
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 15950–15963
November 4-9, 2025 ©2025 Association for Computational Linguistics

HetGCoT: Heterogeneous Graph-Enhanced Chain-of-Thought LLM
Reasoning for Academic Question Answering

Runsong Jia1, Mengjia Wu1, Ying Ding2, Jie Lu1, Yi Zhang1

1University of Technology Sydney, Sydney, Australia
2University of Texas at Austin, Austin, United States

{runsong.jia, mengjia.wu, jie.lu, yi.zhang}@uts.edu.au
ying.ding@ischool.utexas.edu

Abstract

Academic question answering (QA) in hetero-
geneous scholarly networks presents unique
challenges requiring both structural understand-
ing and interpretable reasoning. While graph
neural networks (GNNs) capture structured
graph information and large language models
(LLMs) demonstrate strong capabilities in se-
mantic comprehension, current approaches lack
integration at the reasoning level. We propose
HetGCoT, a framework enabling LLMs to ef-
fectively leverage and learn information from
graphs to reason interpretable academic QA re-
sults. Our framework introduces three technical
contributions: (1) a framework that transforms
heterogeneous graph structural information
into LLM-processable reasoning chains, (2) an
adaptive metapath selection mechanism iden-
tifying relevant subgraphs for specific queries,
and (3) a multi-step reasoning strategy system-
atically incorporating graph contexts into the
reasoning process. Experiments on OpenAlex
and DBLP datasets show our approach out-
performs all sota baselines. The framework
demonstrates adaptability across different LLM
architectures and applicability to various schol-
arly question answering tasks.

1 Introduction

Academic question answering in heterogeneous
scholarly networks presents essential challenges in
integrating structural knowledge with semantic un-
derstanding. QA tasks regarding publishing venue
selection, paper authorship, and scientific collabo-
ration all require systems to reason over complex
networks of papers, authors, venues, and organi-
zations while providing interpretable explanations
(Shi et al., 2019; Wang et al., 2022).

The academic knowledge space is inherently het-
erogeneous, comprising diverse entities (e.g., pa-
pers, authors, venues and organizations) connected
through various relationship types. Effective aca-
demic question answering systems must address

three fundamental challenges: (1) modeling hetero-
geneous structures to capture complex relationships
across different entity types and query contexts, (2)
adaptively selecting relevant knowledge subgraphs
based on query semantics rather than uniformly
processing entire network structures, and (3) trans-
forming structural knowledge into coherent natu-
ral language explanations that can justify answers
across different academic QA scenarios. While
these challenges manifest differently across dif-
ferent tasks, they share the common requirement
of integrating graph-structured knowledge with se-
mantic reasoning.

Current approaches to academic question an-
swering have attempted to address these challenges
through various strategies. However, existing meth-
ods face significant limitations in addressing these
challenges holistically. Heterogeneous graph neu-
ral networks (HGNNs) can effectively model com-
plex academic networks (Hu et al., 2020a), but
struggle with: (1) adapting their representations to
different query types and relationship patterns, (2)
generating task-specific subgraph selections, and
(3) producing natural language explanations for di-
verse academic QA scenarios. LLMs demonstrate
strong semantic understanding (Chowdhery et al.,
2022) but cannot directly process the rich struc-
tural information embedded in academic networks.
Existing integration attempts typically focus on sin-
gle tasks or treat graph information as auxiliary
features through simple concatenation, failing to
systematically incorporate structural patterns into
the reasoning process across diverse academic QA
scenarios (Zhao et al., 2023).

To address these limitations, we propose Het-
GCoT (Heterogeneous Graph-Enhanced Chain-
of-Thought), a framework that integrates hetero-
geneous graph neural networks with large lan-
guage models for academic question answering.
HetGCoT transforms graph structural patterns
into confidence-weighted natural language reason-
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ing chains through metapath naturalization, en-
abling LLMs to process complex academic rela-
tionships. The framework employs adaptive meta-
path selection using Heterogeneous Graph Trans-
former (HGT) (Hu et al., 2020b) embeddings and
FastGTN-learned (Yao et al., 2021) importance
weights to dynamically identify task-relevant sub-
graphs. Through a multistep chain-of-thought rea-
soning process, HetGCoT anchors on three task-
driven analytical foci: analyzing venue patterns for
journal recommendation, temporal relationships for
authorship queries, and collaboration networks for
collaboration discovery. This integrated approach
enables deep reasoning-level fusion of graph struc-
tures with language understanding across diverse
academic QA scenarios.

Through extensive experiments on OpenAlex
and DBLP datasets (Priem et al., 2022), we demon-
strate HetGCoT’s effectiveness across multiple
academic QA tasks. For journal recommenda-
tion, our framework achieves 92.21% and 83.70%
H@1 accuracy respectively. Moreover, we vali-
date its generalizability on historical publication
QA (author-paper reasoning) and author collabora-
tion QA (author-paper-author reasoning), showing
consistent improvements on general academic QA
tasks.

The key contributions of this work include:

• A unified framework for academic question an-
swering that transforms heterogeneous graph
structures into LLM-processable reasoning
chains, enabling effective integration of struc-
tural and semantic understanding for academic
question answering

• An adaptive metapath selection mechanism that
dynamically identifies relevant subgraphs based
on query characteristics, supporting various aca-
demic QA scenarios

• A flexible multi-step reasoning strategy that
adapts to different academic QA tasks while
maintaining systematic integration of graph-
derived contexts

2 Related Works

2.1 LLMs and Reasoning
LLMs have revolutionized natural language pro-
cessing through their sophisticated understanding
and generation capabilities. Building upon the
Transformer architecture (Vaswani et al., 2017),
prominent models including GPT (Brown et al.,

2020), LLaMA (Touvron et al., 2023), Qwen (Bai
et al., 2023), and PaLM (Chowdhery et al., 2022)
have achieved remarkable performance across di-
verse language tasks.

A pivotal advancement is chain-of-thought
(CoT) reasoning (Wei et al., 2022), which enhances
LLMs’ ability to tackle complex problems through
explicit intermediate reasoning steps. This ap-
proach has proven particularly effective for tasks
requiring multi-step inference and logical decompo-
sition. Extensions such as self-consistency (Wang
et al., 2023) and tree-of-thought (Yao et al., 2023)
further refine this capability, establishing structured
reasoning frameworks for specialized domains.

2.2 Integration of GNNs and LLMs
The integration of graph neural networks with lan-
guage models has emerged as a promising direction
for leveraging both structural and semantic infor-
mation. Recent work explores various integration
strategies to combine the complementary strengths
of both modalities.

Graph Prompting and Reasoning Methods:
Several frameworks attempt to enhance LLMs
with graph-based reasoning. GraphPrompter (Liu
et al., 2024) explore soft prompting techniques for
graph learning tasks with LLMs. Graph Chain-of-
Thought (Jin et al., 2024) augments LLMs by ex-
plicitly reasoning on graph structures, while Graph
of Thoughts (Besta et al., 2024) models the reason-
ing process itself as a graph structure. Think-on-
Graph (Sun et al., 2023) proposes deep reasoning
executed directly on knowledge graphs.

Retrieval-Augmented Approaches: PathRAG
(Chen et al., 2025) enhances LLMs through graph-
based retrieval using relational paths, while GNN-
RAG (Mavromatis and Karypis, 2024) combines
graph neural retrieval with language model reason-
ing. Generate-on-Graph (Chen et al., 2024) treats
LLMs as both agents and knowledge graphs for
incomplete QA tasks.

Heterogeneous Graph and Metapath Meth-
ods: For academic networks specifically, heteroge-
neous graph neural networks like HGT (Hu et al.,
2020a) and HAN (Wang et al., 2019) model com-
plex relationships between different entity types.
Metapath-based techniques provide interpretable
relationship modeling through typed connection
sequences. Recent work such as Metapath of
Thoughts (Solanki et al., 2024) verbalizes meta-
paths as contextual augmentation for LLMs. While
these methods show promise, they typically focus
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on single tasks or treat graph information as auxil-
iary features rather than achieving deep reasoning-
level integration.

Despite these advances, existing approaches
face limitations in: (1) adaptively selecting task-
relevant subgraphs, (2) transforming heterogeneous
structural patterns into natural language reasoning
chains, and (3) systematically integrating graph-
derived contexts throughout the reasoning process.
Our HetGCoT framework addresses these gaps
by introducing adaptive metapath selection with
learned importance weights, metapath naturaliza-
tion for LLM processing, and a structured multi-
step reasoning strategy that deeply integrates graph
knowledge at each reasoning stage.

3 Methodology

In this section, we present our proposed HetGCoT
framework. Figure 1 illustrates the system archi-
tecture designed to address academic question an-
swering through the integration of heterogeneous
graph structural information with LLM reasoning
capabilities.

We consider a heterogeneous academic graph
G = (V,E, ϕ, ψ), where V = Vp ∪ Va ∪ Vv rep-
resents the set of nodes comprising papers (Vp),
authors (Va), and venues (Vv). E denotes the set
of edges E = EPV ∪EPA, capturing paper-venue
and paper-author relationships, with ϕ : V → A
mapping nodes to their types and ψ : E → R
mapping edges to their relationship types. Given a
query q (which could be a paper, author, or research
topic), our task is to provide accurate answers with
interpretable explanations.

3.1 Heterogeneous Academic Graph
Construction

We construct a heterogeneous academic graph with
three node types (papers, authors, venues) and two
edge types (paper-venue, paper-author). Node fea-
tures xv are initialized through:

xv = LayerNorm(concat(xtext, xnum)) (1)

where xtext are Sentence-BERT (Reimers and
Gurevych, 2019) encoded titles, abstracts, and key-
words, and xnum include citation counts, impact
factors, and other numerical attributes. This frame-
work can extend to additional node and edge types
for different academic QA tasks. This compre-
hensive feature engineering ensures our model can
leverage both content semantics and academic im-
pact signals.

We then employ HGT to encode graph struc-
ture. HGT is particularly suitable for academic
networks where nodes and relationships naturally
possess varying semantic importance. Unlike tra-
ditional GNNs that treat all nodes homogeneously,
Unlike traditional GNNs that treat all nodes ho-
mogeneously, HGT incorporates type-aware atten-
tion mechanisms that effectively capture this het-
erogeneity, allowing the model to differentiate be-
tween various node and edge types through special-
ized attention calculations:

h
(l)
i =

∑

j∈N (i)

∑

r∈R
α
(l)
i,j,r ·W(l)

r h
(l−1)
j (2)

where h
(l)
i represents the l-th layer embedding of

node i, N (i) denotes its neighbors, R is the set
of relation types, α(l)

i,j,r are type-aware attention

weights, and W
(l)
r are relation-specific transforma-

tion matrices. This encoding captures the seman-
tic importance variations essential for subsequent
metapath selection.

The model is trained with a link prediction objec-
tive tailored to the target task. The output embed-
dings encode both local neighborhood information
and global patterns, forming the basis for metapath
selection.

3.2 Adaptive Metapath Selection
We leverage metapaths to capture structured evi-
dence in heterogeneous academic networks. Each
metapath π represents a sequence of relations con-
necting different node types.

We define four metapath templates: (1) APVPA
capturing venue-based author connections, (2)
VPAPV identifying venue relationships through
shared authors, (3) APA representing direct collab-
orations, and (4) OAPVPAO capturing institutional
connections. These templates, inspired by heteroge-
neous network embedding approaches (Dong et al.,
2017), comprehensively capture the semantic struc-
tures in academic heterogeneous graphs, providing
rich relational contexts for academic QA tasks.

For each query node, we first generate a can-
didate pool of metapath instances by identifying
semantically similar entities using cosine similarity
of HGT embeddings as semantic starting points.
This approach leverages the encoded structural rep-
resentations to identify relevant subgraphs for ex-
ploration.

Unlike traditional approaches using manually
defined importance, we employ FastGTN to learn
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Figure 1: HetGCoT Overall architecture.

relationship importance weights automatically:

H(l,c) = σ




|R|∑

r=1

α
(c)
l,rA

(r)H(l−1,c)W(l,c)


 (3)

where H(l,c) denotes the representation at the
l-th layer in channel c, α(c)

l,r are the learned relation
importance weights crucial for metapath scoring,
A(r) represents the adjacency matrix for relation
type r, and σ is the activation function.

We train FastGTN with a self-encoding objec-
tive, minimizing reconstruction error for paper
nodes. This approach offers two key advantages:
it requires no additional labeling, enabling fully
unsupervised learning of relation importance; and
it forces the model to identify which relation com-
binations best preserve node semantics. Notably,
we repurpose FastGTN as an explanation generator
rather than a classifier, extracting relation impor-
tance weights that quantify the semantic signifi-
cance of different metapaths. Importantly, we use
frozen HGT embeddings as input features to Fast-
GTN, ensuring complementarity between the two
models: HGT provides node-level semantic em-
beddings, while FastGTN discovers global relation
patterns.

After training, we extract relation importance
weights from the model by averaging weights
across all layers and channels. We then score each
metapath instance by summing the learned impor-
tance weights of its constituent edges:

scorenorm(π) =

∑
(u,v)∈π wψ(u,v)

|π|γ (4)

where π denotes a metapath instance, wψ(u,v)
represents the FastGTN-learned weight for edge
(u, v) of type ψ(u, v), and γ ∈ [0, 1] controls
length normalization, with larger values increas-
ingly penalizing longer paths.

We employ a stratified selection strategy, tak-
ing the top-k paths from each template to ensure
structural diversity rather than global ranking. This
approach guarantees that all semantic templates are
represented, the highest quality instances within
each category are selected, and no single template
dominates due to higher absolute scores. We em-
pirically set k=5 to optimize the trade-off between
contextual richness and prompt manageability.
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3.3 Metapath Naturalization and
Chain-of-Thought Enhanced Academic
Reasoning

Metapath Naturalization To bridge the gap be-
tween graph structure and language models, we
transform the selected metapaths into natural lan-
guage descriptions. This transformation follows
a template-based approach, where each metapath
type is associated with a specific language template
that captures its semantic meaning. Each natural
language description is prefixed with a confidence
score derived from the FastGTN path scoring mech-
anism, allowing the LLM to weigh structural evi-
dence according to its reliability. This naturaliza-
tion process converts graph structural patterns into
coherent textual contexts that LLMs can effectively
process and reason about.

Multi-step Reasoning Framework We design a
structured four-step reasoning framework that sys-
tematically integrates graph-derived information
with content analysis. This CoT approach follows
the cognitive process adaptable to different aca-
demic QA tasks:

1. Graph Structure Analysis: The model pro-
cesses naturalized metapath (VPAPV, APVPA) in-
formation to understand structural patterns in the
academic network, focusing on relationship evi-
dence pointing to potential answers.

2. Content Analysis: Examines the target pa-
per’s specific information (title, abstract, keywords,
citation metrics) to identify thematic alignment
with candidate answers.

3. Collaboration Analysis: Analyzes author col-
laboration patterns using author-centric metapaths
(APA, OAPVPAO) to identify research communi-
ties and publication preferences.

4. Answer Generation: Synthesizes insights
from the previous steps to generate answers with
comprehensive explanations.

Each reasoning step receives specifically tailored
input information and questions that guide the rea-
soning process. This structured decomposition im-
proves reasoning transparency while maintaining
adaptability across different academic QA scenar-
ios.

3.4 LLM Enhancement

We enhance the LLM’s reasoning capabilities
through prompt engineering and task-specific fine-
tuning. The prompt template includes a sys-
tem message defining the model’s role as an aca-

demic QA expert and establishing task-relevant
constraints. The user message structures input ac-
cording to our four-step reasoning process.

We fine-tune the model (GPT-4o mini) on
datasets containing structured reasoning examples
across academic QA tasks. During fine-tuning, we
optimize the probability of generating correct an-
swers conditioned on both query semantics and
graph-derived contexts:

L = argmax
θ

logP (a|q,Ms; θ) (5)

L = argmax
θ

log
∑

m∈Ms

scorenorm(m)

· P (a|q, naturalize(m); θ)

(6)

where a denotes the target answer, q represents
the input query, Ms is the set of selected metapaths,
scorenorm(m) are the FastGTN-learned confidence
weights from Equation (4), and naturalize(m)
transforms metapath m into natural language con-
text for LLM processing.

This process teaches the model to: (1) interpret
naturalized metapaths as structural evidence, (2)
extract relevant information from multiple sources,
and (3) generate evidence-supported answers con-
necting structural patterns with semantic under-
standing.

During inference, we construct task-specific
prompts incorporating adaptive metapath informa-
tion and query details. This integration creates
transparency in the answering process, providing
users with clear explanations grounded in both net-
work structure and content semantics.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate the proposed HetGCoT
framework on two academic datasets, OpenAlex
and DBLP. To ensure paper quality and the inter-
pretability of results, we extracted a random sub-
graph from OpenAlex limited to journals ranked
"A" or higher according to the CORE list (a widely
used venue ranking system for computing research
primarily in Australia and New Zealand), while for
DBLP, we randomly sampled a subgraph from the
entire dataset. We train the models separately on
these two datasets. Table 1 summarises the statis-
tics of the heterogeneous graphs extracted for our
experiments. For each node type, we retain the
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Table 1: Statistics of experimental datasets.

Feature OpenAlex DBLP

Total Nodes 76,569 62,443
Total Edges 105,290 79,697

Node Distribution
venue 111 51
paper 22,028 17,850
author 54,430 44,542

Edge Distribution
paper-venue 22,028 17,850
paper-author 83,262 61,847

following attributes: venue (type, name); paper
(type, keywords, abstract, citations, FWCI (field-
weighted citation impact), title, year); author (type,
organization, name). All textual fields are encoded
using Sentence-BERT, yielding initial node repre-
sentations that capture semantic content in titles,
abstracts, and keywords.

Evaluation Metrics We report four metrics: Hit
(%)—measures whether any of the true answers
are found in the generated response, which is typ-
ically employed when evaluating LLMs; H@1
(%)—the accuracy of the top/first predicted answer;
F1 (%)—harmonic mean of precision and recall;
and NDCG (%)—which weights higher-ranked
correct answers more heavily.

4.2 Baseline Methods

We compare HetGCoT with three categories of
representative baseline methods:

• Pure GNN Methods:
GCN (Kipf and Welling, 2017): Basic graph
convolutional network that processes homoge-
neous graph structures
GAT (Veličković et al., 2018): Graph attention
network that captures relative importance be-
tween nodes through attention mechanisms
HGT (Hu et al., 2020a): Heterogeneous Graph
Transformer, an architecture designed specifi-
cally for heterogeneous graphs

• Pure LLM Methods:
GPT-4o mini: Base LLM performance in zero-
shot settings
GPT-4o mini+CoT: GPT-4o mini model with
Chain-of-thought reasoning

LLaMA 3 8b+CoT: LLaMA 3 8B model with
Chain-of-thought reasoning

• Graph+LLM Integration Methods:
PathRAG (Chen et al., 2025): Retrieval-
augmented reasoning based on graph paths
GraphPrompter (Liu et al., 2024): Graph-
structured prompting framework
GraphCoT (Jin et al., 2024): Integrating graph
structural information into chain-of-thought rea-
soning
HiGPT (Tang et al., 2024): Heterogeneous
graph language model for graph-based reasoning
Graph of Thoughts (Besta et al., 2024): Graph-
based thought reasoning framework
Think-on-Graph (Sun et al., 2023): Deep rea-
soning executed on graph structures

We further conduct ablation studies with dif-
ferent LLM sizes: Qwen-2.5 1.5B, Qwen-2.5 7B,
LLaMA-2 7B, LLaMA-2 13B, and LLaMA-3 8B,
assessing the framework’s adaptability to varying
foundation-model capacities.

4.3 Results
Results on Journal Recommendation While our
framework is designed for general academic QA
tasks, we primarily demonstrate its effectiveness
through journal recommendation due to its repre-
sentative complexity and practical importance. Ta-
ble 2 presents a comprehensive performance com-
parison of HetGCoT against all baseline methods
on the OpenAlex and DBLP datasets.

The experimental results reveal several key in-
sights. There is a clear performance improvement
trend from pure GNN methods to pure LLM meth-
ods to graph+LLM integration methods, indicating
the importance of combining structural informa-
tion with language models. Pure GNN methods
(e.g., GCN, GAT, HGT) show limited performance
in capturing graph structural information, achiev-
ing up to 65.83% Hit rate and 22.36% H@1 ac-
curacy. In contrast, pure LLM methods demon-
strate stronger capabilities in semantic understand-
ing, reaching 75.14% Hit rate.

Our HetGCoT framework outperforms all base-
line methods across all metrics, achieving 96.48%
Hit rate, 92.21% H@1, and 79.90% F1 score on
OpenAlex on the journal recommendation task.
This improvement can be attributed to our frame-
work’s structure-aware mechanism and multi-step
reasoning strategy, which effectively integrates het-
erogeneous graph information with language model
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Table 2: Performance comparison of HetGCoT against baseline methods on the academic journal recommendation
task.

OpenAlex DBLP

Category Method Hit (%) H@1 (%) F1 (%) NDCG (%) Hit (%) H@1 (%) F1 (%) NDCG (%)

Pure GNN
GCN 59.49 13.92 11.82 57.08 49.84 12.48 10.85 53.29
GAT 60.14 20.68 16.02 55.54 58.28 18.39 12.56 55.54
HGT 65.83 22.36 17.20 60.59 62.58 20.72 14.59 59.70

Pure LLM
GPT-4o mini 69.80 58.60 31.77 64.98 54.94 44.86 28.87 55.56
GPT-4o mini+CoT 75.14 58.62 49.50 70.83 61.60 50.74 40.29 58.47
LLaMA 3 8b+CoT 71.23 59.21 33.64 70.72 62.67 52.79 38.47 59.68

Graph+LLM

PathRAG 76.87 66.49 35.76 75.62 67.62 63.78 49.72 61.68
GraphPrompter 84.83 82.68 72.37 83.79 63.64 61.63 48.65 58.28
GraphCoT 90.47 88.25 75.39 89.59 72.79 69.62 52.67 70.72
HiGPT 90.58 88.37 76.16 87.49 81.55 79.12 60.57 78.86
Graph of Thoughts 92.57 90.48 76.37 89.86 80.07 79.52 59.83 75.69
Think-on-Graph 92.85 89.27 75.36 88.36 83.75 81.89 62.76 80.68

Ours HetGCoT 96.48 92.21 79.90 91.29 85.31 83.70 64.55 83.49

reasoning capabilities. Furthermore, HetGCoT
maintains strong performance on the DBLP dataset,
demonstrating that our method generalizes to dif-
ferent academic data environments.

Moreover, HetGCoT enhances the interpretabil-
ity of academic QA through its structured reasoning
approach. The adaptive metapath selection identi-
fies the most relevant structural evidence for each
query, while the four-step reasoning process gener-
ates transparent explanations that detail the model’s
analysis from graph patterns to semantic under-
standing, providing users with clear rationales for
each answer.

Model Generalization Capability To validate the
generalization capability of the HetGCoT frame-
work, we applied it to more general academic ques-
tion answering tasks beyond journal recommenda-
tion, including authorship identification QA (paper-
author relationships) and collaboration discovery
QA (author-author relationships). As shown in
Table 3, HetGCoT consistently improves perfor-
mance across these tasks. For authorship identifi-
cation QA, which requires understanding tempo-
ral relationships between authors and their pub-
lications, HetGCoT demonstrates substantial im-
provements over the zero-shot baseline across all
datasets. Similarly, for the more challenging col-
laboration discovery QA task, which involves iden-
tifying collaboration patterns between authors, our
framework delivers notable gains across all met-
rics. These results indicate that the combination
of structure-aware mechanism and multi-step rea-
soning in HetGCoT effectively adapts to various

general academic question answering scenarios.

Model Adaptability Experiments To verify the
plug-and-play nature of the HetGCoT framework
and the effect of model scale on performance, we
evaluated our method across different-sized LLMs
on the Openalex dataset, with results shown in Ta-
ble 4.

Two key trends emerge from the experimental
results. First, the HetGCoT framework consistently
improves performance across various LLM archi-
tectures, from smaller models like Qwen-2.5 1.5B
to larger ones such as LLaMA-3 8B, demonstrating
its plug-and-play nature. Second, we observe that
larger models achieve more substantial gains when
enhanced with HetGCoT. For instance, Qwen-2.5
7B improves from a zero-shot Hit rate of 47.00%
to 78.67%, while smaller models show more mod-
est improvements. This suggests that models with
greater capacity can better exploit the heteroge-
neous graph information provided by our frame-
work.

4.4 Ablation Study

To assess the contribution of each component in
our framework, we conducted a series of ablation
experiments on the Openalex Dataset, as shown in
Figure 2.

The ablation study reveals the importance of
each component in our framework. Comparing
the zero-shot baseline with the HGT+CoT variant
shows that incorporating chain-of-thought reason-
ing yields substantial performance gains. Further
analysis of individual reasoning steps indicates that
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Table 3: Performance on general academic QA tasks.

OpenAlex DBLP

Task Method Hit (%) H@1 (%) F1 (%) NDCG (%) Hit (%) H@1 (%) F1 (%) NDCG (%)

Authorship
Identification

Zero-shot 32.68 16.97 19.25 28.71 36.62 11.07 32.21 27.16
HetGCoT 84.42 74.12 82.22 90.00 86.12 75.86 82.71 81.72

Collaboration
Discovery

Zero-shot 22.11 6.53 7.37 15.24 40.91 15.09 50.91 35.92
HetGCoT 58.79 29.60 50.91 41.86 67.75 49.11 57.75 51.38

Table 4: Performance comparison of different-sized
LLMs within the HetGCoT framework.

Model Hit (%) H@1 (%) F1 (%)

Qwen-2.5 1.5B zeroshot 10.40 5.80 3.58
Qwen-2.5 1.5B+HetGCoT 15.33 6.67 4.40

Qwen-2.5 7B zeroshot 47.00 46.00 14.95
Qwen-2.5 7B+HetGCoT 78.67 62.67 34.70

LLaMA-2 7b zeroshot 25.34 11.29 8.98
LLaMA-2 7b+HetGCoT 38.63 34.28 11.24

LLaMA-2 13b zeroshot 44.68 32.78 16.32
LLaMA-2 13b+HetGCoT 59.56 46.48 28.46

LLaMA-3 8b zeroshot 52.47 31.46 24.59
LLaMA-3 8b+HetGCoT 75.33 65.33 34.45

Figure 2: Ablation study of HetGCoT framework com-
ponents.

each contributes to the final performance, with
step 2 (collaboration relationships) showing the
most impact when removed. The complete Het-
GCoT framework outperforms all partial config-
urations, indicating that the four-step reasoning
process works synergistically.

These results validate our design rationale: effec-
tively integrating heterogeneous graph information
with each step of the chain-of-thought reasoning
process can significantly enhance academic journal
recommendation performance.

5 Conclusion

In this work, we proposed HetGCoT, a frame-
work that integrates heterogeneous graph neural
networks with large language models for academic

question answering. Our framework introduces
three main contributions: (1) a unified framework
that transforms heterogeneous graph structural in-
formation into natural language reasoning chains,
(2) an adaptive metapath selection mechanism that
identifies relevant subgraphs for academic queries,
and (3) a multi-step reasoning strategy that incorpo-
rates graph-derived contexts into chain-of-thought
prompting. Through comprehensive experiments
on OpenAlex and DBLP datasets, we demonstrated
that HetGCoT significantly outperforms baseline
methods. We also validated the framework’s adapt-
ability across different LLM architectures. Future
work could extend this approach to more complex
academic reasoning tasks, incorporate additional
relationship types in scholarly networks, and scale
to larger interdisciplinary datasets. The combina-
tion of structural graph information with language
model reasoning presents promising directions for
academic information processing systems.

Limitations

While our work demonstrates the effectiveness of
integrating heterogeneous graph neural networks
with LLMs, several limitations should be acknowl-
edged. Firstly, the LLM outputs exhibit some in-
stability across different runs, particularly for com-
plex queries requiring multi-step reasoning. Al-
though we fine-tuned the LLMs to improve stabil-
ity, future work could explore more robust methods
for ensuring consistent reasoning paths. Addition-
ally, the computational requirements for process-
ing large heterogeneous academic graphs remain
considerable, potentially limiting real-time applica-
tions without further optimization.
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A Appendix

A.1 Experiment Setup Detail
Dataset Detail We conduct experiments using
two publicly available academic datasets: Ope-
nAlex and DBLP.

OpenAlex License. OpenAlex is released un-
der the Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). This license allows for
reuse, redistribution, and modification, provided
that proper attribution is given. More information
is available at https://creativecommons.org/
licenses/by/4.0/.

DBLP License. The DBLP computer sci-
ence bibliography is provided under the Open
Data Commons Attribution License (ODC-BY
1.0). This license permits use, sharing, and adap-
tation of the dataset with attribution. Details
are available at https://opendatacommons.org/
licenses/by/1.0/.

Our dataset consists of three primary node
types—papers, venues, and authors—each with
distinct attribute sets as detailed in Table 5. The
graph structure captures the relationships between
these entities through directed edges. We split the
data into training and test sets in a 9:1 ratio.

Node Type Attribute Set
paper type, title, year, cited_count,

fwci, keywords, abstract
venue type, name
author type, name, organization

Table 5: Node types and their attribute sets.

The complete node and edge templates follow
this structure:

Node Templates:

• Paper: ID: <paper_id>, Attributes: {type, title,
year, cited_count, fwci, keywords[], abstract}

• Venue: ID: <venue_id>, Attributes: {type,
name}

• Author: ID: <author_id>, Attributes: {type,
name, organization}

Edge Templates:

• Paper-venue: (src: <paper_id>, dst:
<venue_id>), Attributes: {type: ’paper-venue’}

• Paper-author: (src: <paper_id>, dst:
<author_id>), Attributes: {type: ’paper-
author’}

Implementation Detail For Sentence-BERT, We
obtain a single 768-dimensional embedding per
node by concatenating its title, abstract, and key-
words into a Sentence-BERT model. This 768-
dimensional vector is then augmented with two
numeric attributes (total citation count and FWCI)
to form a 770-dimensional feature vector for each
paper node.

For HGT, We feed the 770-dimensional fea-
ture into a two-layer Heterogeneous Graph Trans-
former (HGT) with type-specific Q-K-V projec-
tions, 8 attention heads, and a hidden size of
d = 387. The model is trained for 100 epochs
using Adam (learning rate 1 × 10−3) on the pa-
per–venue link-prediction task. Final per-node em-
beddings (hi ∈ R387) are saved for downstream
use.

For TastGTN, a lightweight FastGTN autoen-
coder (7 layers, 8 channels, hidden size 64) is
trained to reconstruct the frozen HGT embeddings
(minimizing MSE(Zpaper, hpaper)) over 50 epochs
with Adam (learning rate 3× 10−3) on GPU. After
training, we extract the learned relation-importance
weights and score each candidate metapath by sum-
ming its edge weights.

A.2 Statistical Robustness Analysis
To verify the statistical robustness of our approach,
we conducted three independent runs with different
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random seeds on both datasets. Table 6 presents
the detailed results across all metrics.

Table 6: Statistical robustness analysis across three in-
dependent runs with different random seeds.

Dataset Run Hit H@1 F1 NDCG

OpenAlex

Run 1 95.73 91.45 82.91 91.29
Run 2 96.48 92.21 79.90 91.21
Run 3 96.50 92.00 78.00 92.00

Mean±Std 96.24±0.36 91.89±0.32 80.27±2.02 91.50±0.36

DBLP

Run 1 85.31 83.70 64.55 83.49
Run 2 84.70 83.60 64.66 83.39
Run 3 85.27 83.75 64.38 83.46

Mean±Std 85.09±0.28 83.68±0.06 64.53±0.12 83.45±0.04

The results demonstrate consistent performance
across multiple runs. This consistency confirms
the stability of our approach across different exper-
imental conditions.

A.3 Evaluation with Reasoning-Type LLMs

To assess the compatibility of our framework with
advanced reasoning-type language models, we con-
ducted additional experiments using OpenAI o3
and DeepSeek-R1 without fine-tuning. Table 7
presents the comparative results.

Table 7: Performance comparison with reasoning-type
LLMs.

Dataset Model Hit H@1 F1 NDCG

OpenAlex

o3 74.82 59.46 39.56 65.38
o3+HetGCoT 90.90 86.18 68.75 85.46

DeepSeek-R1 73.58 60.38 41.51 62.26
DeepSeek-R1+HetGCoT 92.16 88.24 74.51 78.43

HetGCoT (ours) 96.48 92.21 79.90 91.29

DBLP

o3 62.58 51.67 41.60 60.08
o3+HetGCoT 78.14 68.62 53.54 67.83

DeepSeek-R1 63.16 57.89 43.86 59.65
DeepSeek-R1+HetGCoT 79.60 71.43 61.22 69.39

HetGCoT (ours) 85.31 83.70 64.55 83.49

The results demonstrate that our HetGCoT
framework maintains its effectiveness when ap-
plied to reasoning-type language models, with con-
sistent performance improvements observed across
different model architectures.

A.4 Ablation Study

The details of our ablation study are shown in Ta-
ble 8.

Variant Hit (%) H@1 (%) F1 (%)

Zero-Shot (w/o CoT) 76.34 59.32 49.90
HGT+CoT w/o FastGTN 85.93 85.02 59.56
w/o CoT reasoning step 1 90.73 89.52 75.00
w/o CoT reasoning step 2 87.87 87.66 75.56
w/o CoT reasoning step 3 87.29 86.67 74.47
Full HetGCoT 96.48 92.21 79.90

Table 8: Ablation study of HetGCoT framework com-
ponents

A.5 Algorithm
The pseudocode of our method is shown in Table 9,
and all experiments were conducted on two A100
GPUs.

Algorithm 1 HetGCoT algorithm. G is a heterogeneous graph, q is the query, K is the number of
selected metapaths per template and γ is the length normalization factor

1: procedure HetGCoT(G, q,K, γ)
2: H ← HGT-ENCODE(G) ▷ Heterogeneous graph construction
3: W ← FASTGTN-TRAIN(G,H)
4: Sq ← COSINE-SIMILARITY(Hq, H)
5: MPcandidates ← GENERATE-METAPATHS(G,Sq) ▷ HGT Metapath Pool Generation
6: for mp ∈ MPcandidates do
7: scores[mp]←∑

(u,v)∈mp W [ψ(u, v)]/|mp|γ ▷ Adaptive Metapaths Selection
8: end for
9: MPselected ← STRATIFIED-TOP-K(scores,K)
10: for mp ∈ MPselected do
11: contexts← contexts ∪ NATURALIZE(mp, scores[mp])
12: end for
13: prompt← CONSTRUCT-PROMPT(q, contexts)
14: answer← LLM-COT-REASONING(prompt) ▷ 4-step reasoning
15: return answer
16: end procedure

Table 9: HetGCoT algorithm.

A.6 Prompt Templates
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System Prompt

You are a professional academic journal recommendation expert. Your task is to recommend the three most suitable
journals for publishing the provided paper information, following the specified reasoning steps, and to explain the reasons
for each recommendation in detail. Please note:
• Each paper can have only one correct publishing journal, which should be placed at the top of the recommendation list.
• Please strictly follow the reasoning steps below and use the provided specific related information to answer within the
given journal list.

User Prompt

Please recommend the three most suitable journals for publishing this paper based on the following information, strictly
following the specified reasoning steps, and explain the reasons.

Step 1: Learn the graph structure information related to each journal based on the following predefined metapaths
Question: Based on the following predefined metapaths, learn the graph structure information related to each journal.
Provided Information:
[Metapaths]
APVPA Metapaths with confidence score:
APVPA Metapath 1
APVPA Metapath 2
APVPA Metapath 3
APVPA Metapath 4
APVPA Metapath 5
VPAPV Metapaths with confidence score:
VPAPV Metapath 1
VPAPV Metapath 2
VPAPV Metapath 3
VPAPV Metapath 4
VPAPV Metapath 5
—
Step 2: Identify the core themes and keywords of the paper, and define the paper’s research field
Question: Based on the following paper description, identify the core themes and keywords of the paper, its impact level,
and determine its research field.
Provided Information:
[Paper Description]
Paper [ ], titled [ ], has [ ] citations, FWCI (Field-Weighted Citation Impact) of [ ], authored by [ ], published in [ ], topics:
[ ], abstract: [ ]
—
Step 3: Analyze the collaboration information of the authors
Question: Based on the following collaboration relationships, analyze the collaboration status between the authors, their
common research directions, and joint publications.
Provided Information:
[Collaboration Relationships]
Author [ ] is affiliated with [ ], mainly publishes papers in journals such as . . .
Author [ ] is affiliated with [ ], mainly publishes papers in journals such as . . .
—
Step 4: Based on the above information, recommend the three most suitable journals for publishing this paper
from the journal list below, sorted by probability from high to low, and explain the reasons
Question: Based on the above analysis of the paper’s content, authors’ backgrounds, collaboration relationships, and the
learned graph structure information, recommend the three most suitable journals for publishing this paper from the journal
list below, sorted by probability from high to low, and provide detailed reasons for each recommendation.
Provided Information:
[Journal List]
- 1. . . .
- 2. . . .
- 3. . . .
- 4. . . .
- 5. . . .

Assistant Response Format

Recommended Journals:
1. . . .
2. . . .
3. . . .
Detailed explanation according to the reasoning procedure

Table 10: Prompt template for journal recommendation.
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System Prompt

You are an academic graph-reasoning assistant. Your task is to analyze paper authorship patterns to predict which papers
are most likely written by a specific author. Please strictly follow the provided reasoning steps and use the provided graph
structure information and paper context to make your predictions.
• Each query focuses on one target author and requires selecting the three most likely papers from five candidates.
• Please strictly follow the reasoning steps below and use the provided metapath information and paper descriptions.

User Prompt

Please identify the three most likely papers written by the target author based on the following information, strictly
following the specified reasoning steps.

Step 1: Graph Structure via Metapaths
Question: Based on the following metapaths, learn the academic heterogeneous graph structure and relationships.
Provided Information:
[Metapaths]
APVPA Metapaths with confidence score:
APVPA Metapath 1
APVPA Metapath 2
APVPA Metapath 3
APVPA Metapath 4
APVPA Metapath 5
VPAPV Metapaths with confidence score:
VPAPV Metapath 1
VPAPV Metapath 2
VPAPV Metapath 3
VPAPV Metapath 4
VPAPV Metapath 5
—
Step 2: Paper Context
Question: Based on the following paper description, understand the research content, themes, and academic context.
Provided Information:
[Paper Description]
Paper [ ], titled [ ], has [ ] citations, FWCI (Field-Weighted Citation Impact) of [ ], published in [ ], topics: [ ], abstract: [ ]
—
Step 3: Make Prediction
Question: Based on the above analysis of the graph structure and paper context, choose the three most likely papers written
by author {author} from the paper list below, sorted by probability from high to low.
Provided Information:
[Paper List]
- {paper_1}
- {paper_2}
- {paper_3}
- {paper_4}
- {paper_5}

Based on the analysis, the three most likely papers are:
1. {paper_1}
2. {paper_2}
3. {paper_3}
Detailed explanation according to the reasoning procedure

Table 11: Prompt template for authorship identification (paper- author relationships).
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System Prompt

You are an academic graph-reasoning assistant. Your task is to analyze academic collaboration networks to predict which
researchers are most likely to be collaborators of a specific author. Please strictly follow the provided reasoning steps and
use the provided graph structure information and paper context to make your predictions.
• Each query focuses on one target author and requires selecting the three most likely collaborators from five candidates.
• Please strictly follow the reasoning steps below and use the provided metapath information and paper descriptions.

User Prompt

Please identify the three most likely collaborators of the target author based on the following information, strictly following
the specified reasoning steps.

Step 1: Graph Structure via Metapaths
Question: Based on the following metapaths, learn the academic heterogeneous graph structure and author relationships.
Provided Information:
[Metapaths]
APVPA Metapaths with confidence score:
APVPA Metapath 1
APVPA Metapath 2
APVPA Metapath 3
APVPA Metapath 4
APVPA Metapath 5
VPAPV Metapaths with confidence score:
VPAPV Metapath 1
VPAPV Metapath 2
VPAPV Metapath 3
VPAPV Metapath 4
VPAPV Metapath 5
—
Step 2: Paper Context
Question: Based on the following paper description, understand the research domain and collaboration context.
Provided Information:
[Paper Description]
Paper [ ], titled [ ], has [ ] citations, FWCI (Field-Weighted Citation Impact) of [ ], published in [ ], topics: [ ], abstract: [ ]
—
Step 3: Make Prediction
Question: Based on the above analysis of the graph structure and research context, choose the three most likely collaborators
of author {author_id} from the researcher list below, sorted by probability from high to low.
Provided Information:
[Author List]
- {author_1}
- {author_2}
- {author_3}
- {author_4}
- {author_5}

Based on the analysis, the three most likely collaborators are:
1. {author_1}
2. {author_2}
3. {author_3}
Detailed explanation according to the reasoning procedure

Table 12: Prompt template for collaboration discovery (author-author relationships).
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