Scaling Laws Are Unreliable for Downstream Tasks: A Reality Check
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Abstract

Downstream scaling laws aim to predict task
performance at larger scales from the model’s
performance at smaller scales. Whether such
prediction should be possible is unclear: some
works discover clear linear scaling trends after
simple transformations of the performance
metric, whereas others point out fundamental
challenges to downstream scaling laws, such
as emergence and inverse scaling. In this work,
we conduct a meta-analysis of existing data
on downstream scaling laws, and we find that
predictable scaling only occurs in a minority of
cases: 39% of the time. Moreover, seemingly
benign changes to the experimental setting can
completely change the scaling behavior. Our
analysis underscores the need to understand the
conditions under which scaling laws succeed.
To accurately model the relationship between
pretraining loss and task performance, we must
embrace the cases in which scaling behavior
deviates from linear trends.

1 Introduction

Scaling laws for pretraining establish that the loss
improves reliably when increasing the size of the
model, training data, or compute (Kaplan et al.,
2020; Hoffmann et al., 2022; Pearce and Song,
2024). However, better pretraining loss does not
always translate to better downstream performance
(Magnusson et al., 2024). This gap can be caused
by a variety of issues; among the best known is
emergence, or the fact that on some tasks models
below a certain scale show no trend or near-chance
performance (Wei et al., 2022). In addition, model
performance can increase then decrease, in what
is called inverse scaling (McKenzie et al., 2023;
Wilcox et al., 2024). Despite these challenges,
several works also find downstream performance is
roughly linear in the pretraining loss, possibly after
a transformation (Huang et al., 2024; Gadre et al.,
2025; Chen et al., 2025).
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Figure 1: Revisiting the 46 tasks studied in Gadre
et al. (2025), we find that only 18 tasks—or 39%—
demonstrate smooth, predictable improvement (Figure
5). The other 28 tasks are shown in Figures 6 through
10, where we group them into different degenerate scal-
ing behaviors: inverse, nonmonotonic, noisy, trendless,
and breakthrough scaling. See Figure 2 for examples.

Thus, the extent to which downstream scaling
laws work is unclear. How can they follow linear
forms when we know of many tasks that exhibit
emergence or inverse scaling? Are these just edge
cases, or are they common, with no established
explanation? Here, we aim to clarify this confusion.
We explore and consider three core factors affect-
ing downstream scaling laws: 1) the data used for
pretraining and validation, 2) the downstream task,
and 3) the experimental setup. Realistic changes
to each of these factors can change the relationship
to downstream performance, to the point that the
scaling law’s functional form might no longer hold.
The behavior can even change qualitatively—with
a decrease in trend under one set of conditions flip-
ping to an increase under another. Such qualitative
changes can not be removed by a new functional
form. They pose fundamental obstacles to studying
large scale models with small scale proxies.
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Figure 2: A taxonomy of different scaling behaviors. Predictable scaling fits closely to a linear functional form after,
for example, exponentiating the cross-entropy loss. However, depending on the downstream task, models do not
always improve with scale (inverse, nonmonotonic, and trendless), or the improvement might be highly noisy. The

improvement might also follow a functional form that is difficult to extrapolate like a sigmoid (breakthrough).

In particular, we find that:

1. Choosing a different dataset for the validation
perplexity can flip scaling trends. For instance,
models pretrained on one corpus might appear
to improve faster than another, but this trend
can reverse with different validation data (§3).

2. Revisiting a prior study (Gadre et al., 2025),
we only find predictable scaling in a minority
of cases: 39%. Phenomena like emergence or
inverse scaling can actually be quite common,
occurring for many downstream tasks (§4).

3. Scaling behavior from one experimental setup
can qualitatively change under another; a task
with predictable scaling could become non-
monotonic or even show no trend at all (§5).

Our analysis suggests that scaling laws are
context-specific. As such, we cannot assume down-
stream scaling will always be strictly linear. Rather,
we need to better understand the failure modes of
existing scaling laws and develop a holistic (and
perhaps more complex) model of how foundation
models improve on downstream tasks.

2 Background

Downstream scaling laws try to extrapolate the
performance of large-scale models from small-
scale proxies. When successful, these scaling
laws enable cost-effective experiments at the small
scale that transfer to the large. Scaling laws for
pretraining are well established (Rosenfeld et al.,
2020; Kaplan et al., 2020; Hoffmann et al., 2022);
however, the ultimate goal of language models is
to perform well on downstream tasks. As such,
downstream scaling laws are also of great interest.

Unlike pretraining, there is little consensus on
how to approach downstream scaling laws. Early
efforts tried to predict downstream performance
directly from parameters, data, or compute (Ivgi
et al., 2022; Mahmood et al., 2022; OpenAl, 2023),
but downstream performance often showed a noisy
relationship to these quantities (Tay et al., 2022).
Other efforts sought surrogates for scale, like latent
capabilities (Ruan et al., 2024) or task-specific
losses (Grattafiori et al., 2024; Bhagia et al., 2024),
in the hope of mapping from compute to surrogate,
and from surrogate to downstream performance.
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Many works have found downstream scaling
laws are more stable when stated in terms of
pretraining loss, the most widely used surrogate
for scale (Xia et al., 2023; Huang et al., 2024; Du
et al., 2024; Gadre et al., 2025; Chen et al., 2025).
Specifically, if two models differ in their number of
parameters or pretraining tokens but still attain the
same pretraining loss, then they tend to achieve the
same downstream performance (Xia et al., 2023;
Du et al., 2024; Gadre et al., 2025). Some authors
generalize this principle, viewing pretraining loss
as a general way to compare models—not just
with different scales but different training recipes
(Huang et al., 2024; Chen et al., 2025). However,
while pretraining loss correlates with downstream
performance to a surprising degree, this relation-
ship is far from absolute (Tay et al., 2022).

In the best case, downstream task performance is
roughly linear in some monotonic transformation
of validation loss (x) and downstream metric (y):

For instance, Gadre et al. (2025) relate the error rate
to the validation loss via: y = ¢ — k exp{—~y z}.
The functions, f and g, must depend on the metric;
in some cases, a linear relationship alone could be
enough (Huang et al., 2024; Chen et al., 2025).
Such global structure enables extrapolation—the
ultimate goal of downstream scaling laws; however,
predictable structure might not exist. Phenomena
such as emergence, inverse, and U-shaped scaling
preclude this kind of global structure (Wei et al.,
2022; McKenzie et al., 2023; Wei et al., 2023).
They destroy it by creating structural breaks, or
points where the function describing one part of the
scaling curve does not describe another (Andrews,
1993). Without global structure, it is impossible
to extrapolate from small to large. Certain tasks,
like multiple choice questions, are more susceptible
to emergence (Schaeffer et al., 2025). Sometimes
emergence can be mitigated by choosing a different
downstream metric (Schaeffer et al., 2023), but
in other cases breakthrough improvements remain
“stubbornly emergent” (Zhao et al., 2025; Du et al.,
2024). Li et al. (2025) found scaling laws generally
difficult to reproduce and sensitive to the functional
form, training setup, data collection, and fitting
algorithm, while Magnusson et al. (2025) found
that comparing models at a smaller scale—without
extrapolation—performed as well or better than
scaling laws in determining the best data mix.

Effect of Pretraining and Validation Corpora on Scaling
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Figure 3: Choosing a different validation corpus can
exaggerate or even reverse which pretraining corpus
appears superior. On HellaSwag, the C4 corpus seems
better than RedPajama when using 100 PLs as the vali-
dation set. Conversely, the scaling trends on CoQA
for C4 and RedPajama flip when computing validation
perplexity on C4 versus 100 PLs.

3 Scaling Laws Are Specific to the Data

Downstream scaling laws depend on several factors,
including the pretraining data, validation data, and
downstream task. If you vary the pretraining data,
then you must fix a validation corpus to compare
the loss across models. Once it is fixed, you might
hope to focus on the validation loss alone and
simplify your research. It is unclear how to choose
the correct validation data but, what is more, its
choice can entirely reverse which pretraining setup
appears superior for a downstream task if we do
not consider the full context. The pretraining data,
validation data, and downstream task all interact
in forming the scaling law—you can not consider
one without the other two. In particular, you can
not compare data mixes by their validation losses
or downstream scaling laws based upon them.

To evince these claims, we reexamine the results
from Gadre et al. (2025), who pretrained models
over different corpora. We observe how pretrain-
ing data, validation data, and task all interact in
forming the scaling law (Figure 3). The colors
correspond to pretraining corpora: C4 (Raffel
et al., 2020) and RedPajama (Weber et al., 2024);
the columns correspond to validation data: C4
(Raffel et al., 2020) and Paloma’s 100 Program-
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ming Languages (Magnusson et al., 2024); and
the rows correspond to tasks: CoQA (Reddy et al.,
2019) and HellaSwag (Zellers et al., 2019). If you
ignore the other factors, then choice of validation
data can completely change the scaling trend:

Exaggerating differences. For HellaSwag with
C4 as the validation corpus (top left), pretraining
on either C4 or RedPajama produces the same scal-
ing law. However, when using 100 Programming
Languages (100 PLs, top right), the scaling laws
for C4 and RedPajama no longer superimpose—
pretraining on C4 appears to achieve much better
performance even for a worse validation loss.

Flipping scaling trends. Changing the task to
CoQA (bottom left) also changes the scaling laws,
with RedPajama now achieving better performance
sooner. Even worse, changing the validation corpus
from C4 to 100 PLs reverses this relationship again
(bottom right).

Thus, whether or not better perplexity translates
to better downstream performance depends on the
task, the pretraining corpus, and the validation
loss. Changes to any one of these three factors can
reverse which pretraining setup appears superior.

4 Irregular Scaling Is Common

Phenomena like emergence and inverse scaling
suggest that linear scaling laws do not capture all
task scaling behavior. However, it is also unclear
how prevalent these phenomena are in practice.
Thus, we re-examine scaling behavior on the 46
tasks tested by Gadre et al. (2025), classifying them
into six categories visualized in Figure 2. We find
that linear scaling actually occurs in a minority of
cases in their setting: 39% of the time (Figure 1).
For some experimental setups, non-linear scaling
is actually the norm. Are the experimental choices
of Gadre et al. (2025) abnormal? On the contrary,
all three of pretraining corpora, validation datasets,
and downstream tasks are from well-known sources
in the literature. Downstream tasks are comprised
of established evaluations like BoolQ, HellaSwag,
and BIG-Bench (Clark et al., 2019; Zellers et al.,
2019; Srivastava et al., 2023). Irregular scaling
occurs within popular tasks and is easy to find.

5 Scaling Behavior Is Not Always Robust

Finally, we show that conclusions about scaling
laws may not generalize across settings: setups
with the same validation data and downstream

tasks may observe entirely different scaling trends.
To show this, we take the 10 overlapping tasks
between Gadre et al. (2025) and Magnusson et al.
(2025). These authors consider several of the
same pretraining corpora and downstream tasks;
however, their implementation details differ (see
Appendix A). For example, Gadre et al. (2025) use
fewer answer choices for Commonsense QA. Thus,
we might expect to see quantitative differences in
some of their scaling laws, but what is more surpris-
ing is that we also see qualitative changes in their
scaling behavior.
To enable comparison, we evaluate all models
from Gadre et al. (2025) and Magnusson et al.
(2025) on the same validation corpus (C4). For
Magnusson et al. (2025), which does not use C4,
we evaluate 200 released checkpoints, which vary
in their pretraining setup:!
1. Parameters: {20M, 60M, 150M, 300M, 1B}.
2. Pretraining corpus: {Dolma, C4, DCLM-
Baseline, RefinedWeb (Falcon), FineWeb-
Pro} (Soldaini et al., 2024; Raffel et al., 2020;
Li et al., 2024; Penedo et al., 2023b; Zhou
et al., 2025).

3. Training steps: from 5,000 to 40,000, in inter-
vals of 5,000.

Out of the 10 overlapping downstream tasks,
Figure 4 shows three that produce different scaling
trends between setups. In both setups, MMLU
shows a positive trend; however, the noisiness
and shape of that trend differs greatly. At an
even greater extreme, CommonsenseQA’s scaling
behavior qualitatively changes: while Common-
senseQA shows nonmonotonic scaling in Gadre
et al.’s (2025) results, it exhibits a clean scaling
law with Magnusson et al.’s (2025). On the other
hand, in Magnusson et al.’s (2025) results, BoolQ’s
scaling law appears trendless; however, this lack of
trend comes from the models spanning too small a
validation loss range. Since Gadre et al.’s (2025)
models cover a wider range of validation losses, the
trend more clearly emerges. Thus, scaling behavior
can fluctuate, even between controlled studies for
the same task with the same pretraining corpora.

6 Discussion

Given the cost of training modern foundation
models, scaling laws have become an invaluable
tool for making informed modeling decisions. Scal-

'The 20M models are the smallest models in Magnusson
et al. (2025) and have the highest cross-entropy loss.
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Scaling Laws' Sensitivity to Experimental Setup
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Figure 4: Scaling behavior changes depending on the experimental setting. Gadre et al. (2025) and Magnusson
et al. (2025) both train language models on C4 and evaluate on MMLU, BoolQ, and Commonsense QA. Still, they
differ in their details, such as model architecture, task formatting, or the number of answer choices (in the case of
Commonsense QA). Even with the same corpora and downstream task, scaling trends can be dramatically different.

ing laws enable us to extrapolate results where
compute costs would otherwise make extensive
experimentation infeasible. However, extrapola-
tions are only worthwhile when their assumptions
are faithful to the data.

As practitioners of scaling laws, we must real-
ize that predictable scaling laws often exist, but
one cannot assume that they hold for all contexts.
Even if scaling is stable on the same task for the
same validation data, other aspects of the exper-
imental setup might change the scaling behavior
(§5). To some extent, scaling laws are investigator-
specific (Li et al., 2025), and so each investigator
must verify the scaling law’s presence with visual-
izations and regression diagnostics (Shalizi, 2015).

For researchers, downstream scaling laws offer
many fascinating new directions. Empirically, we
need better ways to stabilize scaling laws and
detect when irregular scaling might occur. We must
understand the factors affecting scaling laws, and
what parts of the experimental setup must remain
constant for linear scaling laws to hold. Theoreti-
cally, we need a model for why predictable scaling
occurs (Hutter, 2021), and a core goal of such a
theory should be explaining exactly the cases in
which it does not.

7 Conclusion

In this work, we surveyed where downstream scal-
ing laws break down. Depending on the pretrain-
ing corpus, validation corpus, or downstream task,
scaling laws can change. Better perplexity does

not always translate to better downstream perfor-
mance (§3); perplexity is not all you need. Even
when holding pretraining and validation data the
same, more often than not a predictable scaling law
does not exist at all (§4). Irregular behaviors like
nonmonotonic, trendless, or breakthrough scaling
are all common; one must establish predictable
scaling for the given task before relying on it.
Finally, seeing predictable scaling in one exper-
imental setup does not guarantee it for another (§5).
Until we better understand why predictable scaling
arises and its sufficient conditions, investigators
must verify scaling laws in their own settings.

Limitations

Our work uses data and model checkpoints from
existing studies (Gadre et al., 2025; Magnusson
et al., 2025). While this is sufficient for the coun-
terexamples featured in this work, there may be
unknown biases shared between these two projects
that we have missed.

In addition, our study establishes that down-
stream scaling laws are unreliable under current
practice. Neural networks used to be notori-
ously difficult to train; however, as understanding
developed around how to architect, initialize, and
optimize them, training neural networks became
routine and reliable. In a similar way, it is possible
that the difficulties discussed here may be over-
come by better techniques for measuring and esti-
mating scaling laws. We hope the challenges we
identify here inspire researchers to search for them.
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A Data Sources

The first set of results comes from Gadre et al.
(2025) and is available? under the MIT License.
Gadre et al. (2025) pretrain transformer language
models across different scales on several differ-
ent corpora (e.g., C4 (Raffel et al., 2020), RedPa-
jama (Weber et al., 2024), and RefinedWeb (Penedo
et al., 2023a)). For each model, they compute its
validation loss on these and other corpora, and eval-
uate the model with few-shot prompting across 46
tasks using LLM Foundry.?

The second set of results comes from Magnus-
son et al. (2025) and is available* under the ODC-
By License. Magnusson et al. (2025) also pretrain
transformer language models but they choose differ-
ent architectural details than Gadre et al. (2025) and
use the C4 and RefinedWeb versions from Dolma
1.7 (Soldaini et al., 2024). They pretrain models
across these and other corpora and evaluate them
with few-shot prompting on 10 different tasks via
OLMES (Gu et al., 2025).°

The evaluation harnesses, LLM Foundry and
OLMES, have some important differences. LLM
Foundry ships with its own versions of tasks’
datasets. For some tasks (e.g., Commonsense
QA and SIQA), it changes the number of answer
choices, thus the random baseline can change
between the different versions and we have indi-
cated this in the appropriate figures. LLM Foundry
also varies the number of shots depending on the
task, whereas OLMES uses 5 curated examples
for each one. Other differences include the task
formulation (whether to use multiple-choice or
cloze format) and implementation details such as
the prompts.

Finally, LLM Foundry’s version of SIQA had an
error where the gold labels were incorrect.® This
issue was fixed in LLM Foundry v0.5.0;7 however,
Gadre et al. (2025) used v0.4.0 for at least some of
their experiments.® As a result, we do not exam-
ine SIQA in our analyses, although Figure 11 in
Appendix D includes SIQA for completeness.

2https://github.com/mlfoundations/scaling
3https://github.com/mosaicml/llm—foundry
4https://huggingface.co/datasets/allenai/
DataDecide-eval-results
5https://github.com/allenai/olmes
6https://github.com/mosaicml/llm—foundry/pull/
774.
"https://github.com/mosaicml/11m-foundry/
releases/tag/v0.5.0
8https://wandb.ai/samir/dcnlp/runs/rezsoSec/
files/requirements.txt

B Reproducibility

We augment the results from Magnusson et al.
(2025) by evaluating their models on C4’s vali-
dation data. This additional information enables
us to compare scaling laws from Magnusson et al.
(2025) and Gadre et al. (2025).

To compute the validation loss, we ran the
DataDecide (Magnusson et al., 2025) models from
HuggingFace using ai2-olmo (https://github.
com/allenai/OLMo), computing the perplexity on
C4’s validation split using a batch size of 64. For
inference, we used a combination of A100 and
H100 GPUs with 32 GB of CPU RAM. Running
inferences over the C4 validation set took approxi-
mately 10 minutes.

C Scaling Behaviors

Our analysis centers on qualitative scaling behavior
in order to avoid having its conclusions depend on
a particular form of the scaling law. Without formal
criteria, researchers might disagree on particular
examples, but then researchers might also disagree
on formal criteria. Thus we define the scaling
behaviors informally, as follows:

predictable Performance increases, without too
much variation around the trend.

inverse Performance decreases as loss improves.

nonmonotonic Performance switches between
increasing and decreasing.

noisy Performance increases but varies greatly
around the trend.

trendless Performance is flat or there is too much
noise to discern a trend.

breakthrough Performance starts flat, abruptly
increases, and then plateaus.

Figures 5 through 10 present the tasks studied
in Gadre et al. (2025) sorted by scaling behav-
ior. The figures include scaling laws fitted using
the functional form from Gadre et al. (2025) that
relates the error rate to the validation loss: y =
e — k exp{—~ x}. We apply this functional form
to the accuracy using the fact that accuracy is
one minus the error rate. The scaling laws were
fitted by minimizing mean squared error with
differential_evoluation from SciPy (Virtanen
et al., 2020). For the optimization, we used bounds
of 0 to 1 for ¢, 0 to 20 for In(k) (we searched k on
a log scale to widen the range), and O to 20 for ~.
In addition, we used 60 for the popsize multiplier.
Figures 5 through 10 also include the R? of each
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scaling law’s fit as a measure of how closely the
scaling behavior adheres to the functional form.

D Sensitivity to Experimental Setups

Figure 11 shows how the scaling laws change
between the experimental setups of Gadre et al.
(2025) and Magnusson et al. (2025) across 10 tasks.

E The Effect of the Pretraining and
Validation Corpora

Figure 12 compares how the task, pretraining, and
validation corpora affect the scaling curve. For ease
of visualization, we only show the effect on tasks
with the cleanest, most predictable scaling laws.
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Figure 9: Tasks in Gadre et al. (2025) with no clear scaling trend.
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Figure 10: Tasks in Gadre et al. (2025) demonstrating breakthrough scaling.
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Figure 11: A comparison of scaling in the experimental setups of Gadre et al. (2025) and Magnusson et al. (2025).
Both trained language models on C4 and evaluated via few-shot prompting on the tasks above; however, their
experimental setups differ: architectural details, prompts, number of shots, task format, and in some cases the
number of answer choices (Commonsense QA and SIQA). Such experimental details totally change scaling behavior.
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Figure 12: Different pretraining corpora will appear to be the best for downstream tasks, depending on choice of

validation dataset.
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