binary cross-entropy loss.
This additional graph supervision loss is crucial
for guiding the retrieval process, as it helps estab-
lish the logical connections for effective reason-
ing. GRIL is trained with both graph supervision
loss and the joint loss Ljoin¢. This dual supervision
strategy ensures that retrieval prioritizes not just
structural relevance but also logical coherence. In
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open-domain scenarios where traditional methods
fail due to the absence of explicit answer entities,
GRIL is trained with a single Ljoin containing LLM
feedback, which serves as an alternative supervi-
sion signal and enables generalizable retrieval in
weakly supervised scenarios.

5 Experiments

5.1 Datasets

We evaluate GRIL on KGQA tasks. Given a ques-
tion ¢, the task is to extract relevant subgraphs
from the given KG and leverage them for reason-
ing to get the answer a. We conduct experiments
on WebQuestionsSP (WebQSP) (Yih et al., 2015)
and Complex WebQuestions (CWQ) (Talmor and
Berant, 2018). WebQSP contains 4,737 natural lan-
guage questions and CWQ contains 34,699 total
complex questions. Both are answerable with a
subset Freebase KG within up to 2-hop for We-
bQSP and up to 4-hop for CWQ. Moreover, we test
in the open-domain scenario, where answers might
not be explicitly present in the KG. For this more
challenging setting, we use the MedQA dataset to
evaluate the proposed framework. MedQA con-
tains 12,723 medical questions about disease di-
agnosis. MedQA is accompanied by the USMLE
database and 18 medical textbooks. We manually
curate a knowledge graph from the medical text-
books. More details are given in Appendix A.

5.2 Implementation

All the experiments are implemented with PyTorch
on NVIDIA RTX A100 40GB GPUs. Standard
dataset splits are applied to each dataset. Detailed
hyperparameter setting is given in Appendix B. Fol-
lowing previous studies, we use Hits@1 and F1 as
the evaluation metrics. Hits@ 1 measures the pro-
portion of questions whose top-1 predicted answer
is correct. F1 instead balances the precision and
recall of the predicted answers. Experimental re-
sults in this paper are averaged from three runs with
different random seeds.

5.3 Experimental Results

Baselines. The baselines can be categorized into
four types: (1) GNN-only methods, including Graft-
Net (Sun et al., 2018), NSM (He et al., 2021a),
UniKGQA (Jiang et al., 2022) and ReaRev (Mavro-
matis and Karypis, 2022) that solely rely on graph
neural networks for reasoning; (2) LLM-only ap-
proaches including Llama (Dubey et al., 2024) and

Table 1: Performance comparison of different methods
on the two KGQA benchmarks. We compare with LLM-
only, GNN-only, LLM-as-Retriever (L-as-R) and GNN-
as-Retriever (G-as-R) baselines.

WebQSP CWQ
Hits@l F1 Hits@l Fl
2 GraftNet 664 604 368 327
S SR+NSM+E2E 695 641 493 463
£ UniKGQA 772 722 512 491
O  ReaRev 764 709 529 4738
"z Llama2-7B° 644 - 346 -
§ Llama3-8B 65.2 - 35.8 -
S ChaGPT 668 - 399 -
= ChatGPT+CoT 756 - 489 -
~ KD-CoT 686 525 557 -
« ToG+Llama2-70B 689 - 576 -
%  ToG+ChatGPT 76.2 - 58.9 -
=~ RoG 857 708 626 562
ToG+GPT4 826 - 695 -
EffiQA+GPT4 829 - 695 -
‘o G-Retriever 701 - - -
¢ GRAG 727 - - -
O GNN-RAG 857 713 668 594
GRIL (8B) 868 730 683 605

ChatGPT (Achiam et al., 2023) that utilize LLMs
without graph structure; where Llama is fine-tuned
on training set.(3) LLM-as-Retriever methods in-
cluding KD-CoT (Wang et al., 2023), ToG (Sun
et al., 2023), EfiQA (Dong et al., 2024), RoG (Luo
et al., 2023) that leverage LLMs to generate rele-
vant relation paths; and (4) GNN-as-Retriever ap-
proaches (Hu et al., 2024; He et al., 2024; Mavro-
matis and Karypis, 2024) that employ GNNss for re-
trieval and LLMs for reasoning. We select Llama3-
8B as the LLM reasoner, while the proposed graph
retriever is agnostic to any LLM reasoners.

Results. The results on WebQSP and CWQ are
shown in Table 1. Compared to prior LLM-as-
Retriever methods, GRIL demonstrates significant
improvements in both retrieval accuracy and rea-
soning quality. Importantly, GRIL achieves com-
parable or even better performance than leading
pipelines (e.g., EffiQA and ToG) that rely on pro-
prietary LLMs like GPT-4, which raise potential
concerns around accessibility and limited adaptabil-
ity for domain-specific customization. In contrast,
GRIL is built entirely on a smaller, open-source
8B LLM, yet still achieves superior results, show-
casing the power of integrating structured retrieval
with LLM reasoning in an end-to-end framework.
Moreover, GRIL consistently outperforms GNN-as-
Retriever methods by incorporating LLM feedback
directly into retriever training, with a 1.35% aver-
age improvement over previous baseline (Mavro-
matis and Karypis, 2024). The joint optimization al-
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lows GRIL to identify more relevant subgraphs and
retrieve information better aligned with the LLM’s
reasoning trajectory, resulting in more precise and
robust QA performance across both datasets.

Table 2: Hits@ 1 performance of different retrievers with
two LLM reasoners on WebQSP dataset

Retriever Mistral-7B  Llama-8B
None 61.3 65.2
ES 76.8 75.7
RoG 83.6 86.3
GNN-RAG 834 85.4
GRILeparace 84.3 86.4
GRILpd.t0-end 85.2 86.8

Table 2 presents Hits@1 performance compar-
ing different retriever methods paired with differ-
ent LLM reasoners on the WebQSP dataset. We
implement Embedding Similarity (ES), which em-
ploys dot-product similarity on contextualized rep-
resentations from RoBERTa-large (Liu, 2019) as
a dense retrieval approach. All LLLM reasoners
are fine-tuned with the respective retrieval to en-
sure a fair comparison. Across both Mistral-7B
and Llama3-8B, GRIL demonstrates superior per-
formance, outperforming other retrievers includ-
ing ES, RoG (LLM-as-retriever), and GNN-RAG
(GNN-as-retriever), which highlights the robust-
ness and generalizability of the proposed method.
Why End-to-End Wins. GRILcparae, Which re-
moves the graph soft token and thereby disables
LLM feedback (Eq. 7), shows a noticeable perfor-
mance drop. This suggests that retrieval quality
is significantly enhanced through joint optimiza-
tion with the LLM. Overall, the end-to-end training
within GRIL offers two key advantages: (1) it elim-
inates the need for separately training the retriever,
reducing compute costs; and (2) it generalizes bet-
ter to settings where ground-truth entities are un-
available, as the retriever can be learned directly
through supervision from LLMs’ signals. These
benefits make GRIL particularly useful for open-
domain and weakly supervised scenarios.

5.4 Open-domain Scenario: MedQA

Baselines. We compare GRIL against a diverse set
of strong baselines spanning classical information
retrieval, dense retrieval, and hybrid methods. We
compare with Embedding Similarity (ES) based
on dot-product similarity. BM25 (Robertson et al.,
2009) leverages exact lexical matching through TF-
IDF statistics, which remains competitive in many

retrieval scenarios. Contriever (Izacard et al., 2021)
employs contrastive learning with large-scale pre-
training on web documents, while SPECTER (Co-
han et al., 2020) leverages scientific documents for
more accurate representation. BMRetriever (Xu
et al., 2024) is specifically designed for biomedical
information retrieval and pre-trained on massive
medical data. All baselines are implemented using
the official codebases to ensure fair comparison.

Table 3: Accuracy (%) on MedQA. t indicates that the
retriever requires pre-training on massive data.

Model Llama2-7b Llama3-8b

Without Retriever

Zero-shot 42.3+1.8 60.8+1.6

Fine-tuned 44.8+1.0 61.74+1.2

- With Retriever

ES 47.6+£1.7 63.0+£1.5
BM25 48.6+1.6 62.5+1.3
Contriever! 49.3+14 63.1+1.0
SPECTER' 51.840.9  66.241.1
BMRetriever!  57.4+1.7  68.9+1.1
GRIL 58.9+1.3 70.4+1.6

Results. The results in Table 3 highlight GRIL’s
outstanding performance on MedQA dataset,
where most baselines from Table 1 fail due to their
reliance on answer entities for retriever training.
Our GRIL achieves the highest accuracy across
both Llama2-7B and Llama3-8B, significantly out-
performing all the baselines, including retrievers
that have been massively pre-trained on large-scale
data. These results emphasize how GRIL oper-
ates effectively in open-domain scenarios, where
no predefined answer entities are available, and the
retrieval process must dynamically adapt to new
and unseen queries. The improvement can be at-
tributed to GRIL’s structural awareness achieved
by the graph retriever and reverse feedback loop
from the LLM, key features that distinguish it from
conventional RAG methods.

6 More Evaluation and Analysis

6.1 Ablation Study

GNN Depth Sensitivity and Complexity Assess-
ment Module (CAM) Impact. We conduct a sen-
sitivity analysis on the number of GNN layers to
assess the importance of the Complexity Assess-
ment Module (CAM), as shown in Figure 4. Specif-
ically, we evaluate model performance across vary-
ing GNN depths, ensuring the CAM remains con-
sistently integrated (yellow line). Additionally, we
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compare this to an alternative approach where a
fixed number of triplets is retrieved (e.g., 16, 32,
64), bypassing the CAM (green line). As shown in
the figure, when using a fixed number of triplets,
performance initially improves with more triplets
but peaks and declines beyond 16 triplets. Instead,
CAM successfully addresses the sensitivity with a
more stable performance (yellow line). CAM dy-
namically adjusts the number of retrieved triplets
based on the question complexity level, achieving
improved performance while avoiding the compu-
tational overhead introduced by excessive retrieval.

Number of retrieved knowledge triplets
21 22 23 24 2°
90 . .

80 94

Hit rate

75

70

GNN Layers (L)

67.42 —— Fixed number of triplets

65
3

4 5 6 7 8
Number of GNN Layers

Figure 4: Importance of GNN depth and Complexity
Assessment Module on WebQSP dataset

Ablation on Graph Retriever. Table 4 presents
the effects of different graph pruning mechanisms
(e.g., threshold-based or top- K strategy) and spe-
cific operators on the WebQSP dataset. When using
threshold-based pruning, increasing the threshold
tends to slightly improve inference efficiency while
reducing the F1 scores. ¢ = 0.1 yields the highest
F1 and a balance between performance and effi-
ciency, which is set as default in GRIL. Removing
key mechanisms, such as the pruning operation and
the entity embedding updating step (Eq. 4) in the
graph retriever, results in significant performance
drops. The absence of pruning also substantially
increases inference time and destroys the perfor-
mance, underscoring its importance in maintaining
retrieval efficiency and precision.

6.2 Combination with Small LMs

Table 5 compares the performance of small lan-
guage models (LMs) and LLMs as the reasoner on
the WebQSP dataset. GRIL, paired with a small
LM, e.g., RoBERTa or BERT, demonstrates com-
parable or even better performance to LLMs, while

Table 4: Ablation study on the graph retriever

F1 inference time (s)

Pruning Mechanism Alternatives
Threshold (o = 0.1) 72.68
Threshold (o = 0.2)  71.82(;1.18%)
Threshold (¢ = 0.5)  71.61(}1.47%)

0.476
0.463(12.73%)
0.423(111.13%)

T()p 5 72.54@0_19%) 0.459@3_57%)
Top 10 72.60(0.11%) 0.463()2.73%)
JTop20 72.37(j043%) _ 04T0¢0.63%). _ _

Removing Key Steps in Graph Retriever
w/o pruning 70.28@3.30%) 0.687@44.33%)
w/o Entity Update 70.32(13.25%) 0.437(18.19%)

Table 5: Performance comparison between small lan-
guage models and LLMs as the reasoner.

WebQSP

Hits@l F1  Time (s) Size
BERT-large 40.8 - 0.97 ~ 336M
RoBERTa-large 41.3 - 0.87 ~ 355M
Llama2-7B 64.4 - 4.02 ~ 7B
Llama3-8B 65.2 - 3.87 ~ 8B
GRIL w/ BERT 64.8 702 1.54 ~ 768M
GRIL w/ RoBERTa  67.7 714 1.32 ~ 806M

incurring significantly lower inference costs. The
observations justify that graph-based reasoning ca-
pability compensates for the reduced model size
without sacrificing accuracy. This result under-
scores the parameter efficiency of our approach,
as it effectively harnesses the graph retriever to
enhance reasoning and retrieval quality, making
it highly practical for resource-constrained scenar-
ios. Importantly, GRIL’s retrieval cost grows with
the size of the extracted subgraph, not with the
full knowledge graph (when the entity embedding
updating step is disabled). In addition, the Com-
plexity Assessment Module (CAM) predicts the
minimal hop depth required for each query, effec-
tively bounding the retrieval scope. This design
keeps inference latency stable even as the full KG
size increases, ensuring that GRIL scales efficiently
to large graphs.

6.3 Case Studies

We conduct a case study on CWQ dataset to il-
lustrate the effectiveness of GRIL on retrieval and
complex reasoning, as shown in Figure 5. While
ChatGPT provides partially correct answers, it
fails to capture crucial aspects of the ground truth
(i.e., “vocals” in the case). Instead, GRIL success-
fully identifies the necessary logical connections
between the question entity (“Randy Jackson™) and
the answer entity (‘“Vocals™). We visualize how
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Question | What did Randy Jackson play in the Eclipse Tour?

Ground Truth

"Bass guitar", "Vocals"

O queyentty  @: m
O answerentty @:
X prunedentty @
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« Randy Jackson Vocals
® G

Role 1 | Role5 |

[ ® . N
|| 2ndStep Eclipse Tour ,7‘3’ Joumey | X

®
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@ H
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'

'

Role 5

& fo ¥ b 2 To

Answer: Randy Jackson's roles in the Eclipse Tour are Vocals and Bass guitar.

Figure 5: A case study of GRIL retrieval and reasoning on CWQ dataset. In the Retrieved Subgraph, the edge color
intensity indicates the importance score of the certain knowledge triplet.

GRIL navigates the knowledge graph to establish
connections between relevant entities, through it-
erative growing and pruning. It clearly highlights
the predicate relationships that lead to a compre-
hensive and accurate answer generated by the LLM
reasoner. Moreover, the edge color intensity rep-
resents the importance score of each edge at its
corresponding growing step, further enhancing the
GRIL’s self-interpretability and providing insights
into the underlying reasoning logic of GRIL.

7 Conclusion

In this work, we present GRIL, a novel frame-
work that integrates graph retrieval and reason-
ing through attention-based growing and pruning
mechanisms and joint training with LLMs. Our ap-
proach enhances reasoning over knowledge graphs
and eliminates the need for predefined answer en-
tities, making it highly effective in open-domain
scenarios. Experimental results show significant
performance improvement on KGQA tasks and su-
perior scalability, while also improving inference
efficiency. GRIL provides a cost-effective, state-of-
the-art solution for knowledge-intensive tasks and
offers potential for real-world applications.

Limitations and Future Work. While the pro-
posed GRIL shows promise, several aspects could
be further explored to extend its applicability. First,
GRIL assumes that the graph structure is inherently
necessary for question answering, as it relies on
structured knowledge graphs for multi-hop reason-
ing. However, this assumption may limit its ability
to handle scenarios where the underlying knowl-
edge is either unstructured or where the graph struc-
ture does not fully capture the complexity of nat-
ural language semantics. Future work could ex-
plore ways to automatically and organically inte-

grate GNN-as-Retriever and LLM-as-Retriever ap-
proaches, enabling the model to dynamically deter-
mine when to leverage graph-based reasoning and
when to rely on unstructured, text-based retrieval.
Moreover, extending GRIL to other applications
that require graph reasoning, such as recommenda-
tion systems and biomedical knowledge extraction,
may reveal additional challenges and opportunities
for improvement.
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A Dataset

We evaluate GRIL on three question answering
datasets: WebQSP (Yih et al., 2015), CWQ (Talmor
and Berant, 2018) and MedQA (Jin et al., 2021).
Detailed dataset statistics are shown in Table 6.

WebQSP and CWQ. Both datasets are designed
for question answering tasks that leverage the Free-
base knowledge graph (Bollacker et al., 2008),
which comprises over 164.6 million facts and 24.9
million entities. WebQSP primarily requires up
to 2-hop reasoning to answer questions, whereas
CWQ presents a more complex challenge, neces-
sitating up to 4-hop reasoning over the provided
knowledge graph. We follow the previous set-
ting (Luo et al., 2023; He et al., 2021b; Jiang et al.,
2022)'? for knowledge graph extraction. Specif-
ically, the input knowledge graph for each ques-
tion is constructed by a subset of Freebase KG
that contains all triples within the max reasoning
hops of question entities. We follow the previous
studies (Luo et al., 2023) for dataset split. The
initial seed entities are derived from the question
and provided in the dataset. Both benchmarks are
inherently tied to a specific knowledge graph (KG)
and our experiments are conducted using the same
KG provided by the respective benchmarks.

MedQA. is a 4-way multiple-choice medical
question-answering task, originating from practice
tests for the United States Medical License Exams
(USMLE), which generally require a deep under-
standing of related medical concepts from asso-
ciated medical textbooks. We utilize the original
dataset split setting (Jin et al., 2021), with 80%
for training, 10% for development, and 10% for
test. For MedQA, we use a self-constructed knowl-
edge graph based on the 18 given medical text-
books. Specifically, we use ScispaCy (Neumann
et al., 2019) to identify biomedical concepts as en-
tities and the RecursiveCharacterTextSplitter from
LangChain’ to split the medical textbooks into snip-
pets. Edges are created between two entities that
are mentioned within one snippet. The embeddings
of entities and relations are initialized using Sen-
tence PubmedBert (Gu et al., 2020). Note that we
do not consider the effect of different entity recog-
nition tools and splitters, as they are orthogonal

1https://huggingface.co/datasets/rmanluo/
RoG-webgsp

2https://huggingface.co/datasets/rmanluo/
RoG-cwq

3https://www.langchain.com

to the focus of this work. Experimental compar-
isons with baselines are based on the same curated
knowledge graph.

Compared with the knowledge graph in previous
studies (Yasunaga et al., 2021) built on the Dis-
ease Database of the Unified Medical Language
System (UMLS) (Bodenreider, 2004) and Drug-
Bank (Wishart et al., 2018), our curated knowledge
graph demonstrates a significantly improved an-
swer coverage, increasing from 24.6% to 88.4%.

Table 6: Dataset statistics. Coverage indicates the

Dataset Train Dev Test Coverage(%)
WebQSP 2,848 250 1,639 94.9
CWQ 27,639 3,519 3,531 79.3
MedQA 10,178 1,272 1,273 88.4

B Training Details

We set the hidden size as 512 in the graph retriever
and the GNN encoder. The batch size is set to
2 during training and 4 during evaluation. The
learning rate is le-5. The maximum number of
epochs is 100. An early stopping strategy is used to
mitigate overfitting. We utilize the LoRA (Hu et al.,
2021) technique to finetune the LLM reasoner with
rank 8 by default. All experiments are conducted
with PyTorch on NVIDIA RTX A100 GPUs for
three runs with different random seeds.

C Additional Module Details

C.1 Attention-based Graph Retriever

The detailed algorithm of our attention-based graph
retriever is shown in Alg. 1. The attention scores
are calculated for each edge (i.e., knowledge
triplet). To avoid useless attention growing for irrel-
evant entities and keep the focus on important enti-
ties, the graph retriever iteratively performs grow-
ing and pruning steps. After the attention calcula-
tion, if the number of triplets with attention scores
lower than o = 0.1 is larger than a certain budget
(e.g., 16), then the retriever automatically performs
the pruning step. The hyperparameter sensitivity
of o is shown in Table 4. Moreover, the entity
embeddings are updated by message-passing and
aggregating mechanisms with the previously calcu-
lated attention scores. The output of the algorithm
contains G with updated entity embeddings and
probabilities on each triplet P. The final subgraph
G, is generated by G = G ®M where the mask ma-
trix M is sampled conditioned on the probability

16317


https://huggingface.co/datasets/rmanluo/RoG-webqsp
https://huggingface.co/datasets/rmanluo/RoG-webqsp
https://huggingface.co/datasets/rmanluo/RoG-cwq
https://huggingface.co/datasets/rmanluo/RoG-cwq
https://www.langchain.com

scores through a differentiable reparameterization
trick (Jang et al., 2016).

C.2 Complexity assessment module

We approach the complexity assessment as a clas-
sification task, utilizing a multilayer perceptron
(MLP) to predict the question complexity (i.e., the
number of reasoning hops) based on the query
embedding generated by language models. The
ground truth is defined as the shortest path dis-
tance between the query entities and the answer
entities. The MLP is trained using cross-entropy
loss, comparing the predicted number of hops with
the ground truth. Table 7 presents the prediction
accuracy (%) when the model is trained on indi-
vidual datasets or a combined dataset of WebQSP
and CWQ. Notably, BERT outperforms RoBERTa
in all settings, achieving higher accuracy on both
individual datasets (WebQSP and CWQ) as well
as the joint dataset (WebQSP+CWQ). The joint
dataset consistently yields the best results, with
BERT achieving the highest accuracy of 74.28%,
showcasing the benefits of combining diverse rea-
soning tasks to improve generalization. We select
BERT as the language model and train the MLP on
the combined dataset as the default Complexity As-
sessment Module. Given the predicted number of
hops, ¢, for a specific question, we allocate 5 X ¢ as
the number of final retrieved triplets to be provided
for downstream reasoning. Notably, this module
can be pre-trained and treated as a preprocessing
step, enhancing its efficiency. Alternatively, a fixed
hyperparameter can be employed to specify the
number of retrieved triplets, offering a trade-off for
reduced computational overhead.

Table 7: Accuracy (%) of number of hops prediction

Dataset WebQSP  CWQ WebQSP+CWQ
RoBERTa 63.33 70.28 73.46
BERT 64.98 72.36 74.28

C.3 Retrieval Augmentation Ensemble

Retrieval augmentation (RA) (Mavromatis and
Karypis, 2024) enhances the performance of LLM
reasoners by aggregating knowledge retrieved
through different mechanisms. Building on the pre-
vious work (Mavromatis and Karypis, 2024), we
extend the GNN-as-Retriever paradigm by incorpo-
rating an LLM-as-Retriever approach to further en-
rich the retrieval process. Specifically, we integrate

reasoning paths retrieved from RoG (Luo et al.,
2023), complementing them with those retrieved by
our graph-based method. This union of reasoning
paths combines the strengths of both graph-based
and language-based retrieval, thereby expanding
the diversity of knowledge incorporated into the
reasoning process. As a result, this approach not
only broadens the scope of relevant information but
also enhances the robustness and accuracy of the
overall LLM reasoning mechanism. Beam-search
decoding is used in LLM-as-Retriever approaches
to generate diverse reasoning paths for better an-
swer coverage. We set the number of beams as
3 in RoG and report the performance of Retrieval
augmentation (RA) in Table 8.

Table 8: KGQA Performance with and without RA on
WebQSP and CWQ dataset

WebQSP CWQ
Hits@l Fl1 Hits@l Fl
GNN-RAG 857 713 668  59.4
GNN-RAG+RA 907 735 687 604
GRIL 868 730 683  60.5
GRIL+RA 914 731 692 618

We observe that Retrieval augmentation (RA)
consistently improves the KGQA performance,
with an average improvement rate of 3.58% on
WebQSP and 1.99% on CWQ. GRIL demon-
strates superiority when paired with RA. For exam-
ple, GRIL+RA achieves the highest Hits@1 on
both WebQSP and CWQ, outperforming GNN-
RAG+RA by significant margins of 0.7% and
0.5%, respectively. While GRIL without RA al-
ready outperforms baselines on both datasets, RA
further enhances its performance. This demon-
strates GRIL’s ability to better exploit the addi-
tional reasoning paths provided by RA, particularly
in the more complex CWQ dataset, which features
longer and more intricate question-answering de-
pendencies.

C.4 Ablation on Textual Subgraph

We further study the role of textualizing the re-
trieved subgraph. In standard retrieval-augmented
frameworks, converting the retrieved knowledge
into natural language is a widely adopted practice,
since LLLMs are inherently trained to process text
rather than raw graph embeddings. To quantify its
effect, we compare GRIL with and without the tex-
tual representation of subgraphs on MedQA dataset.
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Algorithm 1: Attention-based Graph Retriever

(NN

Input: Knowledge Graph G = {(eg), egi), To ) tieq, Query g, Seed Entity eg, Number of Layers L

Output: Probability on triplets, Updated G

Initialize zero E € RV ; // Initialize probability on triplets
Py < get-neighbor({eg}) ; // Retrieve initial list of neighbor triplets

fori=1,2,...,Ldo

if Pruning step then

N (v) < {neighbors of v in P; with non-zero attention }
my 30 e nw) Ailu] - Message(eu, Tuo) ;
e, < Update(e,, my) ;

end

end
return E, G with updated embedding

A; « AttnScore(P;, qo,G) € [0,1]17:1; // Compute Attention Scores (Eq. 3) on P

A, [A;>0]; // Keep attention scores greater than threshold o
end
Pi+1 < get-neighbor(FP;, A;) ; // Update neighbors based on attention weights
E < update(E, A;) € RV ; // Update probability on triplets
for v € P, do

// Aggregate messages
// Update entity embedding

From Table 9, we observe that removing the textual

Table 9: Ablation study on the textualization of the
retrieved subgraph.

Model Llama2-7B Llama3-8B

GRIL 58.9 70.4
w/o soft token 53.6 66.1
w/o textual subgraph 50.7 64.8

representation and the graph soft token both lead to
a significant performance drop, highlighting their
importance and necessity in transferring semantic
and structural information.
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