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Abstract

We present SMARTMiner, a framework for ex-
tracting and evaluating specific, measurable,
attainable, relevant, time-bound (SMART)
goals from unstructured health coaching (HC)
notes. Developed in response to challenges
observed during a clinical trial, the SMART-
Miner achieves two tasks: (i) extracting be-
havior change goal spans and (ii) categoriz-
ing their SMARTness. We also introduce
SMARTSpan, the first publicly available dataset
of 173 HC notes annotated with 266 goals
and SMART attributes. SMARTMiner incor-
porates an extractive goal retriever with a
component-wise SMARTness classifier. Exper-
iment results show that extractive models sig-
nificantly outperformed their generative coun-
terparts in low-resource settings, and that two-
stage fine-tuning substantially boosted perfor-
mance. The SMARTness classifier achieved
up to 0.91 SMART F1 score, while the full
SMARTMiner maintained high end-to-end ac-
curacy. This work bridges healthcare, be-
havioral science, and natural language pro-
cessing to support health coaches and clients
with structured goal tracking—paving way
for automated weekly goal reviews between
human-led HC sessions. Both the code and
the dataset are available at: https://github.
com/IvaBojic/SMARTMiner.

1 Introduction

Health coaching (HC) is a person-centered inter-
vention designed to facilitate sustainable change
in healthy behavior and support self-management
of chronic diseases. Recent systematic reviews
demonstrated that HC can significantly enhance
physical activity, reduce pain, and improve psy-
chological outcomes such as self-efficacy and qual-
ity of life among individuals with chronic condi-
tions (Weiss et al., 2025).

A cornerstone of HC is the co-creation of action-
able short-term goals that drive long-term behav-
ior change, which in turn forms the foundation of

its effectiveness as a behavioral intervention (Wal-
lace et al., 2018). Overall, by providing focus and
measurable targets, the research suggests that spe-
cific and actionable goals tend to improve health
behavior outcomes more than unclear or generic
behavioral goals (Bahrami et al., 2022).
Specific, measurable, attainable, relevant, and
time-bound (SMART) goals (Figure 1) often yield
better short-term results and can help sustain be-
havior change (Doran, 1981; White et al., 2020),
as seen in improved exercise levels, weight loss,
and self-management behaviors in various stud-
ies (Wolever et al., 2010). However, setting and
evaluating SMART goals are laborious and com-
plex (Bowman et al., 2015). Some goals may not
be fully SMART as they could lack one or more
SMARTness components.
This may stem from patient’s varying levels of
readiness to engage in health-related behaviors
(Prochaska and Velicer, 1997). Additionally, pa-
tients often struggle to recall goals set during HC
sessions (Flocke and Stange, 2004), underscoring
the need for improved goal documentation and con-
sistent support between the HC sessions. This is
especially important given that HC sessions are typ-
ically scheduled biweekly or monthly—intervals
that exceed the intended time frame for most goals.
As a result, patients often face a multi-week gap in
feedback and reinforcement between sessions.
In response, we present a SMARTMiner frame-
work that automatically extracts multiple (SMART)
goals set during HC sessions from unstructured ses-
sion notes. Since these goals are embedded within
free-text narratives and cannot be audited at scale,
we address two key challenges:
* (i) Goal extraction — identifying multiple be-
havior change goal spans within unstructured
HC notes; and

* (ii) SMARTness classification — determining
which SMART attributes each extracted goal
satisfies and where it falls short.
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Figure 1: Reformulation of generic behavior goal into a SMART goal.

Our contributions are three-fold:

1. SMARTSpan dataset — the first publicly avail-
able dataset comprising 173 HC notes with
266 unique goal spans, exhaustively anno-
tated for both goal boundaries and SMART
attributes.

2. SMARTMiner framework — a span extrac-
tor that locates every potential goal and an
attribute-level classifier that flags missing
SMART components, yielding actionable, in-
terpretable feedback.

3. Comprehensive evaluation and analysis —
five-fold in-domain and cross-domain experi-
ments with diverse extractive and generative
baselines reveal how low-resource, domain-
specific data degrade state-of-the-art large lan-
guage models (LLMs); a qualitative error tax-
onomy (e.g., hallucination) pinpoints safety-
critical failure modes for clinical deployment.

By combining healthcare, behavioral science,
and natural language processing (NLP), the pro-
posed SMARTMiner framework enables low-touch
(SMART) goal tracking: it helps health coaches
refine goals as required and allows clients to review
their (SMART) goals between HC sessions.

2 Related Work

2.1 Clinical Notes

Information extraction (IE) from unstructured clin-
ical notes has evolved from rule-based heuristics
to transformer-based models capable of capturing
a wide range of clinically relevant signals (Pai
et al., 2024). In particular, Clinical BERT detects
medication gaps (Gobbel et al., 2022), while other
models extract lifestyle and social factors (Zhou
et al., 2019; Romanowski et al., 2023) or patient
goals (Gupta et al., 2021). Beyond tagging, span-
based models handle action items (Mullenbach
et al., 2021), and temporal models align events
chronologically (Miller et al., 2023). Prompt-

driven LLMs such as GPT-4 now match or sur-
pass supervised baselines with minimal data (Ra-
machandran et al., 2023), signaling a shift toward
adaptable, low-resource IE solutions.

2.2 HC Conversations

Extracting SMART goals from HC conversations
presents challenges at the intersection of clinical
NLP and behavioral health (Chen and Hirschberg,
2024). Early approaches utilized rule-based sys-
tems and sequence labeling to identify SMART
components within HC dialogues (Gupta et al.,
2019, 2020b). Subsequent methods incorporated
dialogue act modeling and transformer-based archi-
tectures to enhance goal extraction accuracy (Gupta
et al., 2020a,b; Mullenbach et al., 2021). As
opposed to the exploitation of sparsity in sys-
tems (Khong and Naylor, 2005), recent studies pro-
posed modularized and neuro-symbolic approaches
to enhance goal summarization in low-resource
settings, where labeled data is sparse and HC di-
alogues vary in format and structure (Zhou et al.,
2022, 2024). However, the vagueness of conversa-
tional language calls for models that identify dis-
continuous spans and align to goal criteria, moti-
vating span-based frameworks that are grounded in
real-world HC interventions.

2.3 Multi-Span Reading Comprehension

Extracting multiple behavior-change goal spans
from HC notes can be formulated as a multi-span
reading comprehension (MSRC) task. The existing
MSRC methods fall into three categories:

» Extractive methods select answer spans from
the input without generating new tokens and
are further divided into foken-based and span-
based. Token-based models predict answers
through token-level outputs, where each to-
ken individually influences span selection (Hu
et al., 2019; Yang et al., 2020; Segal et al.,

16289



2020; Li et al., 2022; Luo et al., 2024). In
contrast, span-based models explicitly score
or classify candidate spans as wholes, consid-
ering span-level representations (Huang et al.,
2023a; Zhang et al., 2023b, 2024).

* Generative methods, on the other hand, pro-
duce answers by generating tokens, often ex-
tending pre-trained generative models with
fine-tuning strategies (Ai et al., 2024) or
prompt engineering to adapt to the multi-span
scenario (Mallick et al., 2023; Zhang et al.,
2023a; Huang et al., 2023b).

* Hybrid methods leverage the advantages of
both paradigms, either through data augmen-
tation techniques (Lee et al., 2023) or via uni-
fied frameworks (Lin et al., 2024).

Most datasets used to evaluate models for MSRC
focus on questions requiring the extraction of mul-
tiple discontinuous answer spans from text. Promi-
nent benchmarks include MultiSpanQA (Li et al.,
2022), which contains over 6,500 multi-span ques-
tions initially and around 19,000 in the expanded
set; QUOREF, which comprises more than 24,000
questions requiring coreference resolution (Dasigi
et al., 2019); and DROP, which includes approx-
imately 96,000 questions involving arithmetic or
reasoning over multiple spans (Dua et al., 2019).
More specialized benchmark on the healthcare do-
main, MASH-QA, consists of approximately 35,000
question—answer pairs with long, multi-sentence
answers (Zhu et al., 2020).

While existing MSRC models perform well on
large, clean, and publicly available datasets (e.g.,
Wikipedia-based or curated medical content), such
datasets are expensive and time-consuming to cu-
rate in clinical practice, including HC. As a result,
span-centric models remain underexplored in low-
resource, domain-specific settings. To address this
gap, we introduce SMARTSpan, a curated dataset
of HC notes with annotated behavioral goals, de-
signed to support span-based goal extraction in
practical, small-scale scenarios.

3 The SMARTSpan Dataset

SMARTSpan is a new dataset comprising 173 an-
notated HC notes collected from a randomized
controlled trial (RCT), designed to evaluate multi-
span extraction in low-resource, domain-specific
scenarios. Each HC note summarizes real-world
goal-setting conversations between clients and

health coaches, offering a unique testbed for be-
havior change modeling. Unlike structured MSRC
datasets—where answers in the form of multi-
ple discontinuous spans are extracted in response
to specific questions—SMARTSpan presents chal-
lenges rooted in the complexity of extracting goals
that are often diffuse or repeated across different
sections of an HC note (details in Appendix A).

3.1 Data Collection

The SMARTSpan dataset originates from an RCT
aimed at the prevention of cardiovascular disease
through a multicomponent digital behavioral inter-
vention, focusing on improving patient’s adherence
to statin therapy and promoting healthy behavioral
change to reduce low-density lipoprotein (LDL)
cholesterol levels.

One key component is human-led HC, where in-
tervention participants receive six monthly coach-
ing sessions via a mobile app. Clients are encour-
aged to set weekly SMART goals during each HC
session, which are reviewed in the next session.
Although the sessions were conducted in English,
some conversations were interjected with Chinese
or other dialects. Language detection models (Liu
et al., 2022) were not required since after each ses-
sion, health coaches document key observations
and any SMART goals set with clients as unstruc-
tured free-text notes, without any given standard-
ized template or guidance, on a web-based platform
(details in Appendix A).

At the time of dataset creation, a multiracial co-
hort of approximately 130 patients with hyperlipi-
demia had been enrolled in the ongoing RCT, with
over 60 in the intervention arm receiving support
from three health coaches. More than 180 HC ses-
sions were conducted. Using a custom SQL query
on the platform’s backend, we retrieved 173 HC
notes as the SMARTSpan dataset.

Anonymization. Protecting client privacy is es-
sential when handling real-world HC notes with
sensitive information. We adhered to an itera-
tive anonymization process that combined man-
ual redaction with selective automated support via
GPT-4o0. All direct personal identifiers (e.g., names,
IDs) were manually removed before any HC note
was processed using GPT-40. The model was used
solely to assist with redacting broader contextual
details such as references to family members, ge-
ographic locations, and temporal markers, while
preserving narrative coherence. Following this, two
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4-5 6-8 9-12 13-21

- - 3791 1414 915 337 71 8
46 46 37 32 2 - - -

# of answer spans or goals annotated 0 1 2 3

#Spans from MultiSpanQA
#Goals from SMARTSpan

Table 1: Comparison of the number of answer spans
per question in MultiSpanQA (Li et al., 2022) and the
number of goals per HC note in SMARTSpan dataset.

human annotators independently reviewed each of
the 173 notes to verify full anonymization and en-
sure that medical metrics (e.g., cholesterol, body
weight) and personal attributes (e.g., age, occupa-
tion) were appropriately generalized. Multiple re-
view cycles ensured both privacy preservation and
data utility for downstream modeling. As a final
step before dissemination, the fully anonymized
dataset underwent institutional review and was ap-
proved for research use and public release.

3.2 Data Annotation and Exploration

After anonymization, the dataset creation process
was conducted in two phases.

Goal Annotation. In the first phase, two annota-
tors manually reviewed 173 HC notes and identi-
fied goal statements within each HC note, marking
any text that reflected specific behavioral objectives
discussed or set during HC sessions. As shown in
Table 1, the distribution of goals per note ranges
from O to 5, depending on the depth and focus of
the HC session. Notably, 27% of the HC notes con-
tain no goals, and another 27% include only one.
Unlike datasets such as MultiSpanQA—where each
sample has at least one span and most have two or
more (58% with 2, 22% with 3), SMARTSpan inten-
tionally retains goal-absent HC notes to reflect the
variability of real-world HC and to enable models
to detect when no goal is present. This sparsity rep-
resents a core challenge in adapting existing MSRC
techniques to HC scenarios, where relevant spans
are infrequent, diverse, and sometimes entirely ab-
sent. Handling such cases is essential for reliable
deployment in practical HC workflows.

SMARTness Annotation. In the second phase,
each extracted goal was annotated for three core
SMART components: specific (S), measurable (M),
and attainable (A). We excluded relevant (R) due
to its subjectivity and assumed time-bound (T) was
implicitly satisfied, as goals were intended to be
achieved before the next HC session. Each of the
three assessed components was annotated as a bi-
nary label (0 or 1). The final multiclass label was
derived deterministically: SMART if all three were

goalsperHCnote 0 1 2 3 4 5|3 Goals
split_1 5 937 01 41
split_2 4 7 4 8 20 47
split_3 4 7 8 2 40 45
split_4 7 6 5 4 2 1 41
split_5 12 55 3 00 24

Table 2: Distribution of the number of goals per HC
note and the total number of goals in the SMARTSpan
test sets across five splits.

true (i.e., S=1, M=1, A=1), Partially SMART if two
were true, and Not SMART if one or none were true.
Based on this scheme, out of 266 annotated goals,
113 (42.5%) were SMART, 77 (28.9%) were Par-
tially SMART, and 76 (28.6%) were Not SMART.

To create a labeled dataset for supervised clas-
sification, two annotators with prior HC training
independently rated the extracted goals. Disagree-
ments were resolved through discussion. Inter-
annotator agreement (IAA) was assessed using Co-
hen’s kappa coefficient (Cohen, 1960) for each of
the three SMART components across 266 anno-
tated behavior goals. TAA was moderate for S
(k = 0.574, z = 9.36, p < 0.001), substantial for
M (k = 0.812, z = 13.3, p < 0.001), and near
perfect for A (k = 1.00, z = 16.3, p < 0.001).
These results indicate statistically significant IAA
beyond chance across all three components, with
the highest consistency observed in component A.
Additional details on annotation process are pro-
vided in Appendix B.

Cross-Validation Setup. Given the limited size
of SMARTSpan (173 annotated HC notes with a
total of 266 goals), we adopted a five-fold cross-
validation for robust model evaluation, each fol-
lows a 70%/15%/15% (train/valid/test) split. Each
test and validation sets in splits contain 25 HC
notes, with the remaining 123 HC notes used for
training. As shown in Table 2, the number of goals
per test split varies from 24 to 47 across splits, re-
flecting differences in goal density and highlighting
the importance of evaluating model robustness.

4 Methods

We propose a SMARTMiner framework for multi-
span behavioral SMART goal extraction from un-
structured HC notes, as shown in Figure 2. The
goal extraction module formulates goal identifi-
cation as a span-based question answering task,
enabling the extraction of multiple goal mentions
from free-text HC notes. The SMARTness classi-
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fication module subsequently evaluates these ex-
tracted goals along three key dimensions to deter-
mine their alignment with the SMART criteria.

4.1 Goal Extraction Module

Several extractive models were implemented
within the goal extraction module by formulating
the extraction task as an MSRC problem. Each HC
note is treated as the context C' = {c1, c2,...,¢n},
and paired with a fixed question Q: “What are
the goals mentioned in the text?” Although the
original dataset includes annotated goal spans, it
does not contain varying questions. To enable span-
based supervision, we recast the dataset into a QA
format using this fixed question. The model is
then trained to extract all non-overlapping spans
P = {p1,p2,...,p:} that correspond to goals such
that

P=M(C,Q). (1)

Here, M denotes the fine-tuned extractive model.
For generative models, we fine-tuned them using a
prompt template with instruction, input and output
(see Appendix C for the exact format).

4.2 SMARTRess Classification Module
Classification Objective. Given an extracted
goal span p;, the classifier independently predicts
binary values for each component

v oM @ = Classifier(p;), ()

[

where v§d) € {0,1} for each dimension d €

{S,M, A}. These binary predictions are obtained
via sigmoid-activated heads and trained using bi-
nary cross-entropy loss for each dimension. The
final multiclass label is assigned post-hoc via rule-
based aggregation over the binary predictions for
each component. Specifically, we define

yi= 1 (0 oM ) o)

where vl(d) € {0, 1} denotes the binary prediction
for SMART dimension d € {S,M, A} and f(-) is
a deterministic mapping from component count to
structured label. A sum of 3 indicates a SMART
goal; 2, Partially SMART; and O or 1, Not SMART.

Model Architecture. The classifier is imple-
mented as a transformer-based model. We em-
ployed a pre-trained encoder to obtain contextual-
ized representations of the input goal. Specifically,
the embedding of the [CLS] token is extracted and

passed through a shared processing stack consist-
ing of dropout, a linear projection layer, and ReLU
activation to generate a latent representation. This
representation is then fed into three independent
binary classification heads—implemented as lin-
ear layers with sigmoid activation—to estimate the
probabilities P(5), P(M) and P(4) that the goal is
specific, measurable, and attainable, respectively.

Training and Loss. We trained the classifier us-
ing binary cross-entropy (BCE) loss independently
for each SMART component. The overall training
objective is defined as

_ 1 d) . (d
£—3§ijCE(v“,y ), 4)

where v(4 is the predicted probability and (%)
the ground truth label for SMART dimension d €
{S,M, A}. This setup enables the model to learn
each structural dimension independently while sup-
porting interpretable component-level diagnostics.

S Experiment Setting

Datasets. To evaluate the effectiveness of our pro-
posed SMARTMiner framework for multi-span be-
havioral SMART goal extraction in a low-resource
setting, we used the SMARTSpan dataset described
in Section 3. As no other existing datasets anno-
tates SMART goal spans, we also evaluate on Mul-
tiSpanQA (Li et al., 2022), a widely used MSRC
benchmark whose “find-all-spans” setup mirrors
our extraction task. This positions our model
against established baselines while making clear
the domain shift from open-domain question an-
swering to the HC notes.

Evaluation Metrics. For goal extraction, we
adopt both exact match (EM) and partial match
(PM) precision, recall, and F1 as the primary eval-
uation metrics, following Li et al. (2022). For
SMARTRness classification, we report accuracy,
macro-averaged F1, and the class-wise F1 score
for the SMART label. These are computed over the
three predicted classes: SMART, Partially SMART,
and Not SMART.

Goal Extraction Module. We implemented
and evaluated both extractive and generative ap-
proaches as the goal extraction modules. Since
prior research suggests that span-centric methods
outperform token-centric ones in multi-span set-
tings Huang et al. (2023a); Zhang et al. (2023b,
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Figure 2: The overall architecture of our proposed SMARTMiner framework.

2024), we selected two representative extractive
strategies: SpanQualifier (Huang et al., 2023a),
which scores candidate spans, and the Contrastive
Span Selector (CSS) (Zhang et al., 2023b), which
ranks spans using contrastive learning with posi-
tive and negative contextual cues. All models were
fine-tuned using a single NVIDIA A40 GPU, with
the exception of CSS on MultiSpanQA, which was
fine-tuned using 8 NVIDIA A40 GPUs.

For SpanQualifier, we adopted the same configu-
ration as reported in (Huang et al., 2023a), with the
exception of setting the same random seed to en-
sure consistency across all experiments. Given ini-
tially low performance when fine-tuning directly on
the in-domain SMARTSpan dataset, we also experi-
mented with a two-stage fine-tuning strategy: first
pretraining on the MultiSpanQA dataset, followed
by continued fine-tuning on SMARTSpan. We eval-
uated this approach using two pretrained language
models: BERT-base-uncased (Devlin et al., 2019)
and DeBERTa-v3-base (He et al., 2020).

For CSS, we adopted the same configuration as
reported in (Zhang et al., 2023b), except for setting
the random seed to 30 for consistency with other
experiments and increasing the number of training
epochs to 20. We evaluated this approach using two
pretrained language models: BERT-base-uncased
and RoBERTa-base (Liu et al., 2019).

To evaluate the performance of generative lan-
guage models in low-resource, domain-specific
goal extraction tasks, we fine-tuned decoder-
only and encoder-decoder architectures (see Ap-
pendix D for the full list) using LoRA-based
parameter-efficient adaptation (Hu et al., 2021).
Fine-tuning was performed using the Unsloth li-

brary (Unsloth, 2024), which is optimized for re-
duced memory usage and faster training. We ap-
plied LoRA with a rank of 8 and an alpha scal-
ing factor of 32, enabling efficient adaptation of
LLMs while maintaining performance. Each pre-
trained model was fine-tuned on a single GPU
for 20 epochs, using a batch size of 4, a weight
decay of 0.01, and a learning rate of 1 x 10~*
for encoder—decoder models and 3 x 10> for
decoder-only models. We employed AdamW with
8-bit optimization, linear learning rate scheduling,
mixed-precision training, and gradient checkpoint-
ing. Early stopping was used with a patience of 5
valid steps to prevent overfitting. For further details
on the learning rate grid search, see Appendix E.

We also adapted the Question-Attended Span
Extraction (QASE) framework (Ai et al., 2024) to
enable span-level supervision in generative models.
QASE is a lightweight question-aware decoder-
side supervision approach originally proposed to
enhance span alignment in generative settings.
While we followed the original hyperparameter
settings proposed by the authors, we introduced
two key modifications. First, we set the batch size
to 4 across all experiments to fit within our GPU
memory constraints. Second, given the smaller size
of our target dataset, we increased the number of
training epochs to 20. For the larger MultiSpanQA
dataset, however, we retained the original configu-
ration of training for 3 epochs.

Finally, we evaluated a zero-shot, schema-
based prompting approach using GPT-4.1 (Ope-
nAl, 2023) as a non-fine-tuned baseline. The model
was guided by structured extraction instructions,
using the same instruction template as that for the
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fine-tuned generative models, with a single modifi-
cation: the final sentence was changed from ““For-
mat your response as a numbered list.” to “Al-
ways respond in JSON format.”, which ensures
compatibility with schema-based function calling.
The model was deployed via OpenAl’s function-
calling API to extract weekly SMART goals from
unstructured HC notes. SMART goal extraction
was treated as a semantic parsing task, with out-
puts constrained to a predefined JSON schema to
enforce structural compliance (see Appendix F).

SMARTnRess Classification Module. We
fine-tuned three transformer-based models:
deberta-v3-base, deberta-v3-large, and
RoBERTa-large. Each model was trained using a
batch size of 4, a maximum sequence length of 64,
and a learning rate of 2 x 10~°. Optimization was
performed using AdamW with a weight decay of
0.01. Training proceeded for up to 20 epochs with
early stopping based on validation loss, using a
patience threshold of 5. Random seed was fixed to
ensure stability and reproducibility.

6 Results and Discussion

Table 3 compares the performance of different mod-
els on the SMARTSpan and MultiSpanQA datasets
for goal extraction, while Table 4 summarizes the
results of three encoder-based models fine-tuned
on SMARTSpan for SMARTness classification. In
both tables, results on SMARTSpan are reported as
mean and standard deviation, as all models were
evaluated across five test splits as described in Sec-
tion 3.2. Full split-wise results for all models are
provided in Appendix G and Appendix H.

6.1 Performance of Extractive Models on
Goal Extraction Task

Extractive models consistently outperform genera-
tive models on the goal extraction task across both
datasets (Table 3). The strongest performance on
SMARTSpan is achieved by the DeBERTa-v3-base
model, fine-tuned sequentially on MultiSpanQA
and SMARTSpan using the SpanQualifier frame-
work—establishing a strong span-based extraction
baseline. However, when extractive models using
SpanQualifier are trained solely on SMARTSpan,
performance degrades substantially. For instance,
DeBERTa-v3-base fine-tuned only on SMART Span
yields the lowest performance among all evaluated
models, highlighting that this framework struggles

to generalize in low-resource settings without prior
exposure to a larger dataset.

This significant performance reduction high-
lights the sensitivity of extractive models to limited
training data. The SMARTSpan training split com-
prises only 123 examples, which appears to be in-
sufficient for the model to learn effective span repre-
sentations without prior exposure to larger datasets
like MultiSpanQA (see Appendix I). Despite this,
the two-stage fine-tuning process mitigates the per-
formance gap. As shown in Appendix K, mod-
els first exposed to MultiSpanQA can successfully
identify goal-relevant regions even in loosely struc-
tured HC notes, demonstrating the importance of
pretraining on richly supervised multi-span data
before adapting to low-resource, domain-specific
datasets such as SMARTSpan.

6.2 Performance of Generative Models on
Goal Extraction Task

Generative LLMs consistently underperform span-
extractive baselines on SMARTSpan. For instance,
mistral-7b-instruct-v@. 3 achieves only 48.04
EM and 73.49 PM F1 score, whereas a 20 times
smaller CSS extractor achieves 75.23 EM and
85.56 PM F1 score. Their larger split-to-split stan-
dard deviations provide further evidence of their
instability under limited training data. In contrast,
the same generative models match or surpass ex-
tractive systems on MultiSpanQA (up to 87.10
PM F1 score), highlighting a strong sensitivity
to domain shift from open-domain MSRC to low-
resource, HC notes. Until tighter span-faithfulness
constraints emerge, extractive or hybrid pipelines
remain the safer choice for clinical goal extraction.

Manual inspection further pinpoints two recur-
rent failure modes in generative outputs:

* (i) hallucination — insertion of content absent
from the note (e.g., random HTML tags, stray
characters, and fabricated text as shown in
Appendices K and L); and

* (ii) null extraction — Span-grounding methods
such as QASE (Ai et al., 2024) reduce these er-
rors on MultiSpanQA, yet prove ineffective on
SMARTSpan, leaving responsibility-sensitive
failures largely unaddressed.

6.3 Analysis of the SMARTness Classifiers

As shown in Table 4, we evaluated three
transformer-based models trained on
SMARTSpan for SMARTness classification:
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SMARTSpan

MultiSpanQA

Model #Params EM (mean * sd)

PM (mean + sd) EM PM

Pt RT

Pt RT FT PT Rt Ff PT R Ff

Extractive models (SpanQualifier)

DeBERTa-v3-basesyarrspan
DeBERTa-v3-basewuiispanga_sMARTSpan 180M
DeBERTa-v3-baseuuuispanoa

028017 2094 036 056035 2220 iz 7579 aasy 3426639 - - - - - -
85.24 4z 844600 84.83 usy) 93.69 wiy 907270 9R21dGsy| - - - - -
1254 500 1316 627y 12.81 560y 39.55 555y 2744 7569 32.11 (109) | 76.56 73.31 74.90 88.49 83.37 85.86

BERT-base-uncasedsyarrspan
BERT-base-uncaseduispanga_SMARTSpan 110M
BERT-base-uncasedyunispanoa

0.34 013

9.47 (4.98)

24.43 656 0.68 024y 23.35(196) 79.42 575 36.07 256)| — - - _ _ _
78.96 141y 74.78 204y 76.80 (1.56) 89.37 331y 84.24 002y 86.72 247y| - - - - - -
1058 60y 99253 35.73 son 22.07 suny 26.79 wus) |66.99 68.81 67.89 80.07 78.17 79.11

Extractive models (CSS)

RoBERTa-base 125M
BERT-base-uncased 110M

65.80 (1022 88.12 325) 74.84 67 7924 555 92.80 097 85.14 (455 ]74.93 69.91 7233 85.95 77.51 8151
68.00 765) 84.85 309 75.23 (s45) 8246 656 89.18 (450) 85.56 04 |69.93 6122 65.29 81.82 70.26 75.60

Generative models (LoRA fine-tuning)

phi-4 14B 29.551959) 19.96(19.34) 23.46(1985) 30.8022.05) 21.38(22.18) 24.82(22555)|73.82 70.96 72.36 88.74 83.75 86.17
Mistral-Nemo-Instruct-2407 13B 46.65(1822) 43.55023.16) 44.61021.15) 66.3002820) 62.283379) 63.683143)[17.79 74.31 28.70 37.10 90.92 52.70
gemma-2-9b-it 9B 3041526 53315000 38.60i543) 54.29678) 85.34.13) 66.12545 [72.72 73.10 72.91 87.52 85.99 86.75
Meta-Llama-3.1-8B 8B 25.60(1203 149609500 18.791074) 25.60012.03y 14.969.50) 18.7910.74)| 54.68 63.84 58.91 72.76 79.07 75.78
mistral-7b-instruct-ve.3 7B 46.95(16.78) 50.0321.60) 48.04(1955) 71.3702877) 76.82(3451) 73.491.84)|74.20 74.05 74.12 88.31 84.62 86.43
Llama-3.2-3B 3B 2611692 37.771139) 30.3207.77) 46.453526) 60.901233) 51.92(7.70) | 54.00 72.00 61.72 70.53 86.75 77.80
flan-t5-large 750M 44.38 (1044) 37.80 .09y 40.57 (7.45) 66.54 (10.88) 78.18 420y 71.54 (7.67)|74.03 71.90 72.95 88.01 85.40 86.68
bart-large 406M 34.80 (1001) 23.65 832y 28.14 946y 09.79 12.15) 55.71 634y 61.70 336) [48.92 47.56 48.23 65.30 59.93 62.50

Generative models (QASE)

flan-t5-large 750M

35.84 492 28.89 o2 31.89 344y 70.35 800y 50.01 (157) 58.34 388 ‘7559 70.17 72.78 91.48 83.12 87.10

Generative models (LLM Schema)

GPT-4.1 -

39.89 552 34.92 928y 37.14 554y 84.57 631y 67.42 602 74.88 (5.40)‘ - - - - - -

Table 3: Performance evaluation on SMARTSpan and MultiSpanQA datasets for all Goal Extraction models, sorted
by parameter size (descending). All metrics are higher-the-better (1) and numbers in parentheses correspond to
standard deviation. The best result per column is in bold, second-best is underlined.

Model #Params Accuracy (1) Macro F1(1) SMART F1 (1)
deberta-v3-large 435M 0.86 + 0.02 0.85 +0.03 0.91 £ 0.03
RoBERTa-large 355M 0.70 £ 0.26 0.67 +0.30 0.70 + 0.40
deberta-v3-base 180M 0.83 £ 0.05 0.81 £0.06 0.90 £0.03

Table 4: Evaluation on SMARTSpan dataset for all
SMARTRRess Classification models, sorted by param-
eter size (descending). All metrics are higher-the-better
(1). Best results per column are in bold.

DeBERTa-v3-large, RoBERTa-large, and
DeBERTa-v3-base. DeBERTa-v3-1large achieved
the highest scores on all evaluation metrics. Its
accuracy reached 0.86, with a macro-average
F1 of 0.85 and a SMART F1 score of 0.91.
DeBERTa-v3-base is a smaller model but per-
formed nearly as well in all categories. Its SMART
F1 was only modestly lower, which suggests
that it may serve as a practical alternative when
computational resources are limited.

To better understand the remaining mistakes,
we categorized the errors into three main types.
The first is boundary confusion, where the model
struggles to distinguish between categories such as
SMART and Partially SMART. This often occurs
when a goal is nearly completed but lacks a minor
element, such as a specific time frame. The sec-
ond type is overclassification, where incomplete
goals are incorrectly labeled as SMART. This usu-
ally occurs when vague wording or loosely defined

measures are interpreted as sufficient. The third
type is underclassification, which refers to clearly
defined SMART goals being labeled as less specific
because key attributes are implied rather than be-
ing stated directly. These observations suggest that
classification performance could be improved by
including more training examples that reflect subtle
variations in goal phrasing. It may also help to bet-
ter define how each SMART components should
be recognized during training.

6.4 Performance Evaluation of the
SMARTMiner Framework

Finally, we built and evaluated an end-to-
end SMARTMiner framework by combining
the best-performing goal extraction model
(DeBERTa-v3-base) with a SMARTness clas-
sification model based on DeBERTa-v3-large.
Inference across all five SMARTSpan test splits
yielded 198 golden goals, 76% of which were
unique. The goal extractor module correctly
extracted 185 gold goals (recall 93.4%), with 13
omissions and 18 hallucinations (precision 91.2%).
Among the omitted goals, 5 (38.5%) were labeled
as Not SMART, 6 (46.2%) as Partially SMART,
and 2 (15.4%) as SMART—suggesting that extrac-
tion failures were more likely for goals with lower
SMARTness. Conversely, among hallucinated
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label \ pred Not SMART  Partially SMART ~ SMART
Not SMART 34 (75.6%) 10 (22.2%) 1(2.2%)
Partially SMART 5(9.8%) 31 (60.8%) 15 (29.4%)
SMART 1(1.1%) 3(3.4%) 85 (95.5%)

Table 5: Performance evaluation of the SMARTMiner
framework across all five SMARTSpan test splits. Cor-
rect predictions are shown in bold.

goals, a majority were labeled as SMART (10,
55.6%), followed by Partially SMART (7, 38.9%)
and Not SMART (1, 5.6%), indicating that the
extractor tends to generate plausible SMART goals
even when they are annotated.

Table 5 reports the SMARTness confusion ma-
trix over matched extractions only (n = 185).
Overall matched-only accuracy is 81.1%, with the
SMART category showing the strongest perfor-
mance (95.5%). Most errors occur between the two
adjacent categories Partially SMART and SMART
(29.4%), with the SMARTMiner framework upgrad-
ing goals by marking them as measurable in 10
(66.7%) such cases, even when the gold standard
did not. This pattern suggests that the classifier
module of SMARTMiner is more sensitive to detect-
ing measurability than to correctly leaving goals in
the Partially SMART category when measurabil-
ity is absent. Considering omissions as errors, the
end-to-end framework accuracy is 75.8%.

7 Conclusions and Future Work

This paper presents the SMARTMiner framework
to support health coaches in identifying and cate-
gorizing client goals—particularly those that may
require reformulation—while making all extracted
goals accessible to clients through a mobile app
interface. The framework was evaluated in both
synthetic (i.e., MultiSpanQA) and real-world (i.e.,
SMARTSpan) datasets to assess its generalizability
and practical utility.

Our experiments reveal that extractive span-
based models, such as SpanQualifier, consistently
outperform fine-tuned generative models in iden-
tifying multiple goals per HC note. This per-
formance gap was particularly pronounced in
SMARTSpan—a real-world, low-resource dataset
where precision and span fidelity are crucial. These
results emphasize the importance of architecture
selection and data-aware fine-tuning strategies, es-
pecially in settings with limited annotated data.

Our findings are aligned with prior work show-
ing that extractive models (e.g., BERT-based) of-

ten outperform generative models in zero-shot and
few-shot setups. For example, Huang et al. (Huang
et al., 2023a) demonstrated that their DeBERTa-
based extractive model outperformed several GPT-
based baselines, including GPT-3.5-turbo-0301, on
MultiSpanQA. Similarly, Zhang et al. (Zhang et al.,
2024) found that a simple BERT-base extractor sur-
passed few-shot prompting with ChatGPT-3.5.

Looking ahead, we aim to extend SMARTMiner
into GoalGuardian—a fully autonomous system
designed to conduct weekly goal review sessions
in between monthly HC appointments. This sys-
tem would initiate structured check-ins, evaluate
client progress, reinforce accountability, and gen-
erate timely summaries for health coaches. Ulti-
mately, it seeks to sustain client engagement and
foster behavior change even in the absence of direct
human involvement.

Limitations

As stated in Section 3, for anonymization of our
data, we employed ChatGPT only for minimal,
word-level rewrite; every rewrite suggestion was re-
viewed and, where necessary, corrected by human
annotators to ensure that no personally identifiable
information remained and that the note structure,
wording, and formatting were preserved exactly,
avoiding hallucinated edits or template drift. This
intensive human-in-the-loop pipeline is feasible
for the present corpus of 173 HC notes but does
not scale linearly. For larger releases we will in-
troduce an additional annotation layer that grades
each LLM-generated rewrite for fidelity and for-
matting compliance before acceptance, allowing us
to maintain real-world note realism while keeping
human effort tractable.

Given the nature of the collected data (i.e., HC
notes), we focused only on labeling the three core
SMART components: specific (S), measurable (M),
and attainable (A). The time-bound (T) element
was implicitly defined by the structure of the inter-
vention, where clients set weekly goals or targets
to be completed before the next HC session. How-
ever, since this temporal aspect was rarely stated
explicitly in the HC notes, it could not be anno-
tated as a gold label or reliably captured by our
classifier. Similarly, the relevant (R) dimension
was excluded from annotation, as health coaches
served as the first filter—only documenting goals
that were deemed relevant within the scope of the
study. As a result, R was not labeled in the dataset.
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All HC notes in the SMARTSpan dataset are writ-
ten in English and were collected over a one-year
period from a specific population with elevated
LDL levels, participating in an intervention to im-
prove adherence to statin therapy. The dataset re-
flects the language, behaviors, and health system
context of this particular group. Anyone using the
dataset should be mindful of these contextual limi-
tations when applying the models or generalizing
findings to other populations or settings.

Ethical Considerations

The randomized controlled trial from which the
health coaching session notes were derived re-
ceived ethics approval from the National Health-
care Group Domain Specific Review Board in Sin-
gapore (no. 2023/00438). All participants provided
written informed consent prior to enrollment. The
trial is conducted across multiple healthcare insti-
tutions in Singapore, including National University
Hospital, National University Polyclinics, and Na-
tional Healthcare Group Polyclinics.
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A Example of HC Note

Figure 3 shows an example of a real-world HC
note inputted into the HC web-based platform. The
note includes SMART goals, lifestyle observations
(e.g., travel), and structured follow-up on weekly
SMART goal performance with patient-reported
adherence and perceived success rates.

HC note

1. Swimming and aquarobics for 30 minutes once a week.

2. Homemade salad for breakfast once a week, buy salad as
alternative if busy.

3. Take medications every day of the week.

Client recently returned from a trip with a friend that
included food outings and leisure travel.

Goals review:

1. Aquatic exercises were done once a week due to work
commitments, perceived success 40-50%.

2. Had breakfast three times a week, usually bread and
coffee, perceived success 100%.

3. Took medications 6 out of 7 days, found pillbox and
app reminders helpful especially after late shifts,
perceived success 100%.

Generative moment: Participated in stretching activities
at a local centre, signed up for weekly sessions and began
socialising through games.

Goals setting:

1. Continue swimming and aquatic exercises once a week
(confidence 100%) .

2. Consume homemade salad as breakfast once a week,
with flexibility to buy if necessary (confidence 50%).
3. Take statin medications every day of the week
(confidence 90%).

App usage: Frequently used medication reminders, watched
a few videos but cited lack of time.

Other concerns: Currently adjusting antihypertensive
medication under physician’s guidance due to low heart rate
and elevated BP readings. Client was instructed to monitor
and record BP and heart rate daily using the app diary and
dictation tool.

Extracted goals

The following goals were manually extracted from
the above-mentioned HC note as golden labels

1. Continue swimming and aquatic exercises once a week
(confidence 100%)

2. Consume homemade salad as breakfast once a week, with
flexibility to buy if necessary (confidence 50%)

3. Take statin medications every day of the week
(confidence 90%)

From this example, we can see that goal-related
statements often appear in multiple locations within
a single HC note, varying in specificity and finality.
The initial mention of swimming— “Swimming and
aquarobics for 30 minutes once a week”—serves
as a general intention. Later, a more definitive for-
mulation— “Continue swimming and aquatic exer-
cises once a week (confidence 100%)”—reflects a
more completed formulation of the goal.

Moreover, some statements may resemble goals
in language or structure but actually describe past

behavior, such as “Aquatic exercises were done
once a week.” These retrospective statements must
be excluded from annotations, as they do not repre-
sent forward-looking intentions and could mislead
models during training. Accurately separating past
reflections from future commitments is essential for
developing systems that support behavior change
interventions, ensuring only actionable goals are
surfaced for downstream use.

SMARTRess of extractive goals

Following our core SMARTness framework, the
extracted goals are manually evaluated for speci-
ficity, measurability, and attainability. A label of
[1,1,1] indicates that the goal meets all three core
criteria and it is labeled as SMART.

1. [1,0,1]
2. [1,1,1]
3..01,1,11

In the example above, the first goal is specific (it
mentions swimming and aquatic exercises) and at-
tainable (confidence of 100%), but not measurable,
as it does not specify the duration of swimming
or aquatic activities. The second goal is specific
(consume homemade salad), measurable (once a
week), and attainable (confidence assessed). Fi-
nally, the third goal is specific (statin medications),
measurable (every day of the week), and attain-
able (confidence of 90%). Some other examples
of Partially SMART and Not SMART goals in the
dataset are

1. Complete 5km walk two times a week from midweek onwards.
[1,1,0]

2. Exercise daily for at least 1 hour. [0,1,0]

3. Exercise daily for 30 minutes (confidence level 8/10).
[0,1,11

4. Reduce portion sizes and adjust ingredients to
healthier options. [0,0,0]

Goal 1 is Partially SMART as it is specific (Skm
walk) and measurable (twice a week), but lacks an
attainability marker such as confidence or feasibil-
ity. Goal 2 is not SMART as it is measurable (daily,
1 hour), but lacks specificity (type of exercise) and
does not include attainability. Goal 3 is Partially
SMART as it is measurable (daily, 30 minutes) and
attainable (confidence of 8/10), but not specific
about the type of activity. Goal 4 is Not SMART
as it lacks all three SMART components—there is
no clear target behavior (not specific), no quantifi-
able element (not measurable), and no indication
of feasibility (not attainable).
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Figure 3: Example of a HC note recorded in the HC web-based platform.

B Annotation of SMARTSpan Dataset

The annotation was performed by two academic
researchers who hold a doctoral degree (PhD and
MBBS) and have received prior training in HC.
One annotator also has clinical experience in deliv-
ering HC interventions. Prior to the annotation task,
both annotators jointly reviewed relevant literature
and established a shared understanding of the defi-
nitions and criteria for the specific (S), measurable
(M) and attainable (A) components.

To minimize potential biases arising from prac-
tice effects or subjective interpretation, both anno-
tators were first presented with illustrative exam-
ples of well- and poorly formulated SMART goals.
Following this, a structured calibration exercise in-
volving 10 sample goals—sourced independently
of the main dataset—was conducted to align the an-
notators’ understanding of the classification rubric
and ensure consistency in rating. Notably, no re-
imbursement was provided for their effort, as both
annotators are members of the core research team.

C Extraction Prompt for LoRA
Fine-Tuning of Generative Models

The prompt below defines the task used for fine-
tuning generative models to extract goals from un-
structured HC notes. It clearly frames the task as
extractive rather than generative, instructing the
model to copy exact span text without paraphras-
ing. The instruction emphasizes exclusion of vague
categories and long-term intentions, and focuses
only on short-term, concrete weekly goals. The
model is further guided to format the output as a

numbered list.

Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

### Instruction:

You are an expert assistant that extracts only SMART weekly goals
from health coaching session notes. Extract the exact parts of
text, don't rephrase the text! This is an NLU task, and not an
NLG task! Only include goals that are: Specific, Measurable,
Attainable, Relevant, and Time-bound (SMART). Do not include
vague or broad categories like 'Exercise', 'Medication', or
'Diet' unless they are written as specific SMART goals. Ignore
6-month, long-term, or vague intentions. Focus only on short-term,
concrete weekly SMART goals that the patient committed to.
Format your response as a numbered list.

### Input: {input}

### Output: {output}

D Overview of Generative Models used
for Fine-Tuning

Table 6 summarizes key details for the generative
models used in our evaluation, including their re-
lease dates, pre-training cutoff dates, and the num-
ber of fine-tuned parameters relative to total model
size. These models vary widely in scale and re-
cency, which may influence their ability to extract
structured SMART goals under zero-shot or fine-
tuned conditions.

Model
phi-4 (Abdin et al., 2024)
Mistral-Nemo-Instruct-2407

Train params Release Cutoff
33M out of 14B | 2024-12-13 | Jun 2024
29M out of 12B | 2024-07-18 | Apr 2024

gemma-2-9b-it (Team et al., 2024) 27M out of 9B | 2024-06-27 -
Meta-Llama-3.1-8B (Dubey et al., 2024) | 21M out of 8B | 2024-07-23 | Dec 2023
mistral-7b-instruct-ve.3 21M out of 7B | 2024/05/22 -
Llama-3.2-3B (Meta, 2024) 12M out of 3B | 2024-09-25 | Dec 2023

Table 6: Release and pre-training cutoff dates for used
generative models.
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E Learning Rate Grid Search

To better understand the sensitivity of our models to
hyperparameters, we conducted a grid search over
four learning rates: 1 x 107°,3x 1072, 5 x 1072,
and 1 x 10~*. This analysis was performed only
for SMARTSpan split_1, and results are reported
using the Partial Match F1 (PM_F1) metric.

Based on the results in Table 7, we adopted
a learning rate of 1 x 10~ for encoder—decoder
models (Flan-T5 and BART), which consistently
achieved their strongest performance at this setting.
For decoder-only models, we selected 3 x 1075
as a balanced choice: it produced the best results
for both Mistral variants and remained competitive
across Llama and Gemma models, ensuring stable
and robust training across architectures.

Model Learning Rate

le-5 | 3e-5 | S5e-5 | le-4
phi-4 14.08 | 14.08 | 18.67 | 14.08
Mistral-Nemo-Instruct-2407 | 82.77 | 86.59 | 60.67 | 22.35
gemma-2-9b-it 82.08 | 68.79 | 66.99 | 75.34
Meta-Llama-3.1-8B 14.08 | 14.08 | 16.87 | 14.08
mistral-7b-instruct-ve.3 82.27 | 93.16 | 80.78 | 69.73
Llama-3.2-3B 52.65 | 53.01 | 54.87 | 44.83
flan-t5-large 30.38 | 37.14 | 62.86 | 72.71
bart-large 20.28 | 49.87 | 56.81 | 74.43

Table 7: PM_F1 scores across learning rates on
SMARTSpan Split 1. The best-performing learning rate
for each model is highlighted in bold.

F Zero-Shot SMART GPT-4.1 Goal
Extraction Prompt and Schema

To support zero-shot structured extraction of
weekly SMART goals, we used OpenAl’s GPT-
4.1 with the function-calling API. The model was
instructed via a detailed system prompt (i.e., in-
struction) and constrained to return outputs in a
predefined JSON schema. Below we provide both
the prompt and the schema used.

Instruction

You are an expert assistant that extracts only SMART weekly goals
from health coaching session notes. Extract the exact parts of text,
don't rephrase the text! This is an NLU task, and not an NLG task!
Only include goals that are: Specific, Measurable, Attainable,
Relevant, and Time-bound (SMART). Do not include vague or broad
categories like "Exercise”, "Medication”, or "Diet"” unless they
are written as specific SMART goals. Ignore 6-month, long-term,
or vague intentions. Focus on short-term, concrete weekly SMART
goals that the patient committed to. Respond in JSON format.

Function Schema

L
{
"type": "function”,
"function”: {
"name”: "extract_weekly_smart_goals",
"description”: "Extract only weekly SMART goals.

Ignore long-term or monthly goals.”,
"parameters”: {
"type": "object"”,
"properties”: {
"goals": {
"type": "array"”,
"items": { "type": "string" 3},
"description”: "List of weekly SMART goals” }
3,

"required”: ["goals"] }

G Performance of the Goal Extraction
Models Across SMARTSpan Splits

Table 8 reports the performance of
DeBERTa-v3-base and BERT-base-uncased
on five test splits of the SMARTSpan dataset under
three fine-tuning settings using the SpanQualifier
framework: (i) trained only on SMARTSpan, (ii)
first on MultiSpanQA then further fine-tuned
on SMARTSpan, and (iii) trained only on Mul-
tiSpanQA. Results clearly show that models
fine-tuned sequentially on MultiSpanQA and
SMARTSpan achieve the highest scores across
all splits, with DeBERTa-v3-base reaching
up to 90.11 EM FI1 and 9741 PM FI, and
BERT-base-uncased up to 78.65 EM F1 and
89.62 PM F1. In contrast, models trained solely
on SMARTSpan perform poorly, with EM F1
scores close to zero despite relatively higher PM
recall. Models fine-tuned only on MultiSpanQA
exhibit modest performance improvements over
SMARTSpan-only training, but still fall short of the
multi-stage fine-tuning setup.

EM PM

Model Pf Rf  Ff PT Rf  Ff

DeBERTa-v3-basesyarrspan_1 0.26 19.57  0.52 2174  81.29 3431
DeBERTa-v3-basesyarrspan_2 035 21.57 070 | 27.84 7834 41.08
DeBERTa-v3-basesyarrspan_3 0.12 1224 023 | 2105 73.05 32.69
DeBERTa-v3-basesyrrspan_4 0.11 1042 022 | 2083 6863 31.96
DeBERTa-v3-basesyarrspan_s 0.58 3889 114 | 1956 77.64 31.24
DeBERTa-v3-basemuispanoa_sMARTSpan_1 91.1T  89.13  90.11 | 100.00 94.96 97.41
DeBERTa-v3-basewutispanga_smartspan_2 81.13 8431 8269 | 88.03 90.55 89.27
DeBERTa-V3-basewutispanoa_sMARTSpan_3 89.58 87.76 88.66 | 97.81 91.69  94.65
DeBERTa-v3-basewuispanoa_smartspana 7826 75.00  76.60 | 91.44 8391 87.51
DeBERTa-v3-ba _SMARTSpan_S 86.11 86.11 86.11 | 91.18 9250 91.84
DeBERTa-v3-baseuuispanoa_t 11.11 10.87 1099 | 40.08 2336 29.52
DeBERTa-v3-basewuispanoa 2 9.09 784 842 | 36.68 2136 27.00
DeBERTa-v3-baseunispanoa_3 6.00 6.12 6.06 32.94 1891 24.03
DeBERTa-v3-basewuispanoa_4 1698 18.75 17.82 | 50.30 3877 43.79
DeBERTa-v3-basewuispanoa_s 1951 2222 2078 | 3775 3482 3622
BERT-base-uncasedsyarrspan_i 0.19 1522 0.38 20.33  75.72  32.05
BERT-base-uncasedsmarrspan_2 042 2549 0.83 26.13 8735 40.23
BERT-base-uncasedsmarrspan_3 033 2449 065 | 2359 8291 36.73
BERT-base-uncasedsparrspan_4 0.24  20.83 0.48 24.43 80.42 37.48
BERT-base-uncasedsmurrspan_s 0.54 361 106 | 2226 70.72 33.86
BERT-base-uncasedyunispanga_svartspan_1 8140 76.09 78,65 [ 93.92 8570 89.62
BERT-base-uncasedyusispanoa_smartspan 2~ 78.00  76.47 7723 | 86.92 84.24 85.56
BERT-base-uncaseduispanoa_smarspan s~ 7872 75.51  77.08 | 91.61  87.11 89.30
BERT-base-uncasedyuispana_sMaRTspan 4 17.27  70.83 7391 | 89.82  82.63 86.08
BERT-base-uncasedyuiispanoa_svartspan.s 1941 75.00  77.14 | 84.58  81.53 83.03
BERT-base-uncasedusispanoa_1 1136 10.87 11.11 4319 2036 27.68
BERT-base-uncasedupispanoa_2 3.92 3.92 3.92 29.19 18.33 2252
BERT-base-uncaseduispanga_3 3.17 408 357 | 3320 1518 20.83
BERT-base-uncasedyutispan0a_4 14.89 1458 14.74 | 4241 2643 3257
BERT-base-uncaseduispanga_s 14.00 1944 1628 | 30.65 30.04 3034

Table 8: Extractive models (DeBERTa-v3-base
and BERT-base-uncased) performance across five
SMARTSpan test splits using SpanQualifier.
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EM PM
Pt RT F{ | Pt RfT FT
78.00 84.78 81.25|89.81 87.77 88.78
52.38 86.27 65.19|66.71 93.20 77.76
69.70 93.88 80.00 |84.10 96.20 89.75
RoBERTa-basespi_4 55.13 89.58 68.25|71.88 95.18 81.90
RoBERTa-basegpi_s 73.81 86.11 79.49|83.69 91.67 87.50
BERT-base-uncasedspi 1 76.92 86.96 81.63|86.79 89.94 88.34
BERT-base-uncasedspi 2 53.75 84.31 65.65|71.53 90.63 79.95
BERT-base-uncasedpi 3 69.84 89.80 78.57|88.22 94.82 91.40
BERT-base-uncasedgpi 4 69.49 85.42 76.64|88.52 89.49 89.00
BERT-base-uncasedsyi s 70.00 77.78 73.68|77.26 81.01 79.09

Model

RoBERTa-basegpiit_1
RoBERTa-basegpi_2
RoBERTa-basegpi_3

Table 9: Extractive models (BERT-base-uncased and
RoBERTa-base) performance across five SMART Span
test splits using CSS.

Table 9 reports the performance of
BERT-base-uncased and RoBERTa-base across
five test splits of the SMARTSpan dataset, using
the CSS fine-tuning framework. Both models
achieve strong and stable PM F1 performance,
averaging above 85. EM F1 scores for both models
also vary within a similar range—approximately
65 to 81—suggesting comparable sensitivity to
training data splits. While RoBERTa-base achieves
a slightly higher peak PM F1 score (89.75) and EM
F1 score (81.25), BERT-base-uncased performs
competitively and exhibits a more balanced
performance across metrics. These results suggest
that both models are well-suited for multi-span ex-
traction under CSS, with RoBERTa-base offering
marginally higher peaks and BERT-base-uncased
offering stable returns.

Table 10 illustrates substantial variability
in SMARTSpan performance among genera-
tive models fine-tuned using LoRA. Notably,
mistral-7b-instruct-v0.3 emerges as the
strongest overall, reaching up to 65.98 EM F1 and
95.51 PM F1 across splits. In contrast, larger mod-
els like Mistral-Nemo-Instruct-2407 achieve a
comparable peak EM F1 of 66.67, but fall short on
PM F1, peaking at only 90.42, suggesting less con-
sistent partial span recovery. Meanwhile, models
such as phi-4 and Meta-Llama-3.1-8B display
high variance across splits—EM F1 fluctuates from
as low as 10.53 to as high as 62.69—indicating
instability in learning span fidelity. Similarly,
gemma-2-9b-it achieves strong partial match per-
formance (up to 74.23 PM F1), yet underperforms
on exact matches, underscoring persistent chal-
lenges in precise span generation. Overall, smaller
models with stable fine-tuning regimes consistently
outperform their larger counterparts on this task.

EM PM

Model PT__Rf Ff | PT_Rf ¥
Phicd s 2000 1087 1408|2000 1087 14.08
phi-dgi > 1600 7.84 1053|1600 7.84 1053
Phi-dgii 3 1600 816 10.81|16.00 816 101
Phi-dgis 4 2800 1458 19.18(28.00 14.58 19.18
phi-dgii 5 67.74 5833 6269|7402 6547 69.48

Mistral-Nemo-Instruct-2407gi 1 52.17 52.17 52.17 |88.11 85.11 86.59
Mistral-Nemo-Instruct-2407g, 2 37.14 25.49 30.23|54.21 37.15 44.09
Mistral-Nemo-Instruct-2407g; 3 16.00 8.16 10.81|16.00 8.16 10.81
Mistral-Nemo-Instruct-2407i 4 63.83 62.50 63.16 |86.69 86.29 86.49
Mistral-Nemo-Instruct-2407, s 64.10 69.44 66.67 | 86.50 94.71 90.42

gemma-2-9b-itgyi_ 28.95 47.83 36.07|58.24 84.00 68.79
gemma-2-9b-itgyi 2 31.33 50.98 38.81|57.55 81.05 67.31
gemma-2-9b-itgyi_3 22.22 48.98 30.57|47.92 84.71 61.21
gemma-2-9b-itgyi 4 38.67 60.42 47.15|62.89 90.58 74.23
gemma-2-9b-itgyi_s 30.88 58.33 40.38|44.87 86.38 59.06
Meta-Llama-3.1-8Bpii_1 20.00 10.87 14.08|20.00 10.87 14.08
Meta-Llama-3.1-8Bypiic_» 16.00 7.84 10.53]16.00 7.84 10.53
Meta-Llama-3.1-8Byi_3 16.00 8.16 10.81]16.00 8.16 10.81
Meta-Llama-3.1-8Bpiic_4 28.00 14.58 19.18]28.00 14.58 19.18
Meta-Llama-3.1-8Byiic_s 48.00 33.33 39.34|48.00 33.33 39.34
mistral-7b-instruct-v0.3gpii_1 55.10 58.70 56.84]91.20 95.21 93.16
mistral-7b-instruct-v0.3gpit_2 16.00 7.84 10.53|16.00 7.84 10.53

mistral-7b-instruct-v0.3gpiic 3 44.83 53.06 48.60|79.17 94.14 86.01
mistral-7b-instruct-v0.3gpi_4 65.31 66.67 65.98|96.04 94.99 95.51
mistral-7b-instruct-v0.3gii s 53.49 63.89 58.23|74.43 91.93 82.26

Llama-3.2-3Bgpiic_1 17.39 34.78 23.19]43.89 66.92 53.01
Llama-3.2-3Bgpiic_2 29.21 50.98 37.14|44.10 71.07 54.43
Llama-3.2-3Bgpiic_3 19.15 18.37 18.75|40.20 36.94 38.50
Llama-3.2-3Bgpiic_4 36.00 37.50 36.73|62.70 61.98 62.33
Llama-3.2-3Bgpiic_s 28.81 47.22 35.79|41.34 67.59 51.31
flan-t5-largepiic_i 51.35 41.30 45.78|72.03 76.99 74.43
flan-t5-largespiic_2 55.56 39.22 45.98|75.92 78.65 77.26
flan-t5-largespiic_3 25.49 26.53 26.00|50.33 70.86 58.86
flan-t5-largegpii_4 47.37 37.50 41.86|77.45 82.81 80.04
flan-t5-largespiic_s 42.11 44.44 43.24|56.97 81.59 67.09
bart-largespiic_1 40.62 28.26 33.33|83.10 64.63 72.71
bart-largespiic_2 15.62 9.80 12.05|49.75 52.96 51.30
bart-largepii_3 30.00 18.37 22.78|67.84 48.88 56.82
bart-largespiic_4 45.45 31.25 37.04|81.82 61.84 70.44
bart-largespiic_s 4231 30.56 35.48|66.44 50.24 57.22

Table 10: Generative models performance across five
SMARTSpan test splits using LoRA fine-tuning.

Table 11 presents the performance of the
flan-t5-1arge model across five splits using the
QASE framework. While PM F1 scores remain rel-
atively stable, ranging from 51.21 to 62.93, EM F1
scores are considerably lower—between 26.67 and
37.04. This pattern highlights the model’s ability to
capture semantically appropriate spans, even when
exact matches are missed. However, it also under-
scores the challenge of aligning predicted spans
precisely with gold-standard boundaries.

EM PM

Pt Rt Ff | Pt Rt FT
flan-t5-largen | 42.86 32.61 37.04|78.53 52.50 62.93
flan-t5-large » 30.77 23.53 26.67|70.88 50.00 58.63
flan-t5-largeqi 3 35.00 28.57 31.46|73.68 50.64 60.03
flan-t5-largeq « 40.00 29.17 33.73|73.52 49.12 58.89
flan-t5-largeq s 30.56 30.56 30.56 | 55.14 47.80 51.21

Model

Table 11: flan-t5-1arge model performance across
five SMARTSpan test splits using QASE.
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EM PM
Model

ode Pf RT FT | PT RT ¥t
GPT4 1y 1 48.72 41.30 44.71|96.55 75.83 84.94

GPT-4. 1412 33.33 27.45 30.11|84.46 61.26 71.01
GPT-4. 1413 27.03 20.41 23.26|83.01 60.13 69.74
GPT-4. 1414 42.00 43.75 42.86|79.60 71.79 75.49
GPT-4. 1415 48.39 41.67 44.78|79.22 68.07 73.22

Table 12: GPT-4.1 models performance across five
SMARTSpan test splits using LLM Schema.

Table 12 reports the performance of GPT-4.1
across five SMARTSpan test splits. The model
achieves strong PM F1 scores, ranging from 69.74
to 84.94, indicating high semantic alignment with
relevant spans. However, EM F1 scores are substan-
tially lower, varying between 23.26 and 44.78, high-
lighting challenges in predicting exact span bound-
aries. These results suggest that while GPT-4.1
is highly effective at identifying relevant content
in zero-shot settings, it falls short in producing
precise extractions. In contrast, smaller genera-
tive models fine-tuned with the QASE framework
show improved EM performance under supervi-
sion, despite lower PM scores. This suggests that
while GPT-4.1 excels at general semantic retrieval,
QASE-enhanced models offer better span-level pre-
cision when trained with task-specific data.

H Performance of the SMARTness
Classification Models Across
SMARTSpan Splits

Table 13 shows that across the five test splits,
both deberta-v3-base and deberta-v3-large
exhibit consistently strong performance in SMART-
ness classification, with macro F1 scores exceeding
0.740 and SMART F1 scores ranging from 0.864
to 0.955. deberta-v3-large achieves the high-
est overall scores, reaching up to 0.878 accuracy,
0.881 macro F1, and a peak SMART F1 of 0.955,
demonstrating that increased model capacity leads
to greater robustness and precision.

In contrast, while RoBERTa-large performs
competitively on most splits, it shows instabil-
ity on split_ 3, where classification performance
collapses entirely (SMART F1 = 0.000). This
divergence highlights the importance of evaluat-
ing models across multiple test partitions and sup-
ports the reliability of DeBERTa-based architec-
tures—particularly the large variant—for struc-
tured SMARTness prediction in goal-oriented
health coaching contexts.

I Output for DeBERTa-v3-base fine-tuned
only on SMARTSpan using
SpanQualifier

The list below shows the final inference output of
DeBERTa-v3-base trained with the SpanQualifier
framework on the SMARTSpan dataset using only
123 training examples. This model achieved an
average EM F1 of 0.56 and average PM F1 of 34.26.
As shown below, the model returns a large set of
overlapping span candidates with minimal filtering
or boundary control.

This output illustrates SpanQualifier’s reliance
on large-scale supervision. In low-resource condi-
tions, it fails to discriminate meaningful spans from
irrelevant ones and defaults to producing dense n-
gram windows. Without upstream training (e.g.,
on MultiSpanQA) or parameter-efficient adaptation
(e.g., LoRA), the model lacks a coherent span rep-
resentation and performs poorly on SMARTSpan.

"24": [
") exercise : switch from casual walking to brisk walking”,
"exercise : switch from casual walking to brisk walking ,",
": switch from casual walking to brisk walking , maintaining”,
"switch from casual walking to brisk walking , maintaining a"”,
"from casual walking to brisk walking , maintaining a daily”,
"casual walking to brisk walking , maintaining a daily goal”,
"walking to brisk walking , maintaining a daily goal of",
"to brisk walking , maintaining a daily goal of 10",
"brisk walking , maintaining a daily goal of 10 ,",
"walking , maintaining a daily goal of 10 , 000",
", maintaining a daily goal of 10 , 000 steps”,
"maintaining a daily goal of 1@ , 000 steps (",
"a daily goal of 10 , 000 steps ( confidence”,
"of 10 , 000 steps ( confidence 7 / 10",
"10 , 000 steps ( confidence 7 / 10 )",
", 000 steps ( confidence 7 / 10 ) .",
"( confidence 7 /10 ) . (2)",
"confidence 7 / 10 ) . ( 2 ) diet”,
"7 /10) . (2) diet :",
"/ 10 ) . (2 ) diet : reduce”,
"1@ ) . ( 2 ) diet : reduce the",

"

"activity . future sessions may explore strategies to
support consistent medication intake and improving sleep”

]

Model Accuracy? Macro F1T SMART F11
deberta-v3-basegpii_i 0.780 0.744 0.900
deberta-v3-basegpiic 2 0.809 0.786 0.864
deberta-v3-basespii_3 0.822 0.782 0.913
deberta-v3-basegpiic 4 0.902 0.897 0.927
deberta-v3-basegiic_s 0.833 0.836 0.870
deberta-v3-largespi_ 0.854 0.842 0.900
deberta-v3-largesplic 2 0.830 0.809 0.864
deberta-v3-largegpiic_3 0.867 0.834 0.955
deberta-v3-largegplic 4 0.878 0.881 0.895
deberta-v3-largegpii_s 0.875 0.874 0.909
RoBERTa-largespii_i 0.780 0.743 0.923
RoBERTa-largespiic_2 0.787 0.745 0.851
RoBERTa-largespii_s 0.244 0.131 0.000
RoBERTa-largespii_4 0.878 0.860 0.913
RoBERTa-largespii_s 0.833 0.849 0.833
Table 13: Encoder-only transformer models
(deberta-v3-base, deberta-v3-large and

RoBERTa-base) performance across five SMARTSpan
test splits.
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J Output for DeBERTa-v3-base after
Sequential Fine-Tuning on
MultiSpanQA and SMARTSpan using
SpanQualifier

The list below presents the final output of
DeBERTa-v3-base fine-tuned using the SpanQual-
ifier framework, first on MultiSpan(QA and subse-
quently on SMARTSpan. Unlike the low-resource
setting where the model was trained only on
SMARTSpan, this model produces a concise and
accurate set of spans, closely aligned with the gold
annotations. The final predictions are well-formed
and exhibit clear span boundaries, indicating that
prior training on a large-scale multi-span dataset
(i.e., MultiSpanQA) successfully bootstraps the
model’s ability to extract meaningful multi-span
goals from SMARTSpan.

This result underscores the importance of task-
aligned pretraining and sufficient supervision.
By first training on a diverse, high-resource
dataset and then adapting to the smaller in-domain
SMARTSpan, the model effectively generalizes and
avoids overgeneration.

"24": [
"switch from casual walking to brisk walking, maintaining
a daily goal of 10, 000 steps (confidence 7/10)",
"reduce the overall quantity of food consumed by 25 %,
confidence 7/10",
"reduce blood sugar”

1

K Output for
Mistral-Nemo-Instruct-2407
Fine-Tuned on MultiSpanQA

Examples of HTML tags:

"m20r1ol7e@7godpgexqaq”: [
"</div >",
"France”,
"Galician”,
"Germany",
"Italy",
"Portugal”,
"Spain”,

"UK",
"the Americas”

1,

"1ove66khudx8x16s6i81": [
"</div>",
"<br />",
"<div class=\"column col-3 col-last\">",
"south of Vancouver , British Columbia”,
"the Hell on Wheels set”,
"the University Women 's Club of Vancouver”

Example of stray characters:

"v9ohyt3b06gdye3cqysk”: [
"),
"CANOE",
"OCEAN",
"activity”,
"agreeableness”,
"assertiveness”,
"conscientiousness”,

"excitement seeking”,
"extraversion”,
"gregariousness”,
"neuroticism”,
"openness to experience”,
"positive emotions”,
"warmth”

1,

"hblveofzqtwavy960582": [
"Don Felder”,
"Don Henley"”,
"Glenn Frey"”,
"Joe Walsh",
"the Eagles”,
"the band”

Other examples:

"503kdfmuelcn8inleggi”: [
"### Input:”,

"Ansel Elgort ( born March 13, 1994 ) is an American actor and
musician. He is best known for his leading role in the 2014
film The Fault in Our Stars, and for playing the title character
in the 2017 film Baby Driver. He has also appeared in the
films Divergent ( 2014 ), The Divergent Series: Insurgent
( 2015 ), and The Divergent Series: Allegiant ( 2016 ), and
in the 2017 film The Black Balloon. Elgort was born in New
York City, the son of Arthur Elgort, a fashion photographer
and Grethe Barrett Holby, an artist. His father is Jewish,
while his mother is of Norwegian and English descent. He
was named after his great - grandfather, the Swedish - born
artist Andrew Olsson. He grew up in Manhattan and attended the
Professional Children 's School. He began acting at age 9, and
began taking acting classes at the Stagedoor Manor summer camp.
He made his stage debut in the 2002 production of the musical
Guys and Dolls at the Kennedy Center in Washington, D.C. He
appeared in a short film, The Scapegoat, in 2002, and in the
film Daddy 's Home in"

"Edgar Wright",
"Eiza Gonzalez",
"Jamie Foxx",
"Jon Bernthal”,
"Jon Hamm",
"Kevin Spacey”,
"Lily James"”

L Output for L1ama-3.2-3B Fine-Tuned
on SMARTSpan

Example of made up content:

Input: "final session. at the request of the client, the session
was short and focused on summarizing past experience and
suggestions for improvement. client reflects a desire to reduce
cholesterol levels and medication intake and had hoped for an
intervention with immediate results. suggests that health
coaching sessions could be more directive and structured. finds
the educational materials useful but did not access them, stating
they felt like \"common sense\” and expressing a general
preference for not using the phone frequently. describes managing
diet and exercise in a strict way and felt demoralized when
cholesterol levels did not improve. hc reflected that small
changes were still observed, such as greater variety in diet.
client shared that \"resistance is futile\"” and accepts the need
for long-term medication. hc affirmed that lifestyle may be
helping prevent further worsening despite lack of measurable
improvement. client reported bugs in the app: receiving multiple
medication reminders one hour after the original, and not
receiving notifications while overseas even though login was
possible. hc closed the session with well wishes and
encouragement to continue prioritizing health.”

Output: [
"explore ways to improve diet and exercise”,
"explore ways to improve health literacy”,
"explore ways to improve medication adherence”,
"explore ways to increase medication adherence”,
"explore ways to reduce cholesterol levels”
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