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Abstract

Retrieval-Augmented Generation (RAG) is in-
troduced to enhance Large Language Mod-
els (LLMs) by integrating external knowledge.
However, conventional RAG approaches treat
retrieved documents as independent units, often
overlooking their interdependencies. Hybrid-
RAG, a recently proposed paradigm that com-
bines textual documents and graph-structured
relational information for RAG, mitigates this
limitation by collecting entity documents dur-
ing graph traversal. However, existing meth-
ods only retrieve related documents from local
neighbors or subgraphs in the knowledge base,
which often miss relevant information located
further away from a global view. To overcome
the above challenges, we propose CoRAG that
dynamically chooses whether to retrieve infor-
mation through direct textual search or explore
graph structures in the knowledge base.1 Our
architecture blends different retrieval results,
ensuring the potentially correct answer is cho-
sen based on the query context. The textual re-
trieval components also enable global retrieval
by scoring non-neighboring entity documents
based on semantic relevance, bypassing the lo-
cality constraints of graph traversal. Experi-
ments on semi-structured (relational and tex-
tual) knowledge base QA benchmarks demon-
strate the outstanding performance of CoRAG.

1 Introduction

Recent advances in Large Language Models
(LLMs) (Chen et al., 2025) have led to impressive
achievements across diverse tasks such as question
answering (Daull et al., 2023) and drug discov-
ery (Zheng et al., 2024). Despite their capabilities,
LLMs remain prone to factual errors and halluci-
nations (e.g., answering “The capital of Canada is
Toronto”). To mitigate this, Retrieval-Augmented
Generation (RAG) (Gao et al., 2024) enhances

1https://github.com/zhengzaiyi/CoRAG

LLMs by retrieving relevant knowledge from ex-
ternal data sources (Zhu et al., 2025). However,
traditional RAG treats retrieved documents inde-
pendently, ignoring their interdependencies (Wang
et al., 2023). Graph-RAG (Peng et al., 2024) ad-
dresses this by leveraging graph-structured knowl-
edge bases (Yih et al., 2016) to model relation-
ships among retrieved entities, enabling richer con-
text and deeper semantics for improved genera-
tion (Peng et al., 2024).

Most Graph-RAG methods focus on graph traver-
sal over knowledge graphs (Schmelzeisen et al.,
2021) to retrieve relevant graph components, such
as nodes (Li et al., 2024d), triplets (Li et al., 2024c),
and paths (Lo and Lim, 2023), based on the rela-
tionships between entities in the graph. Despite
their strong performance in knowledge base ques-
tion answering (KBQA) (Diefenbach et al., 2018),
they still heavily rely on graph structures of the
knowledge base and lack consideration of textual
information. Such a paradigm restricts their effec-
tiveness in handling questions that require a higher
level of textual comprehension (Lee et al., 2024).
Specifically, KBs only represent knowledge as dis-
crete triplets (e.g., (high-altitude residents, prone
to, oxygen deficiency)), which lack the contextual
understanding needed to answer analytical ques-
tions like “Why are people in high-altitude regions
more prone to oxygen deficiency?”

Recently, there has been increasing attention on
using semi-structured knowledge bases (SKB) (Wu
et al., 2024b) to complement KBQA with supple-
mentary textual information, where each entity is
associated with a document. This has led to the
development of Hybrid-RAG (Yuan et al., 2024), a
paradigm that integrates relational and textual infor-
mation for retrieval within the RAG framework. As
shown in Figure 1, we retrieve entities either from
the entire set of documents based on textual rele-
vance (Textual), or from graph neighbours cen-
tered on topic entities in the query (Relational).
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Figure 1: Base (Textual and Relational) and hybrid (Se-
lected) retriever performance analysis on the MAG and
Prime datasets. Both types of base retrievers demon-
strate a large performance gap from the theoretical upper
bound (Selected), indicating significant potential for im-
provement through hybrid retrieval.

A topic entity refers to the main subject of a ques-
tion, e.g., ‘USA’ in “Who’s the president of the
USA?” The Selected strategy picks the better re-
triever for each question based on ground-truth
answers, serving as an approximate upper bound.
While the two base retrievers perform comparably,
Selected substantially outperforms both on SKBs,
underscoring the potential of hybrid retrieval.

Nevertheless, existing Hybrid-RAG works still
face two critical challenges. (1) Lack of Global
Information. Most works first identify topic enti-
ties within the query and subsequently apply ego-
graph searching (Wang et al., 2023) or path search-
ing (Ma et al., 2025) to leverage relational infor-
mation. However, relevant entities and documents
may be located at a considerable distance from the
identified topic entities. The restriction on the lo-
cality of graph traversal limits the flexibility and
effectiveness of retrieval. (2) Lack of Query-Aware
Retriever Selection. Existing Hybrid-RAG meth-
ods typically retrieve both relational and textual
information and concatenate them as input, regard-
less of their relevance to the current query (Sarmah
et al., 2024). This indiscriminate fusion can con-
fuse the LLM, as it may struggle to prioritize the
retrieved documents between redundant or conflict-
ing sources. Worse still, excessive inclusion of ir-
relevant text inflates the input length and increases
reasoning complexity (Li et al., 2024b).

To overcome these limitations, we propose
CoRAG, a novel Hybrid-RAG framework that
adaptively combines textual search with graph-
based relational search depending on the query.
The core idea of CoRAG is to enable a multiple-
retriever framework that autonomously integrates

relational and textual information during each re-
trieval request. Unlike previous methods that are
restricted to local graph neighborhoods, CoRAG
can flexibly retrieve global relevant information
through query-document text embedding match-
ing. Moreover, CoRAG intelligently blends textual
and relational retrieval results using a cooperative
retriever architecture, ensuring a coherent and ef-
fective integration of diverse knowledge sources.
Specifically, our hierarchical gating mechanism (Li
et al., 2025) intelligently combines retrieval results
from both textual and relational sources, thereby
enhancing the model’s overall performance and ro-
bustness. Overall, our contributions are as follows:

(1) We identify critical shortcomings in existing
Hybrid-RAG methods, particularly their lim-
ited retrieval scope and ineffective integration
of relational and textual information.

(2) We propose CoRAG, an intuitive yet power-
ful approach that dynamically selects retrieval
sources and integrates textual and relational
data seamlessly.

(3) Extensive experiments on diverse semi-
structured QA benchmarks (e.g., medicine,
e-commerce, and academic domains) demon-
strate that CoRAG consistently outperforms
baselines, highlighting its effectiveness and
general applicability.

2 Preliminary

In this paper, we focus on the semi-structured
knowledge base question answering (SKBQA)
task (Wu et al., 2024b), which extends the tradi-
tional knowledge base question answering (KBQA)
task (Talmor and Berant, 2018). In SKBQA, the
LLMs must not only retrieve relevant information
from the graph structures of SKB, but also from
an external semi-structured knowledge base (SKB)
by introducing entity-level documents. A detailed
definition is provided below:

Definition 2.1 (SKBQA). SKBQA consists of two
components: (i) a semi-structured knowledge base
(SKB) and (ii) a question-answering (QA) dataset.
SKB is a document-enhanced knowledge graph
SKB = {E , T ,D, TE , TR}, where E , T , and D
denote the entity set, the triplet set, and the doc-
ument set, respectively. Each entity e ∈ E is
aligned with one descriptive document De ∈ D.
TE and TR represent the collections of all entity
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types and relation types, respectively. Each triplet
t ∈ T can be represented as (e1, r, e2), where
{e1, e2} ⊂ E , r ∈ TR.
QA dataset consists of question/answers pairs:
DQA = {(q,A)}, where the question q appears
in the form of a string (e.g., “What drugs target the
CYP3A4 enzyme and are used to treat strongyloidi-
asis?”), and the answer set A is a set of entities
(e.g., {“Ivermectin”} for the before-mentioned q)
which satisfies A ⊂ E . Given a SKB and a DQA,
the SKBQA task requires the model to predict a
set Â ⊂ E consisting of k potential answer enti-
ties, aiming to maximize the coverage of all ground-
truth answer entities: maxÂ(|Â∩A|). We quantify
the task objective using Hits@k metrics.

3 Methodology

In this section, we introduce CoRAG, a Hybrid-
RAG framework that dynamically integrates both
relational knowledge and textual information. We
begin by extracting topic entities (§ 3.1) from the
question, which will be used in the subsequent
retrieval process. Next, we design two distinct
types of retrievers to separately fetch textual and
relational information (§ 3.2). In Section 3.3, we
present the core component of our approach, the
Cooperative-Retrievers (CoR). As illustrated in Fig-
ure 2, CoR employs a hierarchical architecture to
combine these two sources of information, which
utilizes a gate network that dynamically assigns
higher attention scores to the retrievers most rele-
vant to answering the question. Lastly, we intro-
duce CoRAG (§ 3.4), which integrates CoR with
an LLM reranker, leveraging LLMs’ reasoning
strengths in the SKBQA task.

3.1 Topic Entity Extraction

The first step aims to find the most relevant en-
tities mentioned in a user’s query, which can be
conceptualized as a named entity recognition task
(NER) (Keraghel et al., 2024). In the context of
SKBQA, the set of all entity names (E .names)
acts as the entity gazetteer, which has a limited size.
Therefore, rule-based NER (Jehangir et al., 2023) is
sufficient for the recognition task. As demonstrated
in Algorithm 1, we employ the Aho-Corasick Au-
tomaton algorithm (Aho and Corasick, 1975) to
identify named entities, utilizing greedy matching
to prioritize entities with longer string names. Ad-
ditionally, topic entity pruning via LLM will be
incorporated as an optional step to eliminate erro-

neous named entity recognition results from the
first-stage extraction. We denote the topic entities
of question q as ET . In general QA tasks, it is typi-
cally assumed that each entity in the corresponding
answer set A does not appear explicitly in the text
of the question q. Therefore, we have the set of
candidate entities: Cq = E\ET , and A ⊂ Cq.

3.2 Information Retrievers
Given a question q, we design two types of base
retrievers to handle textual and relational informa-
tion separately. Both types of retrievers are imple-
mented using a bi-encoder backbone R∗. Given a
document e ∈ Cq, we score it based on its semantic
similarity with the question q:

s(q, e) = R∗(q,De) = ⟨Eq(q), Ed(De))⟩, (1)

where ⟨·, ·⟩ represents the cosine-similarity func-
tion. Eq and Ed are two encoders for question and
document embedding generation. The score s(q, e)
measures the relevance of the document to the ques-
tion, which is further utilized for entity ranking in
the final stage of retrieval. The key distinction be-
tween the two types of retrievers lies in the scope
of entity documents they retrieve, which will be
detailed in the following.
Textual Retriever. The textual retriever mod-
ule R(t) is designed to retrieve from different
types of entity documents. First, we categorize
all nodes in the SKB into n = |TE | distinct
groups based on their entity types. For each
entity type E ∈ TE , we assign an individual
textual retriever R

(t)
E . Specifically, the retrieval

scope is restricted to all entities of type E,
while the relevance score is computed as follows:

R
(t)
E =

{
⟨Eq(q), Ed(De)⟩, Te = E,

0, otherwise,
(2)

where Te represent the entity type of e. Since
R(t) performs retrieval over the entire graph based
on entity-level attributes (i.e., document content
and entity types), the challenge of lacking global
information is inherently mitigated.
Relational Retriever. The relational retriever R(r)

is designed to retrieve local graph neighborhood
entity documents related to the query q based on
the structural connections within the SKB graph.
Compared to textual retrievers, relational retrievers
require the prior specification of the topic entities
ET . During the retrieval process, each relational
retriever R(r)

R exclusively scores the neighboring
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Figure 2: The architecture of Cooperative-Retrievers (CoR). n, r represent the number of entity types |TE | and
relation types |TR|, respectively. Each retriever’s scope is restricted to a specific subset of the entity set E , while the
gate networks dynamically assign appropriate attentions to the retrievers based on the given question.

entity set N (R, ET ) of ET based on the relation
type R:

N (R, ET ) = {e|∃s ∈ ET , (s,R, e) ∈ T }\ET .
(3)

Consequently, the retrieval scope of the relational
retriever R(r)

R is restricted to N (R, ET ):

R
(r)
R =

{
⟨Eq(q), Ed(De)⟩, e ∈ N (R, ET ),
0, otherwise.

(4)

3.3 Cooperative-Retrievers (CoR)

In this section, we build up a mixture-of-experts
architecture to effectively integrate textual and re-
lational retrieval results (challenge 2). Its core idea
is simple yet powerful: each question may bene-
fit differently from textual or relational informa-
tion, and may focus on different types of entities
or relations. Thus, CoR adaptively emphasizes the
retriever type most relevant to a given query, ef-
fectively addressing the challenge of query-aware
retriever selection.

3.3.1 CoR Structure
As shown in Figure 2, we adopt a hierarchical ar-
chitecture to enhance the scalability of retriever
selection for different |TE | and |TR|. At the bottom
of the entire structure, we assign a source-level gate
to each source (textual/relational) that aggregates

results from the corresponding type of retrievers.
The output of all the source-level gates will be inte-
grated by the top hybrid gate. Each gate network
applies the softmax function for activation prior to
generating its output.
Textual Gate. For a given question q, a candidate
entity e ∈ Cq, and |TE | textual retrievers for dif-
ferent candidate types, we first calculate the score
vector s(t)(q, e) for e which consists of scores gen-
erated by all the textual retrievers R(t)

E :

s(t)(q, e) = [R
(t)
E (q,De)]E∈TE

, (5)

where TE represents the set of all entity types. The
textual gate G(t) is designed to assign appropri-
ate weights to different textual retrievers, enabling
adaptive integration of their scores based on the
question q. Specifically, G(t) produces a weight
vector, which is used to compute the final textual
score s(t) through an inner product calculation:

s(t)(q, e) = (G(t)(q))⊤s(t)(q, e). (6)

Relational Gate. As a source-level gate, the rela-
tional gate G(r) computes the relational score s(r)

similarly to the textual gate G(t):

s(r)(q, e) = [R
(r)
R (q,De, ET )]R∈TR

, (7)

s(r)(q, e) = (G(r)(q))⊤s(r)(q, e), (8)

where ET represents the topic entities of q, R(r)
R is

the relational retriever for relation type R.
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Hybrid Gate. After the calculation of tex-
tual/relational scores s(t) and s(r), we utilize a hy-
brid gate G(h) to aggregate them and compute the
predicted score ŝ. The architecture and inference
of G(h) is identical to G(t) and G(r):

s(h)(q, e) = [s(t)(q, e), s(r)(q, e)], (9)

ŝ(q, e) = (G(h)(q))⊤s(h)(q, e), (10)

where t, r represent the texutal and relational
source. Eventually, the top-k candidate entities
Â ranked by ŝ(q, e) can either be directly used for
evaluation or be reranked in § 3.4.
Training Objective. For a given QA pair (q,A) ∈
DQA, we assign the ground-truth score s(q, e) of
a candidate entity e as 1 if e ∈ A otherwise 0.
To minimize the mismatch between s and ŝ, the
objective function is formulated as Mean Squared
Error loss:

L(q, ŝ) = 1

|Cq|
∑

e∈Cq
(ŝ(q, e)− s(q, e))2 , (11)

where Cq represents the set of candidate entities.

3.4 CoRAG

The preceding discussion elaborates on our
retriever module CoR. We further integrate
an LLM-based reranker lr within the Hybrid-
RAG framework, thereby forming our complete
CoRAG method. For a given question q, we
first retrieve the top-k candidate entities Â =
CoR(q, ET ), where ET represents the topic enti-
ties of q. We then ask the reranker lr to generate
binary relevance scores for each e ∈ Â:

s′(q, e) = lr(q,De) ∈ {0, 1}. (12)

We then fuse the scores from the reranker and CoR:

ŝ∗(q, e) = ŝ(q, e) + s′(q, e), (13)

where ŝ(q, e) is the score given by our CoR mod-
ule. Given the bounded range of cosine similarity,
the CoR score ŝ(q, e) is guaranteed to lie within
[0, 1]. Such property ensures that entities with the
reranker score s′ = 1 are always ranked higher than
those entities with s′ = 0, effectively granting the
reranker score s′ precedence over the CoR score
ŝ. Finally, CoRAG ranks the candidate entities Cq
according to ŝ∗(q, e). Please refer to Appendix A.2
for detailed prompt template of the reranker.

4 Experiments

In this section, we conduct experiments to eval-
uate the effectiveness of our proposed CoRAG.
Our primary focus is to address the following re-
search questions: RQ1: How is the performance of
our CoRAG framework (and its retriever module
CoR) on semi-structured knowledge base question-
answer tasks, compared to other baselines? RQ2:
How do the individual modules within our frame-
work separately contribute to the overall perfor-
mance? RQ3: How do the model’s hyperparame-
ters impact the performance of CoR? RQ4: Does
CoRAG provide an interpretable selection of dif-
ferent textual and relational retrievers?

4.1 Empirical Settings
Implementation Details. In the CoRAG frame-
work, we implement dense gating mechanisms us-
ing a two-layer MLP and employ softmax as the
output activation function to dynamically allocate
attention between retrievers. The input of our gate
networks (discussed in § 3.3) is the question embed-
dings generated by text-ada-002 from OpenAI.2

Recall that we use the bi-encoder as the backbone
architecture for all base retrievers in our framework.
Unless stated otherwise, both the query (question)
encoder Eq and the document encoder Ed are im-
plemented using text-ada-002. Note that the en-
coder backbone are pretrained and fixed through
out the entire framework.
Experimental Details. We implement and exe-
cute all code on a server equipped with 48-core
CPUs and NVIDIA A100 GPUs. The framework
is built using Python 3.11 and PyTorch 2.6.0. Un-
less otherwise specified, we set the number of train-
ing epochs to 5 and the learning rate to 1× 10−4.
For our LLM-Reranker, we use gpt-4o-mini from
OpenAI as the backbone model.
Datasets. We conduct experiments on three
challenging real-world SKBQA datasets from
STaRK (Wu et al., 2024b), comprising domains
of e-Commerce (STaRK-Amazon), academics
(STaRK-MAG), and medicine (STaRK-Prime). We
provide basic statistics in Table 1. Detailed dataset
examples are shown in Table 4.
Metrics. The empirical results are evaluated using
Hits @ 1, Hits @ 5, Recall @ 20, and MRR (mean
reciprocal rank) metrics.
Retriever Baselines. To enable a thorough and fair
comparison for both our retriever module CoR and

2https://openai.com/index/new-and-improved-embedding-model/

16092



Datasets |E| |T | |TE | |TR| tok(De) |DQA| tok(q) |A|
Amazon 1,035,542 9,443,802 4 5 546.23 9100 32.27 18.28

MAG 1,872,968 39,802,116 4 4 110.40 13323 32.48 2.78

Prime 129,375 8,100,498 10 18 204.48 11204 31.65 2.56

Table 1: The blocks in the middle and on the right, respectively, represent the statistics of the SKB and QA datasets.
The ‘STaRK-’ prefix is omitted in the dataset names. The operation |S| denotes the size of the set S, while |A|
represents the average answer entity numbers by each QA pair in the test QA dataset. tok(text) denotes the token
numbers of the text.

AMAZON MAG PRIME
Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR

Retriever Methods

DPR (RoBERTa) 15.29 47.93 44.49 30.20 10.51 35.23 42.11 21.34 4.46 21.85 30.13 12.38
DPR (text-ada-002) 39.16 62.73 53.29 50.35 29.08 49.61 48.36 38.62 12.63 31.49 36.00 21.41
Multi-VSS 40.07 64.98 55.12 51.55 25.92 50.43 50.80 36.94 15.10 33.56 38.05 23.49
CoR 40.99 64.52 55.75 51.46 43.00 60.15 56.98 50.52 20.85 40.49 47.44 30.02

Relative Improvement 2.3% -0.7% 1.1% -0.2% 47.9% 19.3% 12.2% 30.8% 38.1% 20.7% 24.7% 27.8%

Retrieval-Augmented Generation (RAG) Methods

ReAct 42.14 64.56 50.81 52.30 31.07 49.49 47.03 39.25 15.28 31.95 33.63 22.76
Reflexion 42.79 65.05 54.70 52.91 40.71 54.44 49.55 47.06 14.28 34.99 38.52 24.82
AVATAR-C 40.92 63.63 53.68 51.73 33.25 52.17 47.88 41.34 8.82 23.82 30.32 16.20
AVATAR 49.87 69.16 60.57 58.70 44.36 59.66 50.63 51.15 18.44 36.73 39.31 26.73
QAGNN 26.56 50.01 52.05 37.75 12.88 39.01 46.97 29.12 8.85 21.35 29.63 14.73
ToG - - - - 13.16 16.17 11.30 14.18 6.07 15.71 13.07 10.17
AGR 49.82 62.97 53.38 56.77 39.29 53.66 51.89 46.20 25.85 44.41 46.63 35.04
CoRAG 49.88 70.04 58.17 59.31 49.42 64.20 58.66 55.95 28.45 43.36 45.89 35.15

Relative Improvement 0.0% 1.3% -4.0% 1.0% 11.4% 7.6% 13.1% 9.4% 10.1% -2.4% -1.6% 0.3%

Table 2: Main results across STaRK-Amazon, STaRK-MAG, and STaRK-Prime datasets. CoR represents the
Cooperative-Retrievers module in our framework CoRAG. The best and runner-up models are respectively high-
lighted in bold and underlined. We also report the relative improvement of our methods compared to the best
retriever or RAG baseline, respectively.

the complete RAG framework CoRAG, we include
two categories of baselines. In the retrieval setting,
where the answers are directly retrieved from the
knowledge base, we incorporate embedding-based
retrieval approaches (DPR (Karpukhin et al., 2020),
and Multi-VSS (Wu et al., 2024a)) as baselines for
the comparison with CoR.

RAG Baselines. In the RAG setting, where the an-
swers are generated by LLMs, we incorporate both
traditional RAG methods (ReAct (Yao et al., 2022),
Reflextion (Shinn et al., 2023), AGR (Chen et al.,
2024), and AvaTaR (Wu et al., 2024a)) and Graph
RAG methods (QAGNN (Yasunaga et al., 2021),
ToG (Sun et al., 2024)). Notably, both ReAct and
AvaTaR utilize the STaRK library’s API for graph
traversal during the reasoning process, ensuring a
fair comparison with CoRAG. Detailed baseline

settings are shown in Appendix A.1.

4.2 Main Results (RQ1)

To answer RQ1, we compare retriever baselines
with CoR and RAG baselines with CoRAG. For
each question q, the top-25 entities retrieved by
CoR are processed by the LLM-Reranker. The
empirical results from the SKBQA task, presented
in Table 2, highlight the following key observa-
tions: (1) Our Cooperative-Retrievers module sig-
nificantly outperforms both DPR and Multi-VSS,
underscoring the effectiveness and necessity of in-
tegrating relational information into the retrieval
process. (2) With a straightforward LLM-Reranker,
CoRAG surpasses existing RAG methods across
almost all metrics, demonstrating that the primary
bottleneck in current Hybrid-RAG applications lies
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in the retriever module’s performance. (3) CoR’s
relative improvements on STaRK-MAG (academic)
and STaRK-Prime (medical) are more pronounced,
suggesting that tasks requiring deeper semantic
reasoning and knowledge synthesis benefit signifi-
cantly from the incorporation of relational informa-
tion. (4) In contrast, CoRAG shows less substantial
performance gains over the baselines on STaRK-
Amazon. This may be attributed to the fact that
recommendation tasks in the E-Commerce domain
are more reliant on product attributes and textual de-
scriptions than on the logical relationships present
in the knowledge base.

4.3 Ablation Study (RQ2)
To answer RQ2, we systematically remove each
of the three sub-modules in our method to evalu-
ate their individual contributions: (1) w/o Textual
Retrievers. In this ablation, we remove textual
retrievers from our framework and only use rela-
tional retrievers and the output score s(r) from the
relational gate for inference. (2) w/o Relational
Retrievers. Similarly, we only keep textual retriev-
ers and the textual gate in this ablation. (3) w/o
Hybrid Gate. For this analysis, instead of utilizing
the hybrid gate network G(h) in Eq. 10, we directly
compute the average of the textual score s(t) (Eq. 6)
and relational score s(r) (Eq. 8) for evaluation.

The experimental results in Table 3 provide the
following insights: (1) The effectiveness of our
model design is validated by the performance de-
cline observed across all datasets when any sub-
module is removed. (2) Without the retrieval in-
formation from the textual retrievers, the evalua-
tion metrics exhibit a substantial decline across
all scenarios, emphasizing that it cannot be sub-
stituted by relational retrievers. (3) Without rela-
tional retrievers, the model also experiences a per-
formance decline, with a particularly severe drop
on Prime. This underscores the varying importance
of relational information across different domains.
(4) The hybrid gate provides a slight performance
boost on the Amazon dataset, confirming our ob-
servation in the main results that relational infor-
mation offers limited improvement in this dataset.

4.4 Sensitivity Analysis (RQ3)
To address RQ3, we examine the impact of model
scale on performance. Additionally, we analyze the
API usage of the LLM-Reranker within CoR.
Model Scale. In this subsection, our objective
is to evaluate the impact of model scale on CoR.
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Figure 3: An intuitive analysis of hybrid retrieval on the
STaRK-MAG and STaRK-Prime datasets.

Specifically, we adjust the model size of the textual,
relational, and hybrid gate networks, varying the
hidden dimensions (while maintaining consistency
across all gate networks). We perform experiments
on the STaRK-MAG dataset and present the rel-
ative improvement of CoR over the best results
of embedding-based retrieval approaches in Fig-
ure 3. From the results, we observe the following
insights: (1) CoR performance consistently outper-
forms baselines in different model sizes (> 16%),
indicating its robustness and scalability to varying
model scales. (2) As the size of the model increases,
the performance initially improves as the model is
able to capture more information. However, be-
yond a certain point, performance begins to decline
due to insufficient training.

4.5 Case Study (RQ4)

To answer RQ4, we illustrate examples of CoR in-
ference in Figure 4. The query is asking for a ‘cellu-
lar component’/‘pathway’ with certain properties,
and it also describes a biological process through
phrases like ’involving... results in... through...’.
We observe that the textual gate assigns high scores
to these two entity types, encouraging the inclusion
of textual retrievers for these types. Regarding rela-
tional retrieval, if congenital adrenal insufficiency
is a phenotype of FDX2 dysfunction, the triplet
(FDX2, phenotype present, adrenal insufficiency)
needs to be given more attention. Additionally, un-
derstanding the impact of lost FDX2 expression
can also help answer the question. As a result,
the relational gate assigns high scores to retrievers
like ’phenotype_present’ and ’expression_absent’.
This case study demonstrates the interpretability
of our CoR design, as the trained gate models can
assign high attention scores to the retrievers that
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AMAZON MAG PRIME
Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR

CoR w/o TR 21.62 33.62 31.33 27.15 31.93 40.64 38.96 35.69 15.49 26.42 31.74 20.35
CoR w/o RR 39.71 63.40 56.11 50.67 29.08 49.61 50.12 38.30 8.64 19.53 22.97 13.60
CoR w/o HG 40.68 64.07 58.21 51.32 42.29 59.32 63.32 49.92 14.92 25.38 30.75 19.72
CoR 40.99 64.52 55.75 51.46 43.00 60.15 56.98 50.52 20.85 40.49 47.44 30.02

Table 3: Ablation study results. Here, TR, RR, and HG denote the Textual Retriever, Relational Retriever, and
Hybrid Gate, respectively. The best and runner-up models are respectively highlighted in bold and underlined.

Query: What is the cellular pathway involving 

FDX2 gene/protein interactions that results in 

congenital adrenal insufficiency through impaired 

cholesterol side-chain cleavage enzyme activity?

Textual weight:

                           pathway         biological_process

Relational weight:

                        
                               phenotype_present          expression_absent

STaRK-Prime

Figure 4: Case study of gate models in CoR. We present
a heatmap of attention scores in the textual and relational
gates. The labels on the heatmap correspond to the label
order in Table 4. Shaded text represents topic entities.

contribute most to answering the question.

5 Related Works

5.1 Retrieval Augmented generations

Retrieval-Augmented Generation (RAG) is a tech-
nique that integrates retrieval mechanisms with gen-
erative models to improve the quality of generated
responses (Fan et al., 2024). The retriever model
retrieves relevant information from a knowledge
base, which is then utilized by a generative model
(e.g., large language models (Touvron et al., 2023))
to produce more contextually accurate and informa-
tive output. Within RAG, Graph-RAG (Peng et al.,
2024) (and Hybrid-RAG (Yuan et al., 2024; Sarmah
et al., 2024)) incorporates graph-based structures
to represent relationships between documents. By
leveraging graphs, RAG models can exploit richer
contextual connections between retrieved docu-
ments, enhancing the coherence and informative-
ness of generated responses. Some models (Wang
et al., 2023) include a graph construction phase,
where documents are linked based on semantic or

structural relationships.

5.2 Ensemble Retrievers

Ensemble retrieval methods (Li et al., 2024a) im-
prove performance by combining outputs from mul-
tiple retrieval models, typically via score fusion,
rank fusion, or multi-stage retrieval. Score fu-
sion (Fox and Shaw, 1994) aggregates scores from
different retrievers into a unified score per docu-
ment, using methods ranging from simple averag-
ing or weighted sums (Guo et al., 2025) to learned
fusion functions (Khattab and Zaharia, 2020). Rank
fusion (Cormack et al., 2009) integrates ranked lists
by focusing on document order rather than scores.
Techniques like Borda Count (Fox and Bruyns,
2025) assign points based on rank positions to com-
pute a final ranking. Multi-stage retrieval applies
sequential retrieval steps, typically culminating in a
reranking phase (Liu et al., 2022; Gao et al., 2025),
where documents are reordered using additional
models or signals. Our framework adopts a multi-
stage architecture with an LLM-based reranker, fur-
ther extending ensemble strategies to incorporate
graph-structured knowledge.

6 Conclusion

We propose CoRAG, a Hybrid Retrieval-
Augmented Generation framework that dynami-
cally integrates relational and textual knowledge
through a Cooperative-Retrievers architecture. By
enabling global retrieval beyond local graph neigh-
borhoods and adaptively fusing heterogeneous
information, CoRAG overcomes key limitations of
existing Hybrid-RAG methods. Experiments on
semi-structured knowledge base QA benchmarks
demonstrate that CoRAG achieves state-of-the-art
performance, outperforming both standard RAG
and graph-based RAG methods. Our results
emphasize the importance of adaptive retrieval
selection in enhancing Hybrid-RAG performance.
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7 Limitations & Future Works

One key constraint of our CoR module is its ineffec-
tiveness in handling complex logical queries that
require multi-hop reasoning. This limitation pri-
marily arises from the fact that our training process
relies solely on supervision from ground-truth an-
swers. Feasible solutions include: (1) Incorporate
additional supervision by leveraging LLMs to gen-
erate annotated reasoning steps. (2) Utilizing rein-
forcement learning and reward shaping techniques
to generate intermediate supervision signals for
multi-step reasoning. Additionally, more advanced
models can be employed for topic entity extraction.
For future works, we aim to refine retriever selec-
tion strategies, explore multi-hop retrieval paths,
and extend the framework to domain-specific ap-
plications requiring complex reasoning.

8 Ethics Statement

This paper proposes CoRAG, a hybrid retrieval aug-
mented generation framework that can effectively
retrieve accurate answers in SKBQA tasks. While
acknowledging the need for responsible usage of
the proposed method, we do not foresee major neg-
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A Implementation Details

A.1 Baselines
DPR and Multi-VSS. We implement both base-
lines with the text-ada-002 model from OpenAI
as the language encoder backbones. For DPR, we
also include a variation using roberta-base (Liu
et al., 2019) from the HuggingFace library as the
backbone.
AvaTaR/AvaTaR-C/ReAct/Reflextion. We di-
rectly follow the implementation in the AvaTaR
paper (Wu et al., 2024a), in which AVATAR-C
removes the comparator from the optimization
pipeline.

A.2 Prompts
LLM Reranker. “You are a helpful assistant

tasked with determining whether an <entity_type>
satisfies a given query. Assign a score of 1 if there
is clear and explicit evidence that the <entity_type>
satisfies the query. Otherwise, assign a score of
0. Query: <query>. Information about the <en-
tity_type>: <entity_doc>. Output: The numeric
score for this entity is:”

B Supplementary Experiments

B.1 Encoder Backbones
To examine the generality of our framework on dif-
ferent text encoder models beyond text-ada-002,
we separately employ three additional embedding
models (MiniLM-L6, -L12 (Wang et al., 2020), and
mpnet-base (Song et al., 2020)) as the backbone to
evaluate dense retrieval (DPR) and our cooperative
retrievers (CoR) on each dataset.

The comparison results are demonstrated in Ta-
ble 5, which shows that our CoR method consis-
tently outperforms dense retrieval, demonstrating
its effectiveness and generalizability.

B.2 Human-Generated Queries
To examine the generality of our framework on
different data distributions, we evaluate our CoR
model on the split of human-generated queries in
the STaRK dataset. Through the empirical results
in Table 6, our framework consistently outperforms
dense retrieval.
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Algorithm 1 Topic Entities Exaction

Require: Entity set E , QA dataset DQA, Aho-Corasick Automaton A
Ensure: Topic Entities ET for each q ∈ Q

1: A.build(E .names) ▷ Initialize Automaton A
2: ET ← empty_dictionary
3: for each (q,A) ∈ DQA do
4: S ← A.search(q) ▷ S = {(si, ei, e)}
5: Sort S by si ascending, |e| descending
6: ET (q)← ∅, last_end← −1
7: for each (si, ei, e) ∈ S do
8: if si > last_end then
9: ET (q)← ET (q) ∪ {e}

10: last_end← ei
11: end if
12: end for
13: ET (q)← prune(ET (q)) ▷ (Optional)
14: end for
15: return ET

Algorithm 2 Analysis of Hybrid Retrieval Performance Upper Bound

Require: DQA: The test QA dataset.
Require: SKB: The semi-structured knowledge base
Require: candidates: Candidate entities list sorted by similarity(q,De) for each query.
Require: ET : Topic Entities for each question q
Ensure: hits1, hits5, recall,mrr: Evaluation metrics for each methods.

1: for each (q,A) in DQA do
2: Textual_top_k(q)← {top k candidates from candidates(q)}
3: seeds← ET (q)
4: neighbors← ∅
5: for each s in ET do
6: neighbors← neighbors ∪ get_neighbors(SKB, s)
7: end for
8: Sort neighbors by index order from candidates(q)
9: Relational_top_k(q)← {top k elements of sorted neighbors}

10: if |Textual_top_k(q) ∩ A| > |Relational_top_k(q) ∩ A| then
11: Best_top_k(q)← Textual_top_k(q)
12: else if |Textual_top_k(q) ∩ A| == |Relational_top_k(q) ∩ A| then
13: Best_top_k(q)← Relational_top_k(q)
14: else
15: Best_top_k(q)← Relational_top_k(q)
16: end if
17: end for
18: Compute evaluation metrics for Best_top_k,Relational_top_k, and Textual_top_k.
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Dataset Attributes Attribute Values

STaRK-Prime

Entity Types TE {disease, gene/protein, molecular_function, drug, path-
way, anatomy, effect/phenotype, biological_process, cel-
lular_component, exposure}

Relation Types TR {ppi, carrier, enzyme, target, transporter, contraindication,
indication, off-label use, synergistic interaction, associated
with, parent-child, phenotype absent, phenotype present,
side effect, interacts with, linked to, expression present,
expression absent}

Example Question q Can you supply a compilation of genes and proteins asso-
ciated with endothelin B receptor interaction, involved in
G alpha (q) signaling, and contributing to hypertension and
ovulation-related biological functions?

Example Answers A {EDN1, EDN2}

STaRK-MAG

Entity Types TE {author, institution, field_of_study, paper}
Relation Types TR {author___affiliated_with___institution, pa-

per___cites___paper, paper___has_topic___field_of_study,
author___writes___paper}

Example Question q Find publications from Carma researchers that report de-
tections using the Australian Square Kilometre Array
Pathfinder (ASKAP) radio telescope.

Example Answers A {ASKAP HI imaging of the galaxy group IC 1459, Wide-
field broad-band radio imaging with phased array feeds: a
pilot multi-epoch continuum survey with ASKAP-BETA,
The Detection of an Extremely Bright Fast Radio Burst in a
Phased Array Feed Survey}

STaRK-Amazon

Entity Types TE {product, brand, category, color}
Relation Types TR {also_buy, also_view, has_brand, has_category, has_color}

Example Question q Looking for a chess strategy guide from The House of
Staunton that offers tactics against Old Indian and Mod-
ern defenses. Any recommendations?

Example Answers A {Beating the King’s Indian and Benoni Defense with 5.
Bd3}

Table 4: Detailed description for the datasets (SKBs and QA datasets) we used in the experiments.

AMAZON MAG PRIME
Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR

MiniLM-L6 (DPR) 30.14 51.76 40.97 40.50 23.00 39.55 39.78 31.16 8.28 19.06 22.88 13.68
MiniLM-L6 (CoR) 38.35 55.57 57.24 46.23 25.40 43.73 38.79 33.59 13.57 27.70 36.32 20.31

mpnet-base (DPR) 30.20 54.02 44.52 41.41 25.55 44.35 44.45 34.43 7.67 19.63 24.18 13.63
mpnet-base (CoR) 40.79 57.37 60.33 48.45 27.47 48.23 42.57 36.75 13.64 26.88 35.67 19.91

MiniLM-L12 (DPR) 9.01 22.41 19.43 15.81 10.81 21.35 23.46 16.27 0.89 2.39 2.67 1.81
MiniLM-L12 (CoR) 31.03 45.89 47.38 37.61 15.10 28.68 27.71 21.67 6.50 14.89 21.36 10.54

Table 5: Performance comparison of DPR (Dense Passage Retrieval) and our method CoR using different encoders
(MiniLM-L6, mpnet-base, MiniLM-L12) on Amazon, MAG, and Prime datasets.
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AMAZON MAG PRIME
Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR

DPR 27.16 45.68 17.44 35.50 20.24 28.57 25.59 24.92 12.24 26.53 31.40 19.54
CoR 28.40 48.15 22.24 36.66 26.19 33.33 32.10 30.39 19.39 30.61 38.83 24.82

Table 6: Comparison between DPR (Dense Passage Retrieval) and CoR on the human-generated evaluation sets
across three datasets.

16101


