
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 15979–15997
November 4-9, 2025 ©2025 Association for Computational Linguistics

Language Models Can Easily Learn to Reason from Demonstrations

Dacheng Li*

UC Berkeley
Shiyi Cao*

UC Berkeley
Tyler Griggs*

UC Berkeley
Shu Liu*

UC Berkeley

Xiangxi Mo
UC Berkeley

Eric Tang
Anyscale

Sumanth Hegde
Anyscale

Kourosh Hakhamaneshi
Anyscale

Shishir G. Patil
UC Berkeley

Matei Zaharia
UC Berkeley

Joseph E. Gonzalez
UC Berkeley

Ion Stoica
UC Berkeley

Abstract

Large reasoning models (LRMs) tackle com-
plex problems by following long chain-of-
thoughts (Long CoT) that incorporate reflec-
tion, backtracking, and self-validation. How-
ever, the training techniques and data require-
ments to elicit Long CoT remain poorly un-
derstood. In this work, we find that language
models can effectively learn Long CoT rea-
soning through data-efficient supervised fine-
tuning (SFT) and further parameter-efficient
low-rank adaptation (LoRA). Crucially, we
find that the structure of Long CoT is critical
to the learning process in this data-efficient
fine-tuning process. Training on content-
incorrect examples, e.g. those lead to incor-
rect answers or corrupted digits, still leads
to significant performance gains. In con-
trast, training on structurally incorrect exam-
ples, e.g., with shuffled or deleted reasoning
steps, yield smaller improvements or even de-
grade performance. The model, Sky-T1, and
codes are available at https://github.com/
NovaSky-AI/SkyThought.

1 Introduction

Large reasoning models (LRMs) leverage long
chain-of-thoughts (Long CoTs) with reflection,
backtracking, and self-validation to tackle challeng-
ing reasoning tasks (Jaech et al., 2024; Guo et al.,
2025; Team, 2024). However, training LLMs to
elicit Long CoTs remains an open problem, as exist-
ing methods are either closed-sourced (Jaech et al.,
2024; Team, 2024) or expensive to replicate (Guo
et al., 2025).

In this paper, we first show that an LLM can
be easily taught to produce Long CoT responses,
significantly improving its reasoning capabilities.
In particular, we find that this learning process
can be both data-efficient and parameter-efficient.
By performing fully supervised fine-tuning (SFT)

*Equal contribution

Math AIME 2024 AMC 2023 Olympiad. LCB0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

81

17

68

48 49

91

50

83

56 55

91

57

85

60 57

86

45

85

60 59

Qwen2.5-32B-Instruct
LoRA (r=256) w/ 17k R1

SFT w/ 17k R1
o1-Preview

Figure 1: Supervised fine-tuning (SFT) results of
Qwen2.5-32B-Instruct. When fine-tuned on a small
amount (17k) of Long CoT samples reject-sampled from
DeepSeek-R1 with either LoRA or full-parameter up-
date, the model learns to perform reflection and back-
tracking by using keywords such as “However” and
“Alternatively”. Consequently, the fine-tuned models
improve significantly on five math and coding bench-
marks (Olympiad. and LCB short for "OlympiadBench"
and "LiveCodeBench"), matching OpenAI o1-preview
performance. This shows that learning to reason can
be data-and parameter-efficient.

0 10 20 30 40 50 60 70
Percentage of Modification

50

55

60

65

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Structure versus content perturbations effect

Original (56.7%)
Correct (66.3%)
Content - Wrong Answers (63.1%)
Content - Corrupted Digits
Content - Removed Keywords
Structure - Deleted Steps
Structure - Inserted Steps
Structure - Shuffled Steps

Figure 2: SFT results on structure or content per-
turbed training data of Qwen2.5-32B-Instruct. Per-
formance is averaged over Math 500, AIME 24, AMC
23 and OlympiadBench. The construction procedure of
these traces can be found at §4. We find that training on
structurally perturbed traces (e.g., shuffled, inserted, or
deleted steps) leads to significantly worse performance
than training on content-perturbed traces (e.g., incorrect
final answers, corrupted digits, or missing keywords).
This highlights the critical role of long CoT structure
in learning to reason from demonstrations.

15979

https://github.com/NovaSky-AI/SkyThought
https://github.com/NovaSky-AI/SkyThought

with only 17k samples generated by DeepSeek R1,
the Qwen2.5-32B-Instruct model achieves perfor-
mance competitive with OpenAI o1-preview across
a wide range of math and coding tasks (Team, 2024;
Yang et al., 2024; Jaech et al., 2024). In particu-
lar, it achieves 90.8% in Math-500 (+6.0%), 56.7%
in AIME 2024 (+40.0%), 85.0% in AMC 2023
(+17.5%), 60.3% in OlympiadBench (+12.7%) and
57.0% in LiveCodeBench (+8.1%) (Jain et al.,
2024). Even further, the model can achieve o1-
preview performance by updating fewer than 5%
parameters with LoRA fine-tuning (Hu et al., 2021).
We show that the model successfully learns to re-
flect and revise its intermediate thoughts (e.g., fre-
quently using reasoning keywords such as “Alterna-
tively” and “Wait, but”) and adopts long, coherent
CoTs to tackle challenging problems (Fig. 1).

Crucially, we identify the Long CoT structure
as the key characteristic of distilled data for elic-
iting strong reasoning performance. We conduct
two sets of controlled studies by altering either the
content of individual reasoning steps or the over-
all logical structure. To alter content, we perturb
samples by replacing numbers with random digits
or deleting reasoning keywords. Surprisingly, we
find that these perturbations have little impact on
the model performance: even when 50% of num-
bers in training samples are randomly changed, the
model only observes 3.3% lower accuracy on the
most challenging math benchmark, AIME 2024,
as compared to training with correct samples. To
alter the long CoT structure, we separate responses
into reasoning steps and randomly shuffle, insert,
or delete these steps. We observe that the trained
model is sensitive to such structural perturbations
that break logical coherency in the long CoT. For
example, when 67% of the training samples’ rea-
soning steps are shuffled, accuracy drops by 13.3%
on AIME 2024 problems relative to training with
correct samples. Our key contributions are:

1. We demonstrate that an LLM can learn
Long CoT reasoning in a data-efficient and
parameter-efficient manner. With as few as
17k samples or less than 5% parameters up-
date, we fine-tune the Qwen2.5-32B-Instruct
model to be competitive with o1-preview.

2. We identify the structure of Long CoT as crit-
ical to the learning process rather than the
content of individual reasoning steps. To val-
idate this finding, we perform two groups of

controlled experiments that modify either the
structure or contents of samples.

3. We conduct comprehensive ablations across
model sizes and architectures, dataset sizes,
teacher models (DeepSeek R1 and QwQ-32B-
Preview), and on five popular math and coding
reasoning benchmarks.

2 Related work

Test Time Scaling for Large Language Models
Scaling test-time compute has proven effective in
enhancing the reasoning capabilities of LLMs. This
can be broadly categorized into two directions: sin-
gle long CoT and repeatedly sampled CoT. The for-
mer trains models, such as OpenAI o1, DeepSeek
R1, and Qwen QwQ, to generate individual, long
CoT responses with in-context reflection and back-
tracking to handle complex reasoning tasks (Guo
et al., 2025; Jaech et al., 2024; Team, 2024). Alter-
natively, repeated sampling methods, such as Best-
of-N or search-guided generation (e.g., MCTS),
improve reasoning performance by invoking multi-
ple responses from the model, sometimes guided by
search algorithms and reward models (Snell et al.,
2024; Brown et al., 2024; Li et al., 2025). In this
paper, we focus on distilling the ability to generate
individual, Long CoTs, and show it can be done in
a data- and parameter-efficient manner.

Training to improve reasoning capabilities of
LLMs LLM reasoning capabilities can be im-
proved by approaches such as iterative self-
improvement and reinforcement learning (RL) (Ze-
likman et al., 2022; Lightman et al., 2023; Lambert
et al., 2024; Yuan et al., 2024; Guo et al., 2025). In
particular, Setlur et al. (2024) shows that incorrect
data can enable efficient reasoning capability train-
ing. More recently, Tulu-3 introduces Reinforce-
ment Learning with Verifiable Rewards (RLVR) to
improve performance in tasks such as math and cod-
ing (Hendrycks et al., 2021c; Jain et al., 2024; LI
et al., 2024). PRIME proposes a RL-based method
without process labels (Yuan et al., 2024). The
recent release of DeepSeek R1 (Guo et al., 2025)
demonstrates that LLMs can learn to produce long
CoT and improve reasoning using a pure RL-based
approach. Instead of bootstrapping reasoning abil-
ity, this paper focuses on the surprising data- and
parameter-efficiency of distilling reasoning abili-
ties from an existing reasoning model to an LLM.
We find that training on incorrect data can also

15980

enhance LLM reasoning, but unlike (Setlur et al.,
2024), we explore this in SFT instead of RL.

Distillation Distilling the outputs or logits gen-
erated by a larger or more capable model has be-
come a standard technique to enhance model perfor-
mance (Hinton, 2015). Typically, responses gener-
ated by higher-quality models are used to perform
supervised fine-tuning on smaller models (Lam-
bert et al., 2024). The Vicuna model, for instance,
demonstrates that ChatGPT-generated responses
can be used to effectively and cheaply distill high-
quality chatting capabilities (Zheng et al., 2023).
In this paper, we show that reasoning capabilities
can also be distilled. We note that concurrent work
has also observed similar trends in distilling reason-
ing capability (Min et al., 2024; Huang et al., 2024;
Muennighoff et al., 2025; Ye et al., 2025). Our
paper differs from these recent works by demon-
strating that reasoning distillation can be achieved
efficiently with minimal parameter updates, and the
key role of the structure of long CoT in the process.

3 Experiments Setup

We describe the experiments settings for §4.

Distillation We use DeepSeek-R1 (Guo et al.,
2025) and QwQ-32B-Preview (Team, 2024), two
open-source models with reasoning capabilities,
to generate our distillation data. We select dif-
ficult prompts from the AMC/AIME 1, Math,
and Olympiad subset from the Numina-Math
dataset (LI et al., 2024), as Min et al. (2024)
implies that hard problems can improve perfor-
mance. We also incorporate coding problems from
APPS (Hendrycks et al., 2021a) and TACO (Li
et al., 2023) datasets.

Specifically, we use GPT-4o-mini to classify
the difficulty of the prompts according to the
AoPS standard (Achiam et al., 2023), and select
math problems of difficulty higher than Leval 3,
Olympiad higher than Level 8, and all AIME/AMC
problems. We verify the correctness of the traces
by checking against ground truth solutions using
exact matching for math problems and code exe-
cution for coding problems. In total, we curated
12k math and 5k coding problems with correct re-
sponses from QwQ to serve as our training data.
For R1 samples, we directly use the public R1-
17k reasoning dataset2 that is curated following a

1These prompts are from previous years of competition, which do not
include AIME 2024 and AMC 2023 in our evaluation suite.

2huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k.

similar procedure.

Training details We perform training using
Llama-Factory (Zheng et al., 2024). We train the
Qwen2.5-32B-Instruct using a batch size of 96,
learning rate 1e-5 with a warm-up ratio of 0.1
and linear learning rate decay (Yang et al., 2024),
following similar hyperparameters in (Min et al.,
2024). We use the next token prediction loss as
the training objective (Radford, 2018). We use
the same hyper-parameters except a 1e-4 learning
rate for LoRA fine-tuning. The full fine-tuning ex-
periment is done with 8xH100 GPUs in 20 hours.
Training is done with a single run.

Controlled experiments setup To understand
the key factor in the learning process, we conducted
controlled experiments in §4.1. In particular, we
use QwQ-32B-Preview to produce the distillation
data and select a subset of 4618 correct responses
as the training set (out of the 12k math data above).
The hyper-parameters remain the same as above.

Evaluation setup We evaluate on five popular
reasoning benchmarks for math and coding, in-
cluding Math-500, OlympiadBench, AIME-20243,
AMC234 (Hendrycks et al., 2021c; He et al., 2024)
and LiveCodeBench (Jain et al., 2024). For Live-
CodeBench, we report a weighted average accuracy
across the easy, medium, and hard difficulty levels.

4 Language Models Can Easily Learn to
Reason From Demonstrations

In this section, we first show that a small amount of
well-curated data, along with a simple parameter-
efficient fine-tuning method (e.g., LoRA), can ef-
fectively improve reasoning capabilities in a large
language model (§4.1). Then we present our obser-
vation that the long CoT structure is a key to the
learning process (§4.2).
4.1 Learning from demonstration can be

data-efficient and parameter-efficient
Small amount of data is enough. In Fig. 1, we
present the performance of models fine-tuned with
17k R1 trained samples. Both the supervised fine-
tuned (SFT) and LoRA fine-tuned models learn to
generate Long CoT responses and improve signifi-
cantly on all benchmarks with just 17k samples.

Less than 5% parameter update is enough. We
next investigate whether full-parameter update is

3huggingface.co/datasets/AI-MO/aimo-validation-aime.
4huggingface.co/datasets/AI-MO/aimo-validation-amc.

15981

Original Response ❌
First off, since it's a square root, the expression inside

the square root has to be non-negative
So, the intervals are: 1 < n < 100 , 100 < n < 1000 , n > 1000

Wait, but I need to consider n as positive integers, and n >= 1
But actually, n has to be at least 1, but n = 1 makes log(n)=0,

...
Therefore, the ranges are n = 1, n = 100, 100 < n < 1000 ...

Wait, but n=100 is included in 100 < n < 1000?
No, n=100 is a separate point.

Actually, n=100 is the upper limit of 100 < n < 1000,
but since n=100 is acceptable, I need to include it....

But in the interval 100 < n <1000, it's positive, as I tested
earlier.

So, yes, total is 901.

Q: For how many integers does the expression represent a real number, where log denotes the base logarithm?

... First, let's simplify the
expression inside the square root.

We start with the numerator:...
So the expression becomes:...

We need this expression to be non-
negative...

The expression is non-negative in
the intervals...

Since x=log(n) and n is a positive
integer, x must be a non-negative

integer...
Therefore, x=0, n=1

Answer: 1.

+ Long CoT SFT ✅ + Long CoT LoRA ✅

First, I need to understand when the expression inside the square
root is non-negative, ...

Therefore, the intervals where the expression is non-negative are ...
Now, convert these back to n... Wait, no. Actually, ...

So, the possible integer values of n are: n = 1, n = 100, 100 < n <
1000. Now, count the number of integers from 101 to 999: ...

Wait, no. Actually, ... let's double check: ...
But wait, let's make sure that all these values satisfy the original

inequality. For n = 1, ..., for n = 100, ..., for 100 < n < 1000, ...
Therefore, all these values are valid.

So, the total number of integer values of n that satisfy the condition
is 901.

Figure 3: Responses of the base model (Qwen2.5-32B-Instruct), with Long CoT full parameter or LoRA
fine-tuning. The model learns to reflect and backtrack using words like "Wait" and Actually" in both settings.

MATH500 AIME24 AMC23 Olympiad. LCB.

Qwen2.5-32B-Inst. 84.8 16.7 67.5 47.6 48.9
QwQ 90.4 33.3 75.0 58.1 59.1
o1-preview 85.5 44.6 87.5 59.2 59.1

7k QwQ Samples
SFT 87.8 33.3 77.5 57.3 57.5
LoRA (r=64) 86.6 40.0 77.5 57.2 56.6

17k QwQ Samples
SFT 87.8 33.3 70.0 56.7 57.9
LoRA (r=64) 86.6 33.3 90.0 56.0 56.2

Table 1: Model accuracy with SFT and LoRA
(rank=64). Fine-tuning performed on Qwen2.5-32B-
Instruct with QwQ samples. “Olympiad.” is short
for “OlympiadBench”, “LCB.” is short for “Live-
CodeBench”. We find that the learning process of Long
CoT can be parameter efficient.

necessary. In addition to the results using 17k R1
samples as demonstrated in Fig. 1, we also report
the results for both SFT and LoRA fine-tuning with
7k and 17k QwQ samples in Tab. 1.

Prior work (Ghosh et al., 2024; Biderman et al.,
2024) suggests that LoRA fine-tuning substantially
under-performs full fine-tuning for knowledge-
intensive tasks, and is limited to learning response
initiation and style tokens. However, our results
in Fig. 1 and Tab. 1 show that LoRA fine-tuned
models achieve similar or even superior reason-
ing performance compared to full-parameter SFT
across math and coding benchmarks. Additionally,
we find that a model fine-tuned with LoRA using
just 7k QwQ samples performs comparably to one
trained on 17k QwQ-distilled samples. This demon-
strates that reasoning distillation can be achieved
efficiently with both minimal parameter updates
and minimal data. As shown in Fig. 3, the LoRA
fine-tuned model easily learns to generate Long
CoT responses with reflection and self-verification.
These observations suggest that Long CoT rea-
soning ability may not rely on deep knowledge

acquisition but rather on learning structured rea-
soning patterns, which can be effectively distilled
in a parameter-efficient manner. This also aligns
with prior findings that methods such as Chain-
of-Thought prompting elicit Short CoT reasoning
primarily by shaping response structure rather than
instilling deep factual knowledge (Wei et al., 2022;
Yao et al., 2023).

4.2 Global Long CoT reasoning structure is a
key to the learning process

We further investigate the key factors in the fine-
tuning process. Specifically, we consider two di-
mensions:

1. The local content within a reasoning step,
including the correctness of the final answer,
numbers in math derivations, and the use of
reasoning keywords.

2. The global reasoning structure, including
reflection, self-validation, and backtracking
across multiple reasoning steps to form a logi-
cally coherent long CoT.

To understand their impact, we conduct two studies:
(1) we perturb the content within individual reason-
ing steps – such as the final answer, numerical
digits, and reasoning keywords(§4.2.1), and (2) we
modify the global reasoning structure by inserting,
deleting, and shuffling reasoning steps(§4.2.2). We
compare the performance of models trained on per-
turbed samples against both the base Qwen2.5-32B-
Instruct model (i.e., Original) and model trained
on correct, unperturbed samples (i.e., Correct), as
shown in Fig. 2. Our findings show that the learn-
ing process is highly sensitive to modifications in
the long CoT reasoning structure, but remarkably
tolerant to errors in the local contents.

15982

4.2.1 Wrong or Corrupted Local Content

To study the importance of local content within
individual steps, we preserve the overall reason-
ing structure while perturbing the local content in
training samples with different approaches.

Wrong Answer Samples. During our training
data curation process in §3, we only include sam-
ples that yield correct final answers. To assess
whether correctness of the final answer is neces-
sary for learning reasoning patterns, we instead
train the model using an equivalent number of sam-
ples (4.6k) that lead to the wrong answer. Surpris-
ingly, we find that training the base model without
any samples that reach a correct final answer
still achieves an average accuracy of 63.1% across
benchmarks, only 3.2% lower than training with
entirely correct samples.

Digits Corrupted Samples. Building on the pre-
vious experiment, we next examine the role of cor-
rectness in the intermediate reasoning steps. To
evaluate this, we corrupt correct samples by replac-
ing each digit with a random number between 0 and
9. Note that this is a severe corruption that can lead
to nonsensical statements such as “1+1=3”. Surpris-
ingly, even when 70% of the digits are corrupted,
the model still maintains an average performance of
62%, only 4.3% below the correct sample baseline,
demonstrating robustness to incorrect content.

Reasoning Keyword Removal. Given the preva-
lence of reasoning keywords in responses from
LRMs (e.g., “wait”, “let me think again”, “but”),
one theory is that these specific phrases may in-
voke the reflection and back-tracking necessary to
elicit strong reasoning performance. To evaluate
it, we use GPT-4o-mini to identify sentences with
occurrences of these reasoning keywords and ran-
domly remove a fraction of them (e.g., 20%, 50%,
100%). Our results show that even after removing
all (100%) such keywords, the model still achieves
an average accuracy of 63%, which is within 3.3%
of accuracy from the model trained with correct
samples. This suggests that these particular key-
words do not fundamentally impact the model rea-
soning performance.

Conclusion. The data-efficient fine-tuning pro-
cess is robust to errors in local content – such as
incorrect mathematical derivations or missing rea-
soning keywords.

4.2.2 Corrupted Global Reasoning Structure

Next, we examine the importance of reasoning
structure by performing three modifications to the
reasoning traces: deletion, insertion, and shuffle.
We first note that our system prompt (Appendix C)
instructs the model to generate responses with
thoughts enclosed in the tags ‘begin_of_thought’
and ‘end_of_thought’ and the final solution and
step-by-step explanation in ‘begin_of_solution’
and ‘end_of_solution’. All modifications are per-
formed on the thoughts, while the solution block is
left unmodified.

We use Llama-3.3-70B-Instruct (Dubey et al.,
2024) to separate each reasoning trace into dis-
tinct reasoning steps, with boundaries determined
by occurrences of backtracking, self-validation, re-
flection, or other breaks from a linear sequence of
thoughts. We then generated nine modified variants
of the dataset by applying each modification (inser-
tion, deletion, and shuffle – illustrated in Fig. 4) to
33%, 67%, or 100% of reasoning steps in the 4,618
correct traces. Each variant is used to train the base
model, Qwen2.5-32B-Instruct, and we report the re-
sulting performance in Fig. 2 and response lengths
and reasoning keyword counts in Appendix D.

Deleted reasoning steps. As reasoning steps are
increasingly deleted from the training data, model
accuracy steadily declines and eventually regresses
to the base model performance. Notably, retaining
only the final solution and extensive step-by-step
explanation (i.e., 100% deletion case) does not suf-
fice to learn strong reasoning capabilities. This sug-
gests that correct long CoT demonstrations alone
are insufficient. Instead, examples of handling er-
rors and dead ends with backtracking, reflection,
and self-validation are important for eliciting ro-
bust reasoning.

At 67% deletion, the model imitates reasoning
keywords (relative to the base model, keyword us-
age increases 45×, and output token increases 9×),
but its accuracy does not improve accordingly. Con-
sistent with §4.2.1, this validates that merely adopt-
ing reasoning keywords and long responses is in-
sufficient. We note, however, that as more steps
are deleted, the response lengths also decrease sig-
nificantly, which could contribute to reduced ac-
curacy. We hypothesize that it is the breaking of
logical consistency between steps that causes ac-
curacy degradation and validate this further in the
following analysis.

15983

Figure 4: Reasoning step modifications. To evaluate perturbations to global structure across reasoning steps, we
perform three modifications: deletion, insertion, and shuffling. These modifications break logical consistency across
steps and degrade model accuracy far more than changes to local content within reasoning steps.

Inserted reasoning steps. To further validate the
importance of logical structure, we replace a sub-
set of each trace’s reasoning steps with a random
sample of reasoning steps from other samples in
the training set that lead to correct results. Unlike
deletion, this approach generally preserves the orig-
inal length of the reasoning trace, ensuring that
accuracy degradation is not due simply to produc-
ing fewer steps. Relative to model variants trained
with deleted reasoning steps, variants trained on
inserted steps generate longer responses with more
reasoning keywords, yet accuracy deteriorates to,
and even below, the level of the base model.

Interestingly, each inserted step is itself coher-
ent and originates from a correct reasoning trace
in the training data. Yet these internally-coherent
steps appear in sequences that lack logical con-
sistency and often from a separate domain (e.g., a
combinatorics step may be inserted into a geometry
solution), leading to contradictions and disjointed
reflections. For example, the model trained with
inserted reasoning steps frequently refers to earlier
steps that do not exist (e.g., “Alternatively, consider
a different approach” without a prior approach) or
enumerates edge cases in inconsistent order (e.g.,
declaring a “Case 2” without “Case 1”).

While the model readily produces coherent in-
dividual steps that reflect on a problem, the CoT
fails to exhibit continuity across reasoning steps.
This aligns with the observations in the deletion
setting: a mere increase in reasoning steps or key-
words is insufficient for robust reasoning—logical
consistency across steps is a critical factor.

Shuffled reasoning steps. We next examine
whether preserving the domain of each reasoning
step, eliminating potential cross-domain confusion,
but randomizing their order likewise impacts the
model’s ability to reason.

As the amount of shuffling increases, response
length and reasoning keyword usage remain high,
and in fact exceed the model trained on correctly
ordered traces, yet accuracy declines sharply. Simi-
lar to the insertion experiments, the model imitates

the syntax of per-step reasoning but loses logical
consistency across steps. For instance, we find
that over 92% of model responses begin with a
backtracking or self-validation keyword (e.g., “Al-
ternatively,” or “Wait”), even though there is no
preceding content to correct or reconsider. The
model also references prior calculations or cases
that were never actually introduced in any preced-
ing step. Thus, while the shuffled traces still con-
tain valid domain-specific reasoning steps, their
rearrangement leads to incoherent overall solutions.
In other words, domain alignment alone does not
prevent logical breakdown.

Conclusions The correctness of the global long
CoT structure is crucial in the data-efficient fine-
tuning process.

5 Ablation Studies

In this section, we conduct a series of ablation
studies to answer the following questions:

1. (§5.1) Does the use of more data improve the
accuracy of the distillation?

2. (§5.2) Does fine-tuning on Long CoT data
lead to degraded performance on non-
reasoning tasks?

3. (§5.3) How much does the Long CoT fine-
tuning enhance the performance of different
student models?

4. (§5.4) How does the performance of the Long
CoT fine-tuned model compare to the Best-of-
N sampling performance of the base model?

5. (§5.5) How does Long CoT fine-tuning com-
pare to Short CoT fine-tuning with the same
dataset?

5.1 Data Scaling
We investigate the effect of distillation data size,
ranging from 4k to 64k samples from R1, The re-
sults, presented in Fig. 5, show that a small amount

15984

0 4k 8k 16k 32k 64k R1
Number of R1 samples

20
30
40
50
60
70
80
90

100
Ac

cu
ra

cy
 (1

00
%

)

Benchmark
Math-500
AIME 2024
AMC 23
OlympiadsBench
Average
R1 - Math500
R1 - AIME2024

Figure 5: Model accuracy with different data sizes,
and comparison to DeepSeek R1. The teacher model
is DeepSeek R1, and the student model is Qwen-32B-
Instruct trained with full parameter fine-tuning. While
the student model continues to benefits from more SFT
data from DeepSeek R1, a small amount of data, e.g.,
16k is sufficient to significantly boost the average per-
formance by 15.2%.

of data, e.g., 16k, is enough to significantly im-
prove the model performance (from an average of
54.2 to 69.4).

5.2 Performance on Non-Reasoning
Benchmarks

MMLU ARC-C IEval MGSM

Qwen2.5-32B-Inst. 74.1 49.4 78.7 42.3
QwQ 71.2 49.7 42.5 19.1

17k R1 Samples
SFT 73.0 49.0 77.8 33.7
LoRA (r=256) 75.5 47.3 78.4 38.7

17k QwQ Samples
SFT 78.4 49.5 75.8 33.0
LoRA (r=64) 78.5 46.7 74.1 30.6

7k QwQ Samples
SFT 79.8 48.6 70.6 30.1
LoRA (r=64) 79.1 47.4 75.4 31.1

Table 2: Distilled Model Performance on Non-
Reasoning Tasks. The teacher model is QwQ-32B-
Preview, and the student model is Qwen2.5-32B-
Instruct. Compared to QwQ, distilled models retain
most of the base model’s capabilities.

While simple distillation enhances reasoning ca-
pabilities, it is essential to ensure that these im-
provements do not come at the cost of catastrophic
forgetting or a decline in general language under-
standing and instruction-following abilities, which
are crucial for broader task generalization.

To assess this, we evaluate the performance of
our SFT and LoRA fine-tuned models mentioned
in §4.1 on a diverse set of benchmarks: MMLU
(multi-task language understanding), ARC-C (sci-
ence exam question), IEval (instruction-following),
and MGSM (multilingual grade-school math prob-

lems) (Hendrycks et al., 2021b; Clark et al., 2018;
Mitchell et al., 2023; Cobbe et al., 2021).

As shown in Tab. 2, the base instruction model
(Qwen2.5-32B-Instruct) performs well in all these
tasks. The QwQ model, despite its strong reason-
ing capabilities, suffers significant degradation in
instruction-following (i.e., 42.5% on IEval) and
multilingual tasks (i.e., 19.1% on MGSM). In con-
trast, fine-tuning (through both SFT and LoRA)
only on a small amount of Long CoT reasoning
data from R1 or QwQ allows the distilled models
to retain most of the base instruction model’s capa-
bilities, avoiding the drastic performance drop seen
in QwQ.

5.3 Effect on Different Student Models

Qwen2.5-Math-7B

Qwen2.5-7B-Base

Llama-8b-Base

Qwen2.5-14B-Base

Qwen2.5-14B-Instruct

Gemma2-27B-it

Qwen2.5-32B-Instruct0

20

40

60

80

Ac
cu

ra
cy

 (%
)

33.6 36.5

2.3

34.1

52.5

25.6

54.1

37.6 41.0

12.3

63.1
57.0

33.0

74.5Zero Shot
SFT

Figure 6: Generalization to other models. Averaged
accuracy for different models with and without SFT.
Models show significant improvements when fine-tuned
with 17k samples from R1, showing that the Long CoT
fine-tuning is beneficial across models.

In this section, we examine whether Long CoT
reasoning capabilities can be elicited with differ-
ent student models via fine-tuning (as described
in §4.1). Specifically, we train with the 17k
samples on Qwen2.5-7B-Math, Qwen2.5-7-Base,
Llama-3.1-8B, Qwen2.5-14B-Base, Qwen2.5-14B-
Instruct, Gemma2-27B-it and Qwen2.5-32B-
Instruct (Yang et al., 2024; Dubey et al., 2024;
Team et al., 2024). We find that these models
improve noticeably across multiple benchmarks,
showing the effect of Long CoT as a general im-
provement across models. However, not all models
have showed the same degree of improvements as
for Qwen2.5-32B-Instuct, suggesting a promising
future direction for understanding the impact of
various teacher and student models.

5.4 Comparison to Best-of-N
As observed in §5.3, not all student models achieve
significant performance improvements through
Long CoT fine-tuning. We hypothesize that this
variation is influenced by several factors, such as
the extent to which the training data distribution

15985

45

50

55

60

65

70

75

Pe
rfo

rm
an

ce
Qwen2.5-32B-Instruct

20

30

40

50

60

70

Pe
rfo

rm
an

ce

Qwen2.5-Math-7B

1 2 4 8 16 32 64 128
Number of Samples

20

30

40

50

60

Pe
rfo

rm
an

ce

Gemma2-27B-it

1 2 4 8 16 32 64 128
Number of Samples

0

10

20

30

Pe
rfo

rm
an

ce
Llama-8b-Base

Zero-Shot Fine-tuned

Figure 7: SFT with Long CoT vs Best-of-N. Accuracy
of Qwen2.5-32B-Instruct before SFT (Zero-Shot), after
SFT on 17k R1 samples (Fine-tuned), and Best-of-N
samples on OlympiadBench. We find that fine-tuning
on Long CoT achieves performance similar to Best of 2
to 16 samples.

differs from that of the student models and the in-
herent capabilities of the student models in these
tasks. In this section, we compare the test-time
scaling (Ahn et al., 2024; Snell et al., 2024) per-
formance of the base model with its performance
after Long CoT fine-tuning to understand the rela-
tionship between a model’s ability to benefit from
Long CoT fine-tuning and its intrinsic capabilities.

Specifically, we compare the performance of
Long CoT fine-tuning against a Best-of-N sam-
pling approach, where we generate 128 samples
per prompt using an oracle verifier to select the
best response. To introduce diversity, we employ
a temperature of 0.5 and top-p sampling with a
threshold of 0.8. The results, presented in Fig. 7,
show that the Long CoT fine-tuned model performs
comparably to Best-of-N sampling with 2 to 16 in-
stances across all student models. Notably, the test-
time scaling trends closely align with the improve-
ments observed from Long CoT fine-tuning. For
example, with eight parallel samples, Llama-3.1-
8B achieves less than 10% accuracy on Olympiad-
Bench, and similarly, fine-tuning with correct Long
CoT traces results in only marginal improvement.
A comparable trend is observed in Gemma2-27B-it
and Qwen2.5-Math-7B, reinforcing the relation-
ship between test-time sampling efficiency and the
benefits of Long CoT fine-tuning.

The performance of Best-of-N sampling contin-
ues to improve beyond 128 samples, suggesting

that further gains are possible. This highlights the
potential for enhancing Long CoT models through
context scaling or by leveraging a broader range
of reasoning paths inherent to the original model,
potentially unlocking even higher performance.

Dataset Original Short CoT Long CoT

Avg. output tokens
MATH500 684 515 3972
AMC23 728 605 5037
OlympiadBench 1275 948 8616
AIME24 825 687 15902

Avg. keywords per response
MATH500 0.00 0.00 41.75
AMC23 0.00 0.00 39.20
OlympiadBench 0.01 0.01 97.20
AIME24 0.00 0.07 260.90
Performance
MATH500 84.8 70.4 (-14.4) 89.2 (+4.4)
AMC23 67.5 55.0 (-12.5) 77.5 (+10.0)
OlympiadBench 47.6 36.4 (-11.2) 58.5 (+10.9)
AIME24 16.7 13.3 (-3.4) 40.0 (+23.3)

Table 3: Comparison of number of output tokens
reasoning keywords, and the performance between
training with Short or Long CoT. The original model
is Qwen2.5-32B-Instruct. Benchmarks are ordered from
easy to hard, where the model trained with Long CoT
learns to produce longer CoTs and uses more keywords
for harder problems.

5.5 Comparison to Short CoT Fine-tuning
In this section, we provide a direct comparison
to training with short CoT. In particular, we com-
pare results training on the 4.6k samples of Long
CoT generated by QwQ-32B-Preview (§4.2), and
the short CoT denoted in the NuminaMath-CoT
dataset (LI et al., 2024). Tab. 3 summaries the statis-
tics. Training with Long CoT enables the model
to use more reasoning keywords (full list in Ap-
pendix B), produces longer responses to harder
problems, and is the key to improved performance.

6 Conclusion

Large reasoning models unlock new capabilities
by using a longer chain of thoughts that involves
reflection and backtracking to answer challenging
problems. In this paper, we show that such capabil-
ity can be easily fine-tuned using a few thousand
examples and with low-rank adapters. We further
show that the long CoT structure of training ex-
amples is a key to the learning process. Finally,
we discuss several ablations with various teacher-
student models and compare them to the best-of-N
approach.

15986

Limitations

This work focuses on training reasoning models
with supervised fine-tuning, while it does not com-
pare the model behavior learned through Reinforce-
ment Learning. Most conclusions for distillation
are obtained with a small amount of data (e.g. 7k
and 17k) , where it may not apply to large scale
distillation as the one done in (Guo et al., 2025).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. arXiv preprint arXiv:2402.00157.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz,
Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan
Frankle, and 1 others. 2024. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Chandler Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Ku-
mar, Ramaneswaran S, Deepali Aneja, Zeyu Jin, Ra-
mani Duraiswami, and Dinesh Manocha. 2024. A
closer look at the limitations of instruction tuning.
arXiv preprint arXiv:2402.05119.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.

Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024. Olympiadbench:
A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. Preprint, arXiv:2402.14008.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021a. Measuring coding challenge com-
petence with apps. NeurIPS.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021b. Measuring massive multitask language un-
derstanding. International Conference on Learning
Representations (ICLR).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021c. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Geoffrey Hinton. 2015. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu,
Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei Qin,
Weizhe Yuan, and Pengfei Liu. 2024. O1 replication
journey–part 2: Surpassing o1-preview through sim-
ple distillation, big progress or bitter lesson? arXiv
preprint arXiv:2411.16489.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, and 1 others. 2024. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv
preprint arXiv:2411.15124.

15987

https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008

Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li,
Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E
Gonzalez, and Ion Stoica. 2025. S*: Test
time scaling for code generation. arXiv preprint
arXiv:2502.14382.

Jia LI, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024. Numinamath. [https://huggingface.co/
AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf).

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong
Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023.
Taco: Topics in algorithmic code generation dataset.
arXiv preprint arXiv:2312.14852.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen,
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, Xi-
aoxue Cheng, Huatong Song, and 1 others. 2024.
Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv
preprint arXiv:2412.09413.

Eric Mitchell, Roberta Raileanu, Colin Raffel, John
Levine, Yulia Tsvetkov, and Christopher D Manning.
2023. Ieval: An instruction following benchmark.
arXiv preprint arXiv:2310.07724.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Alec Radford. 2018. Improving language understanding
by generative pre-training.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman
Garg, Virginia Smith, and Aviral Kumar. 2024. Rl on
incorrect synthetic data scales the efficiency of llm
math reasoning by eight-fold. Advances in Neural
Information Processing Systems, 37:43000–43031.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, and 1 others. 2024.
Gemma 2: Improving open language models at a
practical size. arXiv preprint arXiv:2408.00118.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Jason Wei and 1 others. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao and 1 others. 2023. Tree of thoughts: De-
liberate problem solving with large language models.
arXiv preprint arXiv:2305.10601.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning
Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu,
and Hao Peng. 2024. Free process rewards without
process labels. arXiv preprint arXiv:2412.01981.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595–46623.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yan-
han Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang
Ma. 2024. Llamafactory: Unified efficient fine-
tuning of 100+ language models. arXiv preprint
arXiv:2403.13372.

15988

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

A Short and Long CoT Response Examples

Question

For how many integers n does the expression
√

log(n2)− (log n)2

log n− 3

represent a real number, where log denotes the base 10 logarithm?

15989

Short CoT answer (1/2)

To solve the problem, we start by analyzing the given expression and the conditions under which it
represents a real number. The expression is:

√
log(n2)− (log n)2

log n− 3

For the square root to represent a real number, the argument of the square root, which is the fraction
inside, must be nonnegative. Additionally, since we are dealing with logarithms, n must be a
positive integer. Let’s break down the solution into detailed steps:
1. Condition for the Denominator The denominator of the fraction is log n− 3. For the fraction to
be nonnegative, we need log n− 3 > 0. This implies that log n > 3, which translates to

n > 103 = 1000.

Therefore, n must be greater than 1000.
2. Simplifying the Numerator The numerator of the fraction is log(n2)− (log n)2. Using logarith-
mic properties, we can rewrite log(n2) as 2 log n. Thus, the numerator becomes

2 log n− (log n)2.

3. Analyzing the Fraction Substituting the simplified numerator into the fraction, we get:

2 log n− (log n)2

log n− 3

For this fraction to be nonnegative, given that the denominator is positive (from step 1), the
numerator 2 log n− (log n)2 must also be nonnegative. This leads to the inequality:

2 log n− (log n)2 ≥ 0.

4. Solving the Inequality The inequality

2 log n− (log n)2 ≥ 0

can be rewritten as

(log n)2 − 2 log n ≤ 0.

Factoring,

log n(log n− 2) ≤ 0.

Solving this inequality, we find that

0 ≤ log n ≤ 2.

Converting back to n, this implies:

1 ≤ n ≤ 100.

15990

Short CoT answer (2/2)

5. Combining Conditions From step 1, we have n > 1000, and from step 4, we have 1 ≤ n ≤ 100.
However, these two conditions are contradictory. The correct interpretation should be that n must
satisfy both the condition of being greater than 1000 (from the denominator analysis) and the
condition derived from the inequality, which was misinterpreted in the combination step. The
correct combination should focus on the range derived from the inequality, which is 1 ≤ n ≤ 100,
and disregard the incorrect application of the denominator condition in this context. 6. Conclusion
The integers n that satisfy the given conditions are those for which

1 ≤ n ≤ 100.

Counting these integers, we find there are

100

such integers.

15991

Long CoT answer (1/4)

<|begin_of_thought|> So I’ve got this problem here:
√

log(n2)− (log n)2

log n− 3

And I need to find out for how many integer values of n this expression represents a real number.
The logarithm here is base 10.
First off, since it’s a square root, the expression inside the square root has to be non-negative for
the whole thing to be a real number. So, that means:

log(n2)− (log n)2

log n− 3
≥ 0

Additionally, the argument of the logarithm has to be positive because logarithms are only defined
for positive real numbers. So, n2 > 0, which is true for all n ̸= 0, and n > 0 since n2 > 0 is
always true for n ̸= 0, but we need to ensure n > 0 because the logarithm of a negative number is
undefined in real numbers.
So, n has to be a positive integer.
Now, let’s simplify the expression inside the square root.
I know that log(n2) = 2 log n, because of the logarithm power rule. So, substituting that in:

2 log n− (log n)2

log n− 3

Let me denote log n = x to make it easier. So, the expression becomes:

2x− x2

x− 3

I can factor the numerator:

2x− x2 = x(2− x)

So, the expression is:

x(2− x)

x− 3

I need to analyze when this fraction is non-negative.
To do that, I can look at the sign of each factor:
- x = log n
- 2− x = 2− log n
- x− 3 = log n− 3
So, the expression is:

log n(2− log n)

log n− 3

I need to determine when this fraction is greater than or equal to zero.
Let me consider the critical points where each factor is zero:

15992

Long CoT answer (2/4)

1. log n = 0⇒ n = 100 = 1
2. 2− log n = 0⇒ log n = 2⇒ n = 102 = 100
3. log n− 3 = 0 ⇒ log n = 3⇒ n = 103 = 1000
These points divide the number line into intervals where the expression doesn’t change sign.
So, the intervals to consider are:
- 1 < n < 100
- 100 < n < 1000
- n > 1000
Wait, but I need to consider n as positive integers, and n ≥ 1.
But actually, n has to be at least 1, but n = 1 makes log n = 0, which is a critical point. So, let’s
consider the intervals:
- 1 < n < 100
- n = 100
- 100 < n < 1000
- n = 1000
- n > 1000
I need to test the sign of the expression in each interval.
First, let’s consider n = 1:
log 1 = 0, so the numerator is 0, and the denominator is 0− 3 = −3, so the fraction is 0/− 3 = 0,
which is acceptable since it’s zero.
Next, for 1 < n < 100:
Let’s pick n = 10, for example.
log 10 = 1
So, x = 1
Then, 2− x = 1
x− 3 = −2
So, 1·1

−2 = −1
2 < 0, which is not acceptable.

Wait, but earlier I thought the expression inside the square root needs to be non-negative. So, this
interval doesn’t work.
Next interval: n = 100
log 100 = 2
Numerator: 2 · (2− 2) = 0
Denominator: 2− 3 = −1
So, 0/− 1 = 0, which is acceptable.
Then, 100 < n < 1000
Let’s pick n = 10000.5 = 102.5 ≈ 316.2, but since n is integer, let’s take n = 300
log 300 ≈ 2.477
So, x ≈ 2.477
2− x ≈ −0.477
x− 3 ≈ −0.523
So, 2.477·(−0.477)

−0.523 ≈ −1.182
−0.523 ≈ 2.26 > 0, which is acceptable.

Next, n = 1000
log 1000 = 3
Denominator: 3− 3 = 0, so the expression is undefined. Not acceptable.
Finally, n > 1000

15993

Long CoT answer (3/4)

Let’s pick n = 10000
log 10000 = 4
So, x = 4
2− x = −2
x− 3 = 1
So, 4·(−2)

1 = −8 < 0, which is not acceptable.
So, summarizing:
- n = 1: acceptable
- 1 < n < 100: not acceptable
- n = 100: acceptable
- 100 < n < 1000: acceptable
- n = 1000: not acceptable
- n > 1000: not acceptable
Therefore, the acceptable ranges are:
- n = 1
- n = 100
- 100 < n < 1000
Wait, but n = 100 is included in 100 < n < 1000? No, n = 100 is a separate point.
Actually, n = 100 is the upper limit of 100 < n < 1000, but since n = 100 is acceptable, I need
to include it.
Wait, no, n = 100 is a separate point where the expression is zero, which is acceptable.
So, the acceptable n are:
- n = 1
- 100 ≤ n < 1000
Wait, but earlier I thought n = 1000 is not acceptable, but n = 1000 is not included in 100 ≤ n <
1000, which is correct.
So, now, I need to count the integer values of n in these ranges.
First, n = 1: 1 value
Second, 100 ≤ n < 1000: that’s from 100 to 999, inclusive.
So, 999− 100 + 1 = 900 values.
Therefore, total integers are 1 + 900 = 901.
But wait, earlier I thought n = 100 is acceptable, and it is included in 100 ≤ n < 1000, so no
need to count it separately.
Wait, no, n = 100 is included in 100 ≤ n < 1000, which already includes 100 to 999, so total is
900 values.
Plus n = 1, so total is 901.
But, I need to make sure that for all n in 100 ≤ n < 1000, the expression is positive.
Wait, except for n = 100, where it’s zero, which is acceptable.
But in the interval 100 < n < 1000, it’s positive, as I tested earlier.
So, yes, total is 901.
Therefore, the number of integer values of n that satisfy the condition is 901. **Final Answer**

901

<|end_of_thought|>
<|begin_of_solution|>

15994

Long CoT answer (4/4)

To determine for how many integer values of n the expression
√

log(n2)− (log n)2

log n− 3

represents a real number, we first note that the expression inside the square root must be non-
negative:

log(n2)− (log n)2

log n− 3
≥ 0

Additionally, since logarithms are only defined for positive real numbers, we require n > 0.
1. Simplifying the expression
Using the logarithm power rule, we have:

log(n2) = 2 log n

Thus, the expression becomes:

2 log n− (log n)2

log n− 3

Let x = log n. Then, the expression simplifies to:

x(2− x)

x− 3

2. Finding critical points
The critical points are where the numerator or denominator equals zero:
- x = 0⇒ n = 1 - 2− x = 0⇒ x = 2 ⇒ n = 100 - x− 3 = 0⇒ x = 3 ⇒ n = 1000
3. Analyzing intervals
The intervals to consider are:
- 1 < n < 100 - n = 100 - 100 < n < 1000 - n = 1000 - n > 1000
Testing the sign of the expression in each interval:
- For n = 1: The expression equals 0, which is acceptable. - For 1 < n < 100: The expression is
negative, not acceptable. - For n = 100: The expression equals 0, acceptable. - For 100 < n <
1000: The expression is positive, acceptable. - For n = 1000: The expression is undefined, not
acceptable. - For n > 1000: The expression is negative, not acceptable.
4. Counting acceptable integers
The acceptable ranges are:
- n = 1 - 100 ≤ n < 1000
The number of integers in 100 ≤ n < 1000 is 900 (from 100 to 999 inclusive). Adding n = 1
gives a total of:

1 + 900 = 901

Thus, the number of integer values of n that satisfy the condition is:

901

<|end_of_solution|>

15995

B Reasoning keywords

We create a bank of reasoning keywords by manual inspection of reasoning responses from QwQ and
R1. We identify these following words and phrases as frequent indicators of reflection, backtracking,
and self-validation: “Alternatively”, “Wait”, “Just to be thorough”, “Just to make sure”, “Let me just
double-check”, “Let me try another”, “Let me verify”, “Let me check”, “Hmm”, “But”, “Maybe I should
consider”, “Maybe I can consider”.

C Long CoT System Prompt

We adopt the following system prompt from Still-2 (Min et al., 2024):

Long CoT System Prompt

Your role as an assistant involves thoroughly exploring questions through a systematic long think-
ing process before providing the final precise and accurate solutions. This requires engaging in a
comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtrack-
ing, and iteration to develop well-considered thinking process. Please structure your response
into two main sections: Thought and Solution. In the Thought section, detail your reasoning
process using the specified format: <|begin_of_thought|> thought with steps separated with \n\n}
<|end_of_thought|> Each step should include detailed considerations such as analyzing questions,
summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps,
refining any errors, and revisiting previous steps. In the Solution section, based on various attempts,
explorations, and reflections from the Thought section, systematically present the final solution
that you deem correct. The solution should remain a logical, accurate, concise expression style and
detail necessary step needed to reach the conclusion, formatted as follows: <|begin_of_solution|>
final formatted, precise, and clear solution <|end_of_solution|> Now, try to solve the following
question through the above guidelines:

D Average response lengths and keyword counts

Table 4: Average keyword counts and output tokens for deleted steps.

Dataset 0% 33% 67% 100%

Avg. output tokens
Math 3551 2979 2078 482
AMC 2023 4838 6612 4623 609
OlympiadBench 7234 6802 4978 595
AIME 2024 13088 11889 6798 620

Avg. keywords per response
Math 32 28 20 0.017
AMC 2023 39 85.6 77.8 0
OlympiadBench 77 70 56 0.009
AIME 2024 143 143 90 0

15996

Table 5: Average keyword counts and output tokens for inserted steps.

Dataset 0% 33% 67% 100%

Avg. output tokens
Math 3551 4189 3900 5383
AMC 2023 4838 7089 5464 5137
OlympiadBench 7234 7558 6990 5407
AIME 2024 13088 12858 12864 5304

Avg. keywords per response
Math 32 39 39 41
AMC 2023 39 98 44 35
OlympiadBench 77 76 80 38
AIME 2024 143 127 165 44

Table 6: Average keyword counts and output tokens for shuffled steps.

Dataset 0% 33% 67% 100%

Avg. output tokens
Math 3551 4284 5784 5613
AMC 2023 4838 6802 10198 8661
OlympiadBench 7234 8942 12154 12167
AIME 2024 13088 13451 16221 18054

Avg. keywords per response
Math 32 45 61 70
AMC 2023 39 65 74 67
OlympiadBench 77 111 166 137
AIME 2024 143 161 201 210

15997

