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Abstract
Financial decision-making presents unique
challenges for language models, demanding
temporal reasoning, adaptive risk assessment,
and responsiveness to dynamic events. While
large language models (LLMs) show strong
general reasoning capabilities, they often fail
to capture behavioral patterns central to human
financial decisions—such as expert reliance un-
der information asymmetry, loss-averse sen-
sitivity, and feedback-driven temporal adjust-
ment. We propose FinHEAR, a multi-agent
framework for Human Expertise and Adaptive
Risk-aware reasoning. FinHEAR orchestrates
specialized LLM-based agents to analyze his-
torical trends, interpret current events, and re-
trieve expert-informed precedents within an
event-centric pipeline. Grounded in behav-
ioral economics, it incorporates expert-guided
retrieval, confidence-adjusted position sizing,
and outcome-based refinement to enhance in-
terpretability and robustness. Empirical results
on curated financial datasets show that Fin-
HEAR consistently outperforms strong base-
lines across trend prediction and trading tasks,
achieving higher accuracy and better risk-
adjusted returns. The code1 is now publicly
accessible.

1 Introduction

Large language models (LLMs) (Achiam et al.,
2023; Meta AI, 2024) have demonstrated strong
capabilities in general reasoning tasks, including
chain-of-thought prompting (Wei et al., 2022), in-
context learning (Dong et al., 2024), and code
understanding (Nam et al., 2024). However, ap-
plying LLMs to financial domains remains chal-
lenging due to the dynamic, uncertain, and event-
driven nature of real-world markets. Effective fi-
nancial decision-making requires temporal reason-
ing, adaptive risk assessment, and responsiveness

*Equal contribution.
†Corresponding author.
1https://github.com/pilgrim00/FinHEAR

Figure 1: Conceptual motivation behind FinHEAR.
The framework is grounded in two behavioral finance
principles—information asymmetry and prospect the-
ory—which emphasize the role of expert knowledge and
loss-averse risk behavior in financial decision-making.

to external shocks—far beyond the scope of static
reasoning benchmarks.

These challenges are further amplified by the
complexity of financial data, which is high-
frequency, multi-source, and nonlinear (Cao, 2022;
Bahoo et al., 2024). Crucially, financial deci-
sions are not purely rational computations—they
reflect behavioral patterns shaped by human cog-
nition. Under uncertainty, individuals rely on ex-
pert heuristics (Simon, 1955, 1990; Akerlof, 1978),
adapting decisions through bounded rationality and
accumulated experience. Moreover, risk-sensitive
behaviors such as loss aversion and feedback-based
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adjustment, as formalized in Prospect Theory (Kah-
neman and Tversky, 2013; Barberis and Huang,
2001), remain largely unmodeled in existing AI
systems. Bridging this gap is essential for align-
ing LLM reasoning with real-world, high-stakes
decision-making.

Prior work has explored rule-based systems,
deep learning models, and more recently, LLM-
based frameworks for financial decision-making.
Rule-based approaches encode expert heuristics
but struggle with generalization in dynamic, event-
driven environments. Deep learning models,
including LSTM (Hochreiter and Schmidhuber,
1997), Transformer (Vaswani et al., 2017), and their
variants (Wang and Hao, 2020; Zhou et al., 2021),
improve temporal modeling but often lack inter-
pretability and adaptivity. Reinforcement learning
(e.g., PPO (Schulman et al., 2017)) offers policy
learning under uncertainty, yet remains data-hungry
and hard to align with human intuition.

Despite these advancements, existing methods
still fall short of key requirements for reliable finan-
cial decision-making. First, they lack structured
mechanisms to integrate accumulated human exper-
tise—critical for mitigating information asymmetry
and supporting decisions under bounded rational-
ity. Second, they exhibit limited sensitivity to risk,
often ignoring the loss-averse and risk-adjusted be-
haviors emphasized by behavioral finance theories
such as Prospect Theory. Third, they fail to en-
sure temporal consistency: unlike static reasoning
tasks, financial decisions unfold over time, where
early-stage errors can compound if not continually
revised. Addressing these gaps is vital for building
systems that are not only accurate, but also robust,
interpretable, and adaptive to real-world market
dynamics.

We introduce FinHEAR—a multi-agent frame-
work for Human Expertise and Adaptive Risk-
aware temporal reasoning. FinHEAR addresses
three key challenges in financial decision-making:
incomplete information, risk sensitivity, and tempo-
ral consistency.To reduce information asymmetry,
one agent retrieves relevant expert cases to emu-
late human-guided decisions under bounded ratio-
nality—mirroring how investors rely on heuristics
under cognitive constraints. To enhance risk aware-
ness, another agent estimates market risk via inter-
agent disagreement and adjusts position sizes based
on prediction confidence, modeling the loss-averse
behavior described by Prospect Theory. A feed-
back mechanism further refines earlier predictions

using realized outcomes, promoting temporal co-
herence and limiting error propagation.These com-
ponents are embedded in a structured, event-driven
pipeline, enabling FinHEAR to produce reasoning
that is both effective and consistent with behav-
ioral economic theories of human decision-making
under uncertainty.

We construct an event-driven financial dataset
linking multi-stock price movements with macroe-
conomic events, firm-level news, and expert com-
mentary. Empirical results show that FinHEAR
achieves substantial gains in both trend forecasting
and decision making, consistently outperforming
strong baselines across key metrics such as ACC,
MCC, CR, SR, MDD and CalmarR.

Our key contributions are summarized as fol-
lows:

• We propose FinHEAR, a multi-agent rea-
soning framework that integrates Human
Expertise and Adaptive Risk-aware tempo-
ral reasoning within a structured, event-driven
pipeline—the first to explicitly combine multi-
agent coordination with behavioral decision
principles for financial reasoning.

• We design explicit mechanisms for expert-
guided retrieval, risk-aware action modula-
tion, and feedback-driven temporal refine-
ment——grounded in behavioral decision the-
ories including bounded rationality and loss
aversion.

• We validate FinHEAR on real-world finan-
cial tasks in both trend forecasting and deci-
sion making task, consistently outperforming
strong baselines across many metrics.

2 Related Work

Deep Learning Methods. Deep learning has
been extensively applied to financial forecast-
ing, with models such as LSTM (Hochreiter and
Schmidhuber, 1997), GRU (Cho et al., 2014), and
ALSTM (Wang and Hao, 2020) capturing sequen-
tial dependencies and emphasizing salient time
steps. Transformer-based models (Vaswani et al.,
2017) improved long-range modeling, while In-
former (Zhou et al., 2021) and TimesNet (Wu et al.,
2023) enhanced efficiency and temporal variation
modeling. Extensions like StockNet (Gupta et al.,
2022) integrated sentiment features, and reinforce-
ment learning methods (Schulman et al., 2017;
Kaelbling et al., 1996) introduced reward-driven
decision-making, further refined by Logic-Q (Li
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et al., 2025) with structured priors.
However, these models primarily focus on pat-

tern extraction and lack mechanisms for event un-
derstanding and risk-adaptive reasoning—gaps that
FinHEAR bridges through expert-informed re-
trieval, dynamic risk modeling, and feedback-based
refinement.

LLM-Based Methods. Recent advances in large
language models (LLMs) have enabled struc-
tured financial reasoning through prompting and
memory-augmented techniques. Methods like
Chain-of-Thought (Wei et al., 2022; Wang et al.,
2022; Zhang et al.), ReAct (Yao et al., 2023b), and
their extensions (Yao et al., 2023a; Sun et al., 2024;
Bi et al., 2024; Wu et al., 2024; Zhang et al., 2025)
promote stepwise reasoning and agent coordination.
FinMEM (Yu et al., 2024a) and FinCon (Yu et al.,
2024b) incorporate memory and multi-agent struc-
tures for risk-aware decision-making, while Tradin-
gAgents (Xiao et al., 2024) mimics real-world orga-
nizational hierarchies to improve trading strategies.

While these methods introduce reasoning and
coordination capabilities, FinHEAR advances fur-
ther by unifying expert-guided retrieval, dynamic
risk modeling, and feedback-based refinement in a
behavior-aware framework.

3 Our Method

3.1 Human Expertise Curation

Inspired by the success of legendary investors such
as Warren Buffett, George Soros, and Peter Lynch,
we integrate structured expert reasoning into Fin-
HEAR. These investors embody diverse philoso-
phies—from value investing to macro-driven spec-
ulation—offering robust principles for decision-
making under uncertainty.

We construct a human-aligned knowledge base
by curating writings from expert letters, books, and
interviews, segmenting them into passages, and
extracting structured entries: the referenced finan-
cial event, the expert’s rationale, and contextual
attributes (e.g., market condition, asset type, out-
come). This enables FinHEAR to retrieve analo-
gous cases and ground reasoning in interpretable,
expert-informed insights.

Structured Knowledge Construction. Using
task-specific prompts and the GPT-4o API, we
transform the curated corpus into structured
query–knowledge pairs. The resulting repository

bridges unstructured narratives with actionable de-
cision contexts for downstream reasoning tasks.

Verification and Adaptive Refinement. Dur-
ing inference, real-time financial news is con-
verted into conceptual queries, embedded via text-
embedding-3-large, and matched to expert queries
using cosine similarity. Relevant knowledge acti-
vates the Human Expertise Agent to guide predic-
tions. Successful predictions reinforce the retrieved
knowledge, while failures trigger an adaptive refine-
ment loop via the Temporal Refine Agent, which
updates expert entries using GPT-4o. This iterative
process ensures the knowledge base remains reli-
able and adaptive to evolving market conditions.

3.2 Architecture of FinHEAR

FinHEAR is a multi-agent reasoning framework for
financial decision-making, designed to incorporate
structured human expertise, adaptive risk model-
ing, and feedback-driven temporal refinement. As
illustrated in Figure 2, it orchestrates six special-
ized agents, each aligned with a key component of
the reasoning process: capturing historical trends,
interpreting current events, retrieving expert analo-
gies, estimating risk, generating trading decisions,
and refining predictions based on feedback. These
components are grounded in behavioral economic
principles such as bounded rationality, information
asymmetry, and loss aversion. Further theoretical
foundations are detailed in Appendix A.1.

Historical Trend Agent. This agent summa-
rizes sequential market patterns across multiple
time horizons, capturing price dynamics, volatility
shifts, and cyclical behaviors. These patterns es-
tablish the historical context for interpreting new
signals. Importantly, the trend representations are
dynamically updated using realized outcomes, pre-
venting error accumulation from earlier misinter-
pretations.

Current Event Agent. This agent in-
terprets real-time financial events—including
macroeconomic announcements and firm-specific
news—and evaluates their directional influence rel-
ative to the evolving market context. The analysis
considers both short-term impacts and structural
long-term implications, ensuring temporal coher-
ence with the historical trend agent.

Human Expertise Agent. To incorporate ana-
logical reasoning from experienced investors, we
construct a curated expert knowledge base. Given
a current market state xcurrent, the agent retrieves
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Figure 2: FinHEAR architecture. The system coordinates agents for historical trend analysis, event interpretation,
and expert retrieval. These agents are organized in a temporal pipeline with feedback that adjusts past analyses
based on outcomes. Risk and direction are predicted separately and combined to generate final trading actions. In
the multi-asset setting, actions are dynamically aggregated based on risk-aware signals to determine final allocation
positions.

the most relevant expert case xexp using event con-
text embeddings. Each context is encoded via a
transformer-based encoder ϕ(·), and similarity is
computed as:

xretrieved = arg max
xexp∈M

cos
(
ϕ(xcurrent), ϕ(xexp)

)

(1)
where M is the expert memory base. The retrieved
case informs high-level decision reasoning based
on past expert behavior.

Risk Analysis Agent. This agent evaluates dis-
agreement across the historical, event, and expert
agents to estimate overall uncertainty. It outputs
a discrete risk level—low, medium, or high—used
later to adapt trading actions and the detailed ratio-
nale behind it.

Decision Agent. The Decision Agent predicts
market direction d ∈ up, down using integrated his-
torical, event, and expert signals. This guides the
downstream module in selecting trading actions
(e.g., long, short, hold, or close) based on both
the predicted trend and calibrated risk-aware posi-
tion scores.

Temporal Refinement Agent. This agent
strengthens temporal reasoning by refining past
analyses in light of realized outcomes. When pre-
dictions conflict with actual market behavior, this
agent updates historical trends to correct errors and

ensure consistency across time.

3.3 Adaptive Risk-Aware Decision Making
Single-Asset Setting. Following Prospect Theory,
we distinguish three risk contexts based on inter-
agent coordination and estimated market feedback,
and sample a sensitivity score ρ to modulate de-
cision strength. Rather than using uniform distri-
butions, we adopt scaled Beta distributions with
asymmetric shapes to reflect context-specific risk
preferences:

ρ ∼ ScaledBeta(αr, βr; [ar, br]) (2)

In low-risk contexts—often corresponding to
potential gain regions—ρ follows a left-skewed
distribution (e.g., Beta(5, 2) on [0.75, 0.9]), en-
couraging moderate risk-taking. In contrast,
high-risk contexts adopt a right-skewed shape
(e.g., Beta(2, 5) on [0.1, 0.4]), amplifying caution.
This design mimics behavioral asymmetries ob-
served in decision-making under uncertainty.

The final position score w is computed by com-
bining risk sensitivity, expert reliability, and event
similarity:

w = F (ρ, α, γ) = f(ρ) · h(α) · g(γ) (3)

Here, f(ρ) modulates decision strength, which am-
plifyies actions under low risk and attenuating them
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under high risk, in line with Prospect Theory’s
asymmetric treatment of gains and losses. Expert
reliability is given by h(α) = max(α, ϵα), enforc-
ing a minimum trust threshold under weak signals.
For event similarity, g(γ) =

√
max(γ, ϵγ) ex-

pands low values to avoid over-penalizing partially
relevant historical cases. Together, these compo-
nents stabilize decision outputs under uncertainty
and improve robustness in noisy environments.

To select an action, we evaluate the predicted di-
rection d ∈ {up, down} together with the computed
position score w. We introduce two thresholds, δlow
and δhigh, to regulate decision-making: the lower
threshold suppresses weak or ambiguous signals,
while the upper threshold prevents overconfident
actions under high risk. When w falls below δlow,
the agent chooses to hold; if w exceeds δhigh, it
chooses to close. For intermediate scores, direc-
tional context determines the final action—long if
the market is trending upward, or short if trending
downward:

a =





close, w > δhigh

hold, w < δlow

long, d = up and δlow ≤ w ≤ δhigh

short, d = down and δlow ≤ w ≤ δhigh
(4)

Multi-Asset Setting. For N assets, each stock
i computes a confidence score si as in Equation 3,
then applies a temperature-scaled softmax:

wi =
exp(si/T )∑N
j=1 exp(sj/T )

. (5)

Here the temperature T adjusts allocation sharp-
ness: lower T sharpens focus, higher T pro-
motes diversification. This generalizes risk-aware
decision-making to portfolio-level allocation.

4 Experiments

In this section, we empirically evaluate the perfor-
mance of FinHEAR by addressing the following
research questions:

• RQ1: Forecasting Accuracy. How accu-
rately can FinHEAR predict the directional
trend of major financial assets?

• RQ2: Backtest Performance. How well
does FinHEAR perform in historical market
simulations, in terms of return and risk?

• RQ3: Component Contribution. What is
the individual impact of each module within
FinHEAR on the overall trading outcome?

• RQ4: Asset-Style Adaptability. How does
FinHEAR’s performance differ for specific as-
sets when guided by human knowledge agents
with varying investment philosophies?

4.1 Experimental Setup
Datasets. We primarily focus on three stocks from
different sectors: Apple Inc. (AAPL), Tesla, Inc.
(TSLA), and Exxon Mobil Corporation (XOM), as
well as one commodity asset: Gold (XAUUSD).
For these assets, we construct a multi-source fi-
nancial dataset spanning December 2019 to De-
cember 2023, comprising daily prices (open, high,
low, close, volume), company financial statements,
daily public news and important macroeconomic
literature and data such as the official minutes of
the U.S. Federal Open Market Committee (FOMC)
and periodic reports of the Consumer Price Index
(CPI). Each data type is routed to specialized ana-
lytical agents based on its temporal and structural
characteristics, as detailed in Appendix A.3.

To incorporate long-term investment insights, we
compile a corpus of “investor wisdom”—including
books, interviews, and historical trading records
of iconic investors (e.g., Buffett, Soros)—and
dispatch asset-specific queries to retrieval agents
aligned with each investor’s philosophy. Further
details about human expertise base are available in
Appendix A.4.2.

Baselines. To ensure a thorough evaluation
across diverse methodological paradigms, we adopt
three categories of baselines:

1. Rule-based methods: including momentum
and mean-reversion strategies, adhering to pre-
defined financial trading rules.

2. Deep learning methods: including ALSTM,
Informer, StockNet, DQN and PPO, represent-
ing widely used neural approaches for sequen-
tial and decision-making tasks.

3. LLM-based agents: including general-
purpose generative models(GA), chain-of-
thought reasoning approaches(CoT), FinMem
and FinCon, covering a broad spectrum of
large language model applications in finance.

Evaluation Metrics. We evaluate performance
under two complementary settings: (1) Trend
Forecasting, measured by Accuracy (ACC%) and
Matthews Correlation Coefficient (MCC), which
assess the correctness and robustness of next-day
market predictions. (2) Decision-making, mea-
sured by Cumulative Return (CR%) (Hull, 2012),
Sharpe Ratio (SR) (Sharpe, 1994), Maximum
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Table 1: Comparison of the forecasting trend task of FinHEAR and the other 9 baselines in Single-Asset during the
test period

Category Method XAUUSD AAPL TSLA XOM

ACC (%) ↑ MCC ↑ ACC (%) ↑ MCC ↑ ACC (%) ↑ MCC ↑ ACC (%) ↑ MCC ↑

Rule-based
Momentum 47.58 -0.049 48.58 -0.0365 51.82 0.0257 47.18 -0.0565
Mean Reversion 47.35 -0.053 45.49 -0.0742 47.76 -0.0372 52.65 0.0521

Deep-learning

ALSTM 54.32 0.1212 54.69 0.1739 54.88 0.1095 52.25 0.0591
Informer 53.70 0.1576 53.52 0.1526 55.36 0.0523 53.59 0.0836
StockNet 52.57 -0.0366 53.59 0.0872 55.77 0.0416 51.96 0.0493
PPO 54.72 0.1346 53.62 0.1815 54.07 -0.0094 56.52 0.1237

LLM-based

CoT 52.03 0.1493 56.13 0.1629 51.83 0.0623 51.27 0.0585
GA 54.47 0.1551 54.17 0.1082 56.54 0.1412 52.78 0.0624
FinMem 55.73 0.1423 55.32 0.1327 58.82 0.1328 53.91 0.0430
FinCon 56.81 0.1408 52.76 0.0709 57.46 0.1194 56.37 0.1428

Ours FinHEAR 58.97 0.2017 59.08 0.1964 61.56 0.1897 58.19 0.1625

Drawdown (MDD%) (Ang et al., 2006) and Calmar
Ratio(Calmar R) (Young, 1991), which quantify
profitability, risk-adjusted return, and resilience un-
der adverse conditions. Formal definitions and
formulas are provided in the Appendix A.2.

Implementation Details. To ensure fair com-
parison, all LLM-based methods, including Fin-
HEAR, use GPT-4o-mini as the underlying model.
The data was split into a training period (January
2, 2020 - December 29, 2022) and a test period
(January 2, 2023 - December 29, 2023). Both Deep
Learning and LLM-based methods were trained on
the designated training data and evaluated over the
specified test period. Detailed information regard-
ing the data split and evaluation periods is provided
in Appendix A.4.1. The detailed experimental
configurations for Trend Forecasting and Trading
Decision-making are provided in Appendix A.4.4
and Appendix A.4.4, respectively. In the main com-
parative experiments, all models uniformly adopted
a fixed 5-day input time window. This setting was
maintained consistently throughout subsequent ex-
periments.

4.2 Experimental Results for Trend
Forecasting Task

Despite the potential decoupling between predic-
tive accuracy and financial returns (De Prado,
2018), we argue that accurate trend forecasting
is fundamental to the success of financial trading
strategies, as predictive quality directly determines
directional decisions. Hence, our initial focus is
on financial trend prediction as the foundation for
strategy development. Specifically, to answer RQ1,
we evaluate FinHEAR’s performance in predicting
next-day price movements of financial assets.

Table 1 reports trend forecasting results across
three datasets. FinHEAR consistently achieves the
highest Accuracy (ACC) and Matthews Correla-
tion Coefficient (MCC) (Matthews, 1975), demon-
strating strong robustness in single-asset predic-
tion. Overall, rule-based methods exhibit unsta-
ble performance due to the rigidity of their rules.
Deep learning methods demonstrated relatively sta-
ble performance during the subsequent test pe-
riod. In contrast, LLM-based methods exhibited
a wider performance range. This is because their
predictions rely on complex strategies or reasoning.
While this approach enables potential for high re-
turns, it also renders these methods vulnerable to
market changes.

FinHEAR addresses these limitations through
two key innovations: expert-guided reasoning to re-
duce information asymmetry, and feedback-driven
refinement to support adaptive temporal decision-
making. Its asset-specialized agent design further
enhances robustness and interpretability across di-
verse and volatile market conditions.

4.3 Experimental Results for Trading
Decision-making Task

Single-Asset Trading Task To evaluate the trad-
ing performance of FinHEAR, we compare it
against rule-based strategies, deep learning models,
and LLM-based agents across multiple dimensions
on four financial assets. As shown in Table 2, Fin-
HEAR consistently achieves the highest Cumula-
tive Return and Sharpe Ratio, indicating superior
performance in both return generation and stability.
Further details of these experimental results are
provided in Appendix A.4.5.This advantage holds
across diverse asset types, thereby showcasing the
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Table 2: Comparison of the overall trading performance of FinHEAR and the other 9 baselines in Single-Asset
during the test period

Category Method XAUUSD AAPL TSLA XOM

CR (%) ↑ SR ↑ MDD (%) ↓ CalmarR ↑ CR (%) ↑ SR ↑ MDD (%) ↓ CalmarR ↑ CR (%) ↑ SR ↑ MDD (%) ↓ CalmarR ↑ CR (%) ↑ SR ↑ MDD (%) ↓ CalmarR ↑

Rule-based
Momentum -0.84 -0.28 13.46 -0.06 -4.04 -0.31 19.87 -0.20 40.73 0.85 25.58 1.58 -31.32 -1.56 36.57 -0.86
Mean Reversion -19.00 -1.80 19.82 -0.96 -12.15 -0.78 19.78 -0.61 -42.70 -0.89 62.07 -0.69 25.09 0.89 12.90 1.94

Deep-learning

ALSTM 10.45 0.53 14.86 0.70 16.77 0.75 21.49 0.78 11.47 1.14 23.71 0.48 -0.78 -0.36 18.45 -0.04
Informer 5.36 1.33 17.34 0.31 8.54 1.22 17.34 0.49 -5.42 -1.22 25.12 -0.22 -14.14 -2.19 18.84 -0.75
StockNet -19.78 -1.73 23.90 -0.83 12.36 0.85 20.83 0.59 8.97 0.42 19.97 0.45 -5.29 -0.33 27.91 -0.19
PPO 6.82 1.77 15.85 0.43 15.46 1.67 19.35 0.80 -2.82 -0.01 25.11 -0.11 13.10 1.97 25.93 0.51

LLM-based

CoT 13.98 1.01 18.06 0.77 22.07 1.32 25.46 0.87 -14.26 -1.52 46.61 -0.86 -9.83 -0.51 31.18 -0.32
GA 14.51 1.78 25.37 0.57 13.66 1.32 15.02 0.91 16.98 0.76 33.98 0.50 -15.59 -1.24 33.74 -0.46
FinMem 18.32 1.52 18.12 1.01 19.24 1.43 31.02 0.62 28.85 1.22 33.84 0.85 -20.15 -1.59 38.59 -0.52
FinCon 17.29 1.48 19.25 0.90 -8.17 -0.53 32.47 -0.36 33.73 1.47 29.17 1.16 23.95 1.77 31.72 0.76

Ours FinHEAR 32.45 1.84 18.47 1.14 30.81 1.95 23.88 1.29 58.74 1.62 25.21 2.33 37.16 2.25 29.61 1.25

framework’s generalizability under varying market
dynamics.

FinHEAR addresses these limitations through
the integration of expert knowledge to guide de-
cisions, the adjustment of position sizes based on
risk perception and behavioral traits like loss aver-
sion, and the refinement of past predictions through
feedback. These capabilities enable FinHEAR to
adapt effectively in dynamic markets and deliver
robust, resilient trading performance.

We further conducted a comprehensive backtest
incorporating conservative transaction costs (5 ba-
sis points per side). As detailed in Appendix A.4.6,
our findings remain robust, with FINHEAR con-
sistently outperforming strong baselines even after
accounting for realistic trading frictions.

Robustness Across Market Regimes We eval-
uate FinHEAR on XAUUSD in 2023 across two
phases: a risk-aversion uptrend and a rate-hike
downtrend. As shown in Table 3, FinHEAR
achieves the highest returns and Sharpe ratios in
both regimes and uniquely remains profitable under
sustained bearish conditions.

Market Condition Methods CR SR

Risk-Aversion Driven
Uptrend

(Feb 1 – May 4, 2023)

FinCon 14.38 2.30
PPO 2.72 1.02
ALSTM 15.56 4.26
CoT 19.38 3.63
FinMem 12.82 2.45
FinHEAR 18.25 4.79

Rate-Hike Expectation
Driven Downtrend

(May 5 – Oct 5, 2023)

FinCon -5.58 -0.14
PPO -3.83 -0.06
ALSTM -10.39 -2.51
CoT -10.12 -2.14
FinMem -8.98 -2.27
FinHEAR 7.82 0.47

Table 3: Performance comparison under different mar-
ket conditions. CR = cumulative return, SR = Sharpe
ratio.

Multi-Asset Portfolio Management Task To
evaluate FinHEAR’s capabilities in portfolio man-
agement, we extend its multi-agent structure (pre-
viously designed for single-asset trading) into a
higher-level decision framework capable of han-
dling multiple financial assets simultaneously. This
extension enables FinHEAR to coordinate asset-
specific reasoning while optimizing overall port-
folio performance. We compare FinHEAR with

Table 4: Portfolio Management Performance Evalua-
tion: FinHEAR vs. Baselines (Test Period)

Strategy CR (%) ↑ SR ↑ MDD (%) ↓ CalmarR ↑
Markowitz 39.21 2.75 12.84 3.05
DQN 45.13 1.60 32.77 1.38
FinCon 55.02 2.11 35.15 1.57
FinHEAR 83.89 3.28 15.77 5.32

Figure 3: Multi-asset portfolio cumulative returns over
time for all strategies

three baselines: (1) the classical Markowitz mean-
variance (MV) portfolio, where the covariance ma-
trix and expected returns are estimated from train-
ing data (Markowitz, 2008); (2) a deep reinforce-
ment learning approach (DQN) (Mnih et al., 2013),
trained on data from three years prior to the test
period, and employing a continuous action space
to reflect real-world trading granularity; and (3)
FinCon, a recent LLM-based agent. All methods
share the same training and evaluation periods for
fairness. As shown in Table 4 and Figure 3, Fin-
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Method XAUUSD AAPL TSLA

CR / SR CR / SR CR / SR

FinHEAR (Full, Deep KB) 32.45 / 1.84 30.81 / 1.95 58.74 / 1.62
FinHEAR (Simplified KB) 24.33 / 1.51 19.55 / 1.32 39.26 / 1.51
FinCon 17.29 / 1.48 -8.17 / -0.53 33.73 / 1.47
PPO 6.82 / 1.77 15.46 / 1.67 -2.82 / -0.01
ALSTM 10.45 / 0.53 16.77 / 0.75 11.47 / 1.14
FinMem 18.32 / 1.52 19.24 / 1.43 28.85 / 1.22
CoT (Full KB) 18.19 / 1.45 25.64 / 1.59 10.37 / 0.61
CoT 13.98 / 1.01 22.07 / 1.32 -14.26 / -1.52

Table 5: Disentangling architecture and knowledge
contributions. Both components are significant, with
maximal performance when combined. CR = Cumula-
tive Return.

HEAR consistently outperforms all baselines in
terms of Cumulative Return (CR), Sharpe Ratio
(SR), and Calmar Ratio (CalmarR). These results
strongly suggest that FinHEAR’s long-short strat-
egy not only achieves higher excess returns but also
better controls extreme risks.

4.4 Ablation Studies

To address RQ3 and RQ4, we conduct two ablation
studies under the same training and testing setup
as the main experiments. The first study, summa-
rized in Table 6, examines the contribution of key
components within FinHEAR. The second study
(Table 7) investigates the impact of different expert
styles on single-asset trading. Further experimental
details are provided in Appendix A.4.7

4.4.1 Ablation Study on Model Components
To assess the role of key components in FinHEAR,
we conduct ablation experiments by removing four
modules: historical information, human exper-
tise, temporal refinement, and adaptive risk-aware
decision-making. Disabling the risk module re-
duces FinHEAR to a fixed full-position strategy,
lacking flexible position control. This study aims
to quantify the specific contribution of each mod-
ule to FinHEAR’s overall performance. As shown
in Table 6, all removals cause performance drops,
though to varying degrees.

Historical Information and Temporal Refine-
ment. Removing historical information leads to
the largest decline in cumulative return and Sharpe
ratio, indicating that past news is crucial for cap-
turing market trends. This reflects the idea of path
dependence—where current behavior is shaped by
prior events. Similarly, removing feedback-driven
temporal refinement weakens performance by pre-
venting the model from correcting earlier errors,

thereby reducing consistency.

Human Expertise. Removing expert knowl-
edge also degrades performance, especially in
single-asset tasks. This supports the concept of
bounded rationality, where investors rely on expert-
informed heuristics under uncertainty. FinHEAR
benefits from these inductive biases, improving
judgment in volatile or data-limited conditions.

Adaptive Risk-Aware Decision. Without adap-
tive risk control, FinHEAR becomes less respon-
sive to market uncertainty, resulting in larger draw-
downs and lower Calmar Ratios. This supports
insights from prospect theory, which emphasizes
adjusting risk based on potential losses. The risk-
aware mechanism helps FinHEAR manage expo-
sure and improve robustness.

4.4.2 Ablation Study on Asset-Expertise
Alignment

In our second study, we examine whether different
expert investment styles improve single-asset pre-
dictions by aligning better with specific asset char-
acteristics. This setup reflects key concepts from
behavioral economics, where bounded rationality
and information asymmetry lead investors to adopt
simplified heuristics based on personal or institu-
tional experience. Table 7 shows clear style-asset
alignment such as Buffett-style on AAPL. These
results suggest that investment philosophies vary
in their effectiveness across different market condi-
tions, and encoding such distinctions can enhance
model alignment with asset-specific dynamics.

In addition to investigating expert styles, we also
examined how model performance is affected by
varying input time window sizes. This study re-
vealed that optimal prediction time windows differ
across assets, exhibiting Temporal Specificity of
Asset Performance. Detailed experimental results
and analysis concerning different time windows are
provided in Appendix A.4.7.

Overall, these findings underscore FinHEAR’s
flexibility in capturing behaviorally grounded
strategies through expert-guided specialization. By
embedding decision principles such as bounded
rationality and loss aversion, FinHEAR supports
more interpretable and human-aligned reason-
ing—positioning it as a behavior-aware framework
for expert-informed decision-making in real-world
financial contexts.
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Table 6: Comparison of trading performance of different variants of FinHEAR under single-asset and portfolio
management

Task Asset Ablation Variants CR (%) ↑ SR ↑ MDD (%) ↓ CalmarR ↑

Single-Asset AAPL

w/o temporal refinement 22.39 1.67 25.58 0.88
w/o past trend 14.41 0.86 36.96 0.39

w/o human expertise 19.75 0.32 35.15 0.56
w/o adaptive risk-aware 16.32 0.74 31.72 0.51

FinHEAR 30.81 1.95 23.88 1.29

Portfolio Mgmt.
XAUUSD,

AAPL, TSLA,
XOM

w/o temporal refinement 52.73 2.17 37.81 1.39
w/o past trend 37.29 1.34 33.65 1.11

w/o human expertise 42.12 1.22 28.94 1.46
w/o adaptive risk-aware 36.18 1.15 35.03 1.03

FinHEAR 83.89 3.28 25.77 3.22

Table 7: Performance of expert-style agents on single-
asset trading

Asset Expert CR (%) ↑ SR ↑ MDD (%) ↓ CalmarR ↑

XAUUSD

Soros 32.45 1.84 28.47 1.34
Buffet 25.73 1.52 31.20 0.82
Lynch 28.98 1.63 34.15 0.85
Graham 21.39 1.33 30.76 0.69

AAPL

Soros 17.35 0.68 34.61 0.50
Buffet 30.81 1.95 23.88 1.29
Lynch 26.42 1.57 28.95 0.91
Graham 28.71 1.98 25.16 1.14

TSLA

Soros 21.26 1.19 38.30 0.55
Buffet 33.75 1.28 32.11 1.02
Lynch 48.74 1.62 35.21 1.38
Graham 35.52 1.49 39.18 1.10

XOM

Soros 25.19 1.54 37.12 0.68
Buffet 21.62 1.36 25.51 0.85
Lynch 15.38 0.88 44.01 0.35
Graham 27.16 2.25 29.61 0.91

4.4.3 Disentangling Architecture vs.
Knowledge Base Contributions

We perform a two-path ablation to isolate contribu-
tions from architecture and knowledge:

• FinHEAR (Simplified KB): Full architecture
with a simplified, keyword-only knowledge
base.

• CoT (Full KB): Standard Chain-of-Thought
baseline augmented with our curated knowl-
edge base.

Table 5 shows that: (1) FinHEAR’s architecture
improves performance even with minimal knowl-
edge; (2) the curated knowledge base brings sub-
stantial independent gains; (3) combining both
achieves the best results, confirming their synergy.

4.4.4 Sensitivity to Risk Thresholds
To validate our implementation of Prospect Theory,
we conduct a sensitivity analysis on the asymmet-
ric risk thresholds δlow and δhigh used in our Risk
Agent.

δhigh

δlow 0.5 0.6 0.7 0.8

0.1 26.88 / 1.71 28.13 / 1.83 29.5 / 1.75 28.05 / 1.48
0.2 29.03 / 1.81 30.81 / 1.95 28.03 / 1.83 30.24 / 1.53
0.3 25.66 / 1.67 25.93 / 1.63 27.55 / 1.92 28.15 / 1.91
0.4 15.34 / 1.23 22.53 / 1.51 24.88 / 1.79 27.89 / 1.99
0.5 – 20.37 / 1.14 21.05 / 1.52 24.11 / 1.36
0.6 – – 16.97 / 1.39 18.71 / 1.23
0.7 – – – 7.36 / 1.24

Table 8: Impact of (δlow, δhigh) thresholds on cumulative
return (CR) and Sharpe ratio (SR). Each entry shows
CR/SR.

As shown in Table 8, the optimal thresholds
(δlow = 0.2, δhigh = 0.6) align with Prospect The-
ory’s prediction: agents exhibit stronger risk aver-
sion in loss domains while remaining moderately
risk-seeking in gain domains.

5 Conclusion

This paper has proposed FinHEAR to address three
key challenges in financial decision-making: in-
complete information, risk sensitivity, and tempo-
ral consistency. To reduce information asymme-
try, it retrieves expert cases to emulate bounded
rationality. To manage risk, it adjusts positions
based on prediction uncertainty. A feedback mech-
anism further refines past decisions using outcome-
driven updates. These components form a struc-
tured, event-driven pipeline grounded in behavioral
finance. Experiments on single-asset and portfo-
lio tasks show that FinHEAR consistently outper-
forms rule-based, deep learning, and LLM-based
baselines across forecasting and decision-making
metrics. Overall, FinHEAR offers a promising step
toward interpretable, resilient, and behavior-aware
financial decision-making.
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Limitations

While FinHEAR incorporates core principles from
behavioral economics, the integration between AI
reasoning and human cognitive theories remains
preliminary. Future work could explore more in-
telligent and adaptive selection of expert personas
based on asset context, investor profiles, or mar-
ket conditions, enabling deeper alignment between
agent strategies and human decision-making behav-
ior.
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A Appendix

A.1 Behavioral Economics Foundations
FinHEAR is grounded in key principles from be-
havioral economics, which guide its architectural
design and decision-making mechanisms:

• Bounded Rationality (Simon, 1955, 1990):
Humans have limited cognitive resources and
cannot process all available information. Fin-
HEAR incorporates expert heuristics to emu-
late simplified, experience-driven reasoning
processes under uncertainty.

• Information Asymmetry (Akerlof, 1978;
Grossman and Stiglitz, 1980): Markets of-
ten contain uneven distributions of informa-
tion. By retrieving expert-informed cases and
structuring external event signals, FinHEAR
reduces decision gaps caused by partial infor-
mation.

• Prospect Theory (Barberis and Huang, 2001;
Kahneman and Tversky, 2013; Ebert and
Strack, 2015): Human decision-making un-
der risk exhibits loss aversion—losses are
weighed more heavily than equivalent gains.
FinHEAR models this asymmetry by modulat-
ing position sizes according to risk sensitivity
and prediction confidence.

• Behavioral Portfolio Theory (Shefrin and
Statman, 2000): Investors mentally segment
their portfolios into layers (e.g., safety vs.
growth). FinHEAR reflects this layered de-
cision logic by supporting adaptive strategies
across heterogeneous asset classes.

Together, these theoretical foundations support
FinHEAR’s goal of aligning algorithmic behavior
with real-world investor psychology, promoting
interpretability and decision relevance in financial
environments.

A.2 Evaluation Metrics
We employ five widely-used metrics in finance
to compare the investment rewards of FinHEAR
against other algorithmic trading agents. Here are
their introductions:

• Cumulative Return

Cumulative return(CR) measures a strategy’s
profitability over time. In our framework,
it is computed by weighting the log return

ln(pt+1/pt)—where pt and pt+1 are prices at
time t and t+1—by the trading action at and
position size wt at each step. Summing over
all steps yields the total cumulative return, al-
lowing us to quantify how each decision and
exposure contribute to overall performance:

CR =
n∑

t=1

ln

(
pt+1

pt

)
· at · wt (6)

• Sharp Ratio

The Sharpe Ratio (SR) is a standard metric for
evaluating risk-adjusted return. It measures
the excess return Rp−Rf relative to its volatil-
ity σp, where Rp is the average return of the
strategy and Rf is the risk-free rate. A higher
SR indicates better performance per unit of
risk:

SR =
Rp −Rf

σp
(7)

• Max Drawdown

The Maximum Drawdown (MDD) quantifies
the worst observed loss over a period by mea-
suring the largest peak-to-trough drop in value.
Given a peak value Ppeak and a subsequent
trough Ptrough, MDD reflects the largest per-
centage decline before recovery:

MDD = max

(
Ppeak − Ptrough

Ppeak

)
(8)

• Calmar Ratio The Calmar Ratio (CalmarR)
evaluates risk-adjusted return using MDD as
the risk denominator. It measures how effi-
ciently a strategy generates returns relative
to its largest drawdown. Typically, Rp is the
annualized strategy return and Rf is the annu-
alized risk-free rate:

CalmarR =
Rp −Rf

MDD
(9)

• Accuracy

For evaluating our model’s performance in the
forecasting task, we employ Accuracy (ACC).
This metric is defined as:

ACC =
TP + TN

TP + TN + FP + FN
(10)

True Positives (TP) refer to correctly predicted
price increases, while True Negatives (TN)
capture correct predictions of no increase.
False Positives (FP) arise when an increase
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is incorrectly predicted, and False Negatives
(FN) indicate missed upward movements. Ac-
curacy (ACC) measures the proportion of cor-
rect predictions for the closing price direction.

• Matthews Correlation Coefficient

Matthews Correlation Coefficient(MCC) is re-
garded as a balanced measure for binary clas-
sification tasks, particularly useful when class
imbalance may be present. The MCC is cal-
culated as follows:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)

· (TN + FP)(TN + FN)

(11)

A.3 Dataset Overview
This part provides a detailed description of the cu-
rated dataset used in this paper, designed to sup-
port financial reasoning and event-aware decision-
making. The dataset integrates multi-dimensional
information to offer a comprehensive view of the
global economic landscape, including macroeco-
nomic indicators, monetary and fiscal policy events,
financial market data, industry-specific develop-
ments, and expert investment knowledge. These
data sources collectively enable structured model-
ing of market behavior, risk perception, and deci-
sion dynamics across multiple temporal and con-
textual dimensions. The dataset is organized into
the following categories:

• Major Central Bank Communications and
Monetary Policy Events: This category cap-
tures policy signals from major central banks
worldwide. It includes:

– Meeting Outcomes (e.g., Federal Funds
Rate Decision, ECB Main Refinancing
Rate)

– Post-Meeting Statements (e.g., FOMC
Statement, ECB Press Release)

– Meeting Minutes (e.g., FOMC Minutes,
BoE MPC Minutes)

– Economic Projections (e.g., U.S. SEP,
BoJ Outlook Report)

– Official Speeches and Press Conferences
(e.g., Fed Chair Remarks, ECB President
Speeches)

• International Organization and Govern-
ment Macroeconomic Reports: Includes

global institutional meetings and national fis-
cal policy disclosures:

– IMF/World Bank Meetings (e.g., WEO,
GFSR)

– G7/G20 Finance Meetings and Commu-
niqués

– National Fiscal Announcements (e.g.,
U.S. Federal Budget, UK Autumn State-
ment)

• Key Macroeconomic Data Releases: A com-
prehensive set of high-frequency economic
indicators, including:

– Inflation: CPI, PPI, PCE (U.S., Euro
Area, China)

– Labor Market: Unemployment Rate,
Payrolls, Earnings, Job Openings

– Growth: GDP, Industrial Production, Re-
tail Sales, Durable Goods Orders

– Sentiment: PMI, ISM, Consumer Confi-
dence Indices

– Housing: Housing Starts, Permits, Home
Sales

– Trade: Trade Balance (U.S., Euro Area,
Germany)

• Stock Price Time Series (OHLCV): Daily
Open, High, Low, Close, and Volume data for
selected equities (e.g., AAPL, TSLA, XOM)
from 2020–2023, sourced from Yahoo Fi-
nance and Bloomberg.

• Industry and Company News: Daily reports
(PDF/HTML) on earnings, executive changes,
product launches, M&A, and regulatory up-
dates. Sourced from Bloomberg, Reuters,
WSJ, FT, etc. Includes 21,329 entries (2020–
2023).

• Current Affairs News: Daily global news
(2020–2023) across politics, military, econ-
omy, and society, from major agencies (AP,
AFP, BBC, NYT, Xinhua). Includes 22,274
entries.

• Legendary Investors’ Knowledge Base:
Structured corpus of investment philosophy
and strategies from prominent investors (e.g.,
Buffett, Dalio, Soros), including books, inter-
views, letters, and speeches.
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Table 9: Overview of the Dataset

Event Type Data Type Source Frequency Amount

Central Bank Policy & Comms PDF/HTML Fed, ECB, etc. Various 280
Govt & Intl Macro Reports PDF/HTML IMF, G20, etc. Various 61
Key Macroeconomic Data Releases PDF/HTML/Text BLS, U.S. PPI, etc. Various 2128
Stock daily prices (OHLCV) CSV Yahoo Finance, Bloomberg, etc. Daily 1023
XAUUSD daily price (OHLCV) CSV Investing.com, TradingView, etc. Daily 1035
Industry and Company News PDF/HTML Reuters, Bloomberg News, etc. Daily 21329
Current Affairs PDF/HTML AP, Reuters, Bloomberg, etc. Daily 22274

• Foundational Books: Full texts authored by
or about legendary investors that codify their
investment philosophy, market views, and life
experiences. These include:

– The Intelligent Investor (Benjamin Gra-
ham)

– Security Analysis (Graham & Dodd)
– One Up on Wall Street, Beating the

Street (Peter Lynch)
– Poor Charlie’s Almanack (Charlie

Munger)
– The Most Important Thing (Howard

Marks)
– The Alchemy of Finance, The New

Paradigm for Financial Markets (George
Soros)

– Reminiscences of a Stock Operator (Ed-
win Lefèvre, based on Jesse Livermore)

– Common Stocks and Uncommon Profits
(Philip Fisher)

– The Essays of Warren Buffett (compiled
by Lawrence Cunningham)

– Margin of Safety (Seth Klarman)
– Stocks for the Long Run (Jeremy Siegel)
– The Dao of Capital (Mark Spitznagel)
– The Dhandho Investor (Mohnish Pabrai)

• Shareholder Letters and Memos: These
writings are primary-source reflections of in-
vestors’ thinking in real time, often revealing
their decision-making logic under changing
market conditions:

– Berkshire Hathaway Shareholder Letters
(Warren Buffett, 1977–present)

– Oaktree Capital Memos (Howard Marks,
archived by date and theme)

– Daily Journal Shareholder Meetings
(Charlie Munger, transcript and Q&A)

– Pershing Square Letters (Bill Ackman)
– Third Point Letters (Daniel Loeb)

– Greenlight Capital Letters (David Ein-
horn)

• Interviews, Transcripts, and Oral Histo-
ries: These capture dynamic exchanges, spon-
taneous reasoning, and human intuition in in-
vestment contexts:

– Soros on Soros: Staying Ahead of the
Curve (extended Q&A format)

– Warren Buffett on CNBC/Bloomberg/-
Fortune Interviews (indexed by date)

– Charlie Munger Interviews with Stan-
ford, Caltech, Redlands

– Peter Lynch on PBS, Fidelity archives
– Howard Marks Fireside Chats and

MasterClass-style interviews

• Biographies and Third-party Analyses:
These offer synthesized insights into the
habits, failures, and competitive edges of key
investors, often triangulated with data:

– The Snowball (Alice Schroeder, biogra-
phy of Warren Buffett)

– More Money Than God (Sebastian Mal-
laby, covers Soros, Jones, Griffin, etc.)

– The Sages: Buffett, Soros, Volcker and
the Maelstrom of Markets (Charles Mor-
ris)

– When Genius Failed (Roger Lowenstein,
on LTCM & John Meriwether)

– The Big Short and Liar’s Poker (Michael
Lewis, featuring Paulson, Burry, etc.)

• Public Speeches and Panel Appearances:
Transcripts and recordings from conferences,
universities, or shareholder meetings, often
unrehearsed and insight-rich:

– Berkshire Hathaway Annual Meeting
Q&A Archives (1994–present)
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– Charlie Munger’s “USC Commencement
Speech” and “The Psychology of Human
Misjudgment”

– Peter Thiel at Stanford and YC Startup
School (macro-venture angle)

– Ray Dalio’s “Principles” presentations at
TED, Davos, IMF

• Documentaries and Archival Footage: Vi-
sual content offering non-verbal cues and emo-
tional tone:

– Becoming Warren Buffett (HBO Docu-
mentary)

– Inside Job (Charles Ferguson)
– Trader (rare Paul Tudor Jones documen-

tary)
– The Ascent of Money (Niall Ferguson,

includes Soros and others)

These materials form the empirical backbone
of a structured Human Expertise Knowledge
Base. They enable the modeling of investor
archetypes, simulation of investment decision
processes, and empirical studies of long-term
behavioral consistency and adaptive learning
under uncertainty.

A.4 Experimental details
A.4.1 Data Split and Evaluation Periods
To ensure the robustness and effectiveness of our
model in a real-world financial environment, we
adopted a rigorous time-series split for our training
and test sets, explicitly considering a 7-day look-
back period requirement for both OHLCV and text
data.Our complete dataset spans financial market
information from December 26, 2019, to December
29, 2023. This date range ensures that sufficient
historical lookback data is available for the earliest
predictions.

• Data Usage During the Training PhaseThe
model’s actual training and learning, specif-
ically the OHLCV target prediction period,
is from January 2, 2020, to December 29,
2022. To make predictions for each trading
day within this period, the model incorpo-
rates 7 days of preceding OHLCV and text
data as historical context. This means that
the OHLCV data inputs and text data inputs
for the training phase range from December
26, 2019, up to December 29, 2022. Specifi-
cally, for any given prediction day within the

training period (e.g., January 2, 2020), the
model takes as input the OHLCV and text data
from the preceding 7 days (i.e., December 26,
2019, to January 1, 2020) to learn and pre-
dict the market dynamics of January 2, 2020.
This mechanism ensures that all input infor-
mation (whether OHLCV or text) available
to the model during training is strictly histor-
ical relative to the prediction day, rigorously
preventing future information leakage.

• Data Usage During the Testing PhaseAfter
training, the model’s performance is evalu-
ated on an independent and entirely unseen
OHLCV period, which runs from January 2,
2023, to December 29, 2023. Consistent with
the training phase, to make predictions for
each trading day within this testing period,
the model also accesses its preceding 7 days
of OHLCV and text information. Therefore,
the OHLCV data inputs and text data inputs
for the testing phase range from December 26,
2022, up to December 29, 2023.

A.4.2 Construct Human Expertise Base
To construct the original expert knowledge base, we
first collect textual data associated with the afore-
mentioned domain experts. We then design task-
specific prompts to systematically abstract struc-
tured query–knowledge pairs from the unstructured
corpus,as shown in 6,using Warren Buffet as an
example. These prompts are executed via the GPT-
4o (version: 2024-08-06) API, enabling the ex-
traction of high-level conceptual queries and their
corresponding expert-grounded knowledge. This
procedure facilitates the transformation of raw ex-
pert content into a structured and queryable format
suitable for downstream reasoning tasks.

A.4.3 Refine Human Expertise via verification
mechanism

To ensure the reliability of the expert knowledge
base, we implement a verification mechanism dur-
ing the testing phase. Specifically, daily news arti-
cles are processed to extract real-time conceptual
queries, which are then embedded using OpenAI’s
text-embedding-3-large model. These embed-
dings are compared against the pre-encoded queries
in the knowledge base using cosine similarity. If a
sufficiently aligned query is identified—based on
a predefined similarity threshold—the correspond-
ing expert knowledge is activated within the Hu-
man Expertise Agent for prediction.Successful

1662



predictions serve to validate the correctness and
applicability of the retrieved expert knowledge. In
cases where predictions fail, an adaptive refinement
process is triggered. This process leverages feed-
back information collected by the Temporal Re-
fine Agent, which captures contextual cues and
decision inconsistencies from the failed predic-
tion. This feedback is then incorporated into a
prompt and sent to GPT-4o to generate a revised or
augmented version of the expert knowledge entry.
Through this iterative refinement loop, the knowl-
edge base is further enriched and aligned with the
demands of real-world market conditions, thereby
enhancing the original human expert knowledge.

A.4.4 Detailed Configurations in Experiments
• Trend Forecasting Task Configurations To

ensure a fair comparison for the Trend Fore-
casting task, all models, including FinHEAR
and the various baselines, were configured to
output a binary prediction indicating the next-
day directional movement of the asset (e.g.,
"Up" or "Down").

For classification-based baselines, including
ALSTM, Informer, and StockNet, their final
output layers were designed for two-class pre-
diction. This layer consists of a fully con-
nected layer with two output units followed
by a softmax activation, with each class corre-
sponding to either an "Up" or "Down" price
movement. At each time step, the model out-
puts a probability distribution over these two
potential outcomes, and the ultimate trend
forecast is derived by selecting the class with
the highest probability. This standardized two-
class output setup ensures consistency in the
prediction space across these models.

Similarly, for Reinforcement Learning (RL)
based methods such as PPO and DQN, their
action spaces were adapted to a binary classi-
fication for this task. Instead of continuous po-
sition sizing or detailed trading actions, these
agents learn to output one of two discrete ac-
tions: predicting "Up" or predicting "Down."
The reward function in this context is tailored
to maximize the accuracy of these directional
predictions.

For Large Language Model (LLM) based
methods, including the COT agent, GA gen-
erative agent, FinMem, and FinCon, their out-
put generation was constrained to produce a

binary forecast. At each decision time step,
these agents were prompted or fine-tuned to
extract a clear "Up" or "Down" prediction
from their text output using a parsing module.
This ensures that their output directly corre-
sponds to the two directional classes required
for this task.

Through this consistent binary output config-
uration across all models, we can perform
a comprehensive and equitable performance
comparison specifically for the trend forecast-
ing task.

• Trading Task Configurations To ensure a
fair comparison with the FinHEAR model,
which is capable of selecting from four
distinct trading actions at each decision
point—Long, Short, Hold, and Close—we
configured the baseline models used in our
study accordingly. For the classification-
based baselines, including ALSTM, Informer,
and StockNet, their final output layers were
designed for four-class prediction. This layer
consists of a fully connected layer with four
output units followed by a softmax activa-
tion, with each class corresponding to one
of the aforementioned trading actions: ’Long’,
’Short’, ’Hold’, and ’Close’. At each trad-
ing time step, the model outputs a probability
distribution over these four potential actions,
and the ultimate trading signal is typically de-
rived by selecting the action with the highest
probability or score. This standardized four-
class output setup guarantees consistency in
the discrete action space across these models.

Differing in their action space design, we
also employed Reinforcement Learning (RL)
based methods as baselines capable of more
flexible position management. Specifically,
we configured agents based on Proximal Pol-
icy Optimization (PPO) and Deep Q-Network
(DQN). These RL agents learn a trading pol-
icy aiming to maximize a cumulative reward
signal. The action space configuration varies:
PPO utilizes a continuous action space, out-
putting a target position size within [-1, 1];
whereas DQN operates in a discrete action
space, with actions encompassing key trad-
ing decisions like ’Open Long’, ’Open Short’,
’Close Position’, and ’Hold Position’. The
state space for both RL agents comprises rele-
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vant market observations (e.g., historical price
series, technical indicators) and information
about the agent’s current portfolio status (e.g.,
current position, cash). The reward function
guiding the learning process is based on port-
folio performance metrics, such as the change
in portfolio value or risk-adjusted return over
each time step.

As another category of baselines capable of
more flexible position management, we in-
cluded Large Language Model (LLM) based
methods, such as the COT agent, GA genera-
tive agent, FinMem, and FinCon. These meth-
ods leverage LLMs to analyze market data and
generate trading recommendations for contin-
uous position management. At each decision
time step, these agents accurately extract a
concrete, continuous target position size from
the text output generated by the LLM using a
parsing module. This continuous target posi-
tion size directly dictates the agent’s trading
behavior and intent: a positive target posi-
tion represents a Long intent; a negative target
position indicates a Short intent; and a zero
target position corresponds to a Close intent
(when holding a position) or maintaining a
cash position (Hold) intent (when not holding
a position).

Through these diverse baseline configurations
spanning different action space granularities,
we are able to perform a comprehensive and
equitable performance comparison relative to
FinHEAR.

A.4.5 Single Asset Trading Result Graphs
as shown in Table 4a,Table 4b,Table 4c,Table 4d,we
visualize the cumulative return trajectories for four
individual assets—XAUUSD, AAPL, TSLA, and
XOM—throughout 2023. These line charts reflect
the trading performance using cumulative return as
the primary evaluation metric.

A.4.6 Impact of Transaction Costs
To ensure our results are not an artifact of ignor-
ing trading frictions, we conducted a comprehen-
sive backtest under conservative transaction cost
assumptions:

1. New Backtest with Transaction Costs Fol-
lowing reviewer suggestions, we repeated the
AAPL trading experiments, incorporating re-

alistic transaction costs across all methods for
a fair comparison.

2. Conservative Cost Assumption For every
transaction (both entries and exits), we applied
a transaction cost of 0.05% (5 basis points)
per side, resulting in a total round-trip cost of
0.1%. This rate accounts for typical broker-
age commissions and average slippage.

3. Results on AAPL: Performance Advan-
tage Remains Robust As shown in Table 10,
while transaction costs reduce absolute returns
across all strategies, FINHEAR continues to
significantly outperform all strong baselines
in both Cumulative Return (CR) and Sharpe
Ratio (SR). This demonstrates that our frame-
work’s ability to generate alpha is not depen-
dent on unrealistic cost assumptions.

Method No Costs With Costs

CR SR CR SR

FINHEAR 30.81 1.95 25.96 1.68
ALSTM 16.77 0.75 8.97 0.41
Informer 8.54 1.22 5.06 0.82
PPO 15.46 1.67 10.33 1.01
FinCon -8.17 -0.53 -13.32 -1.62
FinMem 19.24 1.43 15.09 1.19
CoT 22.07 1.32 16.14 1.28

Table 10: Impact of transaction costs on trading perfor-
mance for the AAPL task. CR = Cumulative Return,
SR = Sharpe Ratio. FINHEAR retains a significant
advantage even under realistic cost assumptions.

A.4.7 Ablation
as shown in Table 11,based on the analysis of asset
performance across the different time windows pre-
sented in the table, we observe a consistent pattern:
various financial asset classes tend to achieve their
peak relative performance over distinct time hori-
zons. This differentiation is not coincidental but is
intrinsically linked to their inherent asset charac-
teristics and the temporal scale at which their core
value drivers exert influence.

Assets whose value is highly contingent upon
short-term market sentiment, immediate events, or
rapid catalysts—such as gold (XAUUSD), which
reacts swiftly to short-term uncertainty as a safe
haven, or high-growth, high-volatility equities like
Tesla (TSLA), prone to significant surges driven
by recent favorable news or speculative momen-
tum—tend to exhibit their most robust performance
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(a) XAUUSD (b) AAPL

(c) TSLA (d) XOM

Figure 4: Cumulative trading performance of FinHEAR and other baselines on four individual assets (XAUUSD,
AAPL, TSLA, XOM) from January 2023 to December 2023.

(a) XAUUSD (b) AAPL

(c) TSLA (d) XOM

Figure 5: Cumulative trading performance of FinHEAR and its ablation variants on four individual assets (XAU-
USD,AAPL, TSLA, XOM) from January 2023 to December 2023
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concentrated within shorter time windows. The per-
formance of these assets is often characterized by
high volatility in the short term, and sustaining such
peak performance when averaged over extended
time horizons can be challenging.

In contrast, optimal performance for some assets
may manifest within a medium-term window, as ex-
emplified by Apple (AAPL). The value drivers for
this category of assets are typically more closely
tied to factors such as product life cycles, consis-
tent earnings growth, and medium-term industry
trends. The impact of these factors requires a cer-
tain duration (typically several quarters to a few
years) to fully materialize and be reflected in asset
valuation. While extremely short windows may not
adequately capture these cumulative effects, overly
long horizons might introduce challenges such as
growth deceleration or shifts in market cycles.

Furthermore, the performance of other assets is
more likely to reach its optimum or show continu-
ous improvement over longer time windows, with
ExxonMobil (XOM) serving as an illustrative ex-
ample. This class of assets is often closely linked
to the long-term cycles of the macroeconomy, per-
sistent trends in major commodity prices, or struc-
tural shifts in supply and demand. The evolution
of these influencing factors is typically gradual and
sustained, requiring several years to fully unfold.
Over longer cycles, the impact of short-term mar-
ket noise becomes diluted, and the asset’s under-
lying cyclicality or fundamental long-term trend
becomes dominant, enabling it to achieve superior
cumulative performance.

From a financial theory perspective, this phe-
nomenon highlights the concept of ’Temporal
Specificity of Asset Performance’ – where the dom-
inant time scale of an asset’s core value drivers
aligns effectively with the investment or observa-
tion horizon. Understanding this alignment is cru-
cial for investors seeking to grasp the risk-return
characteristics of various assets and to consider the
temporal matching when constructing investment
portfolios.

Table 11: Asset performance (%) over different time
windows

Asset Window = 3 Window = 5 Window = 7

XAUUSD 48.93 32.45 22.46
AAPL 29.15 30.81 23.56
TSLA 63.82 58.47 40.13
XOM 35.19 37.16 45.53

as shown in Figure 5a,Figure 5b,Figure 5cand
Figure 5d, we present the cumulative trading per-
formance of FinHEAR and its ablation variants on
four individual assets: XAUUSD, AAPL, TSLA,
and XOM. These ablation studies are conducted to
evaluate the contribution of different key compo-
nents of the FinHEAR model to its overall trading
performance in single-asset markets. The figures
illustrate the cumulative returns achieved by the
full FinHEAR model compared to its variants with
specific modules removed over the period from
January 2023 to December 2023 for each respec-
tive asset, highlighting the effectiveness of each
component.

A.4.8 Agent Modular Design and Prompt
Engineering

This appendix provides a detailed exposition of
representative prompt templates employed for the
specialized agents within FinHEAR, serving to il-
lustrate our approach to encoding distinct func-
tionalities and expert reasoning paradigms. Each
template is meticulously crafted to guide the Large
Language Models (LLMs) in performing specific
analytical and reasoning tasks, ensuring both fi-
delity to the intended behavioral profiles and struc-
tured output generation.
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Prompt Template: Buffett-style Investment Reasoning
Input:
The input is a segment of natural language text, denoted as {text}. This passage is assumed to discuss Warren
Buffett, one of the most influential value investors of the 20th and 21st centuries. Buffett is widely known for his
adherence to fundamental investing principles including, but not limited to: intrinsic value assessment, long-term
business fundamentals, margin of safety, rational capital allocation, and resistance to market sentiment.
Task Specification:
Your objective is two-fold:

• Abstract the core content of the text into a reusable, generalized investment reasoning query or problem
formulation (denoted as Query). This abstraction should reflect a broader class of investment reasoning
problems that the input exemplifies.

• Distill a reasoning trajectory that emulates Warren Buffett’s investment paradigm. This reasoning process
should reflect deliberate, logically grounded, and value-aligned investment thinking, referencing concepts
such as economic moats, discounted cash flow analysis, long-term competitive advantage, and probabilistic
evaluation of downside risk.

Output Constraints:

• You must produce one or more outputs strictly following the syntactic template specified below.

• Each output unit must maintain the structure exactly, and must not include any preambles, justifications,
explanations, or commentary.

Output Format:

• Query: <A generalized investment reasoning problem abstracted from the input>

• Human Expertise: <A detailed, logically sequenced reasoning trajectory consistent with Buffett’s value
investing methodology>

Note:

• If multiple independent abstractions and reasoning chains can be derived from the input, return them as separate
entries, each adhering to the exact format.

• The reasoning chain should demonstrate internal logical consistency and align with Buffett’s documented
investment philosophy (e.g., as expressed in shareholder letters, interviews, or books).

• Avoid surface-level or tautological restatements; prioritize deep reasoning that could generalize across invest-
ment contexts.

Figure 6: Prompt template for extracting generalized investment reasoning in the style of Warren Buffett.
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Historical Trend Agent Prompt Template
[Past Gate - Historical Pattern Extraction Module]
Context: You are a financial analysis agent responsible for mining historical trading data and annotated return
outcomes to extract statistically and economically significant patterns. The rate of return is defined as: (tomorrow’s
closing price - today’s closing price) / today’s closing price.
Input:

• Historical investment experiences with associated return labels: {past_exps}

• Raw historical market data containing the following structured fields:

- Date

- Open

- High

- Low

- Close

- Price (if different from Close, assume it’s a derived value)

- Volume

{data}

Instructions

• Identify meaningful temporal trends, recurring signals, or anomalous movements that historically preceded
above- or below-average returns.

• Cross-reference return outcomes with relevant price and volume dynamics, candlestick behaviors, or volatility
shifts to uncover predictive patterns.

• Extract insights that may have forward-looking value for real-time investment decision-making.

• Prioritize signal relevance, statistical consistency, and interpretability in your summary.

• Keep the tone formal, objective, and consistent with academic or institutional research standards.

Output Format:
Present your analytical findings strictly using the following structure. Do not include additional commentary or
formatting beyond what is shown:
[Past_summary: <Concise yet information-rich synthesis of 2–4 sentences, outlining key historical trends, signal
behaviors, or statistical regularities that may inform current trading strategy.>]

Figure 7: Prompt Template for Current Event Agent Financial Analysis
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Temporal Refinement Agent Prompt Template
[Temporal Refinement Gate]
You are tasked with validating and refining a financial market analysis for {date}.
The expected return (R) is defined as:
R = (P_t+1 - P_t) / P_t
Where:

• P_t denotes today’s closing price.

• P_t+1 denotes tomorrow’s closing price.

Below is the original market analysis and the model-generated forecast for today:{today_exp}{temp}
Your objective is to revise the analysis, ensuring that it aligns with the actual return direction implied by the above
definition.
Guidelines:

• Revise only the analytical interpretation. Do not alter factual observations unless necessary for consistency.

• Be precise and concise.

• Use terminology appropriate for financial and economic analysis.

• Do not include any additional commentary, justification, or explanation.

Output must strictly follow the structure below (no deviations):
[{date}_summary: <revised analysis text here>]

Figure 8: Prompt Template for Temporal Refinement Agent Financial Analysis and Decision

Current Event Agent Prompt Template
[Current Gate - Integrated Market Reasoning Module]
Context: You are a decision-making financial agent that synthesizes real-time macroeconomic and geopolitical
events with historical market patterns to generate immediate and actionable market signals. Your reasoning must be
both forward-looking and grounded in empirical context. Input:

• Real-time event feed containing the most recent developments: {current}

• Extracted historical insights and trend summaries derived from past performance and return data: {past_info}

Instructions:

• Integrate current events with historical context to assess potential impacts across equity, commodity, fixed
income, and currency markets.

• Identify dominant economic narratives (e.g., inflation risk, monetary tightening, supply chain disruptions) and
connect them with previously observed market reactions.

• Produce a concise and high-signal analysis suitable for immediate investment positioning or portfolio adjust-
ment.

• Focus only on the most actionable insights with measurable short-term implications.

• Ensure analytical clarity, avoiding speculation or generalizations not supported by the data.

Output Format:
Your analysis must follow exactly the format below,without any introductory or concluding remarks:
[Current_summary: <A compact, structured evaluation ( 2–4 sentences) outlining the synthesis of present events with
historical insights, leading to clear, justifiable market signals.>]

Figure 9: Prompt Template for Current Event Agent Financial Analysis
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Human Expertise Agent Prompt Template
[Persona Gate – Behavioral Adjustment & Sentiment Integration Module]
Context:
You are a behavioral-aware financial reasoning agent. Your role is to adjust and refine market analyses by incorporating
investor sentiment, psychological biases, and historically consistent behavior patterns observed across different
market regimes.
Input:

• Investor persona insights, including sentiment indicators and behavioral response patterns:{persona}

• Preliminary market analysis based on current macro-events and historical data context: {current_info}

Instructions:

• Interpret how different types of investors (e.g., risk-averse, momentum-driven, contrarian) are likely to perceive
and react to the current market situation.

• Adjust the current analysis accordingly, integrating behavioral finance theory (e.g., loss aversion, herd behavior,
overreaction) to reflect more realistic market responses.

• Emphasize actionable implications that arise when aligning analytical signals with investor psychology.

• Maintain analytical rigor, and ensure output remains concise, data-grounded, and investment-oriented.

Output Format:
Please provide your refined analysis using the structure below, without adding commentary or deviation from the
format:
[refined_summary: <A revised analysis ( 2–4 sentences) that merges objective market signals with plausible investor
reactions, enhancing practical applicability.>]

Figure 10: Prompt Template for Human Expertise Agent Financial Analysis
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Risk Analysis Agent Prompt Template
[Risk Gate – Multi-Layer Analytical Consistency & Decision Alignment Module]
Context:
You are a risk assessment agent responsible for evaluating the coherence, reliability, and internal alignment of a
multi-stage investment analysis pipeline. Your goal is to assess the overall risk exposure associated with the final
investment decision based on preceding analytical layers.
input:

• Historical Analysis Output (Trend-Based Retrospective Insight): {past_info}

• Current Event-Driven Market Analysis: {current_info}

• Behaviorally Adjusted (Persona-Based) Refined Analysis: {refined_info}

• Final Proposed Investment Action: {decison}

Instructions:

• Assess the internal consistency across the three layers of analysis (historical, current, refined), identifying
areas of alignment or contradiction in sentiment, directional bias (e.g., bullish/bearish), and strategic tone.

• Identify any behavioral or analytical divergence that could introduce decision risk (e.g., if refined analysis is
bullish while past/current analyses are neutral or negative).

• Evaluate how well the final investment action (e.g., Buy/Sell) aligns with the overall analytical trajectory.

• Determine the overall risk level of the decision using the following classification:

– Low: High consistency, strong alignment, low analytical or behavioral divergence.
– Medium: Moderate consistency, partial misalignment, or behavioral ambiguity.
– High: Conflicting signals, sentiment contradiction, or misaligned final action.

Output Format:
Respond strictly using the following structure, with no commentary outside the format:
[risk_level: <Low or Medium or High>, risk_evaluation: <Concise and reasoned explanation ( 2–4 sentences)
summarizing alignment, conflict, and overall risk considerations.>]

Figure 11: Prompt Template for Rise Analysis Agent Financial Analysis
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Expert Alignment Agent Prompt Template
[Expert Alignment Gate – Multi-Agent Decision Validation Layer]
Role:
You are a centralized decision-making controller operating within a multi-agent investment advisory system. Each
expert agent is specialized in a particular investment domain and asset class. Your responsibility is to assess the
coherence, reliability, and macro-consistency of their respective recommendations in order to determine whether to
adopt or reject their guidance.
Expert Profiles:

• Warren Buffett: A value investor with a long-term horizon, primarily focused on large-cap equities with
durable competitive advantages. Assigned Asset: Apple Inc. (AAPL)

• George Soros: A macroeconomic and reflexivity-oriented investor. Specializes in trading global dislocations
and regime shifts. Assigned Asset: Gold Spot Market(XAUUSD)

• Peter Lynch: A growth-oriented investor known for bottom-up stock selection and identifying fast-growing
companies. Assigned Asset: Tesla Inc. (TSLA)

• Benjamin Graham: A fundamental value investor, originator of intrinsic valuation and margin-of-safety
principles. Assigned Asset: Exxon Mobil Corporation (XOM)

Inputs Provided:

• Macroeconomic Context – A structured summary of the prevailing macro environment, including economic
indicators, policy trends, market sentiment, and geopolitical signals: {macro_events}

• Expert Recommendations – Buy/Sell/Hold recommendations made by the four experts for their respective
assets: {decisions}

Task Instructions:

• For each expert, analyze whether their recommendation is contextually valid, based on:

– Their specific investment philosophy and historical behavioral traits

– The macroeconomic landscape and potential asset sensitivity
– Cross-asset interdependencies and systemic market risks

• Use the following decision rules:

– Respond **Yes** if the expert’s recommendation is well-aligned with both the macroeconomic context
and their own philosophical model of decision-making.

– Respond **No** if there is misalignment, excessive risk exposure, or evident inconsistency with current
conditions.

• Your final output should reflect discrete endorsement decisions, not nuanced analysis. These decisions are
intended to drive automated position sizing and portfolio response.

Output Format (strictly enforced):
Return a single-line output with no additional explanation, using the format below:
[Buffett:<Yes or No>, Soros:<Yes or No>, Lynch:<Yes or No>, Graham:<Yes or No>]

Figure 12: Prompt Template for Expert Alignment Agent Financial Analysis and Decision
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