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Abstract

In text-video retrieval, auxiliary captions are of-
ten used to enhance video understanding, bridg-
ing the gap between the modalities. While re-
cent advances in multi-modal large language
models (MLLMs) have enabled strong zero-
shot caption generation, we observe that such
captions tend to be generic and indistinguish-
able across visually similar videos, limiting
their utility for fine-grained retrieval. More-
over, conventional captioning approaches are
typically evaluated using language generation
metrics, such as BLEU, which are not typically
tailored for retrieval tasks that require mak-
ing discriminative distinctions between candi-
dates. To address this, we propose CaRe-DPO,
a retrieval framework that directly optimizes
caption generation using retrieval relevance
scores. At its core is Dual-Group Direct Prefer-
ence Optimization (DG-DPO), a novel learning
strategy that supervises captioning by model-
ing preferences across groups of distinct video
and caption pairs. In addition, we present an
MLLM-based retrieval model that incorporates
role-embeddings to better distinguish between
textual inputs with different functional roles,
such as an auxiliary caption and a text query.
Through extensive experiments, we demon-
strate that CaRe-DPO significantly enhances
retrieval performance by effectively leveraging
auxiliary knowledge to generate fine-grained
captions for retrieval. Code is available at
https://github.com/mlvlab/CaReDPO.

1 Introduction

Text-video retrieval is a fundamental task in mul-
timodal learning, aiming to align natural language
descriptions with video content. Traditional re-
trieval methods often adopt dual-encoder architec-
tures, such as CLIP (Radford et al., 2021), which
encode videos and text queries into a shared em-
bedding space. However, these approaches often
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Figure 1: Misalignment between conventional cap-
tioners and retrieval objectives. (a) Captions from
pretrained models are nearly identical for similar videos,
while our method produces more distinct and retrieval-
relevant descriptions. (b) BLEU-selected top captions
often mismatch retrieval rankings; correlation between
the two is as low as 30%.

struggle with fine-grained semantic matching (Tian
et al., 2024; Wang et al., 2023), particularly when
videos contain complex temporal or contextual dy-
namics. To mitigate this, recent studies (Wu et al.,
2023; Ma et al., 2024; Hur et al., 2025; Yang et al.,
2025) have explored the use of video captions, nat-
ural language descriptions of video content, as aux-
iliary inputs to bridge the gap between the text
queries and video content.

Multimodal Large Language Models (MLLMs)
(Liu et al., 2024; Wang et al., 2024b; Li et al.,
2024c; Zhang et al., 2024; Ko et al., 2023, 2025a;
Park et al., 2025, 2024a) that encompass strong
visual and text understandings, recently caught
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attention for handling multi-modal retrieval sys-
tems (Lin et al., 2025; Liu et al., 2025; Wei et al.,
2024; Ko et al., 2025b). Their capacity to jointly
attend to both visual and textual inputs allows them
to interpret diverse and complex text queries in rela-
tion to video content while also leveraging captions
as additional semantic context, providing a promis-
ing direction for advancing retrieval performance.

However, often captions produced by pretrained
models fail to capture the detailed distinctions nec-
essary for retrieval. As illustrated in Fig. 1a, two
visually similar videos depicting cats in indoor
environments are given captions that are generic
and overlapping, describing actions like ‘walking
around the room’ or ‘moves around.’ Nevertheless,
we expect to generate captions that surface discrim-
inative visual details, such as ‘sits up, stretches its
body’ and ‘interacting playfully’, which provide
discriminative cues critical for retrieval among sim-
ilar videos. This issue is further amplified by the
common practice of evaluating caption quality us-
ing metrics such as BLEU (Papineni et al., 2002).
Specifically, as shown in Fig. 1b, among the three
distinct captions generated for a video, the top-1
caption selected based on a conventional captioning
metric often does not align with the top-1 caption
when ranked by retrieval relevance score (placed at
the bottom rank). To quantify this misalignment,
we measured the Pearson correlation between the
indices of the top-1 ranked captions under each
metric, finding a correlation as low as 0.30. This
highlights a substantial discrepancy between con-
ventional captioning metric-based evaluations and
retrieval-oriented objectives.

To this end, we propose CaRe-DPO, Captioning
for Text-Video Retrieval via Dual-Group Direct
Preference Optimization, a novel retrieval frame-
work. At the core is Dual-Group Direct Prefer-
ence Optimization (DG-DPO), directly supervising
the captioning model with the retrieval scores to
align with the retrieval objective. Unlike standard
single-group DPO (local caption ranking within a
video), DG-DPO incorporates dual-group prefer-
ences, learning global ranking over video-caption
pairs. In addition, we introduce role-embeddings
during retrieval model training to differentiate the
roles of heterogeneous textual inputs, allowing the
model to more effectively leverage the auxiliary
captions. We empirically validate that CaRe-DPO
encourages the MLLM-based retrieval model to fur-
ther leverage the auxiliary captions during retrieval
and enables enhancement of the caption quality,

yielding a performance improvement across vari-
ous text-video retrieval benchmarks.

The main contributions of this work are:

• To the best of our knowledge, we are the first
to address the misalignment between conven-
tional captioning metrics and retrieval objec-
tives, and tackle the challenge of leveraging
captions to improve retrieval performance.

• We propose CaRe-DPO, a retrieval frame-
work that integrates role-embeddings with
retrieval-aligned caption optimization to lever-
age auxiliary captions in MLLM-based text-
video retrieval.

• Our DG-DPO supervises caption generation
using retrieval relevance scores with both lo-
cal (within-video) and global (cross-video-
caption) ranking, enabling generation of cap-
tions that better reflect retrieval importance.

• Our CaRe-DPO improves caption quality and
retrieval performance, achieving superior per-
formance across multiple benchmarks.

2 Related Work

2.1 Text-Video Retrieval

To improve text-video retrieval, recent studies have
explored the use of captions as auxiliary supervi-
sion. Cap4Video (Wu et al., 2023) treats them as
data augmentation to generate new training pairs,
enhancing cross-modal interaction. NarVid (Hur
et al., 2025) uses frame-level captions to enrich
video understanding and applies a hard negative
loss for better discrimination. ExCae (Yang et al.,
2025) refines captions through self-learning to en-
hance expressiveness while minimizing manual in-
tervention. Recently, with the advancement of Mul-
timodal Large Language Models (MLLMs), sev-
eral works (Lin et al., 2025; Liu et al., 2025; Ko
et al., 2025b) introduced MLLMs in multi-modal
retrieval systems. MM-Embed (Lin et al., 2025)
finetuned the MLLMs to universal retrievers, adopt-
ing thought prompt-and-reranking strategies. Con-
currently with our work, BLiM (Ko et al., 2025b)
investigates candidate prior bias induced by candi-
date likelihood estimation and improves retrieval
performance through bidirectional likelihood esti-
mation.
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2.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has emerged as an efficient alterna-
tive to reinforcement learning from human feed-
back (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022; Stiennon et al., 2020) for aligning
large language models with human preferences.
Recent studies have explored several limitations
of DPO. To mitigate length bias in preference
data, prior approaches introduce reward normal-
ization (Meng et al., 2024), token-level proba-
bility down-sampling (Lu et al., 2024), and ex-
plicit length regularization (Park et al., 2024b).
Other studies attempt to eliminate the reliance
on a reference model to reduce computational
cost (Meng et al., 2024; Xu et al., 2024; Hong et al.,
2024). In multimodal, DPO has been adapted to
align MLLMs for tasks such as visual question-
answering (Li et al., 2024b), dense video caption-
ing (Lee et al., 2025), and hallucination mitiga-
tions (Ouali et al., 2024; Wang et al., 2024a). In
this work, we provide a retrieval-oriented prefer-
ence modeling with MLLMs.

3 Preliminary

3.1 Text-Video Retrieval

Text-Video Retrieval consists of two tasks, video-
to-text retrieval (V2T) and text-to-video retrieval
(T2V), which aim to find the most relevant text
or video given the query among the candidates of
video or text.

Often to enhance the cross-modal retrieval, sev-
eral works (Wu et al., 2023; Yang et al., 2025;
Hur et al., 2025) propose to utilize the generated
caption c(i) of the given video v(i) to bridge the
modality gap with the textual query t(i). Hence,
the retrieval dataset can be defined as Dret =
{v(i), c(i), t(i)}Ni=1, where c(i) is often sampled
from a pretrained captioning model Mcap. Dur-
ing inference, c(i) is paired with the v(i), which
T2V retrieval for instance is defined as:

i∗T2V = argmax
i

P (v(i), c(i)|t). (1)

Recently, MLLMs have often been employed
for multi-modal retrieval systems, where they are
adopted to re-rank the top-k text-video candidate
pairs based on joint text-video similarity. Typi-
cally, given the video v = [v1, .., vNv ] ∈ RNv×D,
caption c = [c1, .., cNc ] ∈ RNc×D, and text
t = [t1, .., tNt ] ∈ RNt×D, where Nv, Nc, Nt, and

D denote the numbers of video, caption, text to-
kens, and the hidden dimension respectively, the
objective for reranking with MLLM-based models
for retrieval can be defined as follows:

L = − logP (y|v, c, t, I). (2)

The output y is defined with y ∈ {True, False}
tokens, resembling a binary classification task, and
note that the auxiliary caption c is simply con-
catenated to the video along with the text query
t. Also, I denotes the instruction prompt to answer
‘True’ or ‘False’ that is omitted for the follow-
ing notations. Hence, for the matching triplets,
i.e., (v(i), c(i), t(j)) where i = j, the model is
trained to output ‘True’, while for the unmatch-
ing triples where i ̸= j the model is expected to
output ‘False’. During inference, following Lin
et al. (2025) and Liu et al. (2025) the typical ap-
proach of measuring the relevance score s is:

s(v, c, t) = logP (y+|v, c, t), (3)

where y+ = True. For T2V, the retrieved video
is chosen as the candidate with the highest rele-
vance score for a given text query t(i), and vice
versa for V2T. However, we observe that simply
concatenating the caption c into the input hinders
the model from differentiating between the hetero-
geneous textual inputs of the text query t and the
auxiliary caption c. We also empirically observe
that the simple strategy of measuring the relevance
score with the probability of predicting the ‘True’
lacks fine-grained sensitivity required for retrieval.

3.2 Direct Preference Optimization
Direct Preference Optimization (DPO) (Rafailov
et al., 2023), is a typical optimization strategy
adopted to align LLMs output with human pref-
erences, which is derived from the reinforcement
learning objective in RLHF (Ziegler et al., 2019).
DDPO the preference dataset for DPO can be de-
fined with {x(i), y(i)w , y

(i)
l }Ni=1, where x is an input,

yw, yl are the preferred and dispreferred outputs,
and the preference is estimated by Bradley and
Terry (1952). Typically, the objective of DPO can
be written as follows:

LDPO(πθ;πref) = −E(x,yw,yl)∼DDPO[
log σ(r̂θ(x, yw)− r̂θ(x, yl))

]
, (4)

where r̂θ(x, y) = β log πθ(y|x)
πref(y|x) , given πθ the pol-

icy model to optimize, and πref the reference model,
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Figure 2: Illustration of our CaRe-DPO framework. (a) depicts the MLLM-based retrieval model where we
propose to adopt retrieval role-embeddings Rc and Rt for the heterogeneous textual inputs applied to each token,
accordingly: auxiliary caption (orange) and retrieval target text (purple). In addition, we illustrate the contrastive
inference strategy (contrasting the probability of generation ‘True’ to ‘False’). (b) visualizes our DG-DPO
mechanism for optimizing the captioning model, where each caption given to the video is evaluated with the retrieval
relevance score sp. During training, unlike SG-DPO, which adopts the local rank preferences, DG-DPO adopts the
global rank preference, exploring across video-caption pairs.

β is a hyperparameter for regularizing the disparity
of πθ and πref, and σ denotes the sigmoid function.

4 Method

In this section, we introduce our CaRe-DPO,
Captioning for Retrieval via DualGroup-Direct
Preference Optimization, a novel retrieval frame-
work that enhances text-video retrieval with auxil-
iary captions. In Sec. 4.1, we describe our retrieval
backbone built upon an MLLM, which jointly en-
codes video and text inputs to compute cross-modal
similarity, where we also introduce retrieval role-
embeddings to differentiate the heterogeneous tex-
tual inputs. Then in Sec. 4.2, we present DG-DPO,
a preference optimization method that supervises
the captioning model to further align with the re-
trieval objective. The overall framework is illus-
trated in Fig. 2.

4.1 MLLM-based Retrieval Model
Training. Following recent trends in retrieval, we
adopt MLLMs for text-video retrieval. However,
we observe an interesting phenomenon: incorporat-
ing auxiliary captions into MLLM-based retrieval
models often leads to only marginal performance

gains. In particular, even when descriptive captions
are provided, replacing them with random captions
yields nearly identical retrieval performance (see
Sec. F and E in the Appendix). This suggests that
the model does not effectively distinguish the cap-
tion’s role as auxiliary context from the text query
as the retrieval target, resulting in inefficient use of
the additional information. Hence, we adopt a sim-
ple yet effective retrieval role-embedding. Specifi-
cally, given the input triplet (v, c, t), we introduce
a new role-embeddings Rc ∈ RD and Rt ∈ RD,
which are combined to each corresponding tokens
of c and t, respectively. Hence, the training objec-
tive of Eq. 2 can be modified as follows:

Lret = − logP (y|v, c+Rc, t+Rt), (5)

where Rc = 1NcR
⊤
c and Rt = 1NtR

⊤
t . Such a

simple approach avoids Mret to explicitly distin-
guish according to its roles: the caption as con-
textual knowledge and the text query as retrieval
targets. Note that unless stated, c and t corresponds
to c+Rc and t+Rt for the following notations.

Inference. For the inference stage, we empiri-
cally observe that instead of simply adopting the
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probability of generating the y+ token as the re-
trieval relevance score (Eq. 3), it is more effective
to use the pairwise score margin between y+ and
y− generation as follows:

s(v, c, t) = log
P (y+|v, c, t)
P (y−|v, c, t) (6)

Such a contrastive inference strategy enables the
retrieval model to be more sensitive to the subtle
differences between the input and its output de-
cision, thereby enhancing retrieval performance
(refer to Table 13 in the Appendix).

4.2 DG-DPO
Retrieval score-driven preference dataset. To
further improve auxiliary captions for retrieval,
which arises from the misalignment between cap-
tioning evaluation and retrieval objectives, we first
construct the preference dataset that directly adopts
the retrieval scores as supervision. First, we sam-
ple K number of captions {c(i)k }Kk=1 for each video
v(i), denoted as c(i)k ∼ Mcap(v

(i)) where Mcap(·)
refers to the pretrained captioning model. Then,
we adopt the retrieval model Mret(·) to evaluate
the quality of the sampled captions for video-text
retrieval. Specifically, we adopt the relevance score
between c

(i)
k and the t

(i)
k while masking the video

tokens in the attention mask (v∗), which empiri-
cally showed to be effective in terms of precision
than that of un-masked video tokens (see Tab. 14
in the Appendix). Formally, the relevance score for
preference optimization, sp, is defined as:

sp(v
(i), c

(i)
k , t(i)) = log

P (y+|v∗, c(i)k , t(i))

P (y−|v∗, c(i)k , t(i))
(7)

Single-Group Direct Preference Optimization.
Similar to the conventional DPO approach, we de-
fine Single-Group Direct Preference Optimization
(SG-DPO) as the variant where preference pairs are
constructed by comparing outputs conditioned on a
single input i.e., local retrieval rank preferences, as
illustrated under ‘local rank’ in Fig. 2 (b). Specifi-
cally, given a single video v(i) with its associated
two sampled captions of preferred c

(i)
w and dispre-

ferred c
(i)
l , preference pair c(i)w | v(i) ≻ c

(i)
l | v(i)

satisfy the following condition:

sp

(
v(i), c(i)w , t(i)

)
> sp

(
v(i), c

(i)
l , t(i)

)
+γ. (8)

γ refers to the margin threshold, which enforces a
minimum difference between retrieval scores.

Dual-Group Direct Preference Optimization.
On the other hand, our proposed Dual-Group Di-
rect Preference Optimization (DG-DPO) builds
upon the SG-DPO, which extends the framework to
consider preferences across distinct video-caption
pairs by leveraging their associated retrieval rele-
vance scores across the dataset, i.e., global retrieval
rank preferences. For instance, given two video-
caption pairs (v(i), c

(i)
k ) and (v(j), c

(j)
k ), where

the former denote any k-th caption and video for
the i-th sample, and the latter denote any k-th
caption and the video for the j-th sample, the
preference pair among the video-caption pair i.e.,
c
(i)
w |v(i) ≻ c

(j)
l |v(j), satisfy the following condi-

tion:

sp

(
v(i), c(i)w , t(i)

)
> sp

(
v(j), c

(j)
l , t(j)

)
+ γ.

(9)
Notably, the preference pairs of DG-DPO include
cases satisfying both i = j and i ̸= j, whereas SG-
DPO only considers sample pairs with i = j. Over-
all, the model learns to prefer video-caption pairs,
which results in higher retrieval relevance scores,
while considering both the local rank preference of
the caption and the global rank preference across
distinct video-caption pairs, enhancing the retrieval
performance. Hence, LDG-DPO can be written as:

LDG-DPO = −E
(v(i),v(j),c

(i)
w ,c

(j)
l )∼DDG-DPO[

λi,j · log σ
(
r̂θ(v

(i), c(i)w )− r̂θ(v
(j), c

(j)
l )

)]
.

(10)

Note λi,j serves as a weighting factor that balances
the contribution between pairs with i = j and i ̸= j.
Importantly, this does not require additional train-
ing samples; instead, we reuse the pre-computed
log probability values from the computation from
when i = j to compute LDG-DPO for i ̸= j. Hence,
we effectively leverage the samples within the same
batch-aggregated across multiple GPUs to adopt
the global rank of video-caption pairs. As a re-
sult, without substantial computational or mem-
ory overhead, the captioning model is encouraged
to explore consistent ranking preferences across
a wider range of sample combinations of video-
caption pairs for retrieval with auxiliary captions.

5 Experiments

5.1 Experiments Setup
Datasets and metrics. To validate the effective-
ness of CaRe-DPO, we evaluate on three Text-
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Text-to-Video Video-to-Text
DiDeMo ActivityNet MSRVTT DiDeMo ActivityNet MSRVTT

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Non-MLLM-based
CLIP4Clip (Luo et al., 2022) 42.8 68.5 79.2 40.5 72.4 83.4 44.5 71.4 81.6 42.5 70.6 80.2 42.6 73.4 85.6 43.1 70.5 81.2
ViCLIP (Wang et al., 2024c) 49.4 - - 49.8 - - 52.5 - - 50.2 - - 48.1 - - 51.8 - -
MV-Adapter (Jin et al., 2024) 44.3 72.1 80.5 42.9 74.5 85.7 46.2 73.2 82.7 42.7 73.0 81.9 43.6 75.0 86.5 47.2 74.8 83.9
InternVideo (Wang et al., 2022) 57.9 82.4 88.9 62.2 85.9 93.2 55.2 79.6 87.5 59.1 81.8 89.0 62.8 86.2 93.3 57.9 79.2 86.4
UMT (Li et al., 2023) 70.4 90.1 93.5 66.8 89.1 94.9 58.8 81.0 87.1 67.9 88.6 93.0 64.4 89.1 94.8 58.6 81.6 86.5
Cap4Video (Wu et al., 2023) 52.0 79.4 87.5 - - - 51.4 75.7 83.9 - - - - - - 49.0 75.2 85.0
NarVid (Hur et al., 2025) 53.4 79.1 86.3 - - - 52.7 77.7 85.6 - - - - - - 51.1 76.8 85.2
InternVideo2 1B∗ (Wang et al., 2024d) 75.3 92.5 95.8 68.8 89.7 94.7 59.4 80.9 86.6 73.1 92.1 94.9 65.3 88.0 94.2 56.9 76.9 84.6
InternVideo2 6B (Wang et al., 2024d) 74.2 - - 74.1 - - 62.8 - - 71.9 - - 68.7 - - 60.2 - -

MLLM-based†
MM-Embed (Lin et al., 2025) 81.6 94.9 96.3 78.5 - - 61.2 82.7 88.8 79.7 94.9 96.2 70.7 - - 60.5 82.3 87.1
LamRA (Liu et al., 2025) 83.5 94.8 96.2 76.0 92.8 96.3 59.7 81.4 87.2 79.4 94.8 96.6 68.7 90.1 95.3 60.7 82.3 89.0

CaRe-DPO (Ours) 85.1 95.0 96.2 79.2 93.6 96.5 64.1 83.8 88.8 82.5 95.2 96.3 74.4 92.4 96.3 63.8 83.0 87.3

Table 1: Comparison with state-of-the-art Text-Video Retrieval models. * denotes reproduced results. We also
report the performance of MLLM-retrieval models, which we reproduced adequately for Text-Video Retrieval,
adopting their approach while applying to the same baseline as ours, VideoChat-Flash, denoted with the †.

Video retrieval benchmarks: DiDeMo (Anne Hen-
dricks et al., 2017), ActivityNet (Caba Heilbron
et al., 2015), and MSRVTT (Xu et al., 2016). More
explanation of the datasets is in Sec. A of the Ap-
pendix. For evaluation, we adopt the standard re-
trieval metrics: Recall@K∈ {1, 5, 10}. Note that
for auxiliary captions, we sample two per instance
and average the performance over those to mitigate
the caption variability while providing more robust
results. Unless otherwise specified, all experiments
are conducted on DiDeMo, which serves as our
primary benchmark. For additional validation, we
also report results on the multi-text text-to-video re-
trieval benchmark MSVD (Chen and Dolan, 2011)
in Sec. B of the Appendix, which further demon-
strates the effectiveness of our CaRe-DPO.

Implementation details. For retrieval, we adopt
InternVideo2-1B (Wang et al., 2024d) to initially
compute the similarity between the video and
the text query, and then we retrieve the top-16
candidates for re-ranking. Our MLLM-based
retrieval model, capable of leveraging auxiliary
captions, is built upon VideoChat-Flash-7B (Li
et al., 2024c). For captioning, we adopt pretrained
LLaVA-OneVision-7B (Li et al., 2024a), where we
utilize 16 frames per video for all datasets, and
further align the model with our DG-DPO. For
efficiency, we apply LoRA (Hu et al., 2022) for
parameter-efficient fine-tuning for both training.
See Sec. C of Appendix for more details, including
the training hyperparameters.

5.2 Experimental Results

Main results. Tab. 1 shows the performance of
the State-of-the-Art text-video retrieval models, in-

DiDeMo ActivityNet MSRVTT Avg.
∆T2V V2T T2V V2T T2V V2T

Baseline 83.1 79.6 78.3 74.0 62.7 63.6 -
+ LSFT 82.6 82.0 78.0 73.9 62.9 63.0 (+0.2)
+ LSG-DPO 84.4 82.4 78.9 74.1 63.4 63.3 (+0.9)
+ LDG-DPO 85.1 82.5 79.2 74.4 64.1 63.8 (+1.3)

Table 2: Ablation on training objectives for Mcap .
R@1 retrieval performance from different training ob-
jectives for Mcap. ‘Avg. ∆’ denotes the R@1 point
increase compared to the baseline across datasets.

cluding non-MLLM-based and MLLM-based. The
results show that our CaRe-DPO outperforms base-
line models across various datasets, especially in
R@1 for both T2V and V2T. Among non-MLLM-
based models, ours effectively improves perfor-
mance over the SOTA model of InternVideo2-6B,
with an average percentage increase of 14.7%,7.7%,
and 4.1% in R@1 for DiDeMo, ActivityNet, and
MSRVTT, respectively. To further validate the ef-
fectiveness of our framework across MLLM-based
retrieval models, we compare against MM-Embed
and LamRA. Notably, our CaRe-DPO shows su-
perior performance with an average percentage in-
crease in R@1 of 3.9%, 3.1%, and 5.1% compared
to MM-Embed, and 2.9%, 6.3%, and 6.2% com-
pared to LamRA across datasets. Overall, CaRe-
DPO consistently outperforms the baselines, high-
lighting its effectiveness in enhancing text-video
retrieval with MLLM-based models.

5.3 Quantitative Analysis

Ablation on training objectives for Mcap. In
Tab. 2, we analyze different objectives for training
the captioning model on the performance of text-
video retrieval. As shown, simply fine-tuning on

16027



DiDeMo ActivityNet MSRVTT
Inference Mcap T2V V2T T2V V2T T2V V2T

s(c, t)
Baseline 49.6 40.8 43.2 37.0 40.5 37.7

+ LDG-DPO 51.2 43.4 53.0 43.6 49.1 45.5

s(v, c)
Baseline 91.8 90.7 88.2 86.5 88.9 86.1

+ LDG-DPO 92.1 92.2 88.7 87.5 89.7 87.1

Table 3: Analysis on caption quality for retrieval.
‘Baseline’ denotes zero-shot captions adopted for re-
trieval. For s(c, t), we adopt the model trained with
(v, c, t) while masking the video tokens. For s(v, c),
we utilize the model trained solely on (v, t). We report
R@1 performance for both T2V and V2T.

Train Input
Rc, Rt

Inf. Text-to-Video Video-to-Text Avg.
∆Lret(·) cap. c R@1 R@5 R@10 R@1 R@5 R@10

(v, c, t)
✗ rand. 81.5 94.6 95.9 79.1 94.6 96.5 -
✗ orig. 81.6 94.3 95.9 79.2 94.7 96.7 (+0.1)

(v, c′, t′)
✔ rand. 82.6 94.4 96.0 76.5 95.0 96.2 -
✔ orig. 83.1 94.4 96.2 79.6 94.6 96.6 (+1.8)

Table 4: Ablation on the role-embeddings of Mret.
We adopt the zero-shot captions with the standard in-
ference strategy. ‘rand’ and ‘orig.’ denote random and
original captions, respectively, and ‘Inf.’ denotes the
inference stage. c′ and t′ denote c + Rc and t + Rt,
respectively. ‘Avg. ∆’ denotes an average change in
R@k performance, between ‘rand’ and ‘orig’ captions.

the given dataset, denoted as LSFT (row 2), results
in an average R@1 improvement of 0.2 points, with
a per-dataset increase of 1.0 for DiDeMo and a de-
crease of 0.2 for both ActivityNet and MSRVTT. In
contrast, adopting our LSG-DPO or LDG-DPO, which
optimizes the model with DPO using retrieval
scores for preference determination, results in su-
perior performance. Specifically, LSG-DPO (row 3),
which relies on the local preference of the retrieval
score, shows point increases of 2.1, 0.3, and 0.2
for DiDeMo, ActivityNet, and MSRVTT, respec-
tively. By further considering the global prefer-
ence based on retrieval scores, LDG-DPO (row 4)
achieves even higher retrieval precision, with point
increases of 2.5, 0.8, and 0.8 compared to the base-
line across the datasets. These results highlight
the effectiveness of leveraging retrieval scores with
DPO to better align generated captions for retrieval,
and demonstrate that DG-DPO, which accounts
for global preferences beyond local video-caption
pairs, further improves performance.

Analysis on the quality of caption for retrieval.
To further investigate the effectiveness of captions
in retrieval with CaRe-DPO, we design a series of
experiments shown in Tab. 3: text-to-caption (T2C)

Preference score Mcap T2V V2T Avg. Confidence

BLEU
+ LSG-DPO 82.9 74.2 82.7
+ LDG-DPO 83.7 75.4 83.1

Retrieval Score
+ LSG-DPO 83.7 75.4 86.9
+ LDG-DPO 84.5 77.4 89.6

Table 5: Effectiveness of DG-DPO in challenging
retrieval cases. Results of T2V and V2T R@1 in chal-
lenging retrieval cases with highly similar video candi-
dates (pairwise average cosine similarity averaged over
frames > 0.97).

(upper half) and video-to-caption retrieval (V2C)
(lower half). T2C assesses how well the auxiliary
caption semantically aligns with the query, V2C
measures the degree to which the caption captures
the distinctive content of the video itself. The re-
sults show that the captions generated from Mcap
trained with LDG-DPO result in consistent improve-
ments across both retrieval tasks. Specifically, in
T2C, the caption generated after adopting our DG-
DPO yields an average increase of 7.6 points, espe-
cially in MSRVTT, with an 8.6 points increase in
T2V and a 7.8 points increase in V2T. Also notable
in ActivityNet with a 9.8 points and a 6.6 points
increase in T2V and V2T, respectively. In V2C, the
zero-shot caption itself shows strong explanability
of the video, yet with our LDG-DPO, it further leads
to performance enhancement with an average 0.9,
0.8, and 0.9 points increase in R@1 on DiDeMo,
ActivityNet, and MSRVTT, respectively.

Effectiveness of retrieval role-embeddings.
Tab. 4 presents the impact of retrieval role-
embeddings for the MLLM-based retrieval model.
As shown, when replacing the caption with a ran-
dom caption, the model shows a minimal perfor-
mance drop of 0.1 in R@1 on average (compare
rows 1 and 2). In contrast, using the same caption,
training with role-embeddings results in a superior
performance with 83.1 for T2V and 79.6 in V2T
(compare rows 2 and 4) while showing higher sen-
sitivity to the quality of the caption with a notable
1.8 improvement in average for R@1 compared to
the one with a random caption (compare rows 3
and 4). These results highlight the effectiveness of
role-embeddings in differentiating the two roles of
auxiliary knowledge and retrieval target, leading
to more accurate retrievals. Note that we use stan-
dard pretrained captions in this ablation to isolate
the effect of retrieval role-embeddings; further ex-
periments with DG-DPO-optimized captions are
provided in Tab. 12 of the Appendix.
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The	video	begins	with	a	close-up	of	the	Epicura Home	Products	logo,	
transitions	to	show	cookie	dough	pieces	on	an	Epicure	baking	mat,	and	
then	shows	cookies	being	baked	in	an	oven.	The	scene	continues	with	
more	cookies	cooling	after	baking	before	moving	to	a	person	using	
tongs	to	remove	them	from	the	mat	onto	a	plate.

The	video	begins	with	a	close-up	of	cookie	dough	pieces	on	an	Epicura
Home	Products	mat.	It	then	transitions	to	show	the	cookies	baking	in	
an	oven	before	being	removed	and	placed	onto	a	plate	using	a
spatula.	Finally,	it	wraps	up	by	showing	some	cookies	left	on	the	mat	
after	others	have	been	transferred	off-screen.

The	video	begins	with	a	person	opening	an	oven	door,	revealing	food	
inside.	The	scene	transitions	to	the	same	kitchen	setting	where	another	
individual	is	seen	wearing	black	gloves	and	holding	a	tray	of	freshly	
baked	cookies	in	front	of	the	now-closed	oven.

Our	generated	caption:
The	video	begins	with	a	person	opening	an	oven	door,	revealing	cookie
s	inside.	The	scene	transitions	to	the	same	individual	wearing	gloves	an
d	holding	a	tray	of	freshly	baked	cookies	before	moving	on	to	show	two	
people	in	a	kitchen	setting—one	holding	a	cup—while	another	interacts	
near	various	cooking	utensils	and	appliances.	Next,	it	shows	someone	
placing	items	into	the	now-lit	oven	followed	by	shots	of	different	indivi
duals	standing	or	interacting	within	the	bustling	environment	of	…

Baseline	generated	caption:

T→(V,	C)	retrieval	RANK:	2

T→(V,	C)	retrieval	RANK:	1

Baseline	generated	caption:

similar	video candidates

T→(V,	C)	retrieval	RANK:	1

GT	Video Similar	Video

Text	Query	(T):	A oven	is	open and	two	cookie	trays are	shown	as	the	contents	begin	to	bake.	The	people	then	take	the	cookies	out	of	the	oven	and	
starts	to	talk	to	their	customers.

T→(V,	C)	retrieval	RANK:	2

Our	generated	caption:

Figure 3: Qualitative example on the effect of generated video caption. Comparison of captions generated for
visually similar videos on ActivityNet (left: ground-truth video, right: highly similar incorrect video) using the
zero-shot captioning model (Baseline) and our DG-DPO-optimized model (Ours). Note the fine-grained details
captured by our model but omitted in the baseline are highlighted in color. Additionally, the border color of each
video frame corresponds to the caption depicted in our generated caption, and the underline denotes the fine-grained
details that closely match the input text query (T). T → (V, C) denotes text-to-video retrieval, where C is the
auxiliary caption for the given video. We also show the retrieval rank for each candidate with different generated
captions. The qualitative results demonstrate that the DG-DPO-optimized caption improves retrieval, increasing the
ground-truth video’s rank from 2 to 1 in T2V.

Training Strategy Self-BLEU (↓) Distinct-1 (↑) Distinct-2 (↑)

Zero-shot 0.50 0.08 0.41
+ LSFT 0.52 0.08 0.39
+ LDG-DPO 0.47 0.10 0.43

Table 6: Caption diversity with different training
strategies. DG-DPO consistently improves diversity
and reduces redundancy in caption generation.

Effectiveness of DG-DPO in challenging re-
trieval cases. Tab. 5 highlights the effectiveness
of DG-DPO in retrieval scenarios involving highly
similar video candidates, from which we left sam-
ples from the test set where any pairwise video
cosine similarity (averaged over frames) is greater
than 0.97. First, when comparing BLEU and re-
trieval score as the preference signal under SG-
DPO, the retrieval score consistently yields higher
average model confidence measured with Eq. 6 and
scaled to a percentage (out of 100) for interpretabil-
ity (86.9 vs. 82.7), indicating its stronger alignment
with retrieval objectives. More importantly, DG-
DPO further improves performance and model con-
fidence over SG-DPO across both preference sig-
nals. For instance, using retrieval score supervision,
DG-DPO boosts T2V and V2T R@1 from 83.7 to
84.5 and 75.4 to 77.4, respectively, and increases

average confidence from 86.9 to 89.6. These re-
sults demonstrate that modeling group-level pref-
erences across distinct video-caption pairs allows
for providing more discriminative learning signals,
leading to more accurate and confident retrieval in
challenging cases.

Effect on caption diversity. Tab. 6 shows the
impact of different training strategies on caption
diversity measured with three different metrics of
Self-BLEU (Zhu et al., 2018) that measure the re-
dundancy across generated captions, and Distinct-1
and 2 (Li et al., 2015) that capture the ratio of
unique unigrams and bigrams. While simple fine-
tuning on the dataset (SFT) increases redundancy
(0.52 vs. 0.50 in Self-BLEU compared to the zero-
shot), likely due to overfitting to common patterns
in the training data, our DG-DPO leads to signifi-
cantly more diverse captions. It achieves the lowest
Self-BLEU of 0.47 and the highest Distinct-1 of
0.10 and Distinct-2 of 0.43, indicating richer and
less repetitive outputs. This suggests that DG-DPO
not only improves discriminative supervision but
also encourages the model to generate more de-
tailed and distinctive descriptions that are essential
for visually similar videos.
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5.4 Qualitative Results
Fig. 3 presents a comparison between captions gen-
erated by a zero-shot captioning model (baseline)
and our DG-DPO-trained model (ours) for two vi-
sually similar videos depicting cookie baking. As
illustrated, the baseline captions provide general
scene descriptions, whereas our model generates
more detailed and context-specific captions that
highlight key visual cues such as ‘revealing cook-
ies inside,’ ‘placed onto a plate using a spatula,’
and ‘individuals standing or interacting within the
bustling environment.’ For the given query, the
retrieval model initially ranked a visually similar
but incorrect video higher (left video in Fig. 3),
which lacked the scene where ‘people talk to their
customers’. However, after substituting the caption
with one generated by ours, the retrieval model cor-
rectly retrieved the ground-truth video, guided by
the discriminative details in the caption that closely
match the text query (underlined in the figure). This
demonstrates that the fine-grained captions gener-
ated by the DG-DPO optimized captioning model
facilitate better differentiation between similar con-
tent, leading to improved retrieval performance.
More qualitative results in Sec. H of the Appendix.

6 Conclusion

We present CaRe-DPO, a novel retrieval frame-
work that enhances text-video retrieval with aux-
iliary captions. Our role-embeddings enable re-
trieval models to explicitly distinguish the roles
of heterogeneous textual inputs. Furthermore,
our Dual-Group Direct Preference Optimization
aligns caption generation with retrieval relevance
scores while leveraging both local and global ranks.
Through extensive experiments, we demonstrate
that CaRe-DPO enhances overall retrieval accuracy
across benchmarks.

Limitations

In this work, we propose CaRe-DPO that relies on
the MLLM-based models for text-video retrieval.
CaRe-DPO builds upon MLLM-based retrieval
models, which inherently rely on the pre-trained
multimodal knowledge encoded in the MLLM,
which also includes the captioning model adopted.
As a result, the performance of our approach may
be constrained by the underlying capabilities and
biases of the base MLLM, especially in domain-
specific or low-resource settings. Moreover, unlike
simply training the retrieval model, ours requires

training both the retrieval and captioning models
and generating multiple captions for DPO training,
which increases overall training time, yet results in
improved retrieval performance.
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A Dataset Details

DiDeMo. DiDeMo (Anne Hendricks et al., 2017)
is a text-video retrieval benchmark, namely the Dis-
tinct Describable Moments, which comprises 10K
videos, which are segmented into 5-second clips
for annotation, totaling 26K annotated moments.
Each moment is richly described with references
to camera movement, temporal transitions, and ac-
tions. We treat the retrieval task as a paragraph-to-
video retrieval where we concatenate all the cap-
tions within the video, following prior works (Luo
et al., 2022; Wu et al., 2023; Li et al., 2023; Wang
et al., 2024d; Cheng et al., 2023; Hur et al., 2025).
Note that the dataset provides 8,394 training and
1,003 test samples.

ActivityNet. Activitynet (Caba Heilbron et al.,
2015) is a text-video retrieval benchmark that is
based on 19K YouTube videos, categorized into
200 activity classes. For each class, there exists
an average of 137 videos, and each video contains
about 1.41 temporal activities. Similar to DiDeMo,
we aggregate all the captions per video and im-
plement the task as a paragraph-to-video retrieval,
while we evaluate on the val1 split following Luo
et al. (2022); Li et al. (2023); Wang et al. (2024d);
Cheng et al. (2023); Hur et al. (2025).

MSRVTT. The MSRVTT (Xu et al., 2016)
dataset, namely Microsoft Research Video to Text,
contains 10k video clips that span across 20 cate-
gories, of which each clip is annotated by 20 sen-
tences. Following previous protocols (Luo et al.,
2022; Wang et al., 2024d; Li et al., 2023; Cheng
et al., 2023; Hur et al., 2025), we use the 9k sample
set for training (which is about 180k caption-video
pairs), and adopt the 1,000 clips for testing.

MSVD. The MSVD (Chen and Dolan, 2011)
dataset consists of 2k videos, of which each video
is annotated with around 40 captions. Unlike previ-
ously mentioned, MSVD is a multi-text text-video
retrieval benchmark where it treats each sentence
as an independent sample. Specifically, it evaluates
with one-to-many ground-truth text for video-to-
text retrieval. Following previous protocols (Luo
et al., 2022; Wang et al., 2024d; Li et al., 2023;
Cheng et al., 2023; Hur et al., 2025), we use 1k
videos for training, and 670 videos for testing.

Method T2V R@1 V2T R@1

Non-MLLM-based
MV-Adapter (Jin et al., 2024) 49.4 71.8
NarVid (Hur et al., 2025) 53.1 -
InternVideo (Wang et al., 2022) 58.4 76.3
UMT (Li et al., 2023) 58.2 82.4
InternVideo2 1B∗ (Wang et al., 2024d) 59.0 85.5
InternVideo2 6B (Wang et al., 2024d) 61.4 85.2

MLLM-based†
MM-Embed (Lin et al., 2025) 59.5 85.5
LamRA (Liu et al., 2025) 59.0 85.5

CaRe-DPO (Ours) 59.8 85.9

Table 7: Comparison with SOTA retrieval models
on MSVD. We report R@1 for both T2V and V2T
retrieval. Note that best values are bold, second-best
are bold and underlined. † denotes reproduced on the
same baseline as ours, VideoChat-Flash.

T2V V2T

Baseline 59.0 85.5
+ LSFT 59.7 85.5
+ LSG-DPO 59.7 85.6
+ LDG-DPO 59.8 85.9

Table 8: Ablation on training objectives for Mcap on
MSVD. R@1 retrieval performance for T2V and V2T.

s(c, t) T2V V2T

Baseline 49.5 76.6
+ LDG-DPO 51.7 79.0

Table 9: Analysis on caption quality for retrieval on
MSVD. We report R@1 for T2V and V2T.

B Multi-Text Text-Video Retrieval

Comparison with SOTA models on MSVD.
Tab. 7 presents a comparison of state-of-the-art
text-to-video (T2V) and video-to-text (V2T) re-
trieval performance on the MSVD, a multi-text
text-video retrieval benchmark, measured using
R@1. When adopting our CaRe-DPO, the model
achieves strong performance, especially in V2T,
attaining 85.9, outperforming other MLLM-based
approaches as well as non-MLLM-based models.

Ablation on training objectives on MSVD.
Tab. 8 presents an ablation study on the impact
of different training objectives for Mcap on MSVD.
We observe that incorporating the supervised fine-
tuning loss (LSFT) yields a slight improvement for
T2V retrieval while V2T remains unchanged. In-
troducing our (LSG-DPO and LDG-DPO) further en-
hances performance, with LDG-DPO achieving the
best results of 59.8 for T2V and 85.9 for V2T.
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A	child	drops	her
stuffed	animal	toy.	
Little	girl	putting	
down	and	picking..

Text	Query
T2V	R@1	=	81.6

The	child	moves	around	
while	playing	with	the	
toy,	occasionally	reach..

Original Caption

,

The	band	is	position	on	
an	open-air	stage	with	
brick	buildings	and..

Random Caption
Video

T2V	R@1	=	81.5
,

N
early	Identical

Video

Figure 4: T2V retrieval with the original descriptive
caption (video-to-caption retrieval R@1 of 90.7) com-
pared to the random one. Nearly identical performance
suggests that the model fails to effectively leverage the
auxiliary knowledge.

Analysis on caption quality on MSVD. Tab. 9
analyzes the effect of caption quality on retrieval
performance using the text-caption retrieval s(c, t),
measuring how well the auxiliary caption semanti-
cally aligns with the query. Compared to the base-
line, adding LDG-DPO significantly improves R@1
metrics for both T2V and V2T, reaching 51.7 and
79.0, respectively.

C Implementation Details

Training Details for retrieval. For training an
MLLM-based model for retrieval, we adopt the
recent MLLM of VideoChat-Flash-7B (Li et al.,
2024c). The baseline model is equipped with a vi-
sual encoder of UMT-L (Li et al., 2023) and an
LLM of Qwen2 (Yang et al., 2024). For each
benchmark, we only train the linear projection
layer while adopting LoRA (Hu et al., 2022) for
fine-tuning the model for efficiency. We adopt 16
frames per video for all datasets. All the exper-
iments were done using 8 NVIDIA H100 80GB
GPUS.

Prompts for text-video retrieval. We built sev-
eral different models capable of implementing text-
video retrieval. For the model trained with the loss
of L = − logP (y|v, t), which is the baseline text-
video retrieval model that does not accept auxiliary
caption as input, we adopted the prompt of “Cap-
tion: [text query]. Does the above video match
the caption? True or False”. Note that we utilized
the word ‘Caption’ for referencing the text query
that is different from the auxiliary caption that we
dealt with in this paper. For training the model
with the loss of L = − logP (y|v, c, t), which
is capable of adopting the auxiliary caption for

training, we use the prompt of “Video description:
[caption]. Caption: [text query]. Based on
the video and its description, is the video relevant
to the caption? Answer True or False.” Again, to
clarify, the ‘video description’ corresponds to the
auxiliary caption dealt with in the paper, whereas
the ‘caption’ refers to the text query (retrieval tar-
get).

Training details for captioning. We adopt
LLaVA-OneVision-7B (Li et al., 2024a) for train-
ing the captioning model with Direct Preference
Optimization. Similar to MLLM-based retrieval
model finetuning, we adopt LoRA (Hu et al.,
2022) for parameter-efficient finetuning. LLaVA-
Onevision consists of Qwen2 (Yang et al., 2024)
as the LLM, and SigLIP vision encoder (Zhai
et al., 2023). We adopt 16 frames per video for
all datasets. All the experiments were done using
8 NVIDIA H100 80GB GPUS. Note that λi,j in
Eq. 10 denotes the weighting factor that balances
the contribution between local pairs (i = j) and
cross-group pairs (i ̸= j). Specifically, we denote
the former as λi=j and the latter as λi ̸=j . The value
of λi ̸=j adopted for our experiments are in Tab 10,
and λi=j is (1− λi ̸=j).

Prompt for captioning. We empirically explored
several ways of generating the caption for the
dataset for zero-shot. Simply prompting the cap-
tioning model to generate a detailed description
about the video will cause the model to generate
a very long paragraph for the given video. Hence,
we utilized the prompt of “Describe this video in
detail with three sentences.”.

Inference details for retrieval. MLLM-based re-
trieval models are adopted as a re-ranker (Lin et al.,
2025; Liu et al., 2025; Miech et al., 2021), benefit-
ing from the ability to jointly attend to both visual
and textual data. Hence, based on the InternVideo-
1B (Wang et al., 2024d) similarity computed be-
tween the video and the text query, we retrieve
the top-16 candidates for re-ranking. Finally, we
weight the output scores of the two models follow-
ing the protocol of Miech et al. (2021).

Inference details for captioning. To construct
the dataset DDG-DPO, we sample k = 3 captions per
video using a generation temperature of 0.2, follow-
ing the settings provided by LLaVA-OneVision (Li
et al., 2024a). For the caption generation of evaluat-
ing the retrieval model, we sample k = 2 captions
per video. For our experiments, we average the
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DiDeMo ActivityNet MSRVTT MSVD
Mret Mcap Mret Mcap Mret Mcap Mret Mcap

Learning rate 8e-5 8e-6 2e-5 8e-6 1e-4 8e-6 2e-4 8e-6
Warmup Epochs 1 0.1 1 0.1 1 0.1 1 0.1

Epoch 5 1 5 1 3 1 5 1
Batch Size 32 8 32 8 512 8 32 8

LoRA r 8 64 8 64 8 64 8 64
LoRA α 32 128 32 128 32 128 32 128
λi ̸=j - 0.3 - 0.1 - 0.3 - 0.1
β - 0.1 - 0.1 - 0.1 - 0.1
γ - 0.7 - 2.0 - 0.5 - 0.01

Table 10: Training hyperparameters for Mret with Lret and Mcap with LDG-DPO.

retrieval scores across both in order to account for
the variability in caption generation and provide a
more robust performance estimate.

Training strategy for LDG-DPO. To construct
preference pairs from ranked retrieval results, we
explore two strategies. First, we compute a global
rank for each sample in the dataset and refer to
these ranks within each batch to determine prefer-
ence between video-caption pairs. The first strat-
egy treats the top half of the ranked samples (i.e.,
higher-ranked pairs) as chosen and the bottom half
as rejected. In contrast, the second strategy forms
preference pairs by grouping the ranked indices
into adjacent pairs, where the higher-ranked sam-
ple in each pair is treated as the chosen one and
the lower-ranked as the rejected. Empirically, we
observe that the latter strategy yields greater per-
formance improvements. We hypothesize that this
is because it produces training pairs with relatively
smaller marginal differences compared to the for-
mer approach, allowing the model to learn more
nuanced preference signals.

D Hyperparameters

In Tab. 10, we report the hyperparameters adopted
for training the retrieval model Mret, and the cap-
tioning model Mcap, across the text-video retrieval
dataset.

E Further Ablation on Role-Embeddings.

Ablation on each component. We conduct fur-
ther analysis on the role-embeddings for text-video
retrieval on DiDeMo, evaluating with and with-
out each function role embedding in Tab. 11. The
results suggest that the model trained with Rt re-
sults in higher V2T retrieval at R@1 (79.2 to 79.8),
whereas the model trained with Rc results in higher

Train Text-to-Video Video-to-Text
Lret(·) Rc Rt R@1 R@5 R@10 R@1 R@5 R@10

(v, c, t) ✗ ✗ 81.6 94.3 95.9 79.2 94.7 96.7

(v, c, t+Rt) ✗ ✔ 81.2 94.5 95.6 79.8 94.3 96.5

(v, c+Rc, t) ✔ ✗ 82.6 94.4 95.9 79.6 94.6 96.6

(v, c+Rc, t+Rt) ✔ ✔ 83.1 94.4 96.2 79.6 94.6 96.6

Table 11: Ablation on each component of the role-
embedding. Note that we adopt the zero-shot captions
with the standard inference strategy.

T2V retrieval at R@1 (81.6 to 82.6). Notably, com-
bining both role embeddings results in the best
overall performance, achieving 83.1 R@1 in T2V
and 79.6 R@1 in V2T. These findings highlight
the importance of role-embeddings integrated for
both heterogeneous textual inputs, enhancing the
model’s ability to distinguish the auxiliary caption
and the retrieval target, enabling the model to uti-
lize more of the auxiliary caption for retrieval.

Ablation with DG-DPO optimized caption. In
Tab. 12, we analyze the effectiveness of retrieval
role-embeddings when adopting the caption that is
generated by our DG-DPO optimized captioning
model, similar to Tab. 4 in the main. As shown,
when replacing the caption with a random one,
the model shows a minimal performance drop of
0.7 in R@1 on average (compare rows 1 and 2),
whereas the model trained with role-embeddings
shows higher sensitivity to the quality of the cap-
tion with a notable 1.6 point change in performance
of R@1 (compare rows 3 and 4). Moreover, while
adopting the same caption, the model trained with
the role-embeddings yields superior performance,
for instance, 85.1 compared to the baseline of 84.9
(compare rows 2 and 4).

Analysis on the inference strategy. Tab. 13 ex-
plores the different inference strategies in MLLM
retrieval, and we determine that our contrastive in-

16035



Train Input
Rc, Rt

Inf. Text-to-Video Video-to-Text Avg.
∆Lret(·) cap. c R@1 R@5 R@10 R@1 R@5 R@10

(v, c, t)
✗ rand. 81.6 94.9 96.4 83.4 94.1 95.9 -
✗ ours 84.9 95.4 96.2 82.1 95.3 96.4 (+0.7)

(v′, c′, t′)
✔ rand. 80.9 94.6 96.3 80.9 95.1 96.1 -
✔ ours 85.1 95.0 96.2 82.5 95.2 96.3 (+1.6)

Table 12: Ablation on the Role-embeddings of Mret
with DG-DPO optimized caption. We adopt our DG-
DPO optimized captions, denoted with ‘our’, with the
contrastive inference strategy. ‘rand.’ denotes random
caption and ‘Inf.’ denotes the inference stage. c′ and t′

denote c+Rc and t+Rt, respectively. ‘Avg. ∆’ denotes
an average change in R@k performance, between ‘rand’
and ‘ours’ captions.

s(v, c, t)
Text-to-Video Video-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

logP (y+|v, c, t) 82.6 94.7 96.2 79.7 94.7 96.1
logP (y−|v, c, t) 84.9 95.0 96.2 82.3 95.1 96.2

log
P (y+|v, c, t)
P (y−|v, c, t) 85.1 95.0 96.2 82.5 95.2 96.3

Table 13: Comparison on the inference strategy. Re-
trieval performance on DiDeMo, where s(v, c, t) de-
notes the relevance score adopted for the inference.

Text-to-Video Video-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

Captioning Metric

BLEU 84.1 95.0 96.3 82.3 94.7 96.4
METEOR 83.8 94.9 96.6 82.8 94.9 96.3

Retrieval Score (sp)

log
P (y+|v, c, t)
P (y−|v, c, t) 85.0 95.0 96.4 82.4 95.0 96.4

log
P (y+|v∗, c, t)
P (y−|v∗, c, t)

85.1 95.0 96.2 82.5 95.2 96.3

Table 14: Comparison on adopting different prefer-
ence scores sp for constructing DDG-DPO. We report
the retrieval performance on DiDeMo. Also, v∗ denotes
masked attention for video tokens.

ference strategy yields the best result. The standard
approach (row 1) results in significant performance
degradation compared to those that adopt the proba-
bility of generating ‘False’ (row 2 and 3). Specifi-
cally, simply adopting logP (y−|v, c, t) (row 2),
results in +2.5% increase in R@1 on average,
and adopting logP (y+|v, c, t)− logP (y−|v, c, t)
(row 3), results in +2.7% increase.

F Further Ablation on DG-DPO

Ablation on preference scores. In Tab 14, we
compare retrieval performance while adopting
different types of preference scores sp for con-
structing DDG-DPO. We observe that directly us-

Method T2V R@1 V2T R@1

Baseline 83.1 79.6
+LSFT 82.6 82.0
+LDG-DPO (Batch=4) 84.8 82.6
+LDG-DPO (Batch=8) 84.2 82.8
+LDG-DPO (Batch=16) 84.2 82.5
+LDG-DPO (Batch=32) 85.1 82.5

Table 15: Effect of DG-DPO with varying batch sizes.
We report R@1 for text-to-video (T2V) and video-to-
text (V2T) retrieval.

Training
Dataset

Test
Dataset

Preference
score

T2V V2T
R@1 R@5 R@10 R@1 R@5 R@10

DiDeMo MSRVTT BLEU 63.9 82.9 87.2 63.7 83.0 87.2
DiDeMo MSRVTT retrieval 64.2 83.8 88.5 63.9 83.1 87.3
MSRVTT MSRVTT retrieval 64.1 83.8 88.8 63.8 83.0 87.3

Table 16: Cross-dataset generalization of DG-DPO
captions. To evaluate out-of-domain generalization of
Mcap with DG-DPO on the DiDeMo dataset and test
retrieval performance on MSRVTT, which differs in
video length and query granularity.

ing retrieval-based scores (rows 3 and 4) consis-
tently outperforms traditional captioning metrics
such as BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005). Specifically,
adopting BLEU and METEOR leads to a perfor-
mance drop of 1.0 and 1.3 points in T2V R@1, re-
spectively. For V2T, the impact of caption quality
appears marginal, as captions primarily augment
the video rather than the text query, contributing
more significantly to improvements in T2V.

Ablation on DG-DPO batch size. To analyze
the effect of batch size in preference optimization,
we conduct an ablation study by applying DG-DPO
with varying batch sizes during training. As shown
in Table 15, all DG-DPO variants outperform the
baseline and SFT-only models, demonstrating the
effectiveness of direct preference optimization. No-
tably, performance improves consistently as the
batch size increases, with the best results observed
at a batch size of 32, achieving 85.1 R@1 in text-to-
video and 82.5 R@1 in video-to-text retrieval. This
highlights the benefit of utilizing diverse preference
pairs per update and suggests that larger batch sizes
help the model better capture fine-grained semantic
preferences aligned with retrieval objectives.

G Out-of-Domain Generalization

To assess the out-of-domain generalization abil-
ity of our method, we conducted a cross-dataset
evaluation by training the captioner with DG-DPO
on DiDeMo and evaluating retrieval performance
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on the MSRVTT benchmark, of which the former
contains longer videos with more moment-specific
queries, whereas the latter contains shorter videos
with queries that refer to the entire video. As
shown in Tab 16, DG-DPO-trained captions gener-
alize well to unseen datasets, even outperforming
the performance when trained with the specific
dataset (see row 2 and row 3). In addition, re-
trieval score-based optimized captions outperform
BLEU-optimized captions even when trained out-
of-domain. This confirms that DG-DPO captures
meaningful retrieval-aligned semantics rather than
overfitting to domain-specific biases.

H Further Qualitative Results

In Fig 5, Fig 6, we further show the qualitative
results between captions from the baseline and our
model on DiDeMo and ActivityNet, focusing on
those benchmarks that require fine-grained detail
for retrieval. All figures (a) depict examples for
text-to-video retrieval, whereas (b) depict exam-
ples of video-to-text retrieval. (c) illustrates cases
where, when adopting a baseline (zero-shot) cap-
tion, the model confuses between the two similar
videos for text-to-video retrieval, whereas with DG-
DPO optimized captions, the fine-grained details
successfully lead to discriminating between the
videos. Overall, our model trained with the DG-
DPO of our CaRe-DPO enables the retrieval model
to better align with the text-video retrieval task.
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The	video	begins	with	a	view	of	an	indoor	setting,	featuring	various	items	such	as
books	and	electronic	devices	on	the	floor. A	person	wearing	black	pants	enters	
from	behind	and	sits	down	to	play	a	guitar. The	scene	transitions	smoothly	to	sho
w	this	individual	playing	the	acoustic	guitar	while	seated	in	front	of	another	piece	of
furniture.

The	video	begins	with	a	view	of	an	indoor	setting,	featuring	various	items	such	as	
books	and	speakers	in	the	background.	A	person	wearing	black	pants	enters	
from	behind	and	starts playing	a	guitar	while	seated	on	a	chair.	The	camera	
focuses	closely	on	their	hands	adjusting	chords	and strumming	strings	throughout	
different	scenes.	In	the	foreground,	there	is	always	a	smartphone	connected	to	
a	charger	placed	on	a	dark	surface.

The	video	begins	with	a	group	of	people	sitting	on	the	grass	in	an	outdoor	setting,	we
aring	various	colorful	clothing.	The	scene	transitions	to	show	more	individuals	
seated	and	interacting	casually	among	themselves	while	others	stand	nearby.	A	
person	stands	up	from	their	position	near	the	center	of	the	frame,	moving	towards	a
nother	individual	who	is	also	standing.

The	video	features	a	lively	scene	of	children	and	young	adults	sitting	on	the	grass	in	
an	outdoor	setting,	engaging	with	each	other.	The	group	is	diverse,	wearing	various	
colors	like	blue	jeans,	black	jackets,	orange	shirts,	red	jackets,	white	hoodies,
grey	pants,	dark	clothing,	light-colored	tops,	denim	shorts,	and	striped
sweaters.	A	person	stands	out	among	them,	possibly	leading	or	organizing	activities	
for	this	gathering.

Text	Query:	A	man	walk	to	a	chair	and	sits	down.	Someone	with	a	guitar	sits	down.	
Person	sits	down	on	chair.	A	man	walks	back	to	his	seat	and	sits	down

Text	Query:	The	boy	in	a	white	jacket	moves	forward.

Baseline	generated	caption: Baseline	generated	caption:

Our	generated	caption: Our	generated	caption:
T→(V,	C)	retrieval	RANK:	3 T→(V,	C)	retrieval	RANK:	4

T→(V,	C)	retrieval	RANK:	1 T→(V,	C)	retrieval	RANK:	1

(a) Qualitative example on the effect of generated video caption in text-to-video retrieval on DiDeMo.

The	video	begins	with	a	panoramic	view	of	a	landscape	featuring	rolling	hills,	green	
fields,	and	scattered	trees	under	a	clear	sky.	The	scene	transitions	to	an	urban	area	
nestled	among	the	hills,	showcasing	buildings	interspersed	between	patches	of	
greenery.	As	the	camera	pans	further,	it	reveals	more	details	of	the	cityscape	before	
zooming	in	on	two	individuals	standing	by	a	railing	overlooking	the	expansive	view	
below.	In	the	second	part	of	the	video,	the	focus	remains	on	the	same	scenic	view
from	above	ground	level,	highlighting	lush	vegetation	covering	much	of	the	lower	
portion	of	 the	frame.	In	the	background,	majestic	mountains	rise	against	the	
horizon,	creating	a	serene	backdrop	for	the	verdant	foreground.

The	video	begins	with	a	panoramic	view	of	an	expansive	landscape	featuring	rolling	
hills,	green	fields,	and	scattered	trees.	The	scene	transitions	to	reveal	distant	mount
ains	in	the	background	under	a	clear	sky.	A	person	wearing	a	hat	appears	on	the	
right	side	near	a	concrete	structure,	pointing	towards	something	off-screen	
while	another	individual	is	partially	visible	next	to	them.	The	camera	then	shifts	
focus	back	to	the	scenic	view	before	returning	to	show	more	details	of	the	
landscape	from	different	angles.

The	video	begins	with	a	group	of	people	standing	on	the	roof	of	a	building,	
overlooking	an	urban	area.	The	scene	transitions	to	show	more	individuals	gathered	
around	and	taking	photos	or	videos	from	different	vantage	points	within	the	same	
building.	Finally,	it	shifts	focus	to	street-level	activities	where	several	people	are	
seen	walking	by	various	shops	and	vending	machines	under	clear	skies	in	daylight	
conditions.

The	video	begins	with	a	group	of	people	standing	on	the	roof	of	an	urban	building
,	overlooking	power	lines	and	clear	blue	skies.	The	scene	transitions	to	individuals	
descending	from	the	rooftop	into	a	bustling	street	below	where	various	shops	are	
visible	in	the	background.	A	person	wearing	a	red	shirt	is	seen	taking	photos	or	
filming	while	others	walk	around	near	vendingmachines	filled	with	cans.

Text	Query:	Telephone	poll	with	a	transformer	is	seen	briefly. The	transformer	for	the	
power	line	is	in	view.	Person	in	a	red	shirt	appears.	A	man	in	red	comes	through	
the	door.	The	camera	pans	down	to	a	man	exiting	the	building.

Text	Query:	We	see	man	wearing	a	hat	for	the	first	time

Baseline	generated	caption:

Baseline	generated	caption:

Our	generated	caption: Our	generated	caption:
(V,	C)	→T	retrieval	RANK:	2 (V,	C)	→T	retrieval	RANK:	3

(V,	C)	→T	retrieval	RANK:	1 (V,	C)	→T	retrieval	RANK:	1

(b) Qualitative example on the effect of generated video caption in video-to-text retrieval on DiDeMo.

The	video	begins	with	a	serene	view	of	the	sky,	transitioning	from	light	
blue	to	warm	hues	as	clouds	appear	and	change	color.	The	scene	then	shift
s	focus	to	an	antenna	against	this	changing	backdrop	before	moving	on	to	
show	darkening	skies	filled	with	dense	gray	clouds	illuminated	by	sunligh
t	breaking	through	in	some	areas.	Finally,	it	concludes	with	a	dimly	lit	
frame	where	only	faint	outlines	are	visible	due	to	low	lighting	conditions.

The	video	features	a	series	of	images	showcasing	an	antenna	against	the	
backdrop	of	changing	sky	conditions.	The	initial	scenes	depict	a	clear	
blue	and	orange	sunset,	transitioning	to	darker	hues	as	clouds	gathe
r	in	subsequent	frames.	By	the	end	of	the	sequence,	it	is	nighttime	with	
minimal	light	piercing	through	heavy	cloud	cover.

The	video	captures	a	lively	outdoor	event	where	people	gather	to	watch	
airplanes	fly	overhead,	with	black	smoke	billowing	into	the	sky	and	red	
flags	fluttering	in	the	breeze.

Text	Query:	A	pink	cloud	moves	from	left	to	right.	Orange	from	sun	is	seen.	Sky	changes	from	blue	to	gray.	The	sky	is	the	is	very	grey	and	darkest.

The	video	begins	with	a	large	plume	of	black	smoke	rising	into	the	sky,	
indicating	an	explosion	or	fire.	The	scene	transitions	to	show	people	gathe
red	in	an	open	field	under	cloudy	skies;	some	are	waving	and	pointing	to
wards	something	off-screen	while	others	stand	still.	A	red	flag	on	top	of	a	
pole	is	visible	among	them.	In	subsequent	frames,	airplanes	fly	overhead	a
gainst	this	backdrop	as	more	dark	smoke	billows	from	explosions	occurri
ng	at	different	locations	within	the	crowd.	The	final	part	shows	several	
planes	flying	over	the	heads	of	spectators	who	appear	captivated	by	…

Our	generated	caption:

Baseline	generated	caption: Baseline	generated	caption:

Our	generated	caption:

T→(V,	C)	retrieval	RANK:	2

T→(V,C)	retrieval	RANK:	1

T→(V,	C)	retrieval	RANK:	1

T→(V,C)	retrieval	RANK:	32

GT	Video Similar	Video

similar	 video candidates

(c) Qualitative example on the effect of generated video caption in text-to-video retrieval on DiDeMo for Challenging Retrieval
Cases.

Figure 5: Further qualitative example of video captioning. Comparison of the predictions of the caption generated
by the zero-shot captioning model (Baseline) with our model trained with DG-DPO (Ours) on DiDeMo. The
highlighted parts depict the fine-grained detail generated by our model, which is not provided in the caption
generated by the baseline. The border color of each video frame corresponds to the caption highlighted, and the
underline denotes the details that closely match the given query.
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The	video	showcases	a	male	athlete	in	the	midst	of his	pole	vaulting routine,	
demonstrating	exceptional	athleticism	and	precision.

The	video	features	a	male	athlete	performing	a	javelin	throw	in	an	outdoor	
stadium,	with	spectators	watching	from	the	stands.	The	scene	captures	him	
running	up	to	gain	momentum	and	then	releasing	the	javelin	into the	air	befor
e	landing	back	on	his	feet	after	completing	the	throw.

The	video	showcases	a	fencing	event,	featuring	athletes	in	white	uniforms	and	
protective	gear.	It	highlights	the	intensity	of	matches	between	fencers	on	an	indoor
court	with	blue	seating	areas	visible	in	the	background.	The	scene	transitions	to	
show	multiple	fencers	engaged	in	their	respective	bouts	while	spectators	watch	from	
the	stands.

The	video	features	a	young	woman,	an	older	man	as	the	head	coach,	and	several	
fencers	engaged	in	matches	or	preparing	for	them.	It	also	includes	scenes	of
athletes	interacting	with	each	other	and	spectators	watching	from	empty
bleachers.

Text	Query:	A	woman is	shaking	hands	and	handing	out	medals. She	hugs	her	fellow	
team	mates. She	is	then	seen	interviewing	with	the	camera	at	a	jousting	match.

Text	Query:	A	man	runs	holding	a	javelin	on	his	right	hand	on	front	a	crowd.	Then,	the	
man	throws	the	javelin.		A	person	wearing	white	shirt	walks	behind	the	man.	

Baseline	generated	caption: Baseline	generated	caption:

Our	generated	caption: Our	generated	caption:

T→(V,	C)	retrieval	RANK:	4
T→(V,	C)	retrieval	RANK:	7

T	→(V,	C)	retrieval	RANK:	1 T	→(V,	C)	retrieval	RANK:	1

(a) Qualitative example on the effect of generated video caption in text-to-video retrieval on ActivityNet.

The	video	begins	with	a	diver	standing	on	the	edge	of	an	indoor	diving	platform,	pre
paring	to	dive	into	a	large	pool.	The	scene	transitions	smoothly	as	the	diver	takes	off	
and	performs	a	flip	in	mid-air	before	entering	the	water.	Spectators	are	shown	watch
ing	from	behind	railings	near	the	pool's	edge,	observing	the	diver's	performance.

The	video	begins	with	a	man	standing	on	the	edge	of	a	diving	board,	preparing	to	div
e	into	an swimming	pool.	He	raises	his	arms	and	leaps	off	the	board	before	enteri
ng	the	water	below.	The	scene	transitions	to	spectators	watching	as	he	enters	the	wa
ter,	followed	by	close-up	shots	showing	scores	displayed	on	large	screens
indicating	judges'	points	for	different	dives	performed	in	the	competition.

Text	Query:	Several	shots	are	shown	of	men	standing	on	the	beach	that	lead into	
them	riding	on	surf	boards	in	the	water.	This	men	kite	surf	all	over	the	ocean	while	
performing	various	flips	and	tricks.	People	watch	them	on	the	sides	at	they	continue	
to	perform	and	jump	around	the	water.

The	video	showcases	a	windsurfer	in	action,	skillfully	maneuvering	through	the	wave
s	with	their	sail	catching	the	wind.	The	scene	transitions	to	multiple	surfers	competi
ng	against	each	other	on	choppy	waters	near	a	shoreline	adorned	by	hills	and	trees	
under	clear	skies.

The	video	begins	with	a	man	windsurfing	on	choppy	water,	followed	by	multiple	sce
nes	showing	several	people	engaging	in	the	sport.	The	action	continues	as	various	
individuals	are	seen	riding	waves	and	performing	jumps	while	holding	onto
their	sails	attached	to	surfboards.	Additionally,	there	is	an	appearance	of	large
boats		or	ships	near	the	shorewhere	some	wind	surfing	takes	place.	Finally,	text
appears	identifying	one	surfer	before	focusing	closely	on	another	individual
navigating	through	rough	waters.

Text	Query:	A	man	in	swimming	trunk	is	standing	at	the	edge	of	the	diving	board, His	
back	is	turned	back	from	the	audience.		He	raised	his	arms	and	bounced	and	
jumped	to	the	pool.

Baseline	generated	caption: Baseline	generated	caption:

Our	generated	caption:
Our	generated	caption:

(V,	C)	→T	retrieval	RANK:	2
(V,	C)	→T	retrieval	RANK:	2

(V,	C)	→T	retrieval	RANK:	1 (V,	C)	→T	retrieval	RANK:	1

(b) Qualitative example on the effect of generated video caption in video-to-text retrieval on ActivityNet.

The	video	begins	with	a	person	wearing	winter	clothing	and	sitting	on	an	
inflatable	blue	tube,	sliding	down	a	snowy	slope	surrounded	by	trees.	The	
scene	transitions	to	the	same	individual	lying	back	in	the	tube	as	it	
continues	its	descent	along	the	snow-covered	path	lined	with	more	trees.	
Finally,	another	person	appears	next	to	them	inside	the	tube	while	they	
continue	their	ride	through	this	wintry	landscape.

The	video	begins	with	a	person	lying	on	their	back	in	an	inflatable	tube,	
sliding	down	a	snow-covered	slope	surrounded	by	trees.	As	the	scene	
develops,	another	individual	joins	them	for	company	and	fun	while	they	
continue	to	slide	downhill	together.	The	journey	continues	as	they	pass	
various	signs	indicating	directions	before	eventually	reaching	a	more
open	areawhere	other	people	can	be	seen	enjoying	similar	activities	
nearby.	Finally,	it	focuses	closely	on	one	of	the	individuals	from
earlier	scenes	who	is	smiling	broadly	at	the	camera,	capturing	a	joyful	
moment	during	this	winter	activity.

The	video	begins	with	a	dark	frame,	then	transitions	to	show	people	
preparing	for	snow	tubing	on	a	snowy	hill.	It	follows	individuals	as	they
sit		in	colorful	tubes and	slide	down	the	slope	while	others	watch	from	
above	or	assist	them	at	the	top	of	the	hill.	The	scene	continues	with	
close-up	shots	capturing	the	thrill	of	sliding	downhill through	the	
snow	before	shifting	focus	back	to	wider	views	showing	multiple
participants enjoying	their	ride	down	the	hillside.

Text	Query:	A	young	child	is	seen	sitting	in	a	tube	while	riding	down	a	mountain.	The	camera	man	pans	around	to	other	people	riding	in	tubes	down	th
e	hill.	The	two	continue	riding	down	after	one	another	and	the	boy	smiling	to	the	camera.

The	video	begins	with	a	dark	frame,	then	transitions	to	show	people	prep
aring	for	snow	tubing	at	the	top	of	a	snowy	hill.	It	continues	through	
various	scenes	capturing	individuals	and	groups	enjoying	their	ride	down	
the	slope	on	colorful	tubes	against	a	backdrop	of	cloudy	skies	and	
distant	mountains.	The	final	scene	shows	an	individual	in	motion	while	
seated	inside	one	of	these	tubes,	moving	towards	the	bottom	of	the	hill	
where	more	red	cones	are	visible	as	markers	or	obstacles	along	the	path.
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(c) Qualitative example on the effect of generated video caption in text-to-video retrieval on ActivityNet for Challenging
Retrieval Cases.

Figure 6: Further qualitative example of video captioning. Comparison of the predictions of the caption generated
by the zero-shot captioning model (Baseline) with our model trained with DG-DPO (Ours) on ActivityNet. The
highlighted parts depict the fine-grained detail generated by our model, which is not provided in the caption
generated by the baseline. The border color of each video frame corresponds to the caption highlighted, and the
underline denotes the details that closely match the given query.
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