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Abstract

The effectiveness of LLMs remains uncertain
in scenarios where pre-trained models have lim-
ited prior knowledge of a language. In this
work, we examine LLMs’ generalization in
under-resourced settings through the task of
orthographic normalization across Otomi lan-
guage variants. We develop two approaches:
a rule-based method using a finite-state trans-
ducer (FST) and an in-context learning (ICL)
method that provides the model with string
transduction examples. We compare the per-
formance of FSTs and the neural approach in
low-resource scenarios, providing insights into
their potential and limitations. Our results show
that while FSTs outperform LLMs in zero-shot
settings, ICL enables LLMs to surpass FSTs,
stressing the importance of combining linguis-
tic expertise with machine learning in current
approaches for low-resource scenarios.'

1 Introduction

Large Language Models (LLMs) have been widely
adopted to tackle many traditional NLP tasks. Part
of their success is attributed to their extensive pre-
training, which enables them to generalize well
across different domains and diverse linguistic
structures. The rapid advancement of the field has
led to techniques like in-context learning (ICL),
which have further showcased the impressive gen-
eralization capabilities of LLMs, allowing them
to adapt to new tasks and domains with minimal
training data, often requiring only a few examples.

However, the effectiveness of these approaches
remains uncertain in scenarios where pretrained
models have limited prior knowledge of a language.
This is particularly relevant for under-resourced
languages, where training data is scarce or highly
non-homogeneous. The performance of LLMs in
these situations is not yet well understood, and it is
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unclear whether their impressive generalization ca-
pabilities can be replicated in all type of scenarios.
This raises critical questions about the extent to
which in-context learning and other recent innova-
tions can bridge the gap in multilingual coverage.

In this work, we examine the generalization of
LLMs in under-resourced settings through the task
of orthographic normalization across Otomi lan-
guage variants. We develop two approaches: a
rule-based method using a finite-state transducer
(FST) and an ICL approach that provides the model
with string transduction examples. We focus on
the scenarios that are particularly difficult for a
transducer-based approach.

In-context learning. A paradigm where LLMs
learn to perform tasks by recognizing patterns from
a few provided examples (demonstrations). Un-
like supervised learning, it requires no parameter
updates or separate training stage. ICL enables
models to make predictions by drawing analogies
from the given context (Brown et al., 2020). It can
be considered a form of generalization, but it has
nuances compared to traditional machine learning
(ML).

Although the mechanisms that underlie and influ-
ence this type of learning are not fully understood
(Dong et al., 2024), it has proven successful in
several domains. ICL can be applied in domains
with minimal training data, requiring only a few
examples. For example, multilingual tasks involv-
ing under-resourced languages such as machine
translation and interlinear glossing (Coleman et al.,
2024; Clarke et al., 2024; Ginn et al., 2024; Aycock
et al., 2025).

Orthographic normalization This is the pro-
cess of converting written text into a standardized
form within a language. For many dominant lan-
guages with long-established writing conventions,
this task is either well-solved or of limited concern.
However, for numerous other languages, partic-
ularly those lacking a long tradition of standard-
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Norm
INALI

Description Ref
Norm by the National In- (Inali, 2014)
stitute of Indigenous Lan-
guages of Mexico
OTS Standard used in some
texts from variants in the
State of Mexico
oTQ Standard proposed mainly
for Querétaro variants.
Norm Example sentence
INALI [...]bijugigé escuela pero ndichichith6hd
OoTQ [...]bijligigo escuela pero nditxitxithéhéd
OTS [...]bikjigigé escuela pero ndichichitj6jé

(De la Vega, 2017)

(Hekking and de Jesus, 1989)

Table 1: Otomi orthographic standards

ization due to sociopolitical factors, normalization
remains a significant challenge. These languages
often exhibit high internal diversity, making the
task even more complex.

Otomi is a group of languages spoken in central
Mexico (see Appendix A for geographical distribu-
tion) that are part of the Oto-Manguean language
family. There are around nine dialectal variants
(Lewis, 2009; INALI, 2008). Otomi is an endan-
gered language group (around 300,000 speakers)
that faces a scarcity of NLP tools and digital re-
sources, plus there is orthographic variability, with
several standards in use by the speakers.

Automatically converting text across the differ-
ent standards is a crucial upstream task for develop-
ing more advanced language technologies. In low-
resource settings, common approaches for building
normalizers include designing FSTs based on lin-
guistic expertise (Johny et al., 2021; O’neil et al.,
2023) and applying neural models like seq2seq
(Lusetti et al., 2018; Lutgen et al., 2025).

2 Data and Methods

2.1 Orthographic norms

This study focuses on the most common standards
that can be found in Otomi written documents (Ta-
ble 1).

Rule-based normalizer. We developed finite-
state transducers (FST) to convert text between
different Otomi orthographic standards (norms),
using a two-step process: first, mapping source text
to a phonetic alphabet (IPA), and then generating
the target orthography. The transduction rules were
informed by a linguist’s expertise and existing doc-
umentation (Herndndez-Green, 2016). The system
was implemented using the HFST toolkit?>. The
FSTs converts text across standards without requir-

2https://github.com/hfst/hfst/wiki

ing a specified source norm. These rule-based nor-
malizers have been integrated into an open reposi-
tory? and a Python toolkit (Gutierrez-Vasques et al.,
2025), allowing easy use.

Neural approaches (LLMs). If we already have
rules for converting text across orthographic norms,
costly neural network-based methods may be un-
necessary. However, transducers have limitations,
they lack flexibility and struggle to adapt to speak-
ers’ linguistic realities. We identify two key chal-
lenges where this approach falls short:

* Code-switching: Texts often include words
from other languages, mainly Spanish and
Nahuatl (e.g., escuela and pero in Table 1).
Since FSTs apply rules that were specific for
Otomi, handling these cases is challenging.
Additionally, language identification tools for
many indigenous languages are limited.

* Ambiguity: Instances where the same input can
be mapped to multiple outputs. A transduc-
tion rule may be favored over others, sometimes
leading to incorrect mappings. In Otomi, we
observed that the same grapheme can be tran-
scribed to different phonemes based on the or-
thographic norm of the source text. This phono-
logical ambiguity can lead to errors, which can
propagate to the target norm realization.

With these challenges in mind, we tried to lever-
age the generalization and adaptability of neural
approaches to tackle these complex cases. Specifi-
cally, we focus on using LL.Ms with ICL.

2.2 Few shot examples and test set

To compare FSTs and neural approaches, we fo-
cus on two main settings: (a) OTS—INALI : OTS as
the source norm and INALI as the target, and (b)
OTS+0TQ—INALI : sentences in OTS or OTQ with
INALI as the target*. The target norm is INALI as
converting to this institutional standard is a com-
mon use case among speakers. It was therefore
important to test how well computational methods
handle this normalization.

To build the test datasets, we selected sentences
covering code-switching, ambiguity, and typical

5

Shttps://github.com/Elot1MX/py-elotl/tree/
master/elotl/otomi

*We omitted the OTQ—INALI case since both standards
are similar. Instead, we created a more challenging setup

3Qur dataset comes from a small Otomi corpus that com-
piles various sources and dialects: tsunkua.elotl.mx/
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OTS—INALI | OTS+OTQ—INALI
# sentences (test) 191 191
# sentences (few-shot) 10 10

Table 2: Datasets size for each normalization setting

transformations across written standards. The ini-
tial transduction for obtaining the different normal-
izations of the test sentences was performed using
FSTs, followed by manual correction of errors. The
test set contains 191 sentences, i.e., 4200 tokens. It
is important to note that this dataset was specifically
designed to include challenging cases. Although
it is not huge, it focuses on difficult instances that
we believe provide a meaningful evaluation of the
different approaches.

Additionally, we manually selected 10 represen-
tative sentences as ICL demonstrations (Table 2).
The selection was linguistically informed: we first
applied a heuristic to filter sentences that cover the
most common transduction changes across differ-
ent norms. From this set, we prioritized those with
code-switching and ambiguity.

Although our main focus is transduction to INALI,
we also evaluated other directions using the same
set of sentences converted across all norms.

The heuristic used to select these 10 examples
(or demonstrations) is detailed in Appendix B.

2.3 LLMs

For the ICL neural approaches, we used the follow-
ing base models: GPT-3.5 Turbo, GPT-40, LLaMA
3.1, and LLaMA 3.3.

Zero-shot setting: We prompt the system to
generate normalized test sentences without prior
examples. For OTS—INALI, we explicitly specify
the source and target norms. For OTS+OTQ—INALI,
we do not specify the source norm, only that input
sentences may come from either norm and should
be transduced into INALI .

Few-shot setting: We provide models with 10-
shot examples of orthographic transductions. For
OTS—INALI we show 10 examples and specify that
test sentences are in OTS , requiring INALI ortho-
graphic normalization. For OTS+OTQ—INALI, ex-
amples include transductions across INALI, OTS,
and OTQ. During testing, the source norm is un-
specified (either OTS or OTQ ), and the model must
generate the INALI normalization.

In all settings, we state the language and alert the
system that there might be cases of code-switching
and challenging transductions. The examples were

always presented in the same order. See Appendix
C for prompts and details about the models.

3 Findings and Interpretation

To compare model performance, we measure the
error rate between predicted orthographic normal-
izations and gold standards using Word Error Rate
(WER) and Character Error Rate (CER), the lat-
ter being particularly useful for morphologically
rich languages (James et al., 2024). The overall re-
sults are shown in Figure 1, with detailed error-rate
values reported in Table 3.

Both settings, OTS—INALI and OTS+0OTQ—INALI,
exhibit a similar trend: the rule-based FST ap-
proach outperforms state-of-the-art LLMs in or-
thographic normalization of Otomi text when they
are prompted in a zero-shot setting. This is notable
since FSTs are computationally lightweight com-
pared to the extensive resources (data and infras-
tructure) required for training large neural models.
Despite their robustness across many tasks, these
LLMs struggle to generalize to orthographic varia-
tions in an under-resourced language like Otomi

Surprisingly, providing neural models with few-
shot examples drastically improves their perfor-
mance. Models like GPT-40 show some of the
worst performances in a zero-shot setting. Still,
with just 10 examples provided, the error rate de-
creases, outperforming FSTs and becoming the
best model for orthographic normalization. See
for example, GPT-4o_zero (WER: 31.5% CER: 10.1%) VS.
GPT-4o_few (WER: 11.2% CER: 2.6% ) in OTS—INALI .

The plots show a clear trend: LLMs make more
errors than FSTs but surpass them in a few-shot
setting, highlighting the effectiveness of ICL. Inter-
estingly, the most recent models perform worst in
zero-shot, contrary to expectations given their so-
phistication. We conjecture that they may prioritize
specialized reasoning capabilities over multilingual
flexibility. However, their ICL capability remains
remarkable. Further exploration is needed.

Despite expectations, the OTS+OTQ—INALI set-
ting yielded lower error rates, suggesting it was
easier. We anticipated greater difficulty since neu-
ral models lacked source orthography information
at test time. A possible reason is that OTQ and IN-
ALI are similar, with few character transformations,
making sentences in this norm relatively easy to
normalize, even without source orthography infor-
mation at test time.

When INALI is not the target norm, ICL still
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Figure 1: Performance of models for Otomi orthographic normalization. The Y-axis presents WER and CER, and
the X-axis orders the models from the lowest to highest CER

helps, but LLMs don’t consistently outperform the
FST. In particular, LLMs struggle when the target is
OTS. We conjecture this is likely due to the greater
availability of digital data in INALI (a norm that rep-
resents an institutional effort to unify standards),
whereas OTS is among the least represented norms
online, limiting the effectiveness of pretrained mod-
els to generate text when OTS is the target.

Some studies suggest LLMs’ sensitivity to input
and target probabilities may affect their emergent
capabilities, especially in rare languages and text
sequences (McCoy et al., 2024).

3.1 Error analysis

We know that FSTs make mistakes when trying to
normalize cases of code-switching and rule ambi-
guities since our approach has limited strategies to
deal with that. But what errors are neural models
most prone to? We analyzed test sentences with
the highest CER and WER to answer this.

A key finding is that both zero-shot and few-
shot neural models handle code-switching well,
easily recognizing non-Otomi words and avoiding
unnecessary transformations. This good handling
performed by LLMs is expected for dominant lan-
guages like Spanish and English but also extends
to proper names, place names, and loanwords of
Nahuatl, an under-resourced language.

Errors in the few-shot setting mainly stemmed
from failing to infer transduction rules (especially
the ambiguous ones) and mixing up norms when

[ OTS-INALI (Few shot)
INALI-OTS (Few shot)

[ OTS—INALI (FST)

3 INALI-OTS (FST)

[ OTS-=INALI (Few shot)
INALI-OTS (Few shot)

[ OTS-INALI (FST)

[ INALI-OTS (FST)

Density

60

Figure 2: CER and WER distributions for test sen-
tences under Few-shot and FST in OTS—INALI and
INALI—OTS normalization tasks.
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OTS—INALI OTS+0TQ—INALI OTS —O0TQ INALI—OTS OTQ—OTS

WER CER WER CER WER CER WER CER WER CER
LLaMA 3.3_zero | 30.62%  9.09% | 25.65% 744% | 30.11%  8.70% | 32.67% 9.76% | 29.85% 8.33%
LLaMA 3.3_few | 15.53% 3.74% | 8.49% 2.10% | 1524%  3.79% | 1550% 3.75% | 15.14% 3.63%
LLaMA 3.1_zero | 29.82%  8.85% | 20.40% 529% | 2449%  6.03% | 2891% 1.79% | 25.65% 6.35%
LLaMA 3.1_few | 14.56% 3.51% | 8.65% 2.16% | 1439%  3.35% | 1449% 3.37% | 14.39% 3.35%
GPT-40_zero 31.58% 10.17% | 23.36% 7.11% | 31.68% 10.71% | 28.42% 7.87% | 27.82% 7.69%
GPT-40_few 11.35% 2.68% | 6.15% 1.36% | 11.79%  2.68% | 14.30% 3.42% | 15.50% 3.73%
GPT-3.5_zero 24.86%  6.48% | 13.93% 328% | 2522%  6.44% | 24.71% 6.07% | 2531% 6.29%
GPT-3.5_few 1434%  3.45% | 7.06% 1.61% | 14.85%  3.65% | 16.25% 3.77% | 16.30% 3.78%
FST 20.27%  5.31% | 10.78% 337% | 2097%  5.69% | 6.08% 2.56% | 6.08% 2.56%

Table 3: Detailed WERs and CERs for each orthographic normalization direction

trying to generate the target norm. In zero-shot,
additional errors introduced noise, e.g., difficulty
in handling the graphemes that correspond to vow-
els and tones of Otomi, the systems often modi-
fied them or added accent marks even though this
was not required for the normalization (e.g., d—aa,
0—0, umbabihe —iimb4bihé), and hypercorrec-
tions that treated Otomi words as Spanish.

When changing the normalization direction
where the target is not INALI, even with ICL, the
LLMs’ few-shot settings struggle to correctly cap-
ture some orthographic changes. For example, in
the OTS—OTQ direction, the grapheme tj was erro-
neously replaced by ts (e.g., tjuts’i—tsuts’i instead
of thuts’i). A particularly challenging case was the
representation of tx in OTQ, which corresponds to
ch in INALI and OTS. This convention, unique to
OTQ, often caused LLMs to preserve the ch form
(e.g., nchii—nchii instead of ntxui). Conversely,
false positives also appeared, such as normalizing
tjo to txo when the expected form was tho.

Overall, FSTs make fewer errors when INALI is
not the target norm, particularly when OTS is the
target. This is probably because the transduction
rules handle those specific cases more efficiently.
However, when the target is INALIL, FSTs tend to
produce significantly more errors than LLMs (see
Figure 2).

Original sentences vs gold standard: As a san-
ity check, we calculated error rates (WER, CER)
between the source text and its INALI-standardized
form (gold standard). These rates are typically
high due to differences in written forms and should
decrease when a normalization tool is applied.
However, our case is unique since many test
sentences contain code-switching, where several
words should remain unchanged. This results in
lower-than-expected error rates, making it unsuit-
able as a baseline. Still, few-shot models outper-

formed this measure. See Appendix D for details.

4 Conclusions

We explored the generalization limits of LLMs in
an orthographic normalization task, which included
building a rule-based system for converting Otomi
text across norms and compared its performance
against the neural approaches.

The test set was designed to assess the models
capacity to normalize cases that are difficult for a
rule-based approach, i.e., code-switching and am-
biguous orthographic rules.

One of the main takeaways is that when working
in a limited resource scenario, one can leverage
knowledge of the language to build an FST, and
this can be more effective than simply doing zero-
shot prompting with sophisticated LLMs. How-
ever, once you have a FST you can use it to gener-
ate demonstrations of orthographic transductions
across orthographic norms and use them to im-
prove a neural model. Our results showed that
LLMs surpass FSTs with just 10 examples in few-
shot settings, they were particularly good in code-
switching cases. However, we found that when the
target orthography has very limited digital represen-
tation, even with ICL, LLMs struggle to produce
normalized text with fewer errors than the FST.

In summary, this highlights the potential of ICL
to generalize from limited data, reducing the re-
liance on extensive labeled datasets while reaf-
firming the value of linguistically informed data.
This could be promising for many practical ap-
plications, including developing technologies for
under-resourced languages.

Limitations

In this work, we examine the limits of LLMs’ gen-
eralization through an orthographic normalization
task using ICL approaches. While our conclusions
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are based on experimental results, a more compre-
hensive understanding of these limits may require
testing across additional languages and tasks.

Although we cover the main orthographic norms
used for this language, we excluded some lesser-
used variants and phonological transcriptions.
Phonological transcriptions were used for build-
ing the FSTs but not for the LLM approach.

Finally, while we demonstrated that combin-
ing LLMs with ICL and linguistic knowledge is
a promising approach for orthographic normaliza-
tion in under-resourced languages, practical con-
siderations remain. The cost-benefit of using large
models for relatively simple tasks should be evalu-
ated, especially regarding accessibility for speakers
and researchers working with these languages. Ad-
ditionally, concerns about data handling in commer-
cial systems must be addressed to ensure ethical
and practical deployment.

Acknowledgments

This work was supported by the projects PA-
PIIT TA100924 (Investigacion de sesgos inductivos
en aprendizaje profundo y sus aplicaciones) and
TA100725 (Fortaleciendo la diversidad en las tec-
nologias del lenguaje: procesamiento automdtico
de las lenguas en México) at UNAM, Mexico. We
thank the reviewers for their valuable feedback and
Robert Pugh for the insightful discussions.

References

Seth Aycock, David Stap, Di Wu, Christof Monz, and
Khalil Sima’an. 2025. Can llms really learn to
translate a low-resource language from one grammar
book? ICLR 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Christopher Clarke, Roland Daynauth, Jason Mars,
Charlene Wilkinson, and Hubert Devonish. 2024.
GuyLingo: The Republic of Guyana creole corpora.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 792—798, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Jared Coleman, Bhaskar Krishnamachari, Ruben Ros-
ales, and Khalil Iskarous. 2024. LLM-assisted rule

based machine translation for low/no-resource lan-
guages. In Proceedings of the 4th Workshop on Nat-
ural Language Processing for Indigenous Languages
of the Americas (AmericasNLP 2024), pages 67-87,
Mexico City, Mexico. Association for Computational
Linguistics.

Lazaro Margarita De la Vega. 2017. Aprendiendo otomi
(hndhnu). Ciudad de México, Comision Nacional
para el Desarrollo de los Pueblos Indigenas.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui.
2024. A survey on in-context learning. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 1107-1128,
Miami, Florida, USA. Association for Computational
Linguistics.

Michael Ginn, Mans Hulden, and Alexis Palmer. 2024.
Can we teach language models to gloss endangered
languages? In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 5861—
5876.

Ximena Gutierrez-Vasques, Robert Pugh, Victor Mijan-
gos, Diego Barriga Martinez, Paul Aguilar, Mikel Se-
gura, Paola Innes, Javier Santillan, Cynthia Montafio,
and Francis Tyers. 2025. Py-elotl: A python NLP
package for the languages of Mexico. In Proceed-
ings of the Fifth Workshop on NLP for Indigenous
Languages of the Americas (AmericasNLP), pages
38-47, Albuquerque, New Mexico. Association for
Computational Linguistics.

Ewald Hekking and Severiano Andrés de Jesus. 1989.
Diccionario espariol-otomi de Santiago Mexquititldn,
volume 22. Universidad Auténoma de Querétaro.

Nestor Herndndez-Green. 2016. Misteriosas figurillas
de barro de san jerénimo acazulco. Tlalocan, 21:19-
48.

INALIL 2008. Catdlogo de las lenguas indigenas
nacionales: Variantes ling uisticas de méxico con
sus atodenominaciones y referencias geoestadisticas.
https://www.inali.gob.mx/clin-inali/.

Inali. 2014. Njaua nt’ot’i ra hiidhiiu. Norma de es-
critura de la lengua hiidhiiu (otomi) de los estados
de Guanajuato, Hidalgo, Estado de México, Puebla,
Querétaro, Tlaxcala, Michoacdn y Veracruz. Insti-
tuto Nacional de Lenguas Indigenas (inalLi), SEP,
Mexico.

Jesin James, Deepa P Gopinath, et al. 2024. Advocating
character error rate for multilingual asr evaluation.
arXiv preprint arXiv:2410.07400.

Cibu Johny, Lawrence Wolf-Sonkin, Alexander Gutkin,
and Brian Roark. 2021. Finite-state script normal-
ization and processing utilities: The Nisaba Brahmic
library. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: System Demonstrations, pages

16003


https://doi.org/10.18653/v1/2024.naacl-short.70
https://doi.org/10.18653/v1/2024.americasnlp-1.9
https://doi.org/10.18653/v1/2024.americasnlp-1.9
https://doi.org/10.18653/v1/2024.americasnlp-1.9
https://doi.org/10.18653/v1/2024.emnlp-main.64
https://doi.org/10.18653/v1/2025.americasnlp-1.5
https://doi.org/10.18653/v1/2025.americasnlp-1.5
https://www.inali.gob.mx/clin-inali/
https://doi.org/10.18653/v1/2021.eacl-demos.3
https://doi.org/10.18653/v1/2021.eacl-demos.3
https://doi.org/10.18653/v1/2021.eacl-demos.3

14-23, Online. Association for Computational Lin-
guistics.

M. Paul Lewis, editor. 2009. Ethnologue: Languages
of the World, sixteenth edition. SIL International,
Dallas, TX, USA.

Massimo Lusetti, Tatyana Ruzsics, Anne Gohring, Tanja
Samardzi¢, and Elisabeth Stark. 2018. Encoder-
decoder methods for text normalization. In Proceed-
ings of the Fifth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial 2018), pages
18-28, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Anne-Marie Lutgen, Alistair Plum, Christoph Purschke,
and Barbara Plank. 2025. Neural text normalization
for Luxembourgish using real-life variation data. In
Proceedings of the 12th Workshop on NLP for Similar
Languages, Varieties and Dialects, pages 115-127,
Abu Dhabi, UAE. Association for Computational
Linguistics.

R Thomas McCoy, Shunyu Yao, Dan Friedman,
Mathew D Hardy, and Thomas L Griffiths. 2024.
Embers of autoregression show how large language
models are shaped by the problem they are trained
to solve. Proceedings of the National Academy of
Sciences, 121(41):e2322420121.

Alexandra O’neil, Daniel Swanson, Robert Pugh, Fran-
cis Tyers, and Emmanuel Ngue Um. 2023. Compar-
ing methods of orthographic conversion for basad, a
language of Cameroon. In Proceedings of the Fourth
workshop on Resources for African Indigenous Lan-
guages (RAIL 2023), pages 97-105, Dubrovnik,
Croatia. Association for Computational Linguistics.

A Map

Figure 3: Geographical distribution of Otomi

B Selection of few-shot examples

Support set selection. First, we obtained sets of
sentences grouped by phenomena of interest (code-
switching and ambiguity). For each set, we manu-

ally ranked and selected sentences that were partic-
ularly informative, e.g., those sentences containing
multiple instances of the phenomenon.

Besides covering problematic cases, we also
wanted these examples to include the graphemes
that can change across different orthographies.
Therefore, we applied a second filter: we ranked
the previously selected sentences by the count of
graphemes that may vary between norms, so we
can cover as many graphemes as possible.

Finally, we picked the top 10 sentences from the
ranked candidates. This constitutes our few-shot
examples (support set or demonstrations).

C Models and prompts

GPT-3.5 Turbo, GPT-40, LLaMA 3.1, and LLaMA
3.3 were used with default hyperparameters, setting
a temperature of 0.2 via the APL

The LLaMA models were trained with 70B pa-
rameters, while the exact parameter count for GPT
models is not publicly available.

Our choice of temperature was somewhat ar-
bitrary, following prior ICL studies on underrep-
resented languages that used this hyperparameter
—though not specifically for orthographic normal-
ization (Ginn et al., 2024). We acknowledge that
this methodological decision could be refined to en-
sure greater statistical robustness and reproducibil-
ity.

The choice of models was guided primarily by
their availability through an API, which was nec-
essary for seamless integration into our experimen-
tal pipeline. OpenAl and Meta are two leading
providers offering robust APIs and hosting widely
used large language models. We selected the most
recent models available at that time.

e Prompt for OTS—INALI (few-shot)

Below are examples of orthographic conversions
of strings from the OTS standard (State of
Mexico Otomi) to the INALI standard for the
Otomi language. Note that some loanwords
retain their original orthography, and
certain linguistic phenomena may affect the
transformations.

Examples:

1. OTS: r’atsa noya ra sahagin: ndaxkjua k’oi
florentino. jem’i xiii, xeni xiii (versidn
del ndhuatl por angel ma. garibay k.).

INALI: r’atsa noya ra sahagin: ndaxjua k’oi
florentino. hem’i xiii, xeni xiii (version
del nahuatl por &ngel ma. garibay k.).

2. [...]

16004


https://aclanthology.org/W18-3902/
https://aclanthology.org/W18-3902/
https://aclanthology.org/2025.vardial-1.9/
https://aclanthology.org/2025.vardial-1.9/
https://doi.org/10.18653/v1/2023.rail-1.11
https://doi.org/10.18653/v1/2023.rail-1.11
https://doi.org/10.18653/v1/2023.rail-1.11

Task:

Using these examples as a guide, predict the
INALI orthographic standardization for the
following sentence. Return only the
standardized sentence without any
explanation.

0TS: ( test sentence )

INALI: [Your prediction here]

* Prompt for OTS+OTQ—INALI (few-shot)

Below are examples of orthographic conversions
of strings from the OTS standard (State of
Mexico Otomi) and the OTQ standard (Otomi of

Queretaro) to the INALI standard for the
Otomi language. Note that some loanwords
retain their original orthography, and
certain linguistic phenomena may affect the
transformations.

Examples:

1. OTS: r’atsa noya ra sahagun: ndaxkjua k’oi
florentino. jem’i xiii, xeni xiii (versidn
del nahuatl por angel ma. garibay k.).
0TQ: r’atsa noya ra sahagin: ndaxjua k’oi
florentino. hem’i xiii, xeni xiii (versién
del nahuatl por &ngel ma. garibay k.).
INALI: r’atsa noya ra sahagun: nddxjua k’oi
florentino. hem’i xiii, xeni xiii (versiédn
del nahuatl por angel ma. garibay k.).

2. [...]
Task:

Using these examples as a guide, predict the
INALI orthographic standardization for the
following sentence. The sentence originates
from either the OTS or 0TQ standards, but
its source is unspecified. Return only the
standardized sentence without any
explanation.

Sentence: ( test sentence )

INALI: [Your prediction here]

e Prompt for OTS—INALI (zero-shot)

Predict the INALI orthographic standardization
for the following Otomi sentence written in
the OTS standard (State of Mexico Otomi) (
please return only the normalized sentences,

no explanations). Note that some loanwords
retain their original orthography, and
certain linguistic phenomena may affect the
transformations.

0TS: ( test sentence )

INALI: [Your prediction here]

* Prompt for OTS+OTQ—INALI (zero-shot)

predict the INALI orthographic standardization
for the following sentence. The sentence
originates from either the 0TS (State of
Mexico Otomi) or OTQ (Queretaro Otomi)
standards, but its source is unspecified.
Return only the standardized sentence
without any explanation.

Sentence: ( test sentence )

INALI: [Your prediction herel]

e Prompt for OTQ—OTS (few-shot)

Below are examples of orthographic conversions
of strings from the OTQ standard (Queretaro
Otomi) to the OTS standard (State of Mexico
Otomi) for the Otomi language. Note that
some loanwords retain their original
orthography, and certain linguistic
phenomena may affect the transformations.

Examples:

1. 0TQ: r’atsa noya ra sahagin: ndéxjua k’oi
florentino. hem’i xiii, xeni xiii (version
del nahuatl por &angel ma. garibay k.).

OTS: r’atsa noya ra sahagun: ndaxkjua k’oi
florentino. jem’i xiii, xeni xiii (versidn
del ndhuatl por angel ma. garibay k.).

2. [...]
Task:

Using these examples as a guide, predict the 0TS
orthographic standardization for the
following sentence. Return only the
standardized sentence without any
explanation.

0TQ: ( test sentence )

OTS: [Your prediction here]

e Prompt for INALI—-OTS (few-shot)

Below are examples of orthographic conversions
of strings from the INALI standard to the
0TS standard (State of Mexico Otomi) for the

Otomi language. Note that some loanwords
retain their original orthography, and
certain linguistic phenomena may affect the
transformations.

Examples:

1. INALI: r’atsa noya ra sahagin: ndaxjua k’oi
florentino. hem’i xiii, xeni xiii (version
del nahuatl por angel ma. garibay k.).

OTS: r’atsa noya ra sahagun: ndaxkjua k’oi
florentino. jem’i xiii, xeni xiii (versién
del ndhuatl por angel ma. garibay k.).

2. [...]

Task:
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Using these examples as a guide, predict the OTS
orthographic standardization for the
following sentence. Return only the
standardized sentence without any
explanation.

INALI: ( test sentence )

0TS: [Your prediction here]
* Prompt for OTS—OTQ (few-shot)

Below are examples of orthographic conversions
of strings from the OTS standard (State of
Mexico Otomi) to the OTQ standard (Queretaro

Otomi) for the Otomi language. Note that
some loanwords retain their original
orthography, and certain linguistic
phenomena may affect the transformations.

Examples:

1. OTS: r’atsa noya ra sahagun: ndaxkjua k’oi
florentino. jem’i xiii, xeni xiii (versiédn
del nahuatl por &ngel ma. garibay k.).

0TQ: r’atsa noya ra sahagin: ndaxjua k’oi
florentino. hem’i xiii, xeni xiii (versiédn
del nahuatl por angel ma. garibay k.).

2. [...]
Task:

Using these examples as a guide, predict the 0TQ
orthographic standardization for the
following sentence. Return only the
standardized sentence without any
explanation.

0TS: ( test sentence )

0TQ: [Your prediction here]
e Prompt for OTQ—OTS (zero-shot)

Predict the OTS orthographic standardization (
State of Mexico Otomi) for the following
Otomi sentence written in the OTQ standard (
Queretaro Otomi) (please return only the
normalized sentences, no explanations). Note

that some loanwords retain their original
orthography, and certain linguistic
phenomena may affect the transformations.

0TQ: ( test sentence )

OTS: [Your prediction here]
* Prompt for INALI—-OTS (zero-shot)

Predict the OTS orthographic standardization (
State of Mexico Otomi) for the following
Otomi sentence written in the INALI standard

(please return only the normalized
sentences, no explanations). Note that some
loanwords retain their original orthography,

and certain linguistic phenomena may affect
the transformations.

INALI: ( test sentence )

OTS: [Your prediction here]
e Prompt for OTS—OTQ (zero-shot)

Predict the OTQ orthographic standardization (
Queretaro Otomi) for the following Otomi
sentence written in the OTS standard (State
of Mexico Otomi) (please return only the
normalized sentences, no explanations). Note

that some loanwords retain their original
orthography, and certain linguistic
phenomena may affect the transformations.

0TS: ( test sentence )

0TQ: [Your prediction here]

D Original sentences vs gold standard

The following plots show the WER and CER for
the different models. We have added a dotted line
that indicates the error rate when comparing the
source text and its INALI standardized form (gold
standard), i.e., how dissimilar the source and target
sentence are when no normalizer has been applied.
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