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Abstract

Temporal knowledge graph (TKG) extrapola-
tion aims to predict future facts by modeling
the dynamic evolution of historical facts within
TKGs. Existing methods often neglect the com-
plex semantic relationships between relations
when modeling their dynamic evolution, lead-
ing to incomplete relation representations and
affecting the accuracy of reasoning. Inspired
by the advancements in large language mod-
els (LLMs), we propose Semantic Relationship
Mining based on LLMs (SRM-LLM), a novel
approach for extracting semantic relationships
to achieve TKG extrapolation. By leveraging
LLMs to analyze the types of relations, we first
identify several common relation types (e.g.,
causal, synonymous) in TKGs. We then design
the LLM-based prompting strategy to capture
latent semantic connections between relations,
enabling the construction of relational associa-
tion subgraphs for relation representation learn-
ing. In addition, SRM-LLM further enhances
reasoning capabilities by incorporating struc-
tured logical constraints to guide inference. Ex-
periments on five TKG datasets show signifi-
cant performance gains and achieve new state
of the art (SOTA) results, confirming the effec-
tiveness of our method on TKG extrapolation
tasks.

1 Introduction

A knowledge graph (KG) is a semantic network
that structurally represents facts about the real
world using entities and relations in the form of
triples (s, r, o) (Bollacker et al., 2008; Zhao et al.,
2021; Song et al., 2021). However, most facts in
the real world are not static and change over time
(Li et al., 2023). As for the fact “Barack Obama is
the president of USA”, it only holds true from 2009
to 2017. To capture and represent the evolution
of facts over time, the temporal knowledge graph

† Equal contribution. * Corresponding author.

(a) An example of TKG reasoning, where the blue dashed lines
indicate the causal relationships between relations. Through
the latent causal relationships, the missing entity Citizen (Nige-
ria) can be correctly predicted.

(b) The process of transforming the TKG subgraph into the
line graph.

Figure 1: Part (a) illustrates the crucial role of latent in-
formation between relations in TKG reasoning. Part (b)
illustrates the method of learning associations between
relations by transforming a TKG subgraph into a line
graph. However, the resulting line graph may contain
isolated relation nodes (e.g., r4), which can impact the
learning of relation representations.

(TKG) is designed. With temporal information,
facts in TKGs are typically represented as quadru-
ples (s, r, o, t), where the timestamp t denotes the
specific time at which the fact occurs.

Reasoning tasks in TKGs can be classified into
two types: interpolation reasoning and extrapo-
lation reasoning (Jin et al., 2020a). Interpolation
reasoning aims to infer missing facts within the
known timestamps, while extrapolation reasoning
attempts to predict potential unknown facts that
may occur in the future timestamps. The extrapo-
lation reasoning is more challenging and has prac-
tical value in scenarios such as event prediction
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(Deng et al., 2020) and stock forecasting (Carta
et al., 2021). Therefore, in this work, we focus on
the extrapolation reasoning.

To achieve accurate TKG reasoning, it is essen-
tial to construct models capable of fully capturing
temporal dynamics and the complexity of relations.
In recent years, numerous studies have focused on
improving entity representations to better capture
the evolutionary patterns of entities. For exam-
ple, RE-GCN (Li et al., 2021) leverages recursive
modeling of KG sequences to learn evolutionary
representations of entities. However, most studies
overlook the rich latent information within rela-
tions. When aggregating relations, they primar-
ily focus on directly adjacent entities, resulting in
incomplete relation representations. As bridges
connecting entities, relations encapsulate abundant
semantic information and dynamic evolutionary
patterns. Taking Figure 1(a) as an example, when
predicting the query (Nigeria, release property, ?,
t3), the causal relationships between the relation
“express intent to release persons or property” and
the relations “release persons” and “release prop-
erty” enable us to accurately predict that the correct
entity is Citizen(Nigeria).

For learning information between relations, two
recent studies (Liu et al., 2023; Liang et al., 2023)
extend the concept of line graph (Harary and Nor-
man, 1960) to the domain of TKG reasoning. As
shown in Figure 1(b), for the subgraph at a given
timestamp (the white part), if two edges are adja-
cent, their corresponding relation nodes in the line
graph (the blue part) will be connected by an edge.
These two methods learn information between rela-
tions by generating the relational correlation graph.
However, the relational correlation graph obtained
through this approach may contain isolated rela-
tion nodes that cannot be effectively connected to
other relation nodes. This isolation hinders the
propagation and aggregation of information within
the graph, thus affecting the learning of relation
representations.

To address the aforementioned issues, we pro-
pose a novel method, SRM-LLM, for learning in-
formation between relations in TKG reasoning.
Specifically, for each dataset, we first leverage
LLMs to analyze the latent association types be-
tween relations it contains (e.g., causal, synony-
mous). We then design the LLM-based prompting
strategy to mine the latent semantic connections
among relations within each subgraph, enabling
the construction of relational association subgraphs

for relation representation learning. Unlike meth-
ods that convert the graph into a line graph, our
approach avoids the emergence of isolated relation
nodes, thereby facilitating more accurate relation
representation learning. In addition, inspired by
TLogic (Liu et al., 2022), we propose a rule-based
historical relation retrieval module, which retrieves
historical quadruples related to the query relation
by applying logical rules to historical subgraphs.
This facilitates the construction of a global graph
for learning entity representations at a global level.
Finally, we combine these global entity representa-
tions with local entity representations to perform
prediction. Experimental results clearly demon-
strate the effectiveness of our method. Our main
contributions are summarized as follows:

• We propose a novel approach for applying
LLMs to the domain of TKG reasoning, lever-
aging the semantic understanding capabili-
ties of LLMs to mine the latent semantic cor-
relations between relations. This approach
avoids the emergence of isolated relation
nodes, thereby enhancing the effectiveness
of relation representation.

• We propose a rule-based historical relation
retrieval module, which facilitates the con-
struction of a global graph for learning entity
representations at a global level.

• We conduct extensive experiments on five
commonly used TKG datasets and the experi-
mental results demonstrate the effectiveness
of our method. On the ICEWS14 dataset, the
Hits@1 metric improves by 5.4% and on the
ICEWS05-15 dataset, it improves by 4.1%.

2 Related Work

2.1 Static KG Reasoning
Static KG reasoning methods can be broadly cate-
gorized into four types: translation-based methods,
matrix factorization-based methods, convolutional
neural network-based methods and graph neural
network-based methods. Graph neural network-
based methods, such as R-GCN (Schlichtkrull et al.,
2018) and CompGCN (Vashishth et al., 2020), up-
date node representations by aggregating informa-
tion from neighboring nodes.

2.2 TKG Reasoning
TKG Interpolation Reasoning In the domain of
TKG interpolation reasoning, most methods are

16008



extensions of static KG reasoning methods. For
example, TTransE (Leblay and Chekol, 2018) ex-
tends the TransE (Bordes et al., 2013) method from
static KGs by integrating temporal information into
relation representations. However, these methods
still face challenges when addressing extrapolation
tasks.
TKG Extrapolation Reasoning TKG extrapola-
tion aims to predict future facts using historical in-
formation. Some recent methods utilize graph neu-
ral networks to model the associative constraints
between entities and relations. RE-GCN (Li et al.,
2021) learns the evolutionary representations of
entities and relations at each timestamp by recur-
sively modeling KG sequences. To enhance ex-
plainability, TLogic (Liu et al., 2022) leverages
logical rules to predict future events. With the emer-
gence of LLMs, TKG reasoning methods based on
LLMs have become a research hotspot. GenTKG
(Liao et al., 2024a) combines the retrieval strategy
based on temporal logical rules with instruction
fine-tuning for generative predictions.

3 Problem Definition

TKG and TKG Extrapolation Let E andR rep-
resent a set of entities and relations. A quadru-
ple (s, r, o, t) represents a relation r ∈ R that
occurs between subject entity s ∈ E and object
entity o ∈ E at timestamp t. All the quadru-
ples that occur at timestamp t form a knowledge
graph Gt. A TKG G is defined as a sequence
of knowledge graphs at different timestamps, i.e.,
G = {G1,G2, · · · ,Gt}. TKG extrapolation in-
volves predicting a missing object (s, r, ?, t), a
missing subject entity (?, r, o, t), or a missing re-
lation (s, ?, o, t) based on the historical KG se-
quences G<t = {G1,G2, · · · ,Gt−1}. Without
loss of generality, the inverse relation quadruples
(o, r−1, s, t) are incorporated into the TKG dataset,
thereby reducing the entity prediction task to the
prediction of object entities.

4 Methodology

In this section, we propose a novel LLM-based
and logical constraint method, SRM-LLM, which
is aimed at mining semantic associations between
relations to achieve TKG extrapolation tasks. The
overall framework of our model is illustrated in
Figure 2. In the following, we provide a detailed
description of the model components.

4.1 Relational Semantic Association Module

4.1.1 Relational Semantic Association Mining
To mine latent semantic associations among re-
lations in TKGs while capturing prevalent dy-
namic interaction patterns between events—such
as causal chains, conflicts, and hierarchical struc-
tures—we categorize relation associations into five
types: (1) Causal, (2) Synonymous, (3) Opposi-
tional, (4) Inclusion and (5) Progressive relation-
ships. Specific explanations of the five types of
association are shown in Appendix A.1.

By identifying the types of association, we can
better understand and analyze the complex con-
nections between relations. In Table 8 of Ap-
pendix A.2, some specific examples are presented,
such as the relation “Praise or endorse” and the
relation “Criticize or denounce”, which are in a op-
positional relationship with each other. These types
of relationships help construct a logical framework
for understanding the interactions between events.

Next, we design a prompt to extract the latent
associations between all existing relations in the
subgraph Gti . By utilizing the LLM, the latent
associations between relations are identified and
represented in the format [ri, pr, rj ], where ri, rj ∈
R and pr is one of the association types. A specific
example of the prompt is shown in Appendix B.

4.1.2 Relation Representation Learning
Through the relation associations mined by the
LLM, we construct a corresponding relational as-
sociation subgraph RGti for each subgraph Gti .
We use a relational graph convolutional network
(Schlichtkrull et al., 2018) as a semantic aggrega-
tor to obtain embeddings for each relational node
in the relational association subgraph RGti . The
definition of the relational aggregator is as follows:

rl+1
ro,t = σ


 1

cr

∑

rs∈Rpr
ro

Wl
1

(
rlrs,t + pr

l
)
+Wl

2r
l
ro,t


 ,

(1)

where rl+1
ro,t, r

l
ro,t ∈ R|R|×d represent the embed-

dings of relations in the l + 1th and lth layers of
the relation aggregation R-GCN in each relational
association subgraphRGt. Rpr

ro represents the set
of relations adjacent to the relation node ro through
the relationship type pr. rlrs,t and pr

l represent the
adjacent relation embeddings and the correspond-
ing relationship type embeddings in the lth layer
of the R-GCN. Wl

1 and Wl
2 ∈ Rd×d are trainable

weight parameter matrices in lth layer. cr is a nor-
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Figure 2: Framework of SRM-LLM. For a given query q, we first consider the most recent k timestamp subgraphs
(e.g., Gtq−k

). Through the Relational Semantic Association Module, we leverage LLM to mine the latent
semantic associations between relations within each subgraph and construct the corresponding relational association
subgraphs (e.g., RGtq−k

) to learn the relation representations Rtq . Meanwhile, from these k historical subgraphs
(Gtq−k

, . . . , Gtq−1), we learn the local entity representations ELoc
tq . In addition, for all historical subgraphs of the

query q (Gt1 , . . . , Gtq−1
), we utilize the Rule-Based Historical Relation Retrieval Module to extract quadruples

related to the query relation rq from each subgraph. These quadruples are used to construct a global graph
G

rq
t1:q−1

, from which we learn the global entity representations EGlo
tq . Finally, we fuse the global and local entity

representations to obtain the final entity representations and perform prediction.

malization constant that equals the in-degree of
relation. σ(·) is the RReLU activation function.

For updating the relation evolution representa-
tions, we use the time gate recurrent component
(Li et al., 2021) to update the relation embeddings
at timestamp t. The specific form is as follows:

rpt = pooling(Et,r) + r, (2)

Ut = σ2(W3R
p
t + b), (3)

Rt+1 = UtR
p
t + (1−Ut)Rt, (4)

where σ2(·) is the sigmoid function. W3 represents
the weight matrix of the time gate. Et,r represents
the entity embeddings connected to relation r at
timestamp t. Rp

t ∈ R|R|×d consists of rpt of all
relations at timestamp t. Rt+1 represents the up-
dated relation embedding matrix obtained through
the time gate.

4.2 Local Entity Representation

After obtaining the relational embeddings of the
corresponding relational association subgraphRGt,
we employ the entity aggregation R-GCN to obtain
the embeddings of entity nodes in the correspond-
ing historical subgraph Gt. Similar to the learning

of relational node embeddings, the entity aggrega-
tion R-GCN is defined as follows:

el+1
o,t = σ


 1

co

∑

s∈Er
o

Wl
4

(
el
s,t + rl

)
+Wl

5e
l
o,t


 , (5)

where el+1
o,t , e

l
o,t ∈ R|E|×d represent the embed-

dings of entities in the l + 1th and lth layers of the
entity aggregation R-GCN in each historical sub-
graph Gt. Ero represents the set of entities adjacent
to the entity node o through the relation r. els,t and
rl represent the adjacent entity embeddings and
the corresponding relation embeddings in the lth

layer of the R-GCN. Among them, rl is obtained
by aggregating the corresponding relational asso-
ciation subgraph RGt using Equation 1. Wl

4 and
Wl

5 ∈ Rd×d are trainable weight parameter matri-
ces in lth layer. co is a normalization constant that
equals the in-degree of entity. σ(·) is the RReLU
activation function.

For a given query q = (sq, rq, ?, tq), after obtain-
ing the structural semantic embeddings of entities
in each historical subgraph Gt, it is necessary to
further model the sequential dependencies of enti-
ties across the historical subgraphs from the most
recent k timestamps. We achieve this by progres-
sively updating the entity representations using a
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Gated Recurrent Unit (GRU) (Cho et al., 2014).
The update process is formulated as follows:

EGt+1 = GRUE(EGt ,Et), (6)

where EGt represents the entity embedding matrix
after aggregation on the subgraph at timestamp t.
Et represents the embeddings of entity.

4.3 Rule-Based Historical Relation Retrieval
Module

In entity representation learning, in addition to cap-
turing the evolving representations of the k most re-
cent historical subgraphs associated with the query,
we also employ logical rules to capture the global
historical facts relevant to the query relations. First,
we employ the random walk strategy in TLogic
(Liu et al., 2022) to extract temporal logical rules.
The definition of rules in TLogic is shown in Ap-
pendix C. Then, for the query q = (sq, rq, ?, tq),
we obtain the logical rules with the query rela-
tion rq as the head relation. Subsequently, in the
global historical subgraphs (G1,G2, . . . ,Gtq−1), we
extract the global historical facts associated with
the corresponding body relation rb, thereby obtain-
ing the logical relation historical subgraph related
to the query relation rq.

After obtaining the logical relation historical sub-
graph, we model the structural semantic represen-
tations of the subgraph using R-GCN to update the
global entity representations. The update process
is similar to that in Equation 5.

By combining the local evolution representations
and global logical representations, we obtain the
final entity representations. Formally, the entity
representations can be obtained as follows:

Etq = λEL
tq + (1− λ)EG

tq , (7)

where EL
tq represents the local evolution represen-

tations of entities and EG
tq represents the global

logical representations of entities. λ is a hyper-
parameter in the range of 0 to 1, used to control the
weight of the local and global representations.

4.4 Prediction and Training

For a query q = (sq, rq, ?, tq), the entity represen-
tation esq ,tq and relation representation rrq ,tq of the
query at timestamp tq are used as inputs to compute
the predicted scores for each candidate entity rep-
resentation eo. We choose to employ ConvTransE
(Shang et al., 2019) as the decoder to perform the

entity prediction task. The score calculation pro-
cess for each candidate entity eo is as follows:

ϕ(sq, rq, eo, tq) = σ3

(
eo,tqConvTransE

(
esq,tq , rrq,tq

))
,

(8)

where σ3(·) is the softmax activate function.
The training objective is to minimize the cross-

entropy loss:

L =
T∑

t=0

∑

(sq,rq,e,tq)∈Gtq

∑

eo∈E
yeo
tq logϕ(sq, rq, eo, tq), (9)

where ϕ(sq, rq, eo, tq) represents the matching
score between the query q and the candidate en-
tity eo. yeotq is 1 if the fact exists, otherwise 0.

5 Experiments

In this section, we conduct a series of experiments
on five TKG datasets to demonstrate the effective-
ness of our model.

5.1 Experimental Setup
Datasets We select five representative datasets in
TKG reasoning domain to evaluate our method.
They are GDELT (Leetaru and Schrodt, 2013),
WIKI (Leblay and Chekol, 2018), ICEWS14
(Garcia-Duran et al., 2018), ICEWS18 (Jin et al.,
2020b) and ICEWS05-15 (Garcia-Duran et al.,
2018).
Evaluation Metrics In the experiments, we adopt
the widely used metrics Mean Reciprocal Rank
(MRR) and Hits@{1, 3, 10} to evaluate the effec-
tiveness of TKG reasoning methods. Higher values
for these metrics are better. We report the experi-
mental results under the time-aware filtered setup,
which is commonly used in recent works.

5.2 Experimental Results
The experimental results of our method, along with
the results of all baselines, are presented in Table 1
and Table 2. Specific details about the selection of
baselines and the experimental settings are shown
in Appendix D.
Entity Prediction By observing the results in Ta-
ble 1, it can be seen that our method achieves the
best performance on the ICEWS series datasets,
indicating the effectiveness of our approach.

Specifically, our method significantly outper-
forms all the static methods compared, highlighting
the importance of temporal information in TKG
reasoning. As for the interpolation methods, they
lack the ability to model the evolution of entities
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Model
ICEWS14 ICEWS18 ICEWS05-15

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ComplEx (2016) 32.54 23.43 36.13 50.73 22.94 15.19 27.05 42.11 32.63 24.01 37.50 52.81
ConvE (2018) 35.09 25.23 39.38 54.68 24.51 16.23 29.25 44.51 33.81 24.78 39.00 54.95

Conv-TransE (2019) 33.80 25.40 38.54 53.99 22.11 13.94 26.44 42.28 33.03 24.15 38.07 54.32
RotatE (2019) 21.31 10.26 24.35 44.75 12.78 4.01 14.89 31.91 24.71 13.22 29.04 48.16

TTransE (2018) 13.72 2.98 17.70 35.74 8.31 1.92 8.56 21.89 15.57 4.80 19.24 38.29
DE-SimplE (2020) 33.36 24.85 37.15 49.82 19.30 11.53 21.86 34.80 35.02 25.91 38.99 52.75

TNTComplEx (2020) 34.05 25.08 38.50 50.92 21.23 13.28 24.02 36.91 27.54 9.52 30.80 42.86

CyGNet (2021) 35.05 25.73 39.01 53.55 24.93 15.90 28.28 42.61 36.81 26.61 41.63 56.22
xERTE (2021) 40.02 32.06 44.63 56.17 29.98 22.05 33.46 44.83 46.62 37.84 52.31 63.92

RE-GCN (2021) 40.39 30.66 44.96 59.21 30.58 21.01 34.34 48.75 48.03 37.33 53.85 68.27
CEN (2022) 42.20 32.08 47.46 61.31 31.50 21.70 35.44 50.59 46.84 36.38 52.45 67.01

TiRGN (2022) 44.04 33.83 48.95 63.84 33.66 23.19 37.99 54.22 50.04 39.25 56.13 70.71
HisMatch (2022) 46.42 35.91 51.63 66.84 33.99 23.91 37.90 53.94 52.85 42.01 59.05 73.28
RETIA (2023) 42.76 32.28 47.77 62.75 32.43 22.23 36.48 52.94 47.26 36.64 52.90 67.76
RPC* (2023) 44.55 34.87 49.80 65.08 34.91 24.34 38.74 55.89 51.14 39.47 57.11 71.75
LogCL (2024) 48.87 37.76 54.71 70.26 35.67 24.53 40.32 57.74 57.04 46.07 63.72 77.87

CRAFT* (2024) 45.71 35.05 51.83 65.21 34.21 23.96 38.53 54.11 50.14 39.56 56.18 70.09
HTCCN* (2024) 45.39 36.58 50.84 - 35.63 24.90 39.26 - 51.94 40.32 57.79 -
GenTKG* (2024) - 36.85 47.95 53.50 - 24.25 37.25 42.1 - - - -
LLM-DA* (2024) 47.10 36.90 52.60 67.10 35.70 25.50 40.30 57.00 52.10 41.60 58.60 72.80

SRM-LLM 50.84 39.80 56.82 71.92 37.23 25.92 42.01 59.67 57.97 46.98 64.91 78.54

Table 1: Performance comparison of entity prediction on ICEWS datasets in terms of MRR(%) and
Hits@{1,3,10}(%) (time-aware filtered). The best performance is highlighted in boldface, and the second-best is
underlined. The baseline results marked with * are from the corresponding papers, while the remaining baseline
results are from LogCL (Chen et al., 2024b).

Model
WIKI GDELT

MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

ComplEx 38.54 40.51 48.61 16.96 11.25 19.52
ConvE 36.41 39.45 49.25 16.55 11.02 18.88

Conv-TransE 35.54 38.43 47.13 16.20 10.85 18.38
RotatE 37.44 42.36 47.67 13.45 6.95 14.09

TTransE 29.27 21.67 34.43 5.50 0.47 4.94
DE-SimplE 45.43 42.60 47.71 19.70 12.22 21.39

TNTComplEx 45.00 40.00 49.30 19.53 12.41 20.75

CyGNet 58.78 47.89 66.44 18.48 11.52 19.57
xERTE 73.60 69.05 78.03 18.09 12.30 20.06

RE-GCN 78.53 74.50 81.59 19.64 12.42 20.90
CEN 78.93 75.05 81.90 20.39 12.96 21.77

TiRGN 80.05 75.15 84.35 21.67 13.63 23.27
HisMatch 78.07 73.89 81.32 22.01 14.45 23.80
RETIA 76.29 72.56 77.97 20.12 12.76 21.45

RPC 81.18 76.28 85.43 22.41 14.42 24.36
LogCL 76.94 72.91 79.76 23.75 14.64 25.60
CRAFT 81.32 77.21 85.36 23.78 15.38 26.23
HTCCN - - - 23.46 15.18 25.21
GenTKG - - - - 13.90 22.55

SRM-LLM 81.40 76.86 85.79 25.23 15.92 27.21

Table 2: Performance comparison of entity prediction
on WIKI and GDELT datasets in terms of MRR(%) and
Hits@{1,3}(%) (time-aware filtered).

Model ICEWS14 ICEWS18 ICEWS05-15 WIKI

ConvE 38.80 37.73 37.89 78.23
Conv-TransE 38.40 38.00 38.26 86.64

RE-GCN 41.06 40.53 40.63 97.92
TiRGN 42.57 41.78 42.12 93.58
RETIA 42.05 41.78 43.19 98.21

SRM-LLM 44.05 42.61 44.17 98.96

Table 3: Performance on the relation prediction task.

and relations over time. Therefore, our method
also outperforms interpolation methods. Com-
pared with our method, the approach of RETIA
and RPC, which involves constructing relational as-
sociation graphs by introducing line graph to learn
relational representations, is affected by isolated re-
lation nodes. This negatively impacts the full learn-
ing of relational representations and consequently
degrades their performance. LogCL ignores the
potential connections between relations and does
not model the relationships between them, which
leads to inaccurate relational representations and
impacts its performance.

As observed in Table 2, our model has a less re-
markable performance improvement on the WIKI
dataset compared to other datasets. This is because
the WIKI dataset has relatively few relation types
(only 24 types). The relation representation learn-
ing for this dataset is already relatively sufficient,
so the room for improvement is smaller.
Relation Prediction Since some models are not
specifically designed for relation prediction tasks,
we compare SRM-LLM only with representative
models among the baselines (Liu et al., 2023). The
static reasoning methods include ConvE and Conv-
TransE, while the temporal reasoning methods com-
prise RE-GCN, TiRGN and RETIA. The MRR re-
sults for relation prediction are reported in Table 3.
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Model
ICEWS14 ICEWS18 WIKI

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

w/o RSA 48.42 37.38 54.00 70.28 35.64 24.57 40.27 57.60 78.12 74.03 83.67 87.21
w/o RHR 49.90 38.44 56.32 71.86 36.17 25.08 41.32 58.55 80.08 75.78 84.36 87.22

SRM-LLM 50.84 39.80 56.82 71.92 37.23 25.92 42.01 59.67 81.40 76.86 85.79 88.83

Table 4: The ablation study results of MRR and Hits@{1,3,10} on ICEWS14, ICEWS18 and WIKI datasets.

Number of Types
ICEWS14

MRR Hits@1 Hits@3 Hits@10

3 types of pr 50.34 39.13 56.39 72.15
5 types of pr 50.84 38.80 56.82 71.92
7 types of pr 49.96 38.61 56.34 71.71

Table 5: Performance comparison on different types of
association.

Model
Sparse ICEWS14

MRR Hits@1 Hits@3 Hits@10

LogCL 22.34 14.62 24.39 38.08
RETIA 24.60 16.41 27.60 40.71

SRM-LLM 24.83 17.12 27.47 39.95
w/o RSA 22.12 14.31 23.97 37.69
w/o RHR 23.32 15.20 24.53 38.89

Table 6: Performance comparison on Sparse ICEWS14
dataset.

The experimental results demonstrate that SRM-
LLM outperforms all baseline methods in relation
prediction, indicating that modeling the latent asso-
ciations between relations contributes to learning
more accurate representations.

Moreover, similar to the entity prediction task,
SRM-LLM achieves greater performance improve-
ments on the ICEWS series datasets compared
to the WIKI datasets. This is because the WIKI
dataset contain fewer relation than the ICEWS se-
ries dateset, resulting in fewer candidate relations
and making the relation prediction task relatively
easier on WIKI, thereby leading to smaller perfor-
mance gains.

5.3 Ablation Study

To analyze the contribution of each component
in the model, we conduct ablation studies on
ICEWS14, ICEWS18 and WIKI datasets. The re-
sults of different variants in terms of MRR and
Hits@{1, 3, 10} are reported in Table 4.
Impact of Relational Semantic Association To an-
alyze the impact of relational representation learn-

ing on the results, we remove the Relational Seman-
tic Association module. The results are denoted as
"w/o RSA" in Table 4. As can be seen, removing
the RSA module leads to a significant decline in
performance. This is because the RSA module can
mine the rich semantic information between rela-
tions through LLM, which helps in learning more
accurate relational representations.

Impact of Rule-Based Historical Relation Re-
trieval To thoroughly analyze the impact of the
Rule-Based Historical Relation Retrieval module
on model performance, we remove the module and
observe the changes in model performance. The
results are denoted as "w/o RHR" in Table 4. Re-
moving this module leads to a decline in model
performance. The role of the RHR module is to
capture the facts from the historical KG sequences
related to the query relation using temporal logical
rules and use these facts to construct a global histor-
ical graph relevant to the query, thereby extracting
global information. These results indicate that the
RHR module is also of great importance.

Impact of Local and Global History To analyze
the roles of local and global history, we separately
remove the modeling of local history and global
history, denoted as "w/o L" and "w/o G", respec-
tively. The results are reported in Appendix E. The
results show that modeling both local and global
history for a query improves the model’s reasoning
performance. Furthermore, we observe that the
performance drop caused by the "w/o L" variant is
greater than that of the "w/o G" variant, indicating
that modeling the evolution of local history is more
effective than modeling global history.

In addition, we conduct ablation studies on cer-
tain components of RE-GCN. We remove the Time
Gate and Static Graph modules. The correspond-
ing results are denoted as "w/o TG" and "w/o SG".
The results are also reported in Appendix E. The
results of "w/o SG" demonstrate the importance of
static graph information. The entity type informa-
tion in the static graph helps provide better initial
representations for entities. The results of "w/o
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TG" show that the gating mechanism also plays a
crucial role in learning the evolution of relations.

5.4 Study on the Number of Association Types
To investigate the impact of varying the number of
association types on the construction of the rela-
tion association graph, we experiment with both
the expansion and reduction of association types
based on the initially five types. For relation type
expansion, in addition to the initial five types, we
leverage the semantic understanding capabilities of
the LLM to discover additional associations within
each temporal subgraph. For relation type reduc-
tion, we utilize the LLM to identify and retain only
the top three most salient association types at each
timestamp, based on their estimated importance.
The experimental results are reported in Table 5.

Upon analyzing the results, we observe that in-
creasing the number of association types leads to
performance degradation, likely due to LLMs mis-
classifying fine-grained categories and introducing
noisy edges, as well as increased model complex-
ity. Conversely, reducing association types can also
harm performance, as sparse relation nodes lack
sufficient neighboring information for effective rep-
resentation learning.

5.5 Study on Sparse Dataset
To quantitatively assess how the sparsity of TKGs
affects model performance, we conduct additional
experiments. Based on the ICEWS14 dataset, we
construct a sparser version, referred to as Sparse
ICEWS14. The comparison between the Sparse
ICEWS14 and the original ICEWS14 dataset is
shown in Appendix F. In the Sparse ICEWS14
dataset, only 10% of the original outgoing edges
are retained for each entity, with a minimum of
one edge per entity. The experimental results are
reported in Table 6.

Experimental results show that although all mod-
els experience significant performance degradation
under sparse data conditions, SRM-LLM still main-
tains superior performance in terms of MRR and
Hits@1. We attribute this to two key factors: (1)
SRM-LLM leverages semantic relations extracted
by the LLM to construct a relation association
graph. Even when some relational instances are
missing, the semantic reasoning capabilities of the
LLM can infer potential associations, thereby en-
riching the structural information of sparse sub-
graphs. (2) The RHR module extracts quadruples
relevant to the query relation from all historical

Model
ICEWS14 ICEWS18 ICEWS05-15

MRR Hits@1 MRR Hits@1 MRR Hits@1

RGCN 50.84 39.80 37.23 25.92 57.97 46.98
CompGCN 49.67 38.24 37.02 25.84 57.84 46.14

KBGAT 49.52 38.27 36.97 25.66 56.89 45.24

Table 7: The results of different GNN Aggregation.

subgraphs, effectively expanding the semantic cov-
erage of the current sparse context and reducing
the model’s dependence on local information.

5.6 Study on Different GNN Aggregation

To further investigate the impact of different types
of Graph Neural Network (GNN) on relation aggre-
gation and entity aggregation encoding, R-GCN is
replaced with CompGCN (Vashishth et al., 2019)
and KBGAT (Nathani et al., 2019) in the respec-
tive aggregation encoder. Table 7 reports the MRR
and Hits@1 results on the ICEWS series datasets.
Experimental results demonstrate that SRM-LLM
(R-GCN) achieves the best performance on most
metrics across all three datasets. This suggests
that, although no explicit relation-aware attention
mechanism is introduced, the semantic relation-
type information extracted by the LLM provides
the model with prior knowledge, enabling R-GCN
to differentiate the distinctive features among vari-
ous relation types.

5.7 Parameter Analysis

We also conduct experiments on ICEWS14 to an-
alyze the impact of parameter variations in the
model. The parameters analyzed include the rule
length l, the number of layers in R-GCN, the weight
λ that balances the local and global entity embed-
ding representations and the length k of the local
historical subgraphs. Due to space limitations, the
detailed analysis are shown in Appendix G.

5.8 Study on Time Overhead

Considering both code openness and model perfor-
mance, we select RETIA, LogCL and HTCCN for
a comparative analysis of training and testing time
overhead. The experimental results are reported
in Table 13 of Appendix H. As shown in the ta-
ble, compared to LogCL, our approach slightly
increases the time overhead due to the relational
aggregator. However, this also improves perfor-
mance markedly. compared to RETIA, which also
enhances relation representation learning, our ap-
proach has significantly lower time overhead and
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better performance. In summary, SRM-LLM en-
sures a limited increase in time cost while deliver-
ing superior extrapolation results.

6 Conclusion

In this paper, we propose a novel LLM-based
TKG reasoning method, SRM-LLM. We leverage
the powerful semantic understanding capability of
LLMs to identify the types of semantic association
between relations (e.g., causal and synonymous),
and construct the relational association graph to en-
hance relation representations. The design of this
module avoids the emergence of isolated relation
nodes, optimizing the learning process of relation
representations. In addition, we introduce a rule-
based historical relation retrieval module, which
extracts globally relevant historical facts related to
the query relations through temporal logical rules,
learning entity representations at a global level. Ex-
perimental results show that SRM-LLM signifi-
cantly outperforms existing methods on multiple
benchmark datasets, demonstrating its effective-
ness in TKG extrapolation tasks.

Limitations

Although SRM-LLM achieves significant perfor-
mance improvements, there are still limitations
in this paper. While we have identified five types
of association, the semantic associations between
relations could be more complex. We could further
expand and refine these relationship types to
capture the dynamic semantic information between
relations more comprehensively in the future. In
this paper, we only use GPT-3.5-turbo to mine
the semantic associations of relations, without
exploring the differences between different LLMs.
Different LLMs may vary in semantic under-
standing and reasoning capabilities, which could
affect the accuracy and efficiency of relational
semantic association mining. In the future, we
plan to explore the differences between various
LLMs to better understand their applicability and
advantages in TKG reasoning. By comparing the
performance of different LLMs, we can choose
the model most suitable for TKG reasoning task,
further enhancing reasoning capabilities.
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A Semantic association between relations

A.1 Explanation of five types of association

To mine the latent semantic associations between
relations in TKGs, we first use LLMs to analyze the
latent types of association among relations present
in each dataset. The ICEWS series datasets con-
tain rich and fine-grained relations, so we specifi-
cally identify five types of association: (1) Causal
Relationship, (2) Synonymous Relationship, (3)
Oppositional Relationship, (4) Inclusion Relation-
ship and (5) Progressive Relationship. These five
types cover the most common dynamic interac-
tion patterns between events (e.g., causal logic
chains, opposing conflicts, hierarchical semantics),
which are widely regarded as core dimensions of
complex event associations in linguistics and so-
cial sciences. Unlike the ICEWS series datasets,
the WIKI dataset contains fewer relations that
are mainly knowledge-based and relatively coarse-
grained, while the GDELT dataset covers a broader
range of relation types. For these two datasets, we
do not identify specific association types; instead,
we directly use LLMs to identify the relations that
are relatively associated with each relation.
Causal Relationship: One event (or action) serves
as the cause of another event (or action), where the
latter is the result of the former.
Synonymous Relationship: Two or more events
(or actions) are semantically similar or interchange-
able.
Oppositional Relationship: Two events (or ac-
tions) oppose each other in terms of goals, inten-
tions, or outcomes.
Inclusion Relationship: One event (or action) is a
subset or a specific manifestation of another event
(or action).
Progressive Relationship: There is a progressive
advancement between events (or actions), empha-
sizing logical, stage-wise development.

A.2 Specific instances

For the five types of association between relations,
some specific instances mined by the LLM are
provided in Table 8.
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Relationship Type (pri) Examples

Causal
Relationship

(pr0)

[88.Demand military aid, pr0 , 59.Provide military aid]
[185.Threaten to reduce or stop aid, pr0 , 151.Reduce or stop aid]
· · ·
[57.Express intent to cooperate economically, pr0 , 47.Cooperate economically]

Synonymous
Relationship

(pr1)

[29.Appeal for diplomatic cooperation, pr1 , 15.Appeal for policy support]
[55.Express intent to provide military aid, pr1 , 127.Express intent to cooperate militarily]
· · ·
[30.Return, release persons, pr1 , 139.Return, release property]

Oppositional
Relationship

(pr2)

[7.Praise or endorse, pr2 , 8.Criticize or denounce]
[22.Make optimistic comment, pr2 , 26.Make pessimistic comment]
· · ·
[41.Ease administrative sanctions, pr2 , 43.Impose administrative sanctions]

Inclusion
Relationship

(pr3)

[9.Accuse, pr3 , 74.Accuse of crime, corruption]
[13.Express intent to cooperate pr3 , 127.Express intent to cooperate militarily]
· · ·
[40.Provide aid, pr3 , 32.Provide humanitarian aid]

Progressive
Relationship

(pr4)

[87.Give ultimatum, pr4 , 58.Threaten with military force]
[18.Investigate, pr4 , 42.Bring lawsuit against]
· · ·
[17.Sign formal agreement, pr4 , 60.Engage in material cooperation]

Table 8: Examples of different types of association between relations in ICEWS14.

B A prompt example for mining the
connections between relations

Taking the subgraph G0 corresponding to the 0
timestamp in the ICEWS14 dataset as an example,
we construct its corresponding relational associa-
tion subgraph RG0. First, we list all the relations
contained in G0. Then, for each of the five types
of relationships, we identify which relations corre-
spond to each type. The results are output in the
format [ri, pr, rj ]. The prompt example is shown
in Table 9.

C Temporal logical rule

A cyclic temporal logical rule R of length l ∈ N is
defined as

(E1, rh, El+1, Tl+1)← ∧li=1(Ei, ri, Ei+1, Ti)

with the temporal constraints

T1 ≤ T2 ≤ · · · ≤ Tl < Tl+1.

The left-hand side of R is referred to as the rule
head, with rh representing the head relation, while
the right-hand side is referred to as the rule body,
with ri representing the body relation. Ei and Ti

are replaceable variables that represent entities and
timestamps. The rule head and rule body form two
different paths that connect the same two entities
E1 and El+1. A rule head can be supported by
several rule bodies, each representing a distinct

rule denoted as T R. A T R indicates that if the
rule body holds, the rule head will be true at a
future timestamp Tl+1.

Dataset ICEWS14 ICEWS18 ICEWS05-15 WIKI GDELT

Entities 7,128 23,033 10,488 12,554 7,691
Relations 230 256 251 24 240
Train 74,845 373,018 368,868 539,286 1,734,399
Valid 8,514 45,995 46,302 67,538 238,765
Test 7,371 49,545 46,159 63,110 305,241
Time gap 24 hours 24 hours 24 hours 1 year 15 mins
Timestamps 365 365 4,017 232 2,975

Table 10: The statistics of the datasets.

D Experimental details

D.1 Datasets
We select five representative datasets in TKG rea-
soning domain to evaluate our method. They
are GDELT (Leetaru and Schrodt, 2013), WIKI
(Leblay and Chekol, 2018), ICEWS14 (Garcia-
Duran et al., 2018), ICEWS18 (Jin et al., 2020b)
and ICEWS05-15 (Garcia-Duran et al., 2018). The
YAGO dataset are supplemented with time infor-
mation based on the traditional static KG YAGO3.
GDELT is from the Global Database of Events,
Language and Tone. The ICEWS series are sourced
from the Integrated Crisis Early Warning System
(Boschee et al., 2015). Following extensive previ-
ous work, We divide the five datasets into training,
validation, and test sets based on timestamps, with
corresponding ratios of 80%, 10% and 10%. Ta-
ble 10 presents the dataset statistics.
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Prompt Example:
[0. Make_statement, 1. Consult, 10. Use_unconventional_violence, 5. Host_a_visit, 23.
Threaten, 7. Praise_or_endorse, 3. Express_intent_to_meet_or_negotiate, 4. Make_a_visit,
6. Arrest,_detain,_or_charge_with_legal_action, 16. Engage_in_diplomatic_cooperation,
15. Express_intent_to_engage_in_diplomatic_cooperation(such_as_policy_support), 69. Ap-
peal_for_intelligence, 2. Make_an_appeal_or_request, 8. Criticize_or_denounce, 26.
Make_pessimistic_comment, 11. Use_conventional_military_force, 45. Expel_or_deport_individuals,
19. Discuss_by_telephone, 25. Abduct,_hijack,_or_take_hostage, 12. Engage_in_negotiation,
132. Appeal_for_policy_change, 22. Make_optimistic_comment, 27. Meet_at_a_’third’_location,
9. Accuse, 77. Acknowledge_or_claim_responsibility, 65. Kill_by_physical_assault, 46.
Reduce_or_break_diplomatic_relations, 17. Sign_formal_agreement, 98. Apologize, 33.
Make_empathetic_comment, 14. Demand, 13. Express_intent_to_cooperate, 38. Deny_responsibility,
29. Appeal_for_diplomatic_cooperation_(such_as_policy_support), 131. Attempt_to_assassinate,
18. Investigate, 30. Return,_release_person(s), 104. Torture, 68. Carry_out_suicide_bombing,
34. Use_tactics_of_violent_repression, 49. Complain_officially, 24. Demonstrate_or_rally,
57. Express_intent_to_cooperate_economically, 43. Impose_administrative_sanctions, 32. Pro-
vide_humanitarian_aid, 31. Protest_violently,_riot, 48. Sexually_assault, 36. Physically_assault,
44. Confiscate_property, 21. fight_with_small_arms_and_light_weapons, 20. Reject, 50.
Rally_support_on_behalf_of, 81. Express_intent_to_settle_dispute, 116. Appeal_for_aid]

Each item separated by a comma represents a type of relation, and the format for each relation is: id.
relation. To better aggregate the connections between different relations, I want to use these relations as
vertices to construct a graph. Considering the logic and process relationships between different relations,
and based on the nature of each and relationship their possible interactions, I define the following
five types of connections: [0. Causal Relationship, 1. Synonymous Relationship, 2. Oppositional
Relationship, 3. Inclusion Relationship, 4. Progressive Relationship].
(1) Causal Relationship: One event (or action) serves as the cause of another event (or action), where
the latter is the result of the former.
(2) Synonymous Relationship: Two or more events (or actions) are semantically similar or interchange-
able.
(3) Oppositional Relationship: Two events (or actions) oppose each other in terms of goals, intentions,
or outcomes.
(4) Inclusion Relationship: One event (or action) is a subset or a specific manifestation of another event
(or action).
(5) Progressive Relationship: There is a progressive advancement between events (or actions), empha-
sizing logical, stage-wise development.

Think step by step as follows:
1. Fully understand the meaning of each relationship in the text, and based on the five defined types
of connections, construct edges between each relationship node, and try to fully explore the potential
connections between as relationships much as possible.
2. The thinking process does not need to be output in the result. The final result should be returned in
the following JSON format.
EXAMPLE OUTPUT: [[10, 3, 11], [4, 2, 5], [15, 0, 16], [7, 2, 8], ...]
Output:
[[10, 2, 11], [15, 0, 16], [3, 4, 4], [5, 1, 4], [13, 0, 16], [7, 2, 8], [9, 4, 77], [46, 2, 7], [23, 0, 9], [24, 4,
25], [13, 0, 4], [49, 2, 31], [132, 0, 14], [1, 4, 2], [5, 3, 17], [26, 2, 22], [81, 0, 16], [2, 0, 30], [43, 3, 44],
[32, 3, 22], [57, 3, 16], [12, 0, 5], [49, 3, 31], [43, 0, 49], [36, 3, 48], [13, 4, 16], [31, 4, 24], [7, 4, 17],
[11, 4, 10], [14, 2, 7]]

Table 9: A prompt example.
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D.2 Evaluation metrics

In the experiments, we adopt the widely used met-
rics MRR and Hits@{1, 3, 10} to evaluate the
effectiveness of TKG reasoning methods. MRR is
the mean reciprocal rank of the correct facts for all
queries, while Hits@k represents the proportion of
times the true entity candidates appear among the
top-k ranked candidates. Higher values for these
metrics are better. We report the experimental re-
sults under the time-aware filtered setup, which is
commonly used in recent works.

D.3 Baselines

To validate the effectiveness of our method, we
compare it with recent SOTA methods. Static KG
reasoning methods include: ComplEx (Trouil-
lon et al., 2016), ConvE (Dettmers et al., 2018),
Conv-TransE (Shang et al., 2019) and RotatE (Sun
et al., 2019). TKG reasoning (interpolation)
methods include: TTransE (Leblay and Chekol,
2018), DE-SimplE (Goel et al., 2020) and TNT-
ComplEx (Lacroix et al., 2020). TKG reasoning
(extrapolation) methods include: CyGNet (Zhu
et al., 2021), xERTE (Han et al., 2021), RE-GCN
(Li et al., 2021), CEN (Li et al., 2022b), TiRGN
(Li et al., 2022a), HisMatch(Li et al., 2022c), RE-
TIA(Liu et al., 2023), RPC (Liang et al., 2023),
LogCL (Chen et al., 2024b), CRAFT (Zhang et al.,
2024), HTCCN (Chen et al., 2024a), as well as
LLM-based method such as GenTKG (Liao et al.,
2024b) and LLM-DA(Wang et al., 2024).

D.4 Implementation details

For all datasets, the embedding size d is set to 200,
the learning rate is set to 0.001, and the batch size is
set to the number of quadruples at each timestamp.
The number of layers for entity aggregation R-GCN
and relation aggregation R-GCN is set to 2, with
a dropout rate of 0.2 for each layer. The optimal
local historical KG subgraph sequence lengths for
ICEWS14, ICEWS18, ICEWS05-15, GDELT and
WIKI are set to 7, 7, 9, 7 and 1, respectively. The
parameters are optimized using Adam (Kingma and
Ba, 2015) during training. We follow the work of
adding static KG information to the three datasets
(Li et al., 2021). In all datasets, the weight λ is
set to 0.9. For the decoder on all datasets, the
number of kernels is set to 50, the kernel size is set
to 2×3, and the dropout rate is set to 0.2. For the
mining of semantic associations between relations,
we implement it using the gpt-3.5-turbo model.

E Ablation study

To further investigate the contribution of each com-
ponent to the model’s performance, we conduct ad-
ditional ablation sutdy on ICEWS14 dataset. The
results are reported in Table 11.

Model
ICEWS14

MRR Hits@1 Hits@3 Hits@10

w/o L 44.19 33.20 49.38 66.19
w/o G 48.58 37.03 54.81 71.23

w/o SG 49.95 38.99 56.45 70.72
w/o TG 50.03 38.78 56.23 71.64

SRM-LLM 50.84 39.80 56.82 71.92

Table 11: The ablation study results on ICEWS14
dataset.

F Comparison between original and
spare ICEWS14

Table 12 presents the statistics of ICEWS14 and
Spare ICEWS14.

Dataset ICEWS14 Spare ICEWS14

Entities 7,128 6,320
Relations 230 177
Train 74,845 10,274
Valid 8,514 2,016
Test 7,371 1,791

Table 12: The statistics of original and spare ICEWS14.

G Parameter analysis

(1) Analysis of the rule length l: In the rule-based
historical relation retrieval module, the rule length
l affects the extraction of global logical relation his-
tory for the query quadruple. Therefore, we choose
different values of l to analyze its impact on predic-
tion performance. As shown in Figure 3, compared
to when l is set to 2, both l = 1 and l = 3 lead to a
performance decline. When the rule length is too
short, the extracted global logical relation history
is insufficient, while when the rule length is too
long, the relevance of the extracted global logical
relation history to the query decreases, resulting in
a performance drop.

(2) Analysis of the number of layers in R-GCN:
We conduct experiments to analyze the impact of
changing the number of layers in R-GCN for entity
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aggregation and relation aggregation, with results
shown in Figure 4. It can be observed that on the
ICEWS14 dataset, the two-hop results are slightly
better than the one-hop results. However, increas-
ing the number of layers to three does not improve
the performance on the ICEWS14 dataset; instead,
it leads to a decrease in performance.

Figure 3: The results of dif-
ferent rule length l on the
ICEWS14 dataset.

Figure 4: The results of
different R-GCN layers on
the ICEWS14 dataset.

(3) Analysis of the weight λ: To analyze the
weight λ used for balancing global and local em-
bedding representations of entities, we conduct ex-
periments on the ICEWS14 dataset with different
λ values ranging from 0 to 1, while keeping other
hyperparameters fixed at their optimal values. The
results for MRR and Hist@{1, 3, 10} are shown
in Figure 5. By observing the results, it can be
seen that the performance is relatively poor when
λ is 0 or 1, indicating that considering only local
or global historical information is not effective for
the prediction task. As λ increases, the model per-
formance shows an overall trend of first rising and
then declining, suggesting that local historical in-
formation, which is closer to the query timestamp,
plays a more significant role.

(4) Analysis of the parameter k: From Figure 6,
we can observe that the model performance de-
grades relatively when the value of k is either
smaller or larger. We believe that when k is smaller,
the number of historical subgraphs is insufficient
to capture enough historical information. As a
result, the model cannot adequately learn the evo-
lution patterns of entities and relations, thereby
affecting its performance negatively. On the other
hand, when k is larger, historical subgraphs that
are distant from the query timestamp may contain
irrelevant or noisy facts, which can interfere with
the learning process of the model and lead to a rel-
ative decline in performance. This indicates that
appropriately increasing the amount of historical

Figure 5: The results of different λ on the ICEWS14
dataset.

information can enhance model performance, but
an excessive amount of historical information may
cause performance saturation or even degradation.

Figure 6: The results of different k on the ICEWS14
dataset.

H Time overhead

We compare the overheads of HTCCN, LogCL,
RETIA and SRM-LLM in terms of training and
testing time, as shown in Table 13.

Model Train (per epoch) Test (per epoch)

HTCCN 5.93 min 1.05 min
LogCL 3.33 min 0.18 min
RETIA 93.68 min 8.78 min

SRM-LLM 13.1 min 1.32 min

Table 13: Time overheads on ICEWS14.
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