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Abstract

In text-video retrieval, auxiliary captions are of-
ten used to enhance video understanding, bridg-
ing the gap between the modalities. While re-
cent advances in multi-modal large language
models (MLLMs) have enabled strong zero-
shot caption generation, we observe that such
captions tend to be generic and indistinguish-
able across visually similar videos, limiting
their utility for fine-grained retrieval. More-
over, conventional captioning approaches are
typically evaluated using language generation

hyunwoojkim@kaist.ac.kr

Vid 1f Baseline 29
The video begins with a cat walking around the room,
exploring its surroundings. The scene transitions to ...

Vid 2f
The kitten moves around, occasionally looking up and
down as it interacts with the toy. In some frames ...

Vid 1 Ours &)
It then sits up, stretches its body, stands on all fours,
and moves towards an object resembling a wheel ...

Vid 2f
... kitten playing with a pink toy on a wooden floor,
moving around and interacting playfully. The ...

(a) Generated captions for a pair of semantically similar videos
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metrics, such as BLEU, which are not typically
tailored for retrieval tasks that require mak-
ing discriminative distinctions between candi-
dates. To address this, we propose CaRe-DPO,
a retrieval framework that directly optimizes
caption generation using retrieval relevance
scores. At its core is Dual-Group Direct Prefer-
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ence Optimization (DG-DPO), a novel learning
strategy that supervises captioning by model-
ing preferences across groups of distinct video
and caption pairs. In addition, we present an
MLLM-based retrieval model that incorporates
role-embeddings to better distinguish between
textual inputs with different functional roles,
such as an auxiliary caption and a text query.
Through extensive experiments, we demon-
strate that CaRe-DPO significantly enhances
retrieval performance by effectively leveraging
auxiliary knowledge to generate fine-grained
captions for retrieval. Code is available at
https://github.com/mlvlab/CaReDPO.

1 Introduction

Text-video retrieval is a fundamental task in mul-
timodal learning, aiming to align natural language
descriptions with video content. Traditional re-
trieval methods often adopt dual-encoder architec-
tures, such as CLIP (Radford et al., 2021), which
encode videos and text queries into a shared em-
bedding space. However, these approaches often

1 Corresponding authors.

(b) Comparison on rank of captions (BLEU vs Retrieval)

Figure 1: Misalignment between conventional cap-
tioners and retrieval objectives. (a) Captions from
pretrained models are nearly identical for similar videos,
while our method produces more distinct and retrieval-
relevant descriptions. (b) BLEU-selected top captions
often mismatch retrieval rankings; correlation between
the two is as low as 30%.

struggle with fine-grained semantic matching (Tian
et al., 2024; Wang et al., 2023), particularly when
videos contain complex temporal or contextual dy-
namics. To mitigate this, recent studies (Wu et al.,
2023; Ma et al., 2024; Hur et al., 2025; Yang et al.,
2025) have explored the use of video captions, nat-
ural language descriptions of video content, as aux-
iliary inputs to bridge the gap between the text
queries and video content.

Multimodal Large Language Models (MLLMs)
(Liu et al., 2024; Wang et al., 2024b; Li et al.,
2024c; Zhang et al., 2024; Ko et al., 2023, 2025a;
Park et al., 2025, 2024a) that encompass strong
visual and text understandings, recently caught
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attention for handling multi-modal retrieval sys-
tems (Lin et al., 2025; Liu et al., 2025; Wei et al.,
2024; Ko et al., 2025b). Their capacity to jointly
attend to both visual and textual inputs allows them
to interpret diverse and complex text queries in rela-
tion to video content while also leveraging captions
as additional semantic context, providing a promis-
ing direction for advancing retrieval performance.

However, often captions produced by pretrained
models fail to capture the detailed distinctions nec-
essary for retrieval. As illustrated in Fig. 1a, two
visually similar videos depicting cats in indoor
environments are given captions that are generic
and overlapping, describing actions like ‘walking
around the room’ or ‘moves around.” Nevertheless,
we expect to generate captions that surface discrim-
inative visual details, such as ‘sits up, stretches its
body’ and ‘interacting playfully’, which provide
discriminative cues critical for retrieval among sim-
ilar videos. This issue is further amplified by the
common practice of evaluating caption quality us-
ing metrics such as BLEU (Papineni et al., 2002).
Specifically, as shown in Fig. 1b, among the three
distinct captions generated for a video, the top-1
caption selected based on a conventional captioning
metric often does not align with the top-1 caption
when ranked by retrieval relevance score (placed at
the bottom rank). To quantify this misalignment,
we measured the Pearson correlation between the
indices of the top-1 ranked captions under each
metric, finding a correlation as low as 0.30. This
highlights a substantial discrepancy between con-
ventional captioning metric-based evaluations and
retrieval-oriented objectives.

To this end, we propose CaRe-DPO, Captioning
for Text-Video Retrieval via Dual-Group Direct
Preference Optimization, a novel retrieval frame-
work. At the core is Dual-Group Direct Prefer-
ence Optimization (DG-DPO), directly supervising
the captioning model with the retrieval scores to
align with the retrieval objective. Unlike standard
single-group DPO (local caption ranking within a
video), DG-DPO incorporates dual-group prefer-
ences, learning global ranking over video-caption
pairs. In addition, we introduce role-embeddings
during retrieval model training to differentiate the
roles of heterogeneous textual inputs, allowing the
model to more effectively leverage the auxiliary
captions. We empirically validate that CaRe-DPO
encourages the MLLM-based retrieval model to fur-
ther leverage the auxiliary captions during retrieval
and enables enhancement of the caption quality,

yielding a performance improvement across vari-
ous text-video retrieval benchmarks.
The main contributions of this work are:

* To the best of our knowledge, we are the first
to address the misalignment between conven-
tional captioning metrics and retrieval objec-
tives, and tackle the challenge of leveraging
captions to improve retrieval performance.

* We propose CaRe-DPO, a retrieval frame-
work that integrates role-embeddings with
retrieval-aligned caption optimization to lever-
age auxiliary captions in MLLM-based text-
video retrieval.

* Our DG-DPO supervises caption generation
using retrieval relevance scores with both lo-
cal (within-video) and global (cross-video-
caption) ranking, enabling generation of cap-
tions that better reflect retrieval importance.

* Our CaRe-DPO improves caption quality and
retrieval performance, achieving superior per-
formance across multiple benchmarks.

2 Related Work

2.1 Text-Video Retrieval

To improve text-video retrieval, recent studies have
explored the use of captions as auxiliary supervi-
sion. Cap4Video (Wu et al., 2023) treats them as
data augmentation to generate new training pairs,
enhancing cross-modal interaction. NarVid (Hur
et al., 2025) uses frame-level captions to enrich
video understanding and applies a hard negative
loss for better discrimination. ExCae (Yang et al.,
2025) refines captions through self-learning to en-
hance expressiveness while minimizing manual in-
tervention. Recently, with the advancement of Mul-
timodal Large Language Models (MLLMs), sev-
eral works (Lin et al., 2025; Liu et al., 2025; Ko
et al., 2025b) introduced MLLMs in multi-modal
retrieval systems. MM-Embed (Lin et al., 2025)
finetuned the MLLMs to universal retrievers, adopt-
ing thought prompt-and-reranking strategies. Con-
currently with our work, BLiM (Ko et al., 2025b)
investigates candidate prior bias induced by candi-
date likelihood estimation and improves retrieval
performance through bidirectional likelihood esti-
mation.
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2.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has emerged as an efficient alterna-
tive to reinforcement learning from human feed-
back (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022; Stiennon et al., 2020) for aligning
large language models with human preferences.
Recent studies have explored several limitations
of DPO. To mitigate length bias in preference
data, prior approaches introduce reward normal-
ization (Meng et al., 2024), token-level proba-
bility down-sampling (Lu et al., 2024), and ex-
plicit length regularization (Park et al., 2024b).
Other studies attempt to eliminate the reliance
on a reference model to reduce computational
cost (Meng et al., 2024; Xu et al., 2024; Hong et al.,
2024). In multimodal, DPO has been adapted to
align MLLMs for tasks such as visual question-
answering (Li et al., 2024b), dense video caption-
ing (Lee et al., 2025), and hallucination mitiga-
tions (Ouali et al., 2024; Wang et al., 2024a). In
this work, we provide a retrieval-oriented prefer-
ence modeling with MLLM:s.

3 Preliminary

3.1 Text-Video Retrieval

Text-Video Retrieval consists of two tasks, video-
to-text retrieval (V2T) and text-to-video retrieval
(T2V), which aim to find the most relevant text
or video given the query among the candidates of
video or text.

Often to enhance the cross-modal retrieval, sev-
eral works (Wu et al., 2023; Yang et al., 2025;
Hur et al., 2025) propose to utilize the generated
caption ¢ of the given video v to bridge the
modality gap with the textual query t(). Hence,
the retrieval dataset can be defined as D, =
{v® @ t@O1N - where ¢ is often sampled
from a pretrained captioning model Map. Dur-
ing inference, ¢ is paired with the v(*), which
T2V retrieval for instance is defined as:

ity = argmax P(vi), cjt). (1)

Recently, MLLMs have often been employed
for multi-modal retrieval systems, where they are
adopted to re-rank the top-£ text-video candidate
pairs based on joint text-video similarity. Typi-
cally, given the video v = [v1, .., vy,] € RNeXD,
caption ¢ = [c1,..,cn,] € RN*P | and text
t = [t1,..,tn,] € RVXP where N,, N., N;, and

D denote the numbers of video, caption, text to-
kens, and the hidden dimension respectively, the
objective for reranking with MLLM-based models
for retrieval can be defined as follows:

‘C = —lOgP(y|V,C,t,I). (2)

The output y is defined with y € {True,False}
tokens, resembling a binary classification task, and
note that the auxiliary caption c is simply con-
catenated to the video along with the text query
t. Also, I denotes the instruction prompt to answer
‘True’ or ‘False’ that is omitted for the follow-
ing notations. Hence, for the matching triplets,
ie., (v, c® t0)) where i = 7, the model is
trained to output ‘True’, while for the unmatch-
ing triples where 7 # j the model is expected to
output ‘False’. During inference, following Lin
et al. (2025) and Liu et al. (2025) the typical ap-
proach of measuring the relevance score s is:

s(v,c,t) =log P(y*|v,c,t), A3)

where y* = True. For T2V, the retrieved video
is chosen as the candidate with the highest rele-
vance score for a given text query t(), and vice
versa for V2T. However, we observe that simply
concatenating the caption c into the input hinders
the model from differentiating between the hetero-
geneous textual inputs of the text query t and the
auxiliary caption c. We also empirically observe
that the simple strategy of measuring the relevance
score with the probability of predicting the ‘True’
lacks fine-grained sensitivity required for retrieval.

3.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023), is a typical optimization strategy
adopted to align LLMs output with human pref-
erences, which is derived from the reinforcement
learning objective in RLHF (Ziegler et al., 2019).
Dppo the preference dataset for DPO can be de-
fined with {z@, 4, 5P }Y |, where  is an input,
Yw, Y are the preferred and dispreferred outputs,
and the preference is estimated by Bradley and
Terry (1952). Typically, the objective of DPO can
be written as follows:

Lppo (793 Tret) = —E (50 )~ Doro
[10g o (Fo(w,y0) = Folw, )], @)

where 7 (z,y) = [log %, given 7y the pol-

icy model to optimize, and 7t the reference model,
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Figure 2: Illustration of our CaRe-DPO framework. (a) depicts the MLLM-based retrieval model where we
propose to adopt retrieval role-embeddings R, and R, for the heterogeneous textual inputs applied to each token,
accordingly: auxiliary caption (orange) and retrieval target text (purple). In addition, we illustrate the contrastive
inference strategy (contrasting the probability of generation ‘True’ to ‘False’). (b) visualizes our DG-DPO
mechanism for optimizing the captioning model, where each caption given to the video is evaluated with the retrieval
relevance score s,. During training, unlike SG-DPO, which adopts the local rank preferences, DG-DPO adopts the
global rank preference, exploring across video-caption pairs.

B is a hyperparameter for regularizing the disparity
of g and mf, and o denotes the sigmoid function.

4 Method

In this section, we introduce our CaRe-DPO,
Captioning for Retrieval via DualGroup-Direct
Preference Optimization, a novel retrieval frame-
work that enhances text-video retrieval with auxil-
iary captions. In Sec. 4.1, we describe our retrieval
backbone built upon an MLLM, which jointly en-
codes video and text inputs to compute cross-modal
similarity, where we also introduce retrieval role-
embeddings to differentiate the heterogeneous tex-
tual inputs. Then in Sec. 4.2, we present DG-DPO,
a preference optimization method that supervises
the captioning model to further align with the re-
trieval objective. The overall framework is illus-
trated in Fig. 2.

4.1 MLLM-based Retrieval Model

Training. Following recent trends in retrieval, we
adopt MLLMs for text-video retrieval. However,
we observe an interesting phenomenon: incorporat-
ing auxiliary captions into MLLM-based retrieval
models often leads to only marginal performance

gains. In particular, even when descriptive captions
are provided, replacing them with random captions
yields nearly identical retrieval performance (see
Sec. F and E in the Appendix). This suggests that
the model does not effectively distinguish the cap-
tion’s role as auxiliary context from the text query
as the retrieval target, resulting in inefficient use of
the additional information. Hence, we adopt a sim-
ple yet effective retrieval role-embedding. Specifi-
cally, given the input triplet (v, c, t), we introduce
a new role-embeddings R, € RP and R, € RP,
which are combined to each corresponding tokens
of c and t, respectively. Hence, the training objec-
tive of Eq. 2 can be modified as follows:

Lt = —log P(y|v,c+Re, t + Ry), (5)
where R, = 1NCR and R, = 1NtR Such a
simple approach avoids M to explicitly distin-
guish according to its roles: the caption as con-
textual knowledge and the text query as retrieval
targets. Note that unless stated, ¢ and t corresponds
to ¢ + R, and t + R, for the following notations.

Inference. For the inference stage, we empiri-
cally observe that instead of simply adopting the
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probability of generating the y™ token as the re-
trieval relevance score (Eq. 3), it is more effective
to use the pairwise score margin between y and
y~ generation as follows:

P(y*|v,c,t)

P(y~|v,c,t) ©

s(v,c,t) = log
Such a contrastive inference strategy enables the
retrieval model to be more sensitive to the subtle
differences between the input and its output de-
cision, thereby enhancing retrieval performance
(refer to Table 13 in the Appendix).

4.2 DG-DPO

Retrieval score-driven preference dataset. To
further improve auxiliary captions for retrieval,
which arises from the misalignment between cap-
tioning evaluation and retrieval objectives, we first
construct the preference dataset that directly adopts
the retrieval scores as supervision. First, we sam-
ple K number of captions {c,(j) }K | for each video
v(®, denoted as c,(;) ~ Meap(v?) where Mg ()
refers to the pretrained captioning model. Then,
we adopt the retrieval model M (-) to evaluate
the quality of the sampled captions for video-text
retrieval. Specifically, we adopt the relevance score
between cg) and the tl(;) while masking the video
tokens in the attention mask (v*), which empiri-
cally showed to be effective in terms of precision
than that of un-masked video tokens (see Tab. 14
in the Appendix). Formally, the relevance score for
preference optimization, s, is defined as:

Pyt v, el ¢
P(y—|v*,cl”, @)

sp(v(i), c,(;),t(i)) = log @)
Single-Group Direct Preference Optimization.
Similar to the conventional DPO approach, we de-
fine Single-Group Direct Preference Optimization
(SG-DPO) as the variant where preference pairs are
constructed by comparing outputs conditioned on a
single input i.e., local retrieval rank preferences, as
illustrated under ‘local rank’ in Fig. 2 (b). Specifi-
cally, given a single video v() with its associated

two sampled captions of preferred cg) and dispre-
ferred "), preference pair ¢ | v = ¢!’ | v(0

satisfy the following condition:
Sp (v(i), cg),t(i)) > 5y (V(i), cl(i),t(i)>+’y. (8)

~ refers to the margin threshold, which enforces a
minimum difference between retrieval scores.

Dual-Group Direct Preference Optimization.
On the other hand, our proposed Dual-Group Di-
rect Preference Optimization (DG-DPO) builds
upon the SG-DPO, which extends the framework to
consider preferences across distinct video-caption
pairs by leveraging their associated retrieval rele-
vance scores across the dataset, i.e., global retrieval
rank preferences. For instance, given two video-
caption pairs (v(®), c,(j)) and (v, c,(gj)), where
the former denote any k-th caption and video for
the i-th sample, and the latter denote any k-th
caption and the video for the j-th sample, the
preference pair among the video-caption pair i.e.,
) lv(® - cl(j ) |v(), satisfy the following condi-
tion:

Sp (v(i),cg),t(i)) > Sp (V(j),cl(j),t(j)) + 7.
©)
Notably, the preference pairs of DG-DPO include
cases satisfying both ¢ = j and i # j, whereas SG-
DPO only considers sample pairs with 7 = 7. Over-
all, the model learns to prefer video-caption pairs,
which results in higher retrieval relevance scores,
while considering both the local rank preference of
the caption and the global rank preference across
distinct video-caption pairs, enhancing the retrieval

performance. Hence, Lpg.ppo can be written as:

£DG_DPO - —]E(V(i>7v(j)7cg)7cl(j))N,DDG—DPO

[/\m- -logo (f@(v(i), cg)) — f’g(v(j), cl(j))ﬂ .
(10)

Note )\; ; serves as a weighting factor that balances
the contribution between pairs with ¢ = j and ¢ # j.
Importantly, this does not require additional train-
ing samples; instead, we reuse the pre-computed
log probability values from the computation from
when ¢ = j to compute Lpg.ppo for ¢ # j. Hence,
we effectively leverage the samples within the same
batch-aggregated across multiple GPUs to adopt
the global rank of video-caption pairs. As a re-
sult, without substantial computational or mem-
ory overhead, the captioning model is encouraged
to explore consistent ranking preferences across
a wider range of sample combinations of video-
caption pairs for retrieval with auxiliary captions.

5 Experiments

5.1 Experiments Setup

Datasets and metrics. To validate the effective-
ness of CaRe-DPO, we evaluate on three Text-
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Text-to-Video

DiDeMo ActivityNet

Video-to-Text

MSRVTT DiDeMo ActivityNet MSRVTT

R@] R@5 R@10|R@] R@5 R@10|R@] R@5 R@10|R@] R@5 R@10|R@] R@5 R@10|R@] R@5 R@10

Non-MLLM-based

CLIP4Clip (Luo et al., 2022) 428 685 792 | 405 724 834 |445 714 81.6 |425 70.6 802 |42.6 73.4 856 |43.1 705 812
ViCLIP (Wang et al., 2024c) 494 - - 498 - - 525 - - 502 - - 481 - - 51.8 - -
MV-Adapter (Jin et al., 2024) 443 721 805 | 429 745 857 |46.2 732 827 427 73.0 819 [43.6 750 86.5 |47.2 748 839
InternVideo (Wang et al., 2022) 579 824 889 |622 859 932 |552 79.6 875 |59.1 81.8 89.0 |62.8 862 933 |579 792 864
UMT (Li et al., 2023) 704 90.1 935 | 66.8 89.1 949 |588 81.0 87.1 [67.9 88.6 93.0 | 644 89.1 948 |58.6 81.6 865
Cap4Video (Wu et al., 2023) 52.0 794 875 - - - 514 757 839 - - - - - - 49.0 752 85.0
NarVid (Hur et al., 2025) 534 79.1 86.3 - - - 527 717 85.6 - - - - - - 51.1 76.8 85.2
InternVideo2 1B* (Wang et al., 2024d) | 75.3 92.5 95.8 | 68.8 89.7 94.7 |59.4 80.9 86.6 |73.1 92.1 949 | 653 88.0 942 |569 769 846
InternVideo2 6B (Wang et al., 2024d) | 742 - - 741 - - 628 - - 719 - - 68.7 - - 60.2 - -
MLLM-basedt

MM-Embed (Lin et al., 2025) 81.6 949 963 | 785 - 61.2 827 888 |79.7 949 962 |70.7 - 60.5 823 87.1
LamRA (Liu et al., 2025) 83.5 948 962 |76.0 92.8 963 |59.7 81.4 872 |794 948 96.6 |68.7 90.1 953 |60.7 823 89.0

CaRe-DPO (Ours) | 851 95.0

962 | 792 93.6 96.5 | 64.1 83.8

88.8 | 825 952 963 | 744 924 963 | 638 83.0 873

Table 1: Comparison with state-of-the-art Text-Video Retrieval models. * denotes reproduced results. We also
report the performance of MLLM-retrieval models, which we reproduced adequately for Text-Video Retrieval,
adopting their approach while applying to the same baseline as ours, VideoChat-Flash, denoted with the 7.

Video retrieval benchmarks: DiDeMo (Anne Hen-
dricks et al., 2017), ActivityNet (Caba Heilbron
etal., 2015), and MSRVTT (Xu et al., 2016). More
explanation of the datasets is in Sec. A of the Ap-
pendix. For evaluation, we adopt the standard re-
trieval metrics: Recall@Ke {1,5,10}. Note that
for auxiliary captions, we sample two per instance
and average the performance over those to mitigate
the caption variability while providing more robust
results. Unless otherwise specified, all experiments
are conducted on DiDeMo, which serves as our
primary benchmark. For additional validation, we
also report results on the multi-text text-to-video re-
trieval benchmark MSVD (Chen and Dolan, 2011)
in Sec. B of the Appendix, which further demon-
strates the effectiveness of our CaRe-DPO.

Implementation details. For retrieval, we adopt
InternVideo2-1B (Wang et al., 2024d) to initially
compute the similarity between the video and
the text query, and then we retrieve the top-16
candidates for re-ranking. Our MLLM-based
retrieval model, capable of leveraging auxiliary
captions, is built upon VideoChat-Flash-7B (Li
et al., 2024c). For captioning, we adopt pretrained
LLaVA-OneVision-7B (Li et al., 2024a), where we
utilize 16 frames per video for all datasets, and
further align the model with our DG-DPO. For
efficiency, we apply LoRA (Hu et al., 2022) for
parameter-efficient fine-tuning for both training.
See Sec. C of Appendix for more details, including
the training hyperparameters.

5.2 Experimental Results

Main results. Tab. 1 shows the performance of
the State-of-the-Art text-video retrieval models, in-

DiDeMo | ActivityNet | MSRVTT | Avg.

‘ T2V V2T ‘ T2V V2T | T2V V2T ‘ A

Baseline 83.1 79.6 | 7183 74.0 | 62.7 63.6 -
+ Lspr 82.6 82.0 | 780 739 | 629 63.0 | (+0.2)
+ Lscpro | 844 824 | 789 74.1 | 634 633 | (+0.9)
+ Lpgoro | 85.1 825|792 744 | 641 63.8 | (+1.3)

Table 2: Ablation on training objectives for M, .
R@1 retrieval performance from different training ob-
jectives for My, ‘Avg. A’ denotes the R@1 point
increase compared to the baseline across datasets.

cluding non-MLLM-based and MLLM-based. The
results show that our CaRe-DPO outperforms base-
line models across various datasets, especially in
R@1 for both T2V and V2T. Among non-MLLM-
based models, ours effectively improves perfor-
mance over the SOTA model of InternVideo2-6B,
with an average percentage increase of 14.7%,7.7%,
and 4.1% in R@1 for DiDeMo, ActivityNet, and
MSRVTT, respectively. To further validate the ef-
fectiveness of our framework across MLLM-based
retrieval models, we compare against MM-Embed
and LamRA. Notably, our CaRe-DPO shows su-
perior performance with an average percentage in-
crease in R@1 of 3.9%, 3.1%, and 5.1% compared
to MM-Embed, and 2.9%, 6.3%, and 6.2% com-
pared to LamRA across datasets. Overall, CaRe-
DPO consistently outperforms the baselines, high-
lighting its effectiveness in enhancing text-video
retrieval with MLLM-based models.

5.3 Quantitative Analysis

Ablation on training objectives for Mc,p. In
Tab. 2, we analyze different objectives for training
the captioning model on the performance of text-
video retrieval. As shown, simply fine-tuning on
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DiDeMo ActivityNet | MSRVTT

Inference Meap T2V V2T | T2V V2T | T2V V2T
s(c,t) Baseline | 49.6 40.8 | 432 37.0 | 40.5 377
’ + Lpgpro | 51.2 434 | 53.0 43.6 | 49.1 455
s(v,<) Baseline | 91.8 90.7 | 832 86.5 | 889 86.1
T +Lpgoro | 92.1 922 | 88.7 87.5| 89.7 87.1

Table 3: Analysis on caption quality for retrieval.
‘Baseline’ denotes zero-shot captions adopted for re-
trieval. For s(c,t), we adopt the model trained with
(v, c, t) while masking the video tokens. For s(v,c),
we utilize the model trained solely on (v, t). We report

R@1 performance for both T2V and V2T.

Train Input R R Inf. | Text-to-Video Video-to-Text | Avg.
Let(*) © " cap. c|R@1 R@5 R@10|R@1 R@5 R@10| A
(v.c.t) X |rand. |81.5 946 959 |79.1 946 965 | -
Vv,cC,

' X |orig. |81.6 943 959 792 947 96.7 |(+0.1)
(v, ) v |rand. |82.6 944 96.0 |765 950 962 | -
T v | orig.| 83.1 944 962 |79.6 94.6 96.6 | (+1.8)

Table 4: Ablation on the role-embeddings of M.
We adopt the zero-shot captions with the standard in-
ference strategy. ‘rand’ and ‘orig.” denote random and
original captions, respectively, and ‘Inf.” denotes the
inference stage. ¢’ and t’ denote ¢ + R and t + R,,
respectively. ‘Avg. A’ denotes an average change in
R @k performance, between ‘rand’ and ‘orig’ captions.

the given dataset, denoted as Lgpr (row 2), results
in an average R@1 improvement of 0.2 points, with
a per-dataset increase of 1.0 for DiDeMo and a de-
crease of 0.2 for both ActivityNet and MSRVTT. In
contrast, adopting our Lsg.ppo or LpG.pro, Which
optimizes the model with DPO using retrieval
scores for preference determination, results in su-
perior performance. Specifically, Lsg.ppo (row 3),
which relies on the local preference of the retrieval
score, shows point increases of 2.1, 0.3, and 0.2
for DiDeMo, ActivityNet, and MSRVTT, respec-
tively. By further considering the global prefer-
ence based on retrieval scores, Lpg.ppo (row 4)
achieves even higher retrieval precision, with point
increases of 2.5, 0.8, and 0.8 compared to the base-
line across the datasets. These results highlight
the effectiveness of leveraging retrieval scores with
DPO to better align generated captions for retrieval,
and demonstrate that DG-DPO, which accounts
for global preferences beyond local video-caption
pairs, further improves performance.

Analysis on the quality of caption for retrieval.
To further investigate the effectiveness of captions
in retrieval with CaRe-DPO, we design a series of
experiments shown in Tab. 3: text-to-caption (T2C)

Preference score |  Mc, | T2V V2T | Avg. Confidence
+ Lsg.ppo | 829 742 82.7
BLEU + ‘CDG-DPO 83.7 754 ‘ 83.1
. + ESG-DPO 83.7 754 86.9
Retrieval Score + Cocopo | 845 774 ‘ 89.6

Table 5: Effectiveness of DG-DPO in challenging
retrieval cases. Results of T2V and V2T R@1 in chal-
lenging retrieval cases with highly similar video candi-
dates (pairwise average cosine similarity averaged over
frames > 0.97).

(upper half) and video-to-caption retrieval (V2C)
(lower half). T2C assesses how well the auxiliary
caption semantically aligns with the query, V2C
measures the degree to which the caption captures
the distinctive content of the video itself. The re-
sults show that the captions generated from Mgy
trained with Lpg.ppo result in consistent improve-
ments across both retrieval tasks. Specifically, in
T2C, the caption generated after adopting our DG-
DPO yields an average increase of 7.6 points, espe-
cially in MSRVTT, with an 8.6 points increase in
T2V and a 7.8 points increase in V2T. Also notable
in ActivityNet with a 9.8 points and a 6.6 points
increase in T2V and V2T, respectively. In V2C, the
zero-shot caption itself shows strong explanability
of the video, yet with our Lpg.ppo, it further leads
to performance enhancement with an average 0.9,
0.8, and 0.9 points increase in R@1 on DiDeMo,
ActivityNet, and MSRVTT, respectively.

Effectiveness of retrieval role-embeddings.
Tab. 4 presents the impact of retrieval role-
embeddings for the MLLM-based retrieval model.
As shown, when replacing the caption with a ran-
dom caption, the model shows a minimal perfor-
mance drop of 0.1 in R@1 on average (compare
rows 1 and 2). In contrast, using the same caption,
training with role-embeddings results in a superior
performance with 83.1 for T2V and 79.6 in V2T
(compare rows 2 and 4) while showing higher sen-
sitivity to the quality of the caption with a notable
1.8 improvement in average for R@1 compared to
the one with a random caption (compare rows 3
and 4). These results highlight the effectiveness of
role-embeddings in differentiating the two roles of
auxiliary knowledge and retrieval target, leading
to more accurate retrievals. Note that we use stan-
dard pretrained captions in this ablation to isolate
the effect of retrieval role-embeddings; further ex-
periments with DG-DPO-optimized captions are
provided in Tab. 12 of the Appendix.
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Text Query (T): A oven is open and two cookie trays_are shown as the contents begin to bake. The people then take the cookies out of the oven and
starts to talk to their customers.

Baseline generated caption:

Baseline generated caption:

The video begins with a close-up of the Epicura Home Products logo,
transitions to show cookie dough pieces on an Epicure baking mat, and
then shows cookies being baked in an oven. The scene continues with
more cookies cooling after baking before moving to a person using
tongs to remove them from the mat onto a plate.

The video begins with a person opening an oven door, revealing food
inside. The scene transitions to the same kitchen setting where another
individual is seen wearing black gloves and holding a tray of freshly
baked cookies in front of the now-closed oven.

T-(V, C) retrieval RANK: 2

T-(V, C) retrieval RANK: lx

Our generated caption:

Our generated caption:

The video begins with a person opening an oven door, revealing cookie
sinside. The scene transitions to the same individual wearing gloves an
d holding a tray of freshly baked cookies before moving on to show two

people in a kitchen setting—one holding a cup—while another interacts

The video begins with a close-up of cookie dough pieces on an Epicura
Home Products mat. It then transitions to show the cookies baking in
an oven before being removed and placed onto a plate using a

spatula. Finally, it wraps up by showing some cookies left on the mat
after others have been transferred off-screen.

near various cooking utensils and appliances. Next, it shows someone

placing items into the now-lit oven followed by shots of different indivi

duals standing or interacting within the bustling environment of ...
T-(V, C) retrieval RANK: 1

T-(V, C) retrieval RANK: 2

Figure 3: Qualitative example on the effect of generated video caption. Comparison of captions generated for
visually similar videos on ActivityNet (left: ground-truth video, right: highly similar incorrect video) using the
zero-shot captioning model (Baseline) and our DG-DPO-optimized model (Ours). Note the fine-grained details
captured by our model but omitted in the baseline are highlighted in color. Additionally, the border color of each
video frame corresponds to the caption depicted in our generated caption, and the underline denotes the fine-grained
details that closely match the input text query (T). T — (V, C) denotes text-to-video retrieval, where C is the
auxiliary caption for the given video. We also show the retrieval rank for each candidate with different generated
captions. The qualitative results demonstrate that the DG-DPO-optimized caption improves retrieval, increasing the

ground-truth video’s rank from 2 to 1 in T2V.

Training Strategy ‘ Self-BLEU (|) Distinct-1 (1) Distinct-2 (1)

Zero-shot 0.50 0.08 0.41
+ Lspr 0.52 0.08 0.39
+ LpG-pPo 0.47 0.10 0.43

Table 6: Caption diversity with different training
strategies. DG-DPO consistently improves diversity
and reduces redundancy in caption generation.

Effectiveness of DG-DPO in challenging re-
trieval cases. Tab. 5 highlights the effectiveness
of DG-DPO in retrieval scenarios involving highly
similar video candidates, from which we left sam-
ples from the test set where any pairwise video
cosine similarity (averaged over frames) is greater
than 0.97. First, when comparing BLEU and re-
trieval score as the preference signal under SG-
DPO, the retrieval score consistently yields higher
average model confidence measured with Eq. 6 and
scaled to a percentage (out of 100) for interpretabil-
ity (86.9 vs. 82.7), indicating its stronger alignment
with retrieval objectives. More importantly, DG-
DPO further improves performance and model con-
fidence over SG-DPO across both preference sig-
nals. For instance, using retrieval score supervision,
DG-DPO boosts T2V and V2T R@1 from 83.7 to
84.5 and 75.4 to 77.4, respectively, and increases

average confidence from 86.9 to 89.6. These re-
sults demonstrate that modeling group-level pref-
erences across distinct video-caption pairs allows
for providing more discriminative learning signals,
leading to more accurate and confident retrieval in
challenging cases.

Effect on caption diversity. Tab. 6 shows the
impact of different training strategies on caption
diversity measured with three different metrics of
Self-BLEU (Zhu et al., 2018) that measure the re-
dundancy across generated captions, and Distinct-1
and 2 (Li et al., 2015) that capture the ratio of
unique unigrams and bigrams. While simple fine-
tuning on the dataset (SFT) increases redundancy
(0.52 vs. 0.50 in Self-BLEU compared to the zero-
shot), likely due to overfitting to common patterns
in the training data, our DG-DPO leads to signifi-
cantly more diverse captions. It achieves the lowest
Self-BLEU of 0.47 and the highest Distinct-1 of
0.10 and Distinct-2 of 0.43, indicating richer and
less repetitive outputs. This suggests that DG-DPO
not only improves discriminative supervision but
also encourages the model to generate more de-
tailed and distinctive descriptions that are essential
for visually similar videos.
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5.4 Qualitative Results

Fig. 3 presents a comparison between captions gen-
erated by a zero-shot captioning model (baseline)
and our DG-DPO-trained model (ours) for two vi-
sually similar videos depicting cookie baking. As
illustrated, the baseline captions provide general
scene descriptions, whereas our model generates
more detailed and context-specific captions that
highlight key visual cues such as ‘revealing cook-
ies inside,” ‘placed onto a plate using a spatula,’
and ‘individuals standing or interacting within the
bustling environment.” For the given query, the
retrieval model initially ranked a visually similar
but incorrect video higher (left video in Fig. 3),
which lacked the scene where ‘people talk to their
customers’. However, after substituting the caption
with one generated by ours, the retrieval model cor-
rectly retrieved the ground-truth video, guided by
the discriminative details in the caption that closely
match the text query (underlined in the figure). This
demonstrates that the fine-grained captions gener-
ated by the DG-DPO optimized captioning model
facilitate better differentiation between similar con-
tent, leading to improved retrieval performance.
More qualitative results in Sec. H of the Appendix.

6 Conclusion

We present CaRe-DPO, a novel retrieval frame-
work that enhances text-video retrieval with aux-
iliary captions. Our role-embeddings enable re-
trieval models to explicitly distinguish the roles
of heterogeneous textual inputs. Furthermore,
our Dual-Group Direct Preference Optimization
aligns caption generation with retrieval relevance
scores while leveraging both local and global ranks.
Through extensive experiments, we demonstrate
that CaRe-DPO enhances overall retrieval accuracy
across benchmarks.

Limitations

In this work, we propose CaRe-DPO that relies on
the MLLM-based models for text-video retrieval.
CaRe-DPO builds upon MLLM-based retrieval
models, which inherently rely on the pre-trained
multimodal knowledge encoded in the MLLM,
which also includes the captioning model adopted.
As a result, the performance of our approach may
be constrained by the underlying capabilities and
biases of the base MLLM, especially in domain-
specific or low-resource settings. Moreover, unlike
simply training the retrieval model, ours requires

training both the retrieval and captioning models
and generating multiple captions for DPO training,
which increases overall training time, yet results in
improved retrieval performance.
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A Dataset Details

DiDeMo. DiDeMo (Anne Hendricks et al., 2017)
is a text-video retrieval benchmark, namely the Dis-
tinct Describable Moments, which comprises 10K
videos, which are segmented into 5-second clips
for annotation, totaling 26K annotated moments.
Each moment is richly described with references
to camera movement, temporal transitions, and ac-
tions. We treat the retrieval task as a paragraph-to-
video retrieval where we concatenate all the cap-
tions within the video, following prior works (Luo
etal., 2022; Wu et al., 2023; Li et al., 2023; Wang
et al., 2024d; Cheng et al., 2023; Hur et al., 2025).
Note that the dataset provides 8,394 training and
1,003 test samples.

ActivityNet. Activitynet (Caba Heilbron et al.,
2015) is a text-video retrieval benchmark that is
based on 19K YouTube videos, categorized into
200 activity classes. For each class, there exists
an average of 137 videos, and each video contains
about 1.41 temporal activities. Similar to DiDeMo,
we aggregate all the captions per video and im-
plement the task as a paragraph-to-video retrieval,
while we evaluate on the vall split following Luo
et al. (2022); Li et al. (2023); Wang et al. (2024d);
Cheng et al. (2023); Hur et al. (2025).

MSRVTT. The MSRVTT (Xu et al., 2016)
dataset, namely Microsoft Research Video to Text,
contains 10k video clips that span across 20 cate-
gories, of which each clip is annotated by 20 sen-
tences. Following previous protocols (Luo et al.,
2022; Wang et al., 2024d; Li et al., 2023; Cheng
etal., 2023; Hur et al., 2025), we use the 9k sample
set for training (which is about 180k caption-video
pairs), and adopt the 1,000 clips for testing.

MSVD. The MSVD (Chen and Dolan, 2011)
dataset consists of 2k videos, of which each video
is annotated with around 40 captions. Unlike previ-
ously mentioned, MSVD is a multi-text text-video
retrieval benchmark where it treats each sentence
as an independent sample. Specifically, it evaluates
with one-to-many ground-truth text for video-to-
text retrieval. Following previous protocols (Luo
et al., 2022; Wang et al., 2024d; Li et al., 2023;
Cheng et al., 2023; Hur et al., 2025), we use 1k
videos for training, and 670 videos for testing.

Method T2VR@1 | V2TR@1
Non-MLLM-based

MV-Adapter (Jin et al., 2024) 49.4 71.8
NarVid (Hur et al., 2025) 53.1 -
InternVideo (Wang et al., 2022) 58.4 76.3
UMT (Li et al., 2023) 58.2 82.4
InternVideo2 1B* (Wang et al., 2024d) 59.0 85.5
InternVideo2 6B (Wang et al., 2024d) 61.4 85.2
MLLM-basedt

MM-Embed (Lin et al., 2025) 59.5 85.5
LamRA (Liu et al., 2025) 59.0 85.5
CaRe-DPO (Ours) | 598 | 859

Table 7: Comparison with SOTA retrieval models
on MSVD. We report R@1 for both T2V and V2T
retrieval. Note that best values are bold, second-best
are bold and underlined. T denotes reproduced on the
same baseline as ours, VideoChat-Flash.

| T2V v2T

Baseline 59.0 855
+ Lspr 59.7 85.5
+ Lsgpro | 59.7 85.6
+ ‘CDG-DPO 59.8 859

Table 8: Ablation on training objectives for My, on
MSVD. R@1 retrieval performance for T2V and V2T.

s(c, t) | T2V v2T

Baseline 49.5 176.6
+ EDG-DPO 51.7 179.0

Table 9: Analysis on caption quality for retrieval on
MSVD. We report R@1 for T2V and V2T.

B Multi-Text Text-Video Retrieval

Comparison with SOTA models on MSVD.
Tab. 7 presents a comparison of state-of-the-art
text-to-video (T2V) and video-to-text (V2T) re-
trieval performance on the MSVD, a multi-text
text-video retrieval benchmark, measured using
R@1. When adopting our CaRe-DPO, the model
achieves strong performance, especially in V2T,
attaining 85.9, outperforming other MLLM-based
approaches as well as non-MLLM-based models.

Ablation on training objectives on MSVD.
Tab. 8 presents an ablation study on the impact
of different training objectives for M.,, on MSVD.
We observe that incorporating the supervised fine-
tuning loss (Lspr) yields a slight improvement for
T2V retrieval while V2T remains unchanged. In-
troducing our (Lsg.ppo and Lpg.ppo) further en-
hances performance, with Lpg.ppo achieving the
best results of 59.8 for T2V and 85.9 for V2T.
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toy, occasionally reach..

T2VR@1 =81.6
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Figure 4: T2V retrieval with the original descriptive
caption (video-to-caption retrieval R@1 of 90.7) com-
pared to the random one. Nearly identical performance
suggests that the model fails to effectively leverage the
auxiliary knowledge.

Analysis on caption quality on MSVD. Tab. 9
analyzes the effect of caption quality on retrieval
performance using the text-caption retrieval s(c, t),
measuring how well the auxiliary caption semanti-
cally aligns with the query. Compared to the base-
line, adding Lpg.ppo significantly improves R@ 1
metrics for both T2V and V2T, reaching 51.7 and
79.0, respectively.

C Implementation Details

Training Details for retrieval. For training an
MLLM-based model for retrieval, we adopt the
recent MLLM of VideoChat-Flash-7B (Li et al.,
2024c). The baseline model is equipped with a vi-
sual encoder of UMT-L (Li et al., 2023) and an
LLM of Qwen2 (Yang et al., 2024). For each
benchmark, we only train the linear projection
layer while adopting LoRA (Hu et al., 2022) for
fine-tuning the model for efficiency. We adopt 16
frames per video for all datasets. All the exper-
iments were done using 8 NVIDIA H100 80GB
GPUS.

Prompts for text-video retrieval. We built sev-
eral different models capable of implementing text-
video retrieval. For the model trained with the loss
of L = —log P(y|v,t), which is the baseline text-
video retrieval model that does not accept auxiliary
caption as input, we adopted the prompt of “Cap-
tion: [text queryl. Does the above video match
the caption? True or False”. Note that we utilized
the word ‘Caption’ for referencing the text query
that is different from the auxiliary caption that we
dealt with in this paper. For training the model
with the loss of £L = —log P(y|v,c,t), which
is capable of adopting the auxiliary caption for

training, we use the prompt of “Video description:
[caption]. Caption: [text queryl. Based on
the video and its description, is the video relevant
to the caption? Answer True or False.” Again, to
clarify, the ‘video description’ corresponds to the
auxiliary caption dealt with in the paper, whereas
the ‘caption’ refers to the text query (retrieval tar-
get).

Training details for captioning. We adopt
LLaVA-OneVision-7B (Li et al., 2024a) for train-
ing the captioning model with Direct Preference
Optimization. Similar to MLLM-based retrieval
model finetuning, we adopt LoRA (Hu et al.,
2022) for parameter-efficient finetuning. LLaVA-
Onevision consists of Qwen2 (Yang et al., 2024)
as the LLM, and SigLIP vision encoder (Zhai
et al., 2023). We adopt 16 frames per video for
all datasets. All the experiments were done using
8 NVIDIA H100 80GB GPUS. Note that ); ; in
Eq. 10 denotes the weighting factor that balances
the contribution between local pairs (i = j) and
cross-group pairs (i # j). Specifically, we denote
the former as A\;—; and the latter as \;;. The value
of \;; adopted for our experiments are in Tab 10,
and \i—j is (1 — Xj%j).

Prompt for captioning. We empirically explored
several ways of generating the caption for the
dataset for zero-shot. Simply prompting the cap-
tioning model to generate a detailed description
about the video will cause the model to generate
a very long paragraph for the given video. Hence,
we utilized the prompt of “Describe this video in
detail with three sentences.”.

Inference details for retrieval. MLLM-based re-
trieval models are adopted as a re-ranker (Lin et al.,
2025; Liu et al., 2025; Miech et al., 2021), benefit-
ing from the ability to jointly attend to both visual
and textual data. Hence, based on the InternVideo-
1B (Wang et al., 2024d) similarity computed be-
tween the video and the text query, we retrieve
the top-16 candidates for re-ranking. Finally, we
weight the output scores of the two models follow-
ing the protocol of Miech et al. (2021).

Inference details for captioning. To construct
the dataset Dpg.ppo, We sample k = 3 captions per
video using a generation temperature of 0.2, follow-
ing the settings provided by LLaVA-OneVision (Li
et al., 2024a). For the caption generation of evaluat-
ing the retrieval model, we sample k& = 2 captions
per video. For our experiments, we average the
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DiDeMo ActivityNet MSRVTT MSVD
Mret Mcap Mret Mcap ‘ Mret Mcap ‘ Mret Mcap
Learning rate 8e-5 8e-6 | 2e-5 8e-6 le-4 8e-6 | 2e-4 8e-6
Warmup Epochs 1 0.1 1 0.1 1 0.1 1 0.1
Epoch 5 1 5 1 3 1 5 1
Batch Size 32 8 32 8 512 8 32 8
LoRA r 8 64 8 64 8 64 8 64
LoRA « 32 128 32 128 32 128 32 128
Aitj - 0.3 - 0.1 - 0.3 - 0.1
B - 0.1 - 0.1 - 0.1 - 0.1
5 - 0.7 - 2.0 - 0.5 - 0.01

Table 10: Training hyperparameters for M,¢ with L and My, With Lpg.ppo.

retrieval scores across both in order to account for
the variability in caption generation and provide a
more robust performance estimate.

Training strategy for Lpg.ppo. To construct
preference pairs from ranked retrieval results, we
explore two strategies. First, we compute a global
rank for each sample in the dataset and refer to
these ranks within each batch to determine prefer-
ence between video-caption pairs. The first strat-
egy treats the top half of the ranked samples (i.e.,
higher-ranked pairs) as chosen and the bottom half
as rejected. In contrast, the second strategy forms
preference pairs by grouping the ranked indices
into adjacent pairs, where the higher-ranked sam-
ple in each pair is treated as the chosen one and
the lower-ranked as the rejected. Empirically, we
observe that the latter strategy yields greater per-
formance improvements. We hypothesize that this
is because it produces training pairs with relatively
smaller marginal differences compared to the for-
mer approach, allowing the model to learn more
nuanced preference signals.

D Hyperparameters

In Tab. 10, we report the hyperparameters adopted
for training the retrieval model M, and the cap-
tioning model M, across the text-video retrieval
dataset.

E Further Ablation on Role-Embeddings.

Ablation on each component. We conduct fur-
ther analysis on the role-embeddings for text-video
retrieval on DiDeMo, evaluating with and with-
out each function role embedding in Tab. 11. The
results suggest that the model trained with R; re-
sults in higher V2T retrieval at R@1 (79.2 to 79.8),
whereas the model trained with R, results in higher

Train Text-to-Video Video-to-Text
Liet(+) R. | R{ | R@]l R@5 R@10 | R@l R@5 R@I0
(v,c,t) X | X | 81.6 943 959 | 792 947 967
(v,c,t +Ry) X | v | 812 945 956 | 798 943 965
(v,c+ Re, t) vV | X | 826 944 959 | 796 946 96.6
(vic+Re,t+Ry) | vV | v | 831 944 962 796 946 96.6

Table 11: Ablation on each component of the role-
embedding. Note that we adopt the zero-shot captions
with the standard inference strategy.

T2V retrieval at R@1 (81.6 to 82.6). Notably, com-
bining both role embeddings results in the best
overall performance, achieving 83.1 R@1 in T2V
and 79.6 R@1 in V2T. These findings highlight
the importance of role-embeddings integrated for
both heterogeneous textual inputs, enhancing the
model’s ability to distinguish the auxiliary caption
and the retrieval target, enabling the model to uti-
lize more of the auxiliary caption for retrieval.

Ablation with DG-DPO optimized caption. In
Tab. 12, we analyze the effectiveness of retrieval
role-embeddings when adopting the caption that is
generated by our DG-DPO optimized captioning
model, similar to Tab. 4 in the main. As shown,
when replacing the caption with a random one,
the model shows a minimal performance drop of
0.7 in R@1 on average (compare rows 1 and 2),
whereas the model trained with role-embeddings
shows higher sensitivity to the quality of the cap-
tion with a notable 1.6 point change in performance
of R@1 (compare rows 3 and 4). Moreover, while
adopting the same caption, the model trained with
the role-embeddings yields superior performance,
for instance, 85.1 compared to the baseline of 84.9
(compare rows 2 and 4).

Analysis on the inference strategy. Tab. 13 ex-
plores the different inference strategies in MLLM
retrieval, and we determine that our contrastive in-
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Train Input Inf.
Lret ( ° )

Text-to-Video Video-to-Text | Avg.
‘Icap. c|[R@1 R@5 R@10|R@1 R@5 R@10| A

(vieq) | X [rand [816 949 964 834 041 059 -
v,cC,
' X | ours|849 954 962|821 953 964 |(+0.7)
(o) | Y |rnd|809 946 963|809 951 961 | -
v7 9

v | ours|85.1 950 962|825 952 963 | (+1.6)

Table 12: Ablation on the Role-embeddings of M
with DG-DPO optimized caption. We adopt our DG-
DPO optimized captions, denoted with ‘our’, with the
contrastive inference strategy. ‘rand.” denotes random
caption and ‘Inf.” denotes the inference stage. ¢’ and t’
denote c+R. and t+Ry, respectively. ‘Avg. A’ denotes
an average change in R @k performance, between ‘rand’
and ‘ours’ captions.

Text-to-Video
s(v,c,t) R@1

Video-to-Text
R@5 R@10 | R@1 R@5 R@I0

log P(y*|v,c,t)
log P(y~|v,c,t)
P(yt|v,c,t)
P(y~|v,c,t)

82,6 947 962 | 797 947 96.1
849 950 962 | 823 951 96.2

log 851 950 962 | 825 952 963

Table 13: Comparison on the inference strategy. Re-
trieval performance on DiDeMo, where s(v,c, t) de-
notes the relevance score adopted for the inference.

Text-to-Video Video-to-Text
R@]1 R@5 R@10 | R@] R@5 R@I0

Captioning Metric
BLEU ‘84,1 95.0 963 | 823 947 964

METEOR 83.8 949 966 | 828 949 963
Retrieval Score (s;,)
P(yt|v,c,t
g PWIVGY) oo 950 964 | 824 950 964
P(y~|v,c,t)
Plyt|v*,c,t
g PWIVSEH) oot 950 962 | 825 952 963
Plyv*.c.t)

Table 14: Comparison on adopting different prefer-
ence scores s, for constructing Dpg.ppo. We report
the retrieval performance on DiDeMo. Also, v* denotes
masked attention for video tokens.

ference strategy yields the best result. The standard
approach (row 1) results in significant performance
degradation compared to those that adopt the proba-
bility of generating ‘False’ (row 2 and 3). Specifi-
cally, simply adopting log P(y~|v,c,t) (row 2),
results in +2.5% increase in R@1 on average,
and adopting log P(y™|v,c,t) —log P(y~|v,c,t)
(row 3), results in +2.7% increase.

F Further Ablation on DG-DPO

Ablation on preference scores. In Tab 14, we
compare retrieval performance while adopting
different types of preference scores s, for con-
structing Dpg.ppo. We observe that directly us-

Method | T2V R@1 | V2T R@1

Baseline 83.1 79.6
+LsFr 82.6 82.0
+Lps-pro (Batch=4) 84.8 82.6
+Lps-pro (Batch=8) 84.2 82.8
4 Lpgoro (Batch=16) | 84.2 82.5
+Lpg-pro (Batch=32) 85.1 82.5

Table 15: Effect of DG-DPO with varying batch sizes.
We report R@1 for text-to-video (T2V) and video-to-
text (V2T) retrieval.

Training Test Preference T2V V2T

Dataset Dataset score R@l1 R@5 R@10 |R@] R@5 R@I10
DiDeMo | MSRVTT BLEU 639 829 872 63.7 830 872
DiDeMo | MSRVTT retrieval 642 838 88.5 639 83.1 87.3
MSRVTT | MSRVTT retrieval 64.1 83.8 88.8 63.8 83.0 87.3

Table 16: Cross-dataset generalization of DG-DPO
captions. To evaluate out-of-domain generalization of
Mcap with DG-DPO on the DiDeMo dataset and test
retrieval performance on MSRVTT, which differs in
video length and query granularity.

ing retrieval-based scores (rows 3 and 4) consis-
tently outperforms traditional captioning metrics
such as BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005). Specifically,
adopting BLEU and METEOR leads to a perfor-
mance drop of 1.0 and 1.3 points in T2V R@]1, re-
spectively. For V2T, the impact of caption quality
appears marginal, as captions primarily augment
the video rather than the text query, contributing
more significantly to improvements in T2V.

Ablation on DG-DPO batch size. To analyze
the effect of batch size in preference optimization,
we conduct an ablation study by applying DG-DPO
with varying batch sizes during training. As shown
in Table 15, all DG-DPO variants outperform the
baseline and SFT-only models, demonstrating the
effectiveness of direct preference optimization. No-
tably, performance improves consistently as the
batch size increases, with the best results observed
at a batch size of 32, achieving 85.1 R@1 in text-to-
video and 82.5 R@1 in video-to-text retrieval. This
highlights the benefit of utilizing diverse preference
pairs per update and suggests that larger batch sizes
help the model better capture fine-grained semantic
preferences aligned with retrieval objectives.

G Out-of-Domain Generalization

To assess the out-of-domain generalization abil-
ity of our method, we conducted a cross-dataset
evaluation by training the captioner with DG-DPO
on DiDeMo and evaluating retrieval performance
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on the MSRVTT benchmark, of which the former
contains longer videos with more moment-specific
queries, whereas the latter contains shorter videos
with queries that refer to the entire video. As
shown in Tab 16, DG-DPO-trained captions gener-
alize well to unseen datasets, even outperforming
the performance when trained with the specific
dataset (see row 2 and row 3). In addition, re-
trieval score-based optimized captions outperform
BLEU-optimized captions even when trained out-
of-domain. This confirms that DG-DPO captures
meaningful retrieval-aligned semantics rather than
overfitting to domain-specific biases.

H Further Qualitative Results

In Fig 5, Fig 6, we further show the qualitative
results between captions from the baseline and our
model on DiDeMo and ActivityNet, focusing on
those benchmarks that require fine-grained detail
for retrieval. All figures (a) depict examples for
text-to-video retrieval, whereas (b) depict exam-
ples of video-to-text retrieval. (c) illustrates cases
where, when adopting a baseline (zero-shot) cap-
tion, the model confuses between the two similar
videos for text-to-video retrieval, whereas with DG-
DPO optimized captions, the fine-grained details
successfully lead to discriminating between the
videos. Overall, our model trained with the DG-
DPO of our CaRe-DPO enables the retrieval model
to better align with the text-video retrieval task.
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Text Query: A man walk to a chair and sits down. Someone with a guitar sits down.
Person sits down on chair. A man walks back to his seat and sits down

|Text Query: The boy in a white jacket moves forward. |

Baseline generated caption:

The video begins with a view of an indoor setting, featuring various items such as
books and electronic devices on the floor. A person wearing black pants enters
from behind and sits down to play a guitar. The scene transitions smoothly to sho
w this individual playing the acoustic guitar while seated in front of another piece of

| furniture. T-(V, C) retrieval RANK: 3

Our generated caption:

Baseline generated caption:

The video begins with a group of people sitting on the grass in an outdoor setting, we
aring various colorful clothing. The scene transitions to show more individuals
seated and interacting casually among themselves while others stand nearby. A
person stands up from their position near the center of the frame, moving towards a

L nother individual who is also standing. T—)(V, C) retrieval RANK: 41

~

Our generated caption:

p
The video begins with a view of an indoor setting, featuring various items such as
books and speakers in the background. A person wearing black pants enters
from behind and starts playing a guitar The camera
focuses closely on their hands adjusting chords and strumming strings throughout
different scenes. In the foreground, there is always a smartphone connected to

h laced dark surface. g
acharger placed on a dark surface. T—(V, C) retrieval RANK: 1‘

( The video features a lively scene of children and young adults sitting on the grass in
an outdoor setting, engaging with each other. The group is diverse, wearing various
colors like

_. A person stands out among them, possibly leading or organizing activities
for this gathering. )
T-(V, C) retrieval RANK: 1}

\.

(a) Qualitative example on the effect of generated video caption in text-to-video retrieval on DiDeMo.

Text Query: We see man wearing a hat for the first time

Baseline generated caption:

The video begins with a panoramic view of a landscape featuring rolling hills, green )
fields, and scattered trees under a clear sky. The scene transitions to an urban area
nestled among the hills, showcasing buildings interspersed between patches of
greenery. As the camera pans further, it reveals more details of the cityscape before
zooming in on two individuals standing by a railing overlooking the expansive view
below. In the second part of the video, the focus remains on the same scenic view
from above ground level, highlighting lush vegetation covering much of the lower
portion of the frame. In the background, majestic mountains rise against the
horizon, creating a serene backdrop for the verdant foreground.

\_ (V, C) »T retrieval RANK: 2 )
Our generated caption:

power line is in view. Person in a red shirt appears. A man in red comes through
the door. The camera pans down to a man exiting the building.

Baseline generated caption:

The video begins with a group of people standing on the roof of a building,
overlooking an urban area. The scene transitions to show more individuals gathered
around and taking photos or videos from different vantage points within the same
building. Finally, it shifts focus to street-level activities where several people are
seen walking by various shops and vending machines under clear skies in daylight
conditions.

N\

\_ (V, C) »T retrieval RANK: 3 }

Our generated caption:

( The video begins with a panoramic view of an expansive landscape featuring rolling )
hills, green fields, and scattered trees. The scene transitions to reveal distant mount
ains in the background under a clear sky. on the
right side near a concrete structure, pointing towards something off-screen
while another individual is partially visible next to them. The camera then shifts
focus back to the scenic view before returning to show more details of the

landscape from different angles. (V, C) —T retrieval RANK: 1
J

4 3\
The video begins with a group of people standing on the roof of an urban building
, ﬂand clear blue skies. The scene transitions to individuals
descending from the rooftop into a bustling street below where various shops are

visible in the background. is seen taking photos or
filming while others walk around near vending machines filled with cans.

(V, C) »T retrieval RANK: 1 )

(b) Qualitative example on the effect of generated video caption in video-to-text retrieval on DiDeMo.

|Text Query: A pink cloud moves from left to right. Orange from sun is seen. Sky changes from blue to gray. The sky is the is very grey and darkest.

similar video candidates

Baseline generated caption:

The video begins with a serene view of the sky, transitioning from light
blue to warm hues as clouds appear and change color. The scene then shift
s focus to an antenna against this changing backdrop before moving on to
show darkening skies filled with dense gray clouds illuminated by sunligh
t breaking through in some areas. Finally, it concludes with a dimly lit
frame where only faint outlines are visible due to low lighting conditions.

T-(V, C) retrieval RANK: 2 |

Our generated caption:

The video features a series of images showcasing an antenna against the
backdrop of

The initial scenes depict a clear
as clouds gathe
r in subsequent frames. By the end of the sequence, it is nighttime with
minimal light piercing through heavy cloud cover.

T-(V,C) retrieval RANK: 1

Similar Video

Baseline generated caption:

The video begins with a large plume of black smoke rising into the sky,
indicating an explosion or fire. The scene transitions to show people gathe
red in an open field under cloudy skies; some are waving and pointing to
wards something off-screen while others stand still. A red flag on top of a
pole is visible among them. In subsequent frames, airplanes fly overhead a
gainst this backdrop as more dark smoke billows from explosions occurri
ng at different locations within the crowd. The final part shows several
planes flying over the heads of spectators who appear captivated by ...

T-(V, C) retrieval RANK: 1

Our generated caption:

The video captures a lively outdoor event where people gather to watch
airplanes fly overhead, with into the sky and red
flags fluttering in the breeze.

T-(V,C) retrieval RANK: 32

(c) Qualitative example on the effect of generated video caption in text-to-video retrieval on DiDeMo for Challenging Retrieval
Cases.

Figure 5: Further qualitative example of video captioning. Comparison of the predictions of the caption generated
by the zero-shot captioning model (Baseline) with our model trained with DG-DPO (Ours) on DiDeMo. The
highlighted parts depict the fine-grained detail generated by our model, which is not provided in the caption
generated by the baseline. The border color of each video frame corresponds to the caption highlighted, and the
underline denotes the details that closely match the given query.
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Text Query: A man runs holding a javelin on his right hand on front a crowd. Then, the
man throws the javelin. A person wearing white shirt walks behind the man.

Baseline generated caption:

The video showcases a male athlete in the midst of his pole vaulting routine,
demonstrating exceptional athleticism and precision.

T-(V, C) retrieval RANK: 4

\

Our generated caption:

The video in an outdoor

stadium, with spectators watching from the stands. The scene captures him
running up t gain momentum and then releaslag the Javelin inio the i befor

e landing back on his feet after completing the throw.

T —(V, C) retrieval RANK: 1 ]

Baseline generated caption:

The video showcases a fencing event, featuring athletes in white uniforms and
protective gear. It highlights the intensity of matches between fencers on an indoor
court with blue seating areas visible in the background. The scene transitions to
show multiple fencers engaged in their respective bouts while spectators watch from

the stands. T->(V, C) retrieval RANK: 7 |

\

Our generated caption:

The video features_ an older man as the head coach, and several
fencers engaged in matches or preparing for them. It also includes scenes of

1 in n; r and spectators watching from empty
bleachers.

\

T —(V, C) retrieval RANK: 1 |

(a) Qualitative example on the effect of generated video caption in text-to-video retrieval on ActivityNet.

- = ol . B,

Text Query: Several shots are shown of men standing on the beach that lead into
them riding on surf boards in the water. This men kite surf all over the ocean while
performing various flips and tricks. People watch them on the sides at they continue
to perform and jump around the water.

Text Query: A man in swimming trunk is standing at the edge of the diving board, His
back is turned back from the audience. He raised his arms and bounced and
jumped to the pool.

Baseline generated caption:

The video showcases a windsurfer in action, skillfully maneuvering through the wave
s with their sail catching the wind. The scene transitions to multiple surfers competi
ng against each other on choppy waters near a shoreline adorned by hills and trees

der cl Kkies.
under clear sices (V, C) >T retrieval RANK: 2 |

~

\

Qur generated caption:

The video begins with a man windsurfing on choppy water, followed by multiple sce

nes showing several people engaging in the sport. The action continues as various
individuals are seen riding waves and
_. T R e A

where some wind surfing takes place. Finally, text
appears identifying one surfer before focusing closely on another individual

N\

wvigating th h .
\na igating through rough waters. (V, C) >T retrieval RANK: 1)

Baseline generated caption:

The video begins with a diver standing on the edge of an indoor diving platform, pre
paring to dive into a large pool. The scene transitions smoothly as the diver takes off
and performs a flip in mid-air before entering the water. Spectators are shown watch
ing from behind railings near the pool's edge, observing the diver's performance.

L (V, C) -T retrieval RANK: 2 J
Our generated caption:

N

N\
The video begins with a man standing on the edge of a diving board, preparing to div
e into an swimming pool. Hbefore enteri
ng the water below. The scene transitions to spectators watching as he enters the wa
ter, followed by close-up shots showing scores displayed on large screens
indicating judges' points for different dives performed in the competition.

\ (V, C) —T retrieval RANK: 1 J

(b) Qualitative example on the effect of generated video caption in video-to-text retrieval on ActivityNet.

Baseline generated caption:

Text Query: A young child is seen sitting in a tube while riding down a mountain. The camera man pans around to other people riding in tubes down th
e hill. The two continue riding down after one another and the boy smiling to the camera.

The video begins with a person wearing winter clothing and sitting on an
inflatable blue tube, sliding down a snowy slope surrounded by trees. The
scene transitions to the same individual lying back in the tube as it
continues its descent along the snow-covered path lined with more trees.
Finally, another person appears next to them inside the tube while they
continue their ride through this wintry landscape.

T-(V, C) retrieval RANK: 2

QOur generated caption:

The video begins with a person _in an inflatable tube,
sliding down a snow-covered slope surrounded by trees. As the scene
develops, another individual joins them for company and fun while they
continue to slide downhill together. The journey continues as they pass
various signs indicating directions before eventually reaching a more
open area where other people can be seen enjoying similar activities
nearby. Finally, it focuses closely on one of the individuals from
earlier scenes who is smiling broadly at the camera, capturing a joyful
moment during this winter activity.

Baseline generated caption: \
The video begins with a dark frame, then transitions to show people prep
aring for snow tubing at the top of a snowy hill. It continues through
various scenes capturing individuals and groups enjoying their ride down
the slope on colorful tubes against a backdrop of cloudy skies and

distant mountains. The final scene shows an individual in motion while
seated inside one of these tubes, moving towards the bottom of the hill
where more red cones are visible as markers or obstacles along the path.

T-(V, C) retrieval RANK: 1

\

Our generated caption:
The video begins with a dark frame, then transitions to show people

preparing for snow tubing on a snowy hill. It followsindividuals as they
h and slide down the slope while others watch from

above or assist them at the top of the hill. The scene continues with
close-up shots capturing the thrill of sliding downhill through the
snow before shifting focus back to wider views showing multiple
participants enjoying their ride down the hillside.

T-(V, C) retrieval RANK: 2

T—(V, C) retrieval RANK: 1 V

(c) Qualitative example on the effect of generated video caption in text-to-video retrieval on ActivityNet for Challenging
Retrieval Cases.

Figure 6: Further qualitative example of video captioning. Comparison of the predictions of the caption generated
by the zero-shot captioning model (Baseline) with our model trained with DG-DPO (Ours) on ActivityNet. The
highlighted parts depict the fine-grained detail generated by our model, which is not provided in the caption
generated by the baseline. The border color of each video frame corresponds to the caption highlighted, and the
underline denotes the details that closely match the given query.
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