Hallucination Detection in Structured Query Generation via LLM
Self-Debating

Miaoran Li'
Iowa State University
limr@iastate.edu

Minghua Xu
Splunk
mingx@splunk.com

Abstract

Hallucination remains a key challenge in apply-
ing large language models (LLMs) to structured
query generation, especially for semi-private or
domain-specific languages underrepresented in
public training data. In this work, we focus on
hallucination detection in these low-resource
structured language scenarios, using Splunk
Search Processing Language (SPL) as a repre-
sentative case study. We start from analyzing
real-world SPL generation to define hallucina-
tion in this context and introduce a compre-
hensive taxonomy. To enhance detection per-
formance, we propose the SELF-DEBATING
framework, which prompts an LLM to gener-
ate contrastive explanations from opposing per-
spectives before rendering a final consistency
judgment. We also construct a synthetic bench-
mark, SynSPL, to support systematic evalua-
tion of hallucination detection in SPL gener-
ation. Experimental results show that SELF-
DEBATING consistently outperforms LLM-as-
a-Judge baselines with zero-shot and chain-of-
thought (CoT) prompts in SPL hallucination de-
tection across different LLMs, yielding 5-10%
relative gains in hallucination F1 scores on both
real and synthetic datasets, and up to 260% im-
provement for LLaMA-3.1-8B. Besides hallu-
cination detection on SPL, SELF-DEBATING
also achieves excellent performance on the
FaithBench benchmark for summarization hal-
lucination, demonstrating the strong generaliza-
tion ability of SELF-DEBATING, with OpenAl
ol-mini achieving state-of-the-art performance.
All these results consistently demonstrate the
strong robustness and wide generalizability of
SELF-DEBATING.

1 Introduction

Large language models (LLMs) have shown re-
markable success in generating structured queries
and code from natural language inputs, particu-
larly in well-resourced domains such as SQL and

"This work was done during an internship at Splunk.

Jiangning Chen
Splunk
jiangningc@splunk.com

Xiaolong Wang
Splunk
xiaolongw@splunk.com

Python. These languages benefit from extensive
public documentation, training corpora, and com-
munity support, enabling LLMs to learn them with
high fidelity. However, many real-world applica-
tions involve domain-specific or semi-private lan-
guages that are less prevalent in public data, such as
Splunk Search Processing Language (SPL)!, New
Relic Query Language (NRQL)32, and Kusto Query
Language (KQL)>. These languages are widely
used in practice but lack large-scale open datasets
and standardized benchmarks. This disparity cre-
ates unique challenges for LLM-based generation,
particularly with respect to hallucination detection.

In this work, we study hallucination in struc-
tured query generation for such semi-private lan-
guages, using SPL as a representative case. SPL
is a domain-specific query language used to re-
trieve, filter, and analyze machine-generated log
data within the Splunk platform. It features a rich
and expressive syntax that supports complex search,
aggregation, and transformation operations, draw-
ing inspiration from both the UNIX pipeline and
SQL. Despite its power and industrial adoption,
authoring SPL queries remains challenging, both
due to its steep learning curve and the scarcity of
publicly available guidance or training data.

With the rapid advancement of LLMs, there is
growing interest in using these models to assist
users in generating SPL queries from natural lan-
guage inputs, mirroring successful applications in
other domains, such as text-to-SQL and code gener-
ation. However, while LLMs demonstrate impres-
sive fluency and generalization ability, they often
suffer from hallucination. They can produce out-
puts that are syntactically valid but semantically

"https://docs. splunk.com/Splexicon: SPL

2https://docs.newrelic.
com/docs/nrql/get-started/
introduction-nrql-new-relics-query-language/

3https://1earn.microsoft.com/en—us/kusto/
query

16102

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 16102-16113
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://docs.splunk.com/Splexicon:SPL
https://docs.newrelic.com/docs/nrql/get-started/introduction-nrql-new-relics-query-language/
https://docs.newrelic.com/docs/nrql/get-started/introduction-nrql-new-relics-query-language/
https://docs.newrelic.com/docs/nrql/get-started/introduction-nrql-new-relics-query-language/
https://learn.microsoft.com/en-us/kusto/query
https://learn.microsoft.com/en-us/kusto/query

incorrect or unsupported by the input. This un-
dermines the reliability of LLM-generated SPL
queries. Despite the critical nature of this prob-
lem, hallucination in SPL generation remains an
underexplored area. To the best of our knowledge,
no systematic study or benchmark exists for hal-
lucination detection in SPL. This work aims to
fill this gap by investigating the types, prevalence,
and detection strategies of hallucination in LLM-
generated SPL queries.

In this work, we begin by formally defining hal-
lucination in the context of SPL and introduce a
taxonomy that categorizes common types of hal-
lucinated behaviors observed in LLM-generated
queries. We propose the SELF-DEBATING frame-
work for hallucination detection, drawing inspi-
ration from recent research on multi-agent de-
bate (Liang et al., 2024; Estornell and Liu, 2024;
Chan et al., 2024; Hu et al., 2025). While prior
methods typically involve multiple LLMs or agents
engaging in back-and-forth discussion to reach
a consensus, SELF-DEBATING adopts a more
lightweight and self-contained approach. It lever-
ages contrastive reasoning within a single LLM,
prompting it to generate explanations for both the
consistent and hallucinated interpretations of a gen-
erated query before making a final judgment. To
support systematic evaluation, we construct a syn-
thetic SPL benchmark, SynSPL, which serves both
as a testbed for our framework and as a reusable
resource for future research on hallucination miti-
gation in structured query generation. Experimen-
tal results show that SELF-DEBATING consistently
outperforms LLM-as-a-Judge baselines using stan-
dard zero-shot and chain-of-thought (CoT) prompts
across six different LLMs. To assess the general-
izability of our method beyond SPL, we further
evaluate SELF-DEBATING on FaithBench (Bao
et al., 2025), a challenging benchmark for hallu-
cination detection in summarization tasks. SELF-
DEBATING achieves consistent gains in F1-Macro
across all six tested LLMs, with four models show-
ing over 30% relative improvement. Notably, when
applied to the o1-mini model, SELF-DEBATING not
only surpasses the original baseline performance of
ol-mini on FaithBench, but also achieves state-of-
the-art (SOTA) results among all evaluated models.

2 Hallucinations in SPL Generation

The SPL generation task involves producing a valid
and grounded SPL query based on a given genera-

tion prompt. This prompt typically includes system
instruction and current user query.

Definition of Hallucination in SPL. A generated
SPL is considered consistent if it meets both of the
following criteria: 1) All structural components of
the query must be explicitly supported by the infor-
mation provided in the generation prompt. These
components can include the index, which specifies
the dataset to be searched; the sourcetype, which
defines the format or classification of the data; the
source, referring to the origin of the data (e.g., file
path or data stream); the fields, which represent
the extracted attributes from the data. 2) The query
is free from syntax errors and adheres to the correct
SPL syntax. If either of these conditions is violated,
the SPL query is considered hallucinated.

2.1 Data Collection

The data collection process consists of two stages.
In the first stage, we compile 25 user queries rep-
resentative of real-world scenarios and use them
to prompt eight large language models (LLMs):
ol-mini, GPT-40, LLaMA-3.1-8B, LLaMA-3.1-
70B, Phi-4, Mistral 8x22B, DeepSeek-R1-Distill-
Llama-8B, and DeepSeek-R1-Distill-Llama-70B.
This results in a total of 200 (prompt, SPL) pairs
for analysis. In the second stage, two annotators
with expertise in SPL and hallucination detection
independently annotate the generated data. Dur-
ing the first round, each annotator assigns a binary
label indicating whether the SPL query contains
hallucination. In the second round, they classify
the type of hallucination if one is present. Any
disagreements are resolved through discussion, and
if consensus cannot be reached, a third annotator
serves as the adjudicator to make the final decision
on the label and hallucination category.

2.2 Analysis
2.3 Hallucination Taxonomy

Hallucinations in SPL generation can be catego-
rized into five distinct types. [llustrative examples
for each type are provided in Appendix A.

Fabrication An SPL query is considered a fab-
rication hallucination if it introduces an index,
sourcetype, source, field, or lookup table that is
absent from the retrieved metadata and lacks any
supporting evidence across the provided prompt.

Mixed Information An SPL query is considered
to contain a mixed information hallucination if it

16103

Label Distribution

Consistent (31.0%)

62

Hallucinated (69.0%)

Hallucination Distribution

misinterpretation (0.7%) 1 syntax error (6.0%)

| misaligned information (6.7%)
1o '

mixed information (24.2%)

93

fabrication (62.4%) U

Figure 1: Distribution illustration of hallucinations in
collected SPL data. The top chart shows the overall
label distribution; the bottom breaks down hallucinated
queries by type. A single query may exhibit multiple
types, so counts may exceed 138.

combines individual components, such as index,
sourcetype, or fields, that are each supported by the
prompt, but the combination itself is not supported.

Misaligned Information An SPL query is con-
sidered to contain a misaligned information hal-
lucination if it includes field names and field val-
ues that are individually supported by the prompt,
but the association between a field name and its
assigned value is incorrect or unverifiable based
on the prompt. In contrast to mixed information
hallucinations, which result from combining valid
components, such as index, sourcetype, fields, from
different parts of the prompt in an unsupported way,
misaligned information specifically refers to invalid
pairings of field names and values, even when all
elements are mentioned in the prompt.

Syntax Error An SPL query is considered to
contain a syntax error hallucination if it includes
syntactic issues making the query invalid or not
executable. This may involve invalid or mis-
spelled commands, missing or mismatched quota-
tion marks, incorrect field references, or improper
command structure or ordering.

Misinterpretation An SPL query is considered
to contain a misinterpretation hallucination if it
introduces additional conditions, filters, or require-

ments that are not supported by or inferable from
the user’s request.

The label and hallucination type distributions
of the collected SPL data are presented in Fig-
ure 1. The results indicate that hallucination is
a widespread issue in SPL generation. Out of
200 evaluated (prompt, SPL) pairs, 138 queries
(69%) were identified as hallucinated, suggesting
that the LLM-generated SPL queries are at high risk
of producing ungrounded or inaccurate outputs in
real-world settings. A breakdown of hallucination
types reveals that fabrication is the most common
category, accounting for 62.4% of all hallucina-
tion instances. This suggests that LLLMs frequently
make up unsupported SPL components that are not
supported by the input prompt. The second most
common type is mixed information, which consti-
tutes 24.2% of the hallucinations. In these cases,
the model selects components that are individually
present in the prompt but combines them in an in-
valid manner, indicating difficulties in preserving
logical coherence across supported elements. In
contrast, misinterpretation of the user query is rela-
tively rare, occupying only 0.7% of the hallucinated
cases. This suggests that LLMs are generally able
to adhere to the user’s intent without introducing
extraneous or ungrounded constraints.

Model Hallucination Rate
Mistral 8x22B 84.0
Phi-4 68.0
LLaMA-3.1-8B 64.0
LLaMA-3.1-70B 52.0
Deepseek-R1-8B 84.0
Deepseek-R1-70B 72.0
GPT-40 56.0
ol-mini 68.0

Table 1: Hallucination rates of different models. Lower
values indicate better performance.

To further understand model-level differences,
we compute the hallucination rate of each LLM on
the collected SPL dataset. As shown in Table 1, the
hallucination rate varies significantly across mod-
els. LLaMA-3.1-70B achieves the lowest halluci-
nation rate at 52.0%, followed closely by GPT-40
at 56.0%. In contrast, models such as Mistral and
DeepSeek-R1-8B exhibit much higher hallucina-
tion rates of 84.0%, indicating a greater tendency
to produce unsupported or inaccurate SPL compo-
nents. These findings highlight that hallucination
remains a critical and model-dependent challenge
in SPL generation, reinforcing the strong need of
introducing hallucination detection and mitigation

16104

LLM Hallucination Count

Hallucination Count

B onicd 88 08
8x22® e 3 AT
wistra! WA A3y

88 108 _ot.40 _eqint
ceek R epsee\"m 708 et o1
e

= fabrication mmm misaligned information mmm misinterpretation of user query
we mixed information mmm syntax error

Figure 2: Distribution illustration of hallucination types
by LLM. Each bar shows the count of hallucination
types per model. A single SPL query may exhibit multi-
ple types and contribute to multiple categories.

in SPL generation problem.

Figure 2 further reveals that different LLMs ex-
hibit distinct hallucination tendencies in terms of
the types of errors they are more prone to generate.
For instance, Mistral 8x22B shows a disproportion-
ate tendency to produce syntax errors compared
to other models, indicating potential instability in
adhering to SPL’s structural constraints or lack of
relevant knowledge. In contrast, DeepSeek-R1-8B
and DeepSeek-R1-70B both exhibit more diverse
hallucination patterns, with a higher likelihood of
producing misaligned information or even rare mis-
interpretations, suggesting difficulty in consistently
mapping prompt semantics to correct field values.
LLaMA-3.1-8B and LLaMA-3.1-70B, while sim-
ilar in architecture, diverge slightly in their hallu-
cination behavior, with the 70B variant avoiding
syntax and misinterpretation errors entirely, hint-
ing at the stabilizing effect of scale. Meanwhile,
GPT-40 and o1-mini demonstrate more focused ten-
dencies, primarily producing fabrication and mixed
information errors, suggesting generally strong syn-
tactic control but limitations in faithfully grounding
content. These model-specific patterns highlight
that hallucination is not only a matter of frequency,
but also of characteristic failure modes, which may
reflect differences in training regimes, model align-
ment, or architectural choices.

3 SELF-DEBATING Framework for
Hallucination Detection

We propose the SELF-DEBATING framework for
hallucination detection, which enables large lan-
guage models (LLMs) to assess the faithful con-
sistency of generated content through structured
contrastive reasoning. An overview of the frame-

The generation result is
hallucinated because ...

After examining the
generation prompt and
generation results and
considering both
explanations, I think the
generated result is ...

Generation
Prompt

Generation
Result

The generation result is
consistent because ...

Figure 3: Overview of SELF-DEBATING. Given a gen-
eration prompt and a generation result, the model gen-
erates two contrastive explanations: one assuming the
output is hallucinated and one assuming it is consistent.
The model then reflects on both explanations to make a
final judgment.

work is provided in Figure 3, and a running ex-
ample is included in Appendix B. This framework
can be generalized to other problems in which an
LLM produces a response conditioned on an in-
put prompt, such as structured queries, summaries,
answers, or other generation tasks. It operates in
two stages: explanation generation and final judg-
ment. By prompting the model to explicitly con-
sider and contrast both consistent and hallucinated
interpretations of the output, the framework fosters
deeper reasoning and leads to more accurate and
interpretable consistency assessments.

3.1 Explanation Generation

Given an input pair consisting of a generation
prompt and a corresponding LLM-generated out-
put, the model is first prompted to produce two con-
trasting explanations. One explanation is generated
under the assumption that the output is hallucinated,
highlighting elements that are not supported or ver-
ifiable based on the prompt. The other explanation
assumes the output is faithfully consistent, offering
justification based on alignment with the input con-
text. This contrastive explanation step forces the
model to articulate both potential perspectives and
prepares it for more nuanced decision-making in
the subsequent phase.

3.2 Final Judgement

In the second step, the LLM is required to deter-
mine whether the generated output is faithfully
consistent with the prompt or hallucinated. It is
provided with the generation prompt, the output,
and both explanations from the previous step. The

16105

model is instructed to read and consider both ex-
planations before making a final decision.

To mitigate potential position bias, such as un-
due influence from the order in which explanations
are presented, the process is executed twice, al-
ternating the order in which the explanations are
presented. If the LLM reaches the same conclu-
sion in both runs, that label is accepted as the final
prediction. If the decisions diverge, the LLM is
prompted three additional times with an increased
temperature (we use 0.5 in experiments) to encour-
age response diversity. The majority label across
all runs is then selected as the final decision.

4 SynSPL Dataset Construction

To enable the development and evaluation of hallu-
cination detection methods for SPL generation, a
suitable benchmark is needed. However, research
on SPL remains limited, and no large-scale bench-
mark currently exists for this purpose. Collecting
real-world queries and associated data is challeng-
ing due to privacy concerns and annotation costs.
In contrast, text-to-SQL has benefited from exten-
sive benchmarks and community support. Given
the conceptual and structural similarities between
SQL and SPL, we construct a synthetic benchmark
for SPL hallucination detection by adapting and
extending an existing text-to-SQL dataset.

We construct the synthetic SPL benchmark using
the development set of the BIRD (Li et al., 2023)
benchmark as the seed. The BIRD development set
spans eleven databases and includes SQL queries
across three levels of difficulty: challenging, mod-
erate, and simple. Each sample in the BIRD dataset
typically includes a user question, a corresponding
golden-standard SQL query, a piece of relevant
knowledge required for SQL generation, and the
name of target database. The construction process
involves two stages. In the first stage, we generate
gold-standard (prompt, SPL) pairs free from hallu-
cinations. In the second stage, we systematically
inject different types of hallucinations into these
gold queries to produce corresponding hallucinated
examples.

4.1 Construction of Consistent Pairs

To ensure broader domain coverage and increase
the difficulty of the resulting benchmark, we se-
lect up to 30 examples per database, prioritizing
more complex queries. This results in a total of
330 initial SQL samples, which serve as the seed

for constructing the synthetic SPL dataset. To gen-
erate golden (prompt, SPL) pairs without halluci-
nations, we follow a three-step process: (1) SQL-
to-SPL translation, (2) prompt synthesis, and (3)
post-validation.

We first prompt GPT-4o to translate the selected
SQL queries into equivalent SPL queries. To verify
semantic equivalence, we then ask GPT-4o to verify
that the translated SPL faithfully captures the intent
and logic of the original SQL query. Only those ex-
amples for which GPT-40 affirms equivalence are
retained, yielding 252 verified samples with trans-
lated SPL queries. We additionally prompt GPT-40
to extract the fields used in each SPL query. These
extracted fields are used both to support halluci-
nation injection in later stages and to provide an
additional layer of correctness checking. In particu-
lar, challenging SQL queries often involve multiple
JOIN operations and table aliases, which are not
typically used in SPL. This discrepancy can result
in translation errors, such as invalid field references
like T1.1id in SPL, where T1 is a table alias or joint
in the SQL query but has no equivalent in SPL.
To address this, we manually review the translated
SPL queries, paying special attention to field ref-
erences that may involve aliases, and correct any
errors to ensure that all gold-standard examples are
both syntactically valid and semantically faithful.

We then construct a synthetic generation prompt
to accompany each verified SPL query. The struc-
ture of the synthetic prompt mirrors that of a stan-
dard prompt used for SPL generation and com-
prises five components: a general instruction, re-
trieved SPL metadata, relevant example queries,
user history, and the current user query. The gen-
eral instruction remains fixed across all examples,
while the remaining components are query-specific
and are the focus of the prompt synthesis process.
The SPL metadata section includes a list of relevant
indices, each is accompanied by a brief description
highlighting representative fields. To simulate this,
we treat the tables from the original SQL query’s
database as corresponding indices, and the columns
within each table as potential fields. We prompt
GPT-40 to generate index descriptions based on
the column definitions in these tables. The relevant
example section consists of five (user query, SPL)
pairs that are semantically similar to the current
query. To identify these examples, we retrieve the
top five most similar user queries from the training
set of BIRD based on their semantic content and
include their corresponding translated SPLs as con-

16106

textual examples. To simulate user history, we as-
sume that a user is likely to explore related queries
within the same domain. Accordingly, we group
all user queries in the development set by their
associated database and randomly sample five ad-
ditional queries from the same database along with
SPL query translated by GPT-40 as the user history.
Finally, the current user query is constructed by
concatenating the original user question with its
associated supporting knowledge, as provided in
the BIRD dataset. This results in a realistic and
structured synthetic prompt that closely resembles
those used in real-world SPL generation scenarios.

In the final step, we leverage both GPT-40 and
ol-mini to independently assess whether each pair
is semantically and syntactically consistent. If both
models flag a pair as inconsistent, we manually
check the pair and correct it if necessary. This
multi-step process helps ensure that the resulting
dataset contains high-quality, hallucination-free
SPL examples that are reliable for subsequent hal-
lucination injection and evaluation.

4.2 Hallucination Injection

To simulate realistic failure cases and enable fine-
grained evaluation, we inject four types of halluci-
nations, including fabrication, syntax error, mixed
information, and misaligned information, into the
gold-standard (prompt, SPL) pairs, based on our
taxonomy. Misinterpretation hallucinations are ex-
cluded, as earlier analysis shows they are rare and
less impactful for large-scale evaluation.

Hallucinated SPLs are generated by six LLMs:
ol-mini, GPT-40, LLaMA-3.1-8B, LLaMA-
3.1-70B, DeepSeek-R1-Distill-Llama-8B, and
DeepSeek-R1-Distill-Llama-70B. For each gold
example, we prompt each model with the synthetic
generation prompt, the gold SPL query, a formal
definition of the target hallucination type, and a
few-shot demonstration of examples illustrating
that type. For fabrication hallucinations, we also
include extracted fields from the gold SPL to guide
manipulation. The model is instructed to generate
a new SPL query that reflects the specified hallu-
cination category while maintaining fluency and
structural plausibility.

The final dataset consists of 6,300 examples,
comprising 252 consistent examples and 252 hallu-
cinated examples for each combination of halluci-
nation type and injection model.

5 Experiments

5.1 Experimental Setup

We primarily use SynSPL to evaluate the perfor-
mance of SELF-DEBATING in hallucination detec-
tion. To further assess the generalization capabil-
ity of SELF-DEBATING, we additionally evaluate
it on FaithBench(Bao et al., 2025), a challenging
benchmark for summarization hallucination detec-
tion that features high-quality human annotations.
On both datasets, we compare SELF-DEBATING
against two prompt-based baselines: zero-shot
prompt(Luo et al., 2023) and a CoT prompt follow-
ing (Jacovi et al., 2025), both of which were previ-
ously evaluated on FaithBench. For SynSPL, we re-
port F1 score, precision, and recall for the hallucina-
tion class, as hallucination detection is the primary
focus. For FaithBench, we follow the original eval-
uation protocol and report balanced accuracy and
macro-averaged F1 score. Additionally, to better
understand model performance across both classes,
we report class-wise F1 scores for hallucinated and
faithfully consistent generations. In this work, we
use six popular LLMs as backbone models, includ-
ing: ol-mini, GPT-40, LLaMA-3.1-8B, LLaMA-
3.1-70B, DeepSeek-R1-Distill-LLaMA—-8B, and
DeepSeek-R1-Distill-LLaMA—70B.

5.2 Results on SynSPL

As illustrated in Table 2, SELF-DEBATING frame-
work demonstrates consistent performance im-
provements across all six evaluated LLMs, out-
performing both baseline methods, the zero-shot
prompt and the CoT prompt, in the majority of
cases. The most substantial gains are observed
in weaker and mid-tier models. For example,
the F1 score of LLaMA-3.1-8B improves signifi-
cantly from 23.39% with the zero-shot prompt and
only 2.55% with CoT to 85.05% under the SELF-
DEBATING framework. Similarly, DeepSeek-
R1-8B improves from 39.39% (zero-shot) and
19.13% (CoT) to 74.87% when applying SELF-
DEBATING. These results demonstrate the frame-
work’s effectiveness in enabling weaker models to
detect hallucinated SPL queries with much higher
accuracy. The improvements in recall further il-
lustrate that the Self-Debating framework effec-
tively addresses the core challenge of identifying
hallucinations, substantially reducing missed detec-
tions. Additionally, precision remains consistently
high across all models and even slightly improves
in many cases, demonstrating that the framework

16107

Model F1 Precision Recall

Zero FACTS Self Zero FACTS Self Zero FACTS Self

Shot CoT Debating | Shot CoT Debating | Shot CoT Debating
GPT-40 96.23 84.76 95.40 96.77 99.49 96.92 95.69 73.83 93.93
ol-mini 86.03 84.59 91.94 98.55 98.31 97.47 76.34 74.22 86.15
LLaMA-3.1-8B 23.39 2.55 85.05 98.29 100.00 96.64 13.28 1.29 75.95
LLaMA-3.1-70B 68.34 50.52 74.39 99.00 99.47 98.95 52.18 33.86 59.60
DeepSeek-R1-8B | 39.39 19.13 74.87 98.67 98.01 96.68 24.60 10.60 61.09
DeepSeek-R1-70B | 62.50 58.54 89.39 99.39 99.06 98.02 45.59 41.85 82.15

Table 2: Evaluation results on SynSPL for hallucination class. Bold numbers indicate the overall best in each metric.
Underlined numbers indicate the highest values for each LLM. All numbers are in percentage format.

maintains accuracy and robustness without intro-
ducing significant false positives.

There is a slight performance decrease observed
for the GPT-40 model, with the SELF-DEBATING
framework resulting in a marginal drop from
96.23% to 95.40% in F1 score. One possible ex-
planation is that GPT-40, already achieving high
baseline performance, benefits less from explicit
contrastive reasoning due to its sophisticated in-
ternal reasoning capabilities on SPL hallucination
detection. Introducing the additional complexity
of contrastive evaluation might inadvertently cause
minor confusion or overly conservative judgments
in an already high-performing model.

Overall, the results highlight the model-agnostic
nature and scalability of the SELF-DEBATING
framework, which enhances performance across
a diverse range of LLMs.

We further include the accuracy for each cate-
gory of data in Table 3. Overall, SELF-DEBATING
achieves the highest accuracy for every halluci-
nation type across most injection models, con-
firming its effectiveness is generalized rather than
type-specific. A notable observation is that SELF-
DEBATING sometimes reduces accuracy on consis-
tent samples, due to a more cautious stance that
occasionally flags valid outputs as hallucinated.
This reflects a precision—-recall trade-off, where
the framework aims to maximize hallucination de-
tection even if it results in some false positives.
However, this does not mean the framework is
simply more conservative or indiscriminately flags
hallucinations. Self-Debating adapts model be-
havior based on the error tendencies of the base
model, addressing the actual bottleneck. The frame-
work helps correct overly cautious models, such
as GPT-4o, by improving selectivity, and helps
under-sensitive models, such as LLaMA-3.1-8B,
by expanding detection coverage.

5.3 Results on FaithBench

The evaluation results on FaithBench are shown
in Table 4. Consistent with observations from
the SynSPL dataset, the SELF-DEBATING frame-
work demonstrates strong generalization and im-
proves performance over the zero-shot baseline
across most of six models. The improvement in
balanced accuracy and Macro F1, particularly for
GPT-40 and ol-mini, indicate improved discrim-
ination between hallucinated and consistent sum-
maries through contrastive reasoning.

The F1 score for hallucination detection shows
particularly notable improvements, underscoring
the framework’s strength in reliably identifying hal-
lucinated summaries across multiple models. How-
ever, the F1 score for consistent samples slightly
decreases for certain models such as GPT-40 and
DeepSeek-R1-70B. This minor performance trade-
off suggests that explicitly contrastive reasoning
may lead models to adopt a more conservative ap-
proach, occasionally misclassifying borderline con-
sistent examples as hallucinated.

However, compared to the results on SynSPL
dataset, the overall improvements obtained on
FaithBench tend to be smaller, particularly among
weaker-performing models such as DeepSeek-R1-
Distill-Llama-8B and LLaMA-3.1-8B. One possi-
ble explanation is that summarization outputs typi-
cally involve natural-language text, making subtle
hallucinations inherently more challenging to de-
tect than in structured query outputs. Summaries
often contain nuanced or minor inaccuracies, in-
creasing ambiguity and complicating precise iden-
tification of deviations from the input sources. An-
other potential reason relates to the prior exposure
of LLMs to large-scale natural language training
data. Models are typically extensively trained on
diverse textual corpora, making them highly profi-
cient and knowledgeable in common tasks such as
summarization. Consequently, explicit contrastive
reasoning may have less impact on tasks for which

16108

Model Consistent Fabrication Mixed Info Misaligned Syntax Error
GPT-40 23.41/90.87/28.17 | 99.12/94.53/98.68 | 98.96/95.07/98.78 | 99.40/95.93/99.22 | 98.20/88.29 /97.39
ol-mini 73.02/69.44/46.83 | 95.21/94.46/96.99 | 96.00/96.00/97.49 | 96.64/96.53/98.02 | 88.49/87.24/93.04
LLaMA-3.1-8B 94.44/100.00 /38.49 | 78.22/75.20/94.78 | 79.07/75.38/94.30 | 78.60/75.55/95.75 | 77.38/75.17/91.95
LLaMA-3.1-70B 87.30/95.63/84.92 | 87.80/81.96/92.14 | 91.60/86.90/92.16 | 92.13/87.29/92.72 | 80.65/77.71/81.63
DeepSeek-R1-8b 92.06/94.84/52.38 | 82.18/78.01/91.20 | 82.06/78.44/90.48 | 82.52/77.94/90.92 | 77.84/76.21/87.93
DeepSeek-R1-70B | 93.25/90.48/62.30 | 86.90/84.99/96.71 | 88.46/88.43/96.41 | 90.86/89.78/97.59 | 79.37/78.65/90.87

Table 3: Comparison of categorical accuracy achieved by zero-shot prompt, FACTS CoT, and SELF-DEBATING.
Each cell contains the three corresponding results. Bold numbers indicate the overall best in each metric. Underlined
numbers indicate the highest values for each LLM. Please note that there are 252 consistent samples and 1512
samples for each type of hallucinations. The numbers are percentages.

Model Balanced Acc. F1-Macro F1-Halu F1-Cons

Zero FACTS Self Zero FACTS Self Zero FACTS Self Zero FACTS Self

Shot CoT Debating | Shot CoT Debating | Shot CoT Debating | Shot CoT Debating
GPT-40 5459 5381 56.48 3692 36.10 54.90 26.20 25.08 67.19 47.65 47.12 42.61
ol-mini 56.39 56.17 63.42 41.22 41.80 58.77 3395 3539 65.88 48.50 4820 51.66
LLaMA-3.1-8B 51.21 51.96 50.87 39.86 37.04 40.35 35.88 28.78 37.37 43.85 4530 43.33
LLaMA-3.1-70B 5455 5348 54.48 37.90 3290 49.39 28.36 18.47 54.95 4745 4733 43.82
DeepSeek-R1-8B | 51.21 48.16 49.23 30.72 27.67 36.34 15.65 11.58 29.81 4579 43.76 42.86
DeepSeek-R1-70B | 53.24 53.63 56.60 32.14 3348 49.98 17.04 19.59 53.61 4724 47.36 46.36

Table 4: Evaluation results on FaithBench. Bold numbers indicate the overall best in each metric. Underlined
numbers indicate the highest values for each LLM. The numbers are percentages.

models already possess extensive prior knowledge.
Conversely, tasks like SPL generation are relatively
specialized and less represented in training data,
potentially leaving models with gaps in their prior
knowledge. In such scenarios, contrastive reason-
ing provided by the SELF-DEBATING framework
could be more effective, compensating for these
knowledge gaps. Despite these inherent differ-
ences and challenges, the SELF-DEBATING frame-
work consistently delivers improved detection per-
formance, underscoring its general robustness and
cross-domain applicability.

6 Related Work

Although direct research on hallucinations in SPL.
is currently lacking, insights from SQL, SPARQL,
and code generation provide valuable guidance.

6.1 Hallucination in Structured Query
Generation

Hallucinations in structured query generation tasks,
such as text-to-SQL, are well-documented. In this
setting, hallucinations typically stem from schema
misinterpretation or logical inaccuracies. Efforts
have been spent to alleviate hallucinations in SQL
generation. To reduce hallucinations, Qu et al.
(2024) introduce a task-aligned framework (TA-
SQL) that leverages schema linking and logical
synthesis aligned with the model’s pretraining ex-
perience. Shen et al. (2025) conduct a compre-
hensive study of errors produced by in-context
learning (ICL) methods in text-to-SQL. They iden-
tify frequent schema, syntax, and semantic er-

rors and propose MapleRepair framework, which
applies modular error repair strategies tailored
to different error types. Beyond SQL, Sharma
et al. (2025) proposes Post-Generation Memory
Retrieval (PGMR) framework to address hallucina-
tions in LLM-generated SPARQL queries by incor-
porating a non-parametric memory module.

6.2 Hallucination in Code Generation

Recent work has also investigated hallucinations in
the code generation domain from various perspec-
tives, including incorrect logic, misuse of packages
or APIs, and hallucinated variable names or types.
Liu et al. (2024) presents an empirical analysis of
hallucination types in code generation and intro-
duce HalluCode, a benchmark for evaluating code
LLMs’ hallucination detection capabilities. Simi-
larly, Agarwal et al. (2024) provides a detailed tax-
onomy of code hallucinations and demonstrate that
LLMs can effectively detect these issues via multi-
class classification tasks. Tian et al. (2025) pro-
poses CodeHalu algorithm that utilizes execution-
based validation to identify hallucinations, and
introduce CodeHaluEval benchmark for evaluat-
ing hallucination prevalence and behavior across
LLMs. In addition to simple detection, Jiang et al.
(2024) introduces COLLU-BENCH, a benchmark
that pinpoints hallucinated tokens using program
normalization and confidence-based signals. Zhang
et al. (2025) investigates the underlying causes of
hallucination in practical code generation, attribut-
ing them to training data distribution, model confi-
dence, and sampling strategies.

16109

Several works target specific forms of halluci-
nation and propose targeted solutions. Spracklen
et al. (2024) conducts a comprehensive analysis of
package hallucinations in code generation, identify-
ing them as frequent errors, especially in scripting
and notebook-based workflows. To address halluci-
nated API calls, Jain et al. (2024) proposes enhanc-
ing prompts with structured API documentation,
demonstrating improved grounding and reduced
hallucination in real-world software libraries.

7 Conclusion

This work focuses on the challenge of hallucina-
tion detection in LLM-generated structured queries,
with a focus on semi-private or domain-specific
languages that are underrepresented in public train-
ing data. Using Splunk’s Search Processing Lan-
guage (SPL) as a case study, we define halluci-
nation in this context and introduce a taxonomy
of common error types. To boost the hallucina-
tion detection performance, we propose the SELF-
DEBATING framework, which uses contrastive rea-
soning by prompting a single LLM to generate
opposing explanations before making a final con-
sistency judgment. To support systematic evalu-
ation, we construct SynSPL, a synthetic bench-
mark for hallucination detection in SPL genera-
tion. Experimental results demonstrate that SELF-
DEBATING consistently outperforms prompting-
based baselines across six popular LLMs, with par-
ticularly large gains observed in weaker models.
Furthermore, SELF-DEBATING generalizes well to
other domains, achieving strong performance on
the FaithBench summarization benchmark, includ-
ing a new SOTA performance for o1-mini.

Our findings highlight the unique challenges of
hallucination in underrepresented structured lan-
guages and show that contrastive reasoning is a
scalable and effective strategy for improving the
consistency and trustworthiness of LLM-generated
outputs.

Limitations

While our work provides important advances in
hallucination detection for SPL generation, several
limitations remain. First, although the proposed
SELF-DEBATING framework shows strong perfor-
mance improvements, it incurs additional computa-
tional cost compared to simple prompting methods,
as it requires generating multiple explanations and
performing multiple rounds of reasoning. This may

limit its practicality in applications requiring low
redundancy. In addition, while SELF-DEBATING
significantly boosts the hallucination detection per-
formance of weaker and mid-tier models, its ben-
efits for already strong detectors, such as GPT-4o,
are more limited. In such cases, the added con-
trastive reasoning may not yield substantial further
improvements and, in some instances, may intro-
duce slight inconsistencies.

Second, our synthetic dataset, SynSPL, while
carefully constructed to simulate realistic SPL gen-
eration errors, may not capture the full diversity
and complexity of hallucination patterns observed
in real-world deployments. Future work includes
further expand benchmark coverage by incorporat-
ing more varied prompts, user intents, and retrieval
scenarios.

Third, although SELF-DEBATING generalizes
well to summarization tasks, it remains to be seen
how it performs on other generation tasks involving
highly open-ended outputs or domains with signif-
icantly different structures from SPL and summa-
rization.

Finally, our study primarily focuses on detection
rather than prevention. While accurate detection is
a critical first step, developing models and training
methods that inherently reduce hallucination rates
remains an important open problem.

Addressing these limitations will inspire future
research toward building more reliable and trust-
worthy LLM-based systems for structured query
generation and beyond.

References

Vibhor Agarwal, Yulong Pei, Salwa Alamir, and Xi-
aomo Liu. 2024. Codemirage: Hallucinations in code
generated by large language models. In Proceedings
of the AutoMates Workshop at the 33rd International
Joint Conference on Artificial Intelligence (IJCAI).
ArXiv:2408.08333.

Forrest Sheng Bao, Miaoran Li, Renyi Qu, Ge Luo,
Erana Wan, Yujia Tang, Weisi Fan, Manveer Singh
Tamber, Suleman Kazi, Vivek Sourabh, Mike Qi,
Ruixuan Tu, Chenyu Xu, Matthew Gonzales, Ofer
Mendelevitch, and Amin Ahmad. 2025. FaithBench:
A diverse hallucination benchmark for summariza-
tion by Modern LLMs. In Proceedings of the 2025
Conference of the Nations of the Americas Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Pa-
pers), pages 448-461, Albuquerque, New Mexico.
Association for Computational Linguistics.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,

16110

https://arxiv.org/abs/2408.08333
https://arxiv.org/abs/2408.08333
https://aclanthology.org/2025.naacl-short.38/
https://aclanthology.org/2025.naacl-short.38/
https://aclanthology.org/2025.naacl-short.38/

Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better LLM-based eval-
uators through multi-agent debate. In The Twelfth
International Conference on Learning Representa-
tions.

Andrew Estornell and Yang Liu. 2024. Multi-llm de-
bate: Framework, principals, and interventions. In
Advances in Neural Information Processing Systems,
volume 37, pages 28938-28964. Curran Associates,
Inc.

Zhe Hu, Hou Pong Chan, Jing Li, and Yu Yin.
2025. Debate-to-write: A persona-driven multi-agent
framework for diverse argument generation. In Pro-
ceedings of the 31st International Conference on
Computational Linguistics, pages 4689-4703, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Alon Jacovi, Andrew Wang, Chris Alberti, Connie Tao,
Jon Lipovetz, Kate Olszewska, Lukas Haas, Michelle
Liu, Nate Keating, Adam Bloniarz, and 1 others.
2025. The facts grounding leaderboard: Benchmark-
ing llms’ ability to ground responses to long-form
input. arXiv preprint arXiv:2501.03200.

Nihal Jain, Robert Kwiatkowski, Baishakhi Ray, Mu-
rali Krishna Ramanathan, and Varun Kumar. 2024.
On mitigating code 1lm hallucinations with api docu-
mentation. arXiv preprint arXiv:2407.09726.

Nan Jiang, Qi Li, Lin Tan, and Tianyi Zhang. 2024.
Collu-bench: A benchmark for predicting lan-
guage model hallucinations in code. arXiv preprint
arXiv:2410.09997.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang
Li, Kevin C.C. Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023. Can llm already serve as
a database interface? a big bench for large-scale
database grounded text-to-sqls. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS °23, Red Hook, NY, USA.
Curran Associates Inc.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2024. Encouraging divergent thinking
in large language models through multi-agent debate.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
17889-17904, Miami, Florida, USA. Association for
Computational Linguistics.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng
Wang, Zhen Yang, Li Zhang, Zhongqi Li, and Yuchi
Ma. 2024. Exploring and evaluating hallucinations
in llm-powered code generation. arXiv preprint
arXiv:2404.00971.

Zheheng Luo, Qiangian Xie, and Sophia Anani-
adou. 2023. Chatgpt as a factual inconsistency
evaluator for text summarization. arXiv preprint
arXiv:2303.15621.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy for
mitigating hallucinations in text-to-SQL generation.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 5456-5471, Bangkok,
Thailand. Association for Computational Linguistics.

Aditya Sharma, Luis Lara, Amal Zouaq, and Christo-
pher J Pal. 2025. Reducing hallucinations in lan-
guage model-based sparql query generation using
post-generation memory retrieval. arXiv preprint
arXiv:2502.13369.

Jiawei Shen, Chengcheng Wan, Ruoyi Qiao, Jiazhen
Zou, Hang Xu, Yuchen Shao, Yueling Zhang, Weikai
Miao, and Geguang Pu. 2025. A study of in-context-
learning-based text-to-sql errors. arXiv preprint
arXiv:2501.09310.

Joseph Spracklen, Raveen Wijewickrama, AHM Sakib,
Anindya Maiti, Bimal Viswanath, and Murtuza Jadli-
wala. 2024. We have a package for you! a compre-
hensive analysis of package hallucinations by code
generating 1lms. arXiv preprint arXiv:2406.10279.

Yuchen Tian, Weixiang Yan, Qian Yang, Xuandong
Zhao, Qian Chen, Wen Wang, Ziyang Luo, Lei Ma,
and Dawn Song. 2025. Codehalu: Investigating code
hallucinations in llms via execution-based verifica-
tion. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 39, pages 25300-25308.

Ziyao Zhang, Yanlin Wang, Chong Wang, Jiachi Chen,
and Zibin Zheng. 2025. LIm hallucinations in prac-
tical code generation: Phenomena, mechanism, and
mitigation. In Proceedings of the AutoMates Work-
shop at the 34th International Joint Conference on
Artificial Intelligence (IJCAI). ArXiv:2409.20550.

A SPL Hallucination Examples

Below are illustrative examples of each hallucina-
tion type along with explanations. These examples
are simplified for clarity and do not contain any
private or sensitive information.

Fabrication Hallucination Example

index=example_summary source="custom-usage"
| stats latest(metricValue) as metricValue,
latest(startDate) as startDate

| fillnull metricValue

| eval showPanel=if(((metricValue > @) AND
(now() > startDate)),1,0)

Explanation: The generation prompt provides two
valid sources: source-a and source-b. However,
the SPL query introduces an unsupported source,
custom-usage, which is not present in the prompt.
This constitutes a fabrication hallucination, as the
model generates content that is not grounded in the

16111

https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://proceedings.neurips.cc/paper_files/paper/2024/file/32e07a110c6c6acf1afbf2bf82b614ad-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/32e07a110c6c6acf1afbf2bf82b614ad-Paper-Conference.pdf
https://aclanthology.org/2025.coling-main.314/
https://aclanthology.org/2025.coling-main.314/
https://doi.org/10.18653/v1/2024.emnlp-main.992
https://doi.org/10.18653/v1/2024.emnlp-main.992
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://arxiv.org/abs/2409.20550
https://arxiv.org/abs/2409.20550
https://arxiv.org/abs/2409.20550

given input.

Mixed Information Hallucination Example

index=alternate_summary source="custom-usage”
| stats latest(metricValue) as metricValue,
latest(startDate) as startDate

| fillnull metricValue

| eval showPanel=if(((metricValue > @) AND
(now() > startDate)),1,0)

Explanation: Both index=alternate_summary
and source="custom-usage” are supported
individually in the generation prompt. However,
the prompt provides no evidence that these two
components are valid in combination. The SPL
query incorrectly mixes supported elements from
different contexts, resulting in a mixed information
hallucination.

Misaligned Information Hallucination Example

index=example_summary source=data-ingest
| stats latest(metricValue) as
metricValue, latest(startDate) as
startDate

| fillnull metricValue

| eval showPanel=if(((metricValue > @)
AND (now() > startDate)),1,0)

Explanation: Although both data-ingest and
the field source are mentioned in the generation
prompt, data-ingest is defined as a sourcetype,
not a valid source value. The SPL query
misassigns a value to a field based on incorrect
field-value pairing, resulting in a misaligned
information hallucination.

Syntax Error Hallucination Example

index=example_summary source=custom-usage
| stat latest(metricValue) as metricValue,
latest(startDate) as startDate

| fillnull metricValue

| eval showPanel=if(((metricValue > @) AND
(now() > startDate)),1,0)

Explanation: The generated SPL includes an
invalid command, stat, which does not exist in
the SPL syntax. The correct command should be
stats.

Misinterpretation Hallucination Example

index=example_summary source="custom-usage"”
earliest=-7ded

| stats latest(metricValue) as metricValue,
latest(startDate) as startDate

| fillnull metricValue
| eval showPanel=if(((metricValue > @) AND
(now() > startDate)),1,0)

Explanation: The SPL query introduces an ad-
ditional time constraint, earliest=-7d@d, which
is not supported or implied by the user query in
the generation prompt. This constitutes a misin-
terpretation hallucination, where the model adds
unintended filtering logic.

B Demonstration of Hallucination
Detection via SELF-DEBATING

Figure 4 presents an example in which the self-
debating framework correctly identifies a hallucina-
tion that is overlooked by the zero-shot prompting
baseline.

C Al Assistant Usage

We used Al assistants in revising the paper occa-
sionally.

16112

Index mentioned: frpm, schools, satscores

index=frpm
| join CDSCode [search index=school
FundingType="Local funding" | fields CDSCode School DOC]
| eval enrollment_difference = "Enrollment (K-12)" - "Enrollment (Ages 5-17)"
| eventstats avg(enrollment_difference) as avg_enrollment_diff
| where enrollment_difference > avg_enrollment_diff
| table School DOC Type

Zero-shot Prompt Result

Result: Consistent

Self-Debating Result

Final Judgment: Hallucinated
Reason: The SPL includes unsupported elements not mentioned in the prompt, such as the school
index and the field FundingType.

.

The SPL joins with the school index and
The SPL query is labeled as consistent be- filters by FundingType, both of which
cause it uses the frpm index, which is ex- are not present in the prompt. The
plicitly included in the prompt. Although FundingType field is not listed under any
the source= clause is not used, it is implied valid metadata. The query also introduces
through the index. All other fields and com- DOC and enrollment_difference logic
mands are assumed valid, and the query without grounding, making the result incon-
contains no syntax errors. sistent with the prompt.

Explanation for Hallucinated Label

Figure 4: Successful example where self-debating identifies hallucination missed by zero-shot prompting. The
generated SPL introduces unsupported content, correctly flagged by contrastive reasoning.

16113

