
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 15860–15879
November 4-9, 2025 ©2025 Association for Computational Linguistics

MRFD: Multi-Region Fusion Decoding with Self-Consistency for
Mitigating Hallucinations in LVLMs

Haonan Geλ Yiwei Wangλ* Ming-Hsuan Yangλ Yujun Cai†
λ Department of Computer Science and Engineering, University of California at Merced

†The University of Queensland
gehaonan82@gmail.com wangyw.evan@gmail.com

Abstract

Large Vision-Language Models (LVLMs) have
shown strong performance across multimodal
tasks. However, they often produce hallu-
cinations—text that is inconsistent with vi-
sual input, due to the limited ability to ver-
ify information in different regions of the
image. To address this, we propose Multi-
Region Fusion Decoding (MRFD), a training-
free decoding method that improves factual
grounding by modeling inter-region consis-
tency. MRFD identifies salient regions using
cross-attention, generates initial responses for
each, and computes reliability weights based on
Jensen-Shannon Divergence (JSD) among the
responses. These weights guide a consistency-
aware fusion of per-region predictions, using
region-aware prompts inspired by Chain-of-
Thought reasoning. Experiments across multi-
ple LVLMs and benchmarks show that MRFD
significantly reduces hallucinations and im-
proves response factuality without requiring
model updates.

1 Introduction

Large Vision-Language Models (LVLMs) have
emerged as powerful tools for multimodal under-
standing, achieving significant advances in image
captioning, visual question answering, and visual
reasoning (Alayrac et al., 2022; Liu et al., 2023b;
Li et al., 2023a; Zhu et al., 2023; Xia et al., 2024;
Li et al., 2025b,a). However, these models fre-
quently generate hallucinated content, producing
textual outputs inconsistent with the visual input.
This phenomenon poses substantial challenges for
reliability and practical deployment (Ji et al., 2023;
Liu et al., 2024). Hallucinations typically manifest
as misidentified objects, fabricated attributes, or
omitted visual information, reducing the factual
alignment between image and text.
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Question: Please describe the image in details.

A man is riding Bicycle along the road. Only 
one car is behind him.

The image features a white car is stopped in 
front of a bus station.

The image features a man on a bike riding
past a red car. Caption 3

Caption 2

Caption 4

Answer: The image features a white car in front of a 
bus. A man is riding a motorcycle along the road.

Select

Top K

The image features a 
man on a bike past a bus. 

A white car is driven
before a bus station.

JSD-Weighted Block

Please describe the image. Caption k

Caption 1

Figure 1: The MRFD process: leveraging multiple re-
gional responses (Captions 1-4), a JSD-Weighted Block
derives consistency weights to guide a prompted fusion
decoding, yielding a more reliable output.

This issue is especially prominent in scenarios
that require fine-grained understanding or inter-
pretation of visually complex scenes. Current ap-
proaches include training-based solutions like data
augmentation and fine-tuning, which improve fac-
tual grounding but require considerable resources
and often lack generalization (Rohrbach et al.,
2018; Gunjal et al., 2024). Training-free alter-
natives such as chain-of-thought prompting (Wei
et al., 2022) and contrastive or corrective decoding
methods (Li et al., 2023b; Leng et al., 2024; Favero
et al., 2024; Woo et al., 2024; Huang et al., 2024;
Zhang et al., 2025a) offer flexibility, but they often
rely on carefully crafted prompts or fail to exploit
intrinsic visual information fully.

A key limitation shared by many of these ap-
proaches is their tendency to process images holis-
tically or to analyze regions in isolation, often with-
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out dynamic mechanisms to assess the reliability of
different visual cues or to reconcile potentially con-
flicting interpretations from multiple perspectives.
Consequently, explicit consistency-based reasoning
across various image segments is rarely integrated
into current decoding procedures (Feng et al., 2024;
Zhang et al., 2021).

Our analysis (Section 3) highlights that some
image regions provide more trustworthy evidence
than others. In particular, we observe that the con-
sistency of region-level responses, which are quan-
tified by Jensen-Shannon Divergence (JSD), corre-
lates with their factual correctness (see Section 3.2).
This strong correlation indicates that inter-region
agreement is a key determinant of output quality:
responses consistent with the consensus view from
multiple regions are not only more factually ac-
curate but also demonstrate higher reliability and
lower hallucination rates.

To this end, we propose Multi-Region Fusion
Decoding (MRFD), a decoding strategy that aims
to incorporate multi-perspective reasoning into the
generation process. As illustrated in Figure 1,
MRFD identifies several salient regions in the im-
age based on attention mechanisms, then generates
an initial response for each. By computing Jensen-
Shannon Divergence (JSD) among these responses,
the method derives a set of consistency-based re-
liability weights. These weights are used during
decoding to combine predictions from all regions.
Furthermore, inspired by CoT prompting, we con-
struct region-aware prompts by combining the orig-
inal question with the initial analysis of each re-
gion, preserving the localized context throughout
the generation. The contributions of this work are:

• We propose a training-free decoding method
that integrates multiple region-level perspec-
tives, weighted by inter-region consistency, to
reduce hallucinations in LVLMs.

• We introduce a JSD-based scoring scheme
to quantify agreement among region-wise re-
sponses and guide reliability-aware fusion.

• We design a region-aware prompting strategy
to enhance contextual grounding during gen-
eration without modifying model parameters.

2 Related Work

LVLM Hallucinations and Grounding Deficien-
cies. Large Vision-Language Models (LVLMs) fre-
quently ’hallucinate’—generating text unsupported

by visual input (Ji et al., 2023; Liu et al., 2024).
This often stems from flawed visual grounding
due to various factors such as data biases or poor
connections between vision and language compo-
nents (Han et al., 2024; Jiang et al., 2024; Shu
et al., 2025; Wang et al., 2023a). Although stan-
dard attention mechanisms (Anderson et al., 2018)
and region-based analyzes (Li et al., 2022; Kamath
et al., 2021) aim to improve grounding, LVLMs
still struggle to reliably combine information from
multiple, potentially conflicting, image regions or
to assess their mutual consistency.

Limitations in Advanced Decoding and Fusion
Strategies. Advanced strategies to improve LVLM
outputs also exhibit limitations. Chain-of-Thought
(CoT) prompting (Wei et al., 2022; Zhang et al.,
2023; Lyu et al., 2023), while enhancing reason-
ing, may not ensure its steps visually align with
the image and can be sensitive to setup or resource-
intensive. Many training-free corrective or con-
trastive decoding methods (e.g., (Li et al., 2023b;
Leng et al., 2024; Favero et al., 2024; Woo et al.,
2024; Huang et al., 2024; Zhang et al., 2025a;
Wang et al., 2024)) struggle to capture finegrained
local image features and risk missing valid infor-
mation, resulting in poor grounding capabilities.
Moreover, when attempting to fuse information
from multiple sources—a concept for which con-
sistency has proven beneficial in language mod-
eling tasks (Wang et al., 2023b; Xiong et al.,
2023)—LVLMs face distinct challenges with vi-
sual regions. Common simplistic aggregation tech-
niques (like averaging) are often insufficient for
visual data, where the trustworthiness of different
regions can vary dramatically. A central challenge
thus remains: developing principled methods to ap-
propriately weigh and fuse evidence from diverse,
contextually-understood visual regions based on
their consistency.

3 Motivation

3.1 Global Decoding Misses Local Evidence
To explore whether visual grounding capability is
related to the hallucinations in LVLMs, we ana-
lyze their attention patterns during question an-
swering. Figure 2 shows a case where the model
is asked: “Is there a laptop in the image?” When
using the full image as input, the model outputs
“NO,” even though a laptop is present. The atten-
tion map shows that the model distributes focus
across unrelated regions.
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Q: Is there a laptop in the image?
A: No

Q: Is there a laptop in the image?
A: Yes

Figure 2: LVLM cross-attention patterns for "Is there
a laptop in the image?". (upper) Full image input re-
sults in scattered attention and potential error. (lower)
Cropped image input focused on the laptop yields con-
centrated attention and improved accuracy.

In contrast, when the image is cropped to a
salient region based on high attention (the desk
area), the model concentrates more narrowly on
the relevant evidence and correctly answers “YES.”
The localized input guides the model to verify only
what matters for the query, avoiding distractions
from the rest of the image.

This comparison reveals a key shortcoming of
global decoding: attention is easily diffused across
many areas, some of which may mislead the model.
In cluttered or ambiguous scenes, this often results
in factual errors. Cropped regions help narrow the
visual focus of the model, improving the quality of
the answer by strengthening the localized founda-
tion.

3.2 Region Consistency Reflects Reliability

However, not all regions—even attention-guided
ones—are equally reliable. Some may be visu-
ally ambiguous or contextually misleading. To
avoid overconfident on a single (possibly mislead-
ing) region, we adopt a self-consistency approach:
comparing multiple region-level responses. When
different views agree on an answer, that answer is
more likely to be trustworthy.

To test this, we run experiments using LLaVA-
1.5 on 3,000 MSCOCO validation samples, an-
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Figure 3: Density distribution of JS Divergence for
correct versus hallucinated LVLM responses, indicating
lower JSD correlates with higher factual accuracy.

notated with hallucination labels from the POPE
benchmark. For each image-question pair, we gen-
erate several responses from attention-guided im-
age patches, along with one from the full image.
For the output of each cropped region, we calcu-
late the Jensen-Shannon divergence (JSD) between
its response distribution and the average response
distribution across all regions.

Our results (illustrated in Figure 3) show a clear
distinction: JS Divergence for hallucinated answers
tends to concentrate around 0.06-0.07, whereas for
correct answers, it centers around approximately
0.02. This indicates that the JSD between a spe-
cific regional response and the average across re-
gions effectively reflects the level of hallucination
of that regional response: a lower JSD correlates
with fewer hallucinations. This finding resonates
with the principle of self-consistency (Wang et al.,
2023b), where agreement among multiple diverse
outputs often signals higher quality and reliability.
Motivated by this, we design a decoding strategy:
A mechanism that aggregates evidence from multi-
ple regions, and checks their agreement, can help
improve the robustness and factual grounding of
model predictions.

4 Method

4.1 Overview

Current LVLM decoding methods often suffer from
hallucinations due to the lack of multi-perspective
consistency checking, as discussed in Section 3.

To address this, we propose Multi-Region Fu-
sion Decoding (MRFD), a training-free decoding
strategy that enhances answer reliability through:
1) Attention-Guided Region Selection: selecting
salient regions based on attention maps; 2) Multi-
Region Analysis with JSD-Based Weighting: as-
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Question:
Is there a bicycle in the image?

LVLM

Select Top-K regions 
in attention map
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Caption:
A man on a bike ride past 
a bus.
Question:
Is there a bicycle in the image?
Please answer this question.
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Next token selection

Several buses are parked on 
the street next to each other.

A man on a bike ride past 
a bus.

A man is riding bicycle past a 
car.

A white bus is stopped at a 
bus stop.

r0

r1

r2

r3

rk Prompt

New prompt  

qk



Step 1: Attention-Guided Salient-Region Selection

Step 2: Consistency-Based Fusion Decoding

Candidate response
Multi-Region

Analysis

Crop
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Yes, there is a 
bicycle……

Output

Figure 4: Overall framework of Multi-Region Fusion Decoding (MRFD): Step 1 uses attention to select and crop
salient regions (vk), generates candidate responses (rk) per region, and computes JSD-based consistency weights
(wk) for each response. Step 2 forms new inputs per region with a candidate response and the original prompt. They
are all processed in parallel, fusing per-region logits using the weights wk during parallel decoding to select the
output tokens.

sessing consistency across regions using Jensen-
Shannon Divergence; 3) Consistency-Based Fusion
Decoding: fusing predictions weighted by their mu-
tual consistency. The full framework is illustrated
in Figure 4.

4.2 Attention-Guided Region Selection

Building on the multi-perspective verification ap-
proach motivated in Section 3, the first crucial step
in our MRFD’s framework is to identify and isolate
multiple informative regions from the input image
for focused and independent analysis.

Leveraging Cross-Attention for Region Identifi-
cation. To identify image regions most relevant to
the input query, we leverage the cross-attention
mechanisms already present in LVLM architec-
tures. Given an original image I0 and a text query
x, we compute the attention matrix A from the
LVLM’s cross-attention layers. Let HT ∈ Rn×d

represent the sequence of hidden states from the
textual input, and HV ∈ Rm×d represent those
from the visual input, where n and m denote se-
quence lengths and d represents the hidden dimen-
sionality.

The cross-attention weight matrix A ∈ Rn×m,
capturing alignment between textual and visual
modalities, is computed using scaled dot-product

attention(Vaswani et al., 2017):

A = softmax
(
(HTW

Q)(HV W
K)⊤√

dk

)
(1)

where WQ ∈ Rd×dk and WK ∈ Rd×dk are projec-
tion matrices for queries and keys, and dk is their
dimensionality.

To obtain an overall map of visual focus, we
aggregate these attention weights across the textual
dimension:

aj =
1

n

n∑

i=1

Aij for j = 1, . . . ,m (2)

This produces an aggregated attention vector a ∈
R1×m. Assuming the visual hidden states corre-
spond to a spatial grid of patches (d′ × d′ = m),
we reshape this vector into a 2D spatial attention
map:

Â = reshape(a, (d′, d′)) (3)

This spatial attention map Â visually highlights the
regions that the model finds most relevant to the
input query. By utilizing the model’s own attention
patterns, we can directly identify which parts of
the image are being primarily considered when
answering the query.

Selecting Salient Regions. Using the spatial at-
tention map Â, we identify the top-K most salient
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regions R1, R2, ..., RK within the original image.
To ensure diversity and comprehensive coverage,
we employ an integral image approach to efficiently
search for K non-overlapping or minimally over-
lapping regions that maximize summed attention
scores. For practical implementation, we constrain
these regions to be rectangular bounding boxes
with a maximum overlap (IoU) threshold between
any two regions to ensure diversity in the selected
perspectives.

For each selected region Rk, we crop the original
image to obtain a focused sub-image vk. This pro-
cess yields a set of K+1 visual inputs: the original
full image v0 = I0 and K cropped region images
{v1, v2, ..., vK}. These cropped regions represent
the most informative parts of the image with respect
to the input query, as determined by the model’s
own attention mechanism.

4.3 Multi-Region Analysis with JSD-Based
Weighting

Having selected salient regions, we now detail their
independent analysis and our JSD-based weighting
mechanism. This approach is crucial for assess-
ing inter-region consistency(Section 3.2). For each
selected region Rk, we process the corresponding
cropped sub-image vk through the LVLM to gener-
ate an initial analysis:

rk = LVLM(vk, x) (4)

where rk represents the LVLM’s response when
considering only the visual information from re-
gion k. We also generate a response r0 using
the original full image v0. The resulting set
{r0, r1, ..., rK} provides multiple perspectives on
the query, each grounded in different salient regions
of the image.

To assess the reliability of information from
each region, we measure the consistency between
region-specific analyses using Jensen-Shannon Di-
vergence (JSD). The JSD provides a symmetric
measure of similarity between probability distribu-
tions and is defined as:

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

(5)
where P and Q are two probability distributions,
M = 1

2(P +Q), and DKL is the Kullback-Leibler
divergence.

We derive a representative vocabulary distribu-
tion Pk for each initial analysis sequence rk by

averaging the next-token probability distributions
computed during generation:

Pk = softmax(
1

|rk|

|rk|∑

t=1

logitθ(y|rk,<t, x, vk))

(6)
where |rk| is the length of rk and logitθ represents
the model’s output logits. This distribution Pk cap-
tures the overall token prediction patterns when the
model considers region k. We then compute the
average distribution across all regions:

P =
1

K + 1

K∑

i=0

Pi (7)

For each region k, we calculate its divergence from
this average distribution:

Jk = JSD(Pk||P̄ ) (8)

These divergence scores measure how much each
region’s predictions deviate from the consensus. A
lower Jk indicates that region k provides informa-
tion more consistent with other regions, suggesting
higher reliability.

Finally, we convert these divergence scores into
weights with temperature parameter γ:

wk =
exp(−Jk/γ)∑K
i=0 exp(−Ji/γ)

(9)

The temperature parameter γ controls the sharp-
ness of the weight distribution—a smaller γ creates
more contrast between weights, while a larger γ
leads to more uniform weighting.

4.4 JS-Weighted Integrative Fusion Decoding

With the consistency-based weights wk computed
for each visual input vk (k = 0...K), we now perform
the final decoding step by fusing the next-token
predictions in a manner that prioritizes consistent
visual evidence.

Motivated by the effectiveness of Chain-of-
Thought (CoT) prompting (Wei et al., 2022) in
structuring reasoning, we adapt its core principle to
enhance factual grounding within our multi-region
fusion framework. For each region k, we construct
a fixed region-aware prompt qk by concatenating
the original question x and the corresponding re-
gion’s initial analysis rk:

qk = Concat(x, rk) (10)
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This prompt qk encapsulates both the global query
and the localized preliminary analysis derived from
vk. It serves as a static, enriched context for re-
gion k throughout the decoding process, providing
region-specific grounding information without re-
quiring dynamic prompt updates.

During autoregressive decoding, at each step t′,
the LVLM produces next-token logits ℓ(t

′)
k condi-

tioned on the current partial output sequence y<t′ ,
the visual input vk, and the fixed region-aware
prompt qk:

ℓ
(t′)
k = logitθ(y|y<t′ , vk, qk) (11)

These logits represent the prediction from each re-
gion’s perspective given its pre-computed analysis.
We aggregate them using the pre-computed consis-
tency weights wk:

ℓ
(t′)
fused =

K∑

k=0

wk · ℓ(t
′)

k (12)

The final probability distribution for the next
token is obtained via softmax:

P
(t′)
fused(y) = softmax(ℓ(t

′)
fused) (13)

The next token ŷt′ is then selected (e.g., sampling)
from this fused distribution, and the process repeats
autoregressively until completion.

5 Experiments

5.1 Experimental Settings
Evaluated LVLMs. We evaluate Multi-Region
Fusion Decoding (MRFD) on two representative
open-source LVLMs: LLaVA-1.5-7B (Liu et al.,
2023a) and InstructBLIP-7B (Dai et al., 2023).
These models adopt different vision-language inter-
faces—direct projection in LLaVA-1.5 and query-
based encoding (Q-Former (Li et al., 2023a)) in
InstructBLIP—enabling evaluation of MRFD’s
generality. MRFD is applied as a training-free,
decoding-time procedure on frozen models. Archi-
tectural details are provided in Appendix A.

Baselines. As a basic baseline, regular decod-
ing samples tokens from the model’s post-softmax
output probabilities. These include contrastive
methods such as VCD (Leng et al., 2024) and
M3ID (Favero et al., 2024), robustness-enhancing
methods like RITUAL (Woo et al., 2024), and ap-
proaches employing correction or feedback, such as
DeGF (Zhang et al., 2025b) and Woodpecker (Yin

et al., 2023). We also include comparisons with
other relevant methods: HALC (Chen et al., 2024),
and OPERA (Huang et al., 2024). Performance of
these baselines is based on our re-implementations
using publicly available code where possible. De-
tailed descriptions of each baseline’s methodology
are provided in Appendix B.

Implementation Details. Across all experiments,
our Multi-Region Fusion Decoding (MRFD)
method selects K = 3 salient regions and em-
ploys a temperature of γ = 0.02 for the JSD-based
weighting (Eq. 9). We utilize multinomial sam-
pling for both stages of decoding. Other detailed
settings are provided in Appendix C.

5.2 Datasets and Benchmarks

We evaluate MRFD on multiple benchmarks cover-
ing both hallucination detection and general vision-
language understanding. Below we briefly describe
the key datasets; full details and evaluation metrics
are provided in Appendix D.
POPE (Li et al., 2023c): A Yes/No QA bench-
mark for object existence hallucination, built from
MSCOCO, A-OKVQA, and GQA with various
negative sampling strategies.
CHAIR (Rohrbach et al., 2018): Measures hal-
lucinated object mentions in image captions via
CHAIRi and CHAIRs scores on MSCOCO images.
MME (Fu et al., 2023): We focus on the MME-
Hallucination subset, which tests object, count, po-
sition, and attribute hallucinations.

5.3 Results and Discussions

Results on POPE. In Table 1, we compare the per-
formance of our MRFD method against other base-
lines on the POPE benchmark (Li et al., 2023c) un-
der three different negative sampling settings (Ran-
dom, Popular, Adversarial), across both LLaVA-
1.5 and InstructBLIP. As shown, MRFD consis-
tently outperforms other decoding methods on both
LVLMs, achieving leading F1 scores across all
six configurations, with improvements of up to
2.44% in accuracy, 6.52% in precision, and 3.05%
in F1 score compared to the respective second-
best approaches. This suggests that MRFD’s
core strategy—identifying multiple salient regions
via cross-attention, assessing their response con-
sistency using JSD-weighting, and fusing their
context-enriched predictions—enables LVLMs to
better ground responses in relevant visual evidence,
thereby effectively addressing object hallucinations.
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Setting Method LLaVA-1.5 (Liu et al., 2023a) InstructBLIP (Dai et al., 2023)

Acc. ↑ Prec. ↑ F1 ↑ Acc. ↑ Prec. ↑ F1 ↑

Random

Regular 82.42 78.30 83.67 79.85 80.33 83.45
VCD (Leng et al., 2024) 84.69 80.30 85.85 84.47 83.07 84.81
M3ID (Favero et al., 2024) 85.46 81.54 86.42 85.32 83.51 85.58
RITUAL (Woo et al., 2024) 86.71 82.84 87.51 87.12 85.64 87.23
DeGF (Zhang et al., 2025b) 87.79 86.33 88.08 87.21 89.01 86.70
MRFD 88.15 88.91 88.23 88.03 88.74 88.01

Popular

Regular 76.57 71.23 79.56 75.17 70.90 77.54
VCD (Leng et al., 2024) 77.30 71.61 80.57 78.12 73.77 80.10
M3ID (Favero et al., 2024) 78.66 73.09 81.45 78.32 73.75 80.30
RITUAL (Woo et al., 2024) 79.75 74.55 82.31 78.40 73.63 80.55
DeGF (Zhang et al., 2025b) 81.94 78.33 83.31 80.37 78.84 81.24
MRFD 81.99 78.81 83.29 82.17 79.52 83.15

Adversarial

Regular 71.09 65.77 75.93 71.02 66.58 74.70
VCD (Leng et al., 2024) 71.13 65.28 76.37 73.07 68.50 76.36
M3ID (Favero et al., 2024) 72.10 66.27 76.87 72.97 67.92 76.55
RITUAL (Woo et al., 2024) 71.87 66.17 76.88 73.06 67.83 76.91
DeGF (Zhang et al., 2025b) 76.13 71.50 79.01 75.96 73.45 77.36
MRFD 77.99 76.16 79.22 77.72 74.26 79.72

Table 1: Results on POPE benchmark. Higher (↑) accuracy, precision, and F1 indicate better performance. The best
results are bolded, and the second-best are underlined.

Method LLaVA-1.5 InstructBLIP

Cs ↓ Ci ↓ Cs ↓ Ci ↓

Regular 26.2 9.4 31.2 11.1
VCD 24.4 7.9 30.0 10.1
M3ID 21.4 6.3 30.8 10.4
RITUAL 22.4 6.9 26.6 8.9
Woodpecker 24.9 7.5 31.2 10.8
HALC 21.7 7.1 24.5 8.0
DeGF 18.4 6.1 24.0 7.7

Ours (MRFD) 14.1 5.0 21.3 6.1

Table 2: Results on CHAIR benchmark for caption
generation. We limited the maximum number of new
tokens to 64. Lower (↓) CHAIRs (Cs) and CHAIRi
(Ci) indicate less hallucination. Best results are bolded,
second-best are underlined.

Moreover, while most decoding method tend to be
overcofident in nonexistence, the consistency verifi-
cation inherent in MRFD appears to promote more
cautious and precise responses, which is evidenced
by its strong precision, particularly in challenging
adversarial settings (e.g., 76.16 on LLaVA-1.5 and
74.26 on InstructBLIP), highlighting its enhanced
capability in filtering false positives and suppress-
ing misinformation. Detailed results of POPE are
attached in Appendix E.3.

Results on CHAIR. We evaluate MRFD’s effec-
tiveness in mitigating object hallucination in open-

ended image captioning using the CHAIR bench-
mark (Rohrbach et al., 2018), reporting CHAIRs
(Cs) and CHAIRi (Ci) scores (lower is better) for
LLaVA-1.5 and InstructBLIP in Table 2. MRFD
consistently achieves state-of-the-art performance
on both LVLMs, significantly outperforming the
strong DeGF baseline with relative CHAIR score
reductions of up to 16.4% on LLaVA-1.5 and 20.8%
on InstructBLIP. Given that the CHAIR task for
image captioning necessitates comprehensive at-
tention to diverse local details, MRFD’s superior
performance underscores its advanced capability
for robust multi-region analysis and effective inte-
gration of key information from various visual seg-
ments, leading to more factually grounded image
captions. Detialed results of CHAIR are appended
to Appendix E.1. Some qualitative examples are
shown in Appendix H.

Results on MME-Hallucination. We evaluate
MRFD on the MME hallucination subset (Fu et al.,
2023), which assesses diverse hallucination types
including object-level (Existence), attribute-level
(Count, Color), and relation-level (Position) under-
standing in LVLMs. As illustrated in Figure 5 (pre-
senting results for both LLaVA-1.5 and Instruct-
BLIP), our MRFD method consistently demon-
strates strong performance, achieving leading or
state-of-the-art results across the majority of these
hallucination categories for both evaluated LVLMs

15866



Existence Count Position Color
LlaVA-1.5

0

40

80

120

160

200

S
co

re
s

Regular

VCD

M3ID

RITUAL

DeGF

MRFD

Figure 5: Experimental results of MME on a hallucina-
tion subset with different decoding strategies.

when compared to regular decoding and other ad-
vanced baselines. This robust performance across
a spectrum of challenging hallucination types un-
derscores that MRFD’s core mechanism—multi-
region analysis coupled with consistency-driven
fusion—effectively enhances fine-grained visual
understanding and overall factual consistency. De-
tialed results of MME-Hallucination are appended
to Appendix E.2

Efficiency Discussion. Despite employing multi-
ple inference steps, MRFD maintains a competitive
efficiency profile, particularly when compared to
other advanced hallucination mitigation techniques
that involve more complex iterative or feedback
mechanisms. Details are in Appendix F.

5.4 Ablation Study

We conduct ablation studies to evaluate the impact
of key components and hyperparameters in MRFD,
using LLaVA-1.5 on the POPE-MSCOCO dataset.

First, we assess the contributions of MRFD’s
core designs: JSD-based Consistency Weighting
(CW), Fusion Prompt (FP), and attention-guided
Region Selection (RS). We test our full MRFD
against three main variants where these compo-
nents are individually altered: (1) MRFD w/o CW,
applying uniform fusion weights; (2) MRFD w/o
FP, using only the original question for regional
decoding; and (3) MRFD w/o RS, processing only
the global image through the subsequent pipeline
stages. As detailed in Table 3, full MRFD achieves
an 86.21 F1 score. Removing CW degrades F1
performance by 2.94%, underscoring the impor-
tance of dynamic, consistency-based weighting.
Omitting FP reduces F1 by 3.93%, highlighting
the value of enriched regional context. Bypassing
RS results in the largest F1 drop of 4.07%, empha-
sizing that robust multi-region analysis is funda-

Model Variants Acc. ↑ Prec. ↑ F1 Score ↑
MRFD (Full) 86.50 88.11 86.21

w/o CW 83.76 84.27 83.74
w/o FP 82.87 83.95 82.70
w/o RS 82.77 83.94 82.58
Regular 80.57 78.84 81.59

Table 3: Ablation study with different model variants
on POPE-COCO under the average of three settings .
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Figure 6: Sensitivity of POPE-COCO Precision
(LLaVA-1.5) to JSD weighting temperature γ for K =
2, 3, 4 regions, with optimal performance around γ =
0.02.

mental. Despite these impacts, all three ablated
MRFD variants still outperform Regular decoding
(81.59 F1), while the complete MRFD configura-
tion showcases the strongest synergistic benefits.

Second, we analyze the sensitivity to the JSD
weighting temperature γ (Eq. 9). As depicted in
Figure 6 (POPE COCO Precision for K = 2, 3, 4),
performance peaks around γ = 0.02 (K = 3 at
≈87.8% Prec.). Higher γ values (≥0.08) lead
to more uniform weights and correspondingly re-
duced precision, approaching unweighted fusion.
Conversely, very low γ values (≈0.01) cause over-
reliance on a few regions due to extreme weighting,
which can negatively impact robustness, particu-
larly for larger K (e.g., performance degradation
for K = 4). Thus, γ = 0.02 is adopted for pro-
viding an optimal balance. Further details are pre-
sented in Appendix G.

6 Conclusion

We presented Multi-Region Fusion Decoding
(MRFD), a training-free approach that improves
LVLM reliability by mimicking self-consistency
multi-view verification. MRFD identifies salient
regions via attention, estimates their reliability
using Jensen-Shannon Divergence (JSD), and
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fuses region-level predictions using consistency-
weighted, Chain-of-Thought-inspired prompts. Ex-
periments show that MRFD effectively reduces hal-
lucinations and improves factuality across various
LVLMs and benchmarks, offering a simple yet ro-
bust decoding strategy.

Limitations

MRFD relies on the quality and interpretability of
attention maps produced by the underlying LVLM,
which may vary across architectures and input con-
ditions. The assumption that inter-region consis-
tency indicates factual correctness holds empiri-
cally but may not generalize to all reasoning tasks,
especially those requiring abstract or commonsense
inference. Additionally, while MRFD improves
factuality in image-grounded tasks, it has not been
evaluated in broader multimodal contexts such as
video or dialogue-based grounding, which may in-
volve more complex temporal or conversational
dependencies.

Ethics Statement

Our work on Multi-Region Fusion Decoding
(MRFD) aims to improve the reliability and fac-
tual grounding of LVLMs, thereby contributing to
more trustworthy AI systems by reducing visual
hallucinations. We believe this has positive impli-
cations for applications where factual accuracy is
critical.
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A Evaluated LVLMs

We evaluate our proposed Multi-Region Fusion
Decoding (MRFD) framework on three representa-
tive open-source Large Vision-Language Models
(VLMs): LLaVA-1.5-7B (Liu et al., 2023a), and
InstructBLIP-7B (Dai et al., 2023). For the visual
encoder, LLaVA-1.5 uses ViT-L-336px pre-trained
from CLIP-L/14-336px (Radford et al., 2021). In-
structBLIP uses ViT-g/14 pre-trained from EVA-
CLIP (Sun et al., 2023). Qwen-VL uses Openclip
ViT-bigG (Ilharco et al., 2021). Regarding the lan-
guage model module, LLaVA-1.5 and InstructBLIP
both utilize Vicuna-7B (Chiang et al., 2023).

The vision-language interface varies across the
evaluated models. LLaVA-1.5 directly projects
visual features using MLP layers. InstructBLIP,
conversely, adopts the Q-Former (Li et al., 2023a),
which processes visual features via 32 learnable
queries to generate a standardized input for the
LLM. Our evaluation of MRFD encompasses these
distinct strategies—direct MLP projection and
query-based bottleneck (Q-Former)—to demon-
strate its broad effectiveness in mitigating hallu-
cinations regardless of the connection module em-
ployed.

B Baselines

We compare the performance of our MRFD method
with several recent training-free decoding ap-
proaches designed to mitigate hallucination. These
key baselines, along with their core methodologies,
are described below:

• VCD (Leng et al., 2024): This method con-
trasts output distributions derived from an
original visual input (v) and a distorted ver-
sion (v′). Given a textual query and v, the
model generates two distributions. The dis-
torted input v′ is created using pre-defined
distortions (e.g., a Gaussian noise mask) to v.
These two distributions are then contrasted to
form the final output probability. For repro-
duction, we follow VCD’s default setting with
α = 1 (a parameter controlling the contrast
strength) and use 500 noise steps to generate
v′. VCD aims to enhance visual grounding by
reducing reliance on language priors.

• M3ID (Favero et al., 2024): M3ID contrasts
output distributions from original visual in-
puts against those from pure text inputs (lack-
ing visual information). The final probability

distribution is a combination of the distribu-
tion conditioned on both vision and text, and
a contrastive term derived from the difference
between vision-conditioned and text-only con-
ditioned distributions, balanced by a hyperpa-
rameter λ. We adhere to their recommended
λ = 0.02. M3ID also seeks to improve visual
grounding by emphasizing visual information.

• RITUAL (Woo et al., 2024): RITUAL ap-
plies common image transformations (e.g.,
crop, flip, color jitter) to the original visual
input v, creating a transformed version v(T ).
It then generates the response by utilizing in-
formation from both the original (v) and trans-
formed (v(T )) images. The final probability
distribution combines logits from both views,
with the contribution of the transformed input
adjusted by a balancing hyperparameter κ. We
follow their official implementation, setting
κ = 3. This approach aims to improve robust-
ness through consistency across augmented
views.

• DeGF (Zhang et al., 2025b): DeGF introduces
a self-correction mechanism using feedback
from text-to-image generative models. Specif-
ically, it first generates an image based on the
LVLM’s initial textual response. This gener-
ated image then acts as an auxiliary visual ref-
erence, providing self-feedback to the LVLM
to verify and correct its initial response, often
through complementary or contrastive decod-
ing techniques.

• Woodpecker (Yin et al., 2023): Wood-
pecker is a post-hoc correction framework de-
signed to mitigate hallucinations in the out-
puts of Multimodal Large Language Models
(MLLMs). It operates by first prompting the
MLLM itself to identify potential hallucina-
tions (across several predefined types like ob-
ject existence, attributes, etc.) in its initial re-
sponse. If hallucinations are detected, Wood-
pecker then instructs the MLLM to revise and
correct these identified errors.

• HALC (Chen et al., 2024): HALC (e.g., "Mit-
igating Object Hallucinations in Large Vision-
Language Models via Cause Analysis and
Post-hoc Correction") is a post-hoc method
that first analyzes the potential causes of ob-
ject hallucinations to identify objects in the re-
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sponse that are likely to be hallucinated. Sub-
sequently, it instructs the LVLM to verify the
existence of these specific, suspect objects
within the image and make corrections if they
are indeed confirmed as hallucinations.

• OPERA (Huang et al., 2024): OPERA aims
to alleviate visual relation hallucinations in
LVLMs during decoding. It consists of two
main components: an Over-trust Penalty (OP)
term designed to penalize the model’s over-
confidence on unreliable visual relations dur-
ing token generation, and a Retrospection-
Allocation (RA) mechanism that encourages
the model to retrospect previously generated
tokens and re-allocate attention to relevant
visual regions for verification and potential
correction.

We report the performance of these baselines based
on our re-implementation using their released code
bases where available.

C Implementation Details

In all experiments using MRFD, we set the number
of regions K = 3 to obtain cropped images and
the temperature γ = 0.02 for JSD-based weight-
ing (Eq. 9). For the decoding process, we employ
multinomial sampling in both stages. Specifically,
during the first step to generate the initial analyses
rk, we use a sampling temperature of 0.7. In the
second step to generate the final output sequence y,
we use a lower sampling temperature of 0.1 after
fusing the logits.

To obtain the aggregated spatial attention map
Â (Eq. 3), we first average the attention weights
across all attention heads within the relevant
layer(s). For LLaVA-1.5, we utilize the attention
map from the final cross-attention layer. For In-
structBLIP, which uses Q-Former, we identify the
query token with the maximum aggregated atten-
tion score and use its corresponding attention map.
The spatial dimension d′ of the map Â corresponds
to the grid size of the visual patches (m = d′ × d′),
which is 24 × 24 for LLaVA-1.5 (ViT-L-336px)
and 16× 16 for the ViT-g/14 used by InstructBLIP.

To efficiently identify the top-K salient regions
{R1, ..., RK} based on Â, we employ an integral
image approach (Viola and Jones, 2001) to quickly
calculate the sum of attention scores within any
rectangular bounding box. We search for the K
non-overlapping or minimally overlapping rectan-

gular regions that maximize these summed atten-
tion scores. To ensure diversity in the selected
regions, we enforce a maximum Intersection over
Union (IoU) of 40% between any pair of selected
bounding boxes Ri and Rj (i ̸= j).

D Datasets and Benchmarks

We evaluate our MRFD framework on a diverse set
of benchmarks targeting both hallucination detec-
tion and general vision-language capabilities.

• POPE (Li et al., 2023c): POPE (Polling-
based Object Probing Evaluation) is a widely
used benchmark for assessing object exis-
tence hallucination in LVLMs. It presents
models with Yes/No questions concerning
the presence of specific objects (e.g., "Is
there a {object} in the image?"). The bench-
mark data is structured into three main sub-
sets derived from MSCOCO (Lin et al.,
2014), A-OKVQA (Schwenk et al., 2022),
and GQA (Hudson and Manning, 2019). Each
of these subsets is further divided based on
three negative sampling strategies for non-
existent objects: random, popular, and ad-
versarial, which vary in difficulty. For eval-
uation, we report standard metrics including
Accuracy, Precision, Recall, and F1 score.

• MME (Fu et al., 2023): MME serves as
a comprehensive benchmark for evaluating
overall LVLM perception and cognition. Our
evaluation specifically utilizes the MME-
Hallucination subset, which is designed to
assess a range of common hallucination types.
These are categorized into object-level assess-
ments like existence and count, and attribute-
level assessments such as object position and
color. Questions in this subset are typically
Yes/No queries. We report scores based on the
official benchmark protocol, which often in-
volves combined accuracy measures reflecting
both question-level and image-level correct-
ness.

• CHAIR (Rohrbach et al., 2018): The
CHAIR (Caption Hallucination Assessment
with Image Relevance) benchmark quanti-
fies object hallucinations within the context
of open-ended image captioning. LVLMs
are prompted to generate descriptive captions
for images, for which we, following prior
work (Lee et al., 2024), use a random selection
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of 500 images from the MSCOCO (Lin et al.,
2014) validation set. The generated captions
are then compared against ground-truth ob-
jects within the image to calculate the CHAIRi
(instance-level) and CHAIRs (category-level)
scores, where lower scores indicate fewer hal-
lucinations.

CHAIRS =
captions w/ hallucinated objects

all captions
,

CHAIRI =
hallucinated objects

all mentioned objects
.

(14)

• MMBench (Liu et al., 2023c): MMBench
evaluates a broad spectrum of multimodal ca-
pabilities through carefully curated multiple-
choice questions that span various cognitive
dimensions and skills. For this benchmark,
we adhere to the official evaluation protocol
and report the overall accuracy score.

E Detailed Results of experiments

E.1 Detailed Results of CHAIR
Detailed results of CHAIR are shown in Table 4
and Table 5, reporting CHAIRs (Cs) and CHAIRi
(Ci) scores (lower is better) for LLaVA-1.5 and
InstructBLIP. MRFD consistently achieves state-
of-the-art performance on both LVLMs.

Method
LLaVA-1.5 InstructBLIP

Cs ↓ Ci ↓ Cs ↓ Ci ↓
Regular 55.0 16.3 57.0 17.6
VCD 54.4 16.6 60.4 17.8
M3ID 56.6 15.7 62.2 18.1
RITUAL 49.6 14.8 48.4 14.5
Woodpecker 57.6 16.7 60.8 17.6
HALC 51.0 14.8 53.8 15.7
DeGF 48.8 14.6 49.2 14.4

Ours (MRFD) 37.1 9.2 38.2 10.9

Table 4: Results on CHAIR benchmark for caption
generation. We limited the maximum number of new
tokens to 128. Lower (↓) CHAIRs (Cs) and CHAIRi
(Ci) indicate less hallucination. Best results are bolded,
second-best are underlined.

E.2 Detailed Results of MME
In table 7 and Figure 7, we provide detailed results
on the MME-Hallucination benchmark (Fu et al.,

Method LLaVA-1.5 InstructBLIP

Cs ↓ Ci ↓ Cs ↓ Ci ↓
Regular 58.0 17.7 61.0 18.2
VCD 58.2 16.7 63.0 18.6
M3ID 56.8 16.1 65.8 19.9
RITUAL 51.0 15.1 50.4 15.3
DeGF 49.8 14.7 49.8 15.1

Ours (MRFD) 39.0 11.0 38.6 11.3

Table 5: Results on CHAIR benchmark for caption
generation. We limited the maximum number of new
tokens to 256. Lower (↓) CHAIRs (Cs) and CHAIRi
(Ci) indicate less hallucination. Best results are bolded,
second-best are underlined.

2023) for both LLaVA-1.5 and InstructBLIP. The
table includes scores for object-level (existence,
count) and attribute-level (position, color) tasks,
and averages the score across three random seeds.
The best results are bolded, and the second-best are
underlined.
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Figure 7: Experimental results of MME with different
decoding strategies.

E.3 Detailed Results of POPE

In table 6, we provide detailed results on the POPE
benchmark (Li et al., 2023c) for both LLaVA-1.5
and InstructBLIP across three different settings
(Random, Popular, Adversarial). The table in-
cludes accuracy (Acc.), precision (Prec.), recall,
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and F1 scores for each method. The best results are
bolded, and the second-best are underlined.

F Efficiency Comparison

We report MRFD’s efficiency on the CHAIR bench-
mark with two backbones—InstructBLIP-7B and
LLaVA-1.5-7B—under the same decoding setup
(128 max tokens, RTX 3090 GPU). With multi-
region (K=3) analysis and fusion, MRFD in-
creases latency by about ∼2.84× (from 3.59 s
to 10.21 s) and peak GPU memory by ∼1.11×
(from 15,238 MB to 16,932 MB) relative to Reg-
ular decoding on InstructBLIP-7B (Table 8). On
LLaVA-1.5-7B, MRFD shows a ∼3.30× latency
increase (3.44 s → 11.34 s) and a ∼1.11× memory
increase (15,778 MB → 17,458 MB) over Regu-
lar (Table 9). Despite this overhead—and com-
pared to lighter baselines such as VCD or the post-
hoc Woodpecker—MRFD remains markedly more
efficient than iterative/feedback-heavy methods
(DeGF, OPERA, HALC), while achieving the best
CHAIRs (lower is better): 38.2 on InstructBLIP-
7B and 37.1 on LLaVA-1.5-7B, representing ∼33%
and ∼32.5% reductions from their respective Reg-
ular baselines. Overall, MRFD offers a compelling
balance between computational cost and hallucina-
tion reduction.

Method Avg. Lat. ↓ GPU Mem. ↓ CHAIRs ↓
Regular 3.59 s 15,238 MB 57.0
VCD 6.82 s 16,078 MB 60.4
OPERA 25.31 s 23,575 MB 62.2
Woodpecker 11.72 s 22,798 MB 60.8
HALC 21.84 s 22,689 MB 53.8
DeGF 14.69 s 18,726 MB 49.2

Ours (MRFD) 10.21 s 16,932 MB 38.2

Table 8: Efficiency comparison on InstructBLIP-7B.
Lower is better for all metrics.

Method Avg. Lat. ↓ GPU Mem. ↓ CHAIRs ↓
Regular 3.44 s 15,778 MB 55.0
VCD 6.91 s 16,634 MB 54.4
OPERA 24.70 s 22,706 MB 52.6
Woodpecker 10.68 s 22,199 MB 57.6
HALC 22.61 s 23,084 MB 51.0
DeGF 13.89 s 19,119 MB 48.8

Ours (MRFD) 11.34 s 17,458 MB 37.1

Table 9: Efficiency comparison on LLaVA-1.5-7B.
Lower is better for all metrics.

G Detialed Ablation Study

G.1 Components Ablation
To assess the contributions of MRFD’s core
components—attention-guided Region Selection
(RS), JSD-based Consistency Weighting (CW), and
Fusion Prompts (FP)—we conduct ablation stud-
ies. Results on POPE-COCO (average all settings,
LLaVA-1.5) are in Table 10. The evaluated model
variants are:

(a) MRFD (Full) : Our complete method, inte-
grating all three components.

(b) w/o CW : Employs RS and FP, but uses uni-
form weights for fusing predictions from mul-
tiple regions, bypassing JSD-based consis-
tency weighting.

(c) w/o FP : Utilizes RS and CW, but omits the
enriched Fusion Prompts, using only the orig-
inal question for each regional decoding pass.

(d) w/o RS (Global Image + FP): Bypasses
attention-guided region selection, operating
solely on the global image. The Fusion
Prompt is constructed based on the global im-
age’s initial response. In this single-view con-
text, the multi-region Consistency Weighting
(CW) mechanism as defined is not applicable
or becomes trivial (effectively a weight of 1
for the single view).

(e) RS only : Leverages attention-guided regions,
but with uniform fusion weights and only the
original question as prompt, isolating the ben-
efit of the multi-region perspective itself.

(f) FP only (Global Image) : Applies the Fu-
sion Prompt (derived from the global image’s
initial response) directly to the global image
decoding, without multi-region selection or
any form of consistency weighting.

(g) Global Image (Token-Level Voting) : Op-
erates on the global image with the original
prompt. The CW component is adapted to
perform token-level voting by aggregating im-
plicitly diversified predictions from the single
global view, testing self-consistency benefits
at the token level.

(h) Regular : Standard greedy decoding using
only the global image and the original ques-
tion.
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Components
Acc. ↑ Prec. ↑ F1 ↑

CW FP RS

(a) ✓ ✓ ✓ 86.50 88.11 86.21

(b) ✓ ✓ 83.76 84.27 83.74
(c) ✓ ✓ 82.87 83.95 82.70
(d) ✓ ✓ 82.77 83.94 82.58
(e) ✓ 82.58 82.01 82.26
(f) ✓ 81.96 81.36 82.14
(g) ✓ 81.52 81.05 81.68
(h) 80.57 78.84 81.59

Table 10: Ablation study with different model variants
on POPE-COCO under the average of three settings.
CW: JSD-based Consistency Weighting, FP: Fusion
Prompt, RS: Region Selection.

G.2 Decoding Strategies
To evaluate the impact of different decoding strate-
gies on MRFD, we conduct an ablation study using
the POPE-COCO benchmark under the adversarial
setting with LLaVA-1.5. The results are summa-
rized in Table 11. We compare three decoding
strategies: low temperature sampling, high tem-
perature sampling, and high temperature sampling
with top-p filtering. The best results are bolded.

The low temperature strategy is the default set-
ting in our experiments, which t is 0.1. The high
temperature strategy is set to t=0.5, which increases
the randomness of the sampling process. The high
temperature + top-p strategy combines high tem-
perature sampling with top-p filtering, where we
set p=0.7 to retain the top 70% of the probability
mass.

Decoding Acc. ↑ Prec. ↑ F1 ↑
Low temp. 82.75 85.22 82.12

High Temp. 83.04 82.29 83.23

High Temp.+Top P 82.50 81.25 82.67

Table 11: Ablation study on different decoding strate-
gies.

H Qualitative Examples

To provide a more intuitive understanding of
MRFD’s impact on mitigating hallucinations and
improving caption factuality, this section presents
qualitative examples from our experiments on the
CHAIR benchmark using LlaVA-1.5. We compare
captions generated by our Multi-Region Fusion

Decoding (MRFD) method against those from the
standard Regular baseline. These examples are se-
lected to highlight differences in how the methods
perceive and describe objects, attributes, and their
relationships within the visual scene. Figure 8 and
Figure 9 illustrate one such comparison.
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Dataset Setting Method LLaVA-1.5 InstructBLIP

Acc. ↑ Prec. ↑ Recall ↑ F1 ↑ Acc. ↑ Prec. ↑ Recall ↑ F1 ↑

MS-COCO

Random

Regular 83.13 81.94 85.00 83.44 83.07 83.02 83.26 83.08
VCD 87.00 86.13 88.18 87.15 86.23 88.14 83.73 85.88
M3ID 87.50 87.38 87.67 87.52 86.67 88.09 84.79 86.41
RITUAL 88.87 89.23 88.39 88.81 88.83 90.48 86.80 88.60
DeGF 89.03 91.20 86.41 88.74 88.83 93.73 82.42 87.71
Ours 89.50 92.55 85.94 89.12 88.52 93.83 82.61 87.86

Popular

Regular 81.17 78.28 86.26 82.08 77.00 73.82 83.68 78.44
VCD 83.10 79.96 88.34 83.94 80.07 77.67 84.39 80.89
M3ID 84.30 81.58 88.63 84.95 80.97 77.93 86.19 81.85
RITUAL 85.83 84.17 88.26 86.17 81.97 78.90 87.26 82.87
DeGF 86.63 87.75 84.86 86.28 82.73 84.02 80.27 82.10
Ours 87.24 86.56 88.22 87.38 83.69 85.22 81.58 83.36

Adversarial

Regular 77.43 73.31 86.26 79.26 74.60 71.26 82.46 76.45
VCD 77.17 72.18 88.40 79.47 77.20 74.29 83.19 78.49
M3ID 78.23 73.51 88.28 80.22 77.47 73.68 85.48 79.14
RITUAL 78.80 74.43 87.74 80.54 78.73 74.57 87.21 80.39
DeGF 81.63 80.59 83.33 81.94 80.30 80.90 79.33 80.11
Ours 82.75 85.22 79.25 82.12 82.49 83.14 81.51 82.32

A-OKVQA

Random

Regular 81.90 76.63 91.78 83.53 80.63 76.82 87.75 81.92
VCD 83.83 78.05 94.13 85.34 84.20 80.90 89.54 85.00
M3ID 84.67 79.25 93.94 85.97 85.43 81.77 91.20 86.23
RITUAL 85.17 79.79 94.21 86.40 87.13 83.92 91.87 87.71
DeGF 86.93 84.28 90.80 87.42 87.40 87.67 86.86 87.26
Ours 87.13 87.56 86.76 87.16 88.33 86.81 90.40 88.57

Popular

Regular 75.07 68.58 92.53 78.77 75.17 70.15 87.60 77.91
VCD 76.63 69.59 94.59 80.19 78.63 73.53 89.46 80.72
M3ID 77.80 70.98 94.07 80.91 78.80 73.38 90.39 81.00
RITUAL 78.83 71.99 94.37 81.68 78.73 72.83 91.68 81.17
DeGF 80.90 75.68 91.05 82.66 81.47 78.61 86.47 82.35
Ours 80.99 76.68 89.28 82.51 83.19 78.74 91.00 84.43

Adversarial

Regular 67.23 61.56 91.81 73.70 69.87 64.54 88.20 74.54
VCD 67.40 61.39 93.79 74.21 71.00 65.41 89.13 75.45
M3ID 68.60 62.22 94.74 75.11 70.10 64.28 90.47 75.16
RITUAL 68.57 62.26 94.27 74.99 70.27 64.15 91.89 75.55
DeGF 72.70 66.70 90.68 76.86 73.93 69.36 85.70 76.67
Ours 75.23 71.03 85.39 77.65 75.62 69.40 91.78 79.04

GQA

Random

Regular 82.23 76.32 93.47 84.03 79.67 76.05 86.62 80.99
VCD 83.23 76.73 95.38 85.05 82.83 80.16 87.26 83.56
M3ID 84.20 78.00 95.26 85.77 83.07 80.06 88.06 83.87
RITUAL 86.10 80.30 95.66 87.31 84.87 82.52 88.47 85.39
DeGF 87.40 83.51 93.20 88.09 85.40 85.64 84.61 85.12
Ours 87.81 86.62 90.32 88.41 87.24 85.57 89.69 87.58

Popular

Regular 73.47 66.83 93.20 77.84 73.33 68.72 85.67 76.26
VCD 72.37 65.27 95.60 77.58 76.13 71.10 88.07 78.68
M3ID 73.87 66.70 95.35 78.49 75.17 69.94 88.26 78.04
RITUAL 74.80 67.50 95.66 79.15 74.50 69.17 88.39 77.61
DeGF 78.10 71.56 93.25 80.98 76.90 73.89 83.20 78.27
Ours 77.72 73.17 88.24 80.00 79.62 74.61 90.15 81.65

Adversarial

Regular 68.60 62.43 93.41 74.84 68.60 63.94 85.31 73.10
VCD 68.83 62.26 95.67 75.43 71.00 65.75 87.66 75.14
M3ID 68.67 62.16 95.42 75.28 71.17 65.79 88.19 75.36
RITUAL 68.23 61.75 95.81 75.10 70.17 64.76 88.48 74.78
DeGF 74.07 67.42 93.14 78.22 73.63 70.08 80.92 75.11
Ours 76.00 72.22 84.50 77.88 75.06 70.25 87.18 77.80

Table 6: Detailed results on POPE (Li et al., 2023d) benchmark. Higher (↑) accuracy, precision, recall, and F1
indicate better performance. The best results are bolded, and the second-best are underlined.
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Model Method Object-level Attribute-level Total Score ↑
Existence ↑ Count ↑ Position ↑ Color ↑

LLaVA-1.5

Regular 173.75 121.67 117.92 149.17 562.50
VCD 186.67 125.56 128.89 139.45 580.56
M3ID 186.67 128.33 131.67 151.67 598.11
RITUAL 187.50 139.58 125.00 164.17 616.25
DeGF 186.22 148.33 130.50 170.33 635.38
Ours 190.00 148.33 128.33 173.33 640.00

InstructBLIP

Regular 155.42 72.17 72.58 115.43 415.60
VCD 154.49 81.67 59.11 112.67 407.94
M3ID 158.89 77.22 61.44 125.00 422.55
RITUAL 178.50 74.58 59.08 139.17 451.33
DeGF 184.32 82.44 56.33 150.00 473.09
Ours 188.67 89.58 62.33 152.33 492.91

Table 7: Detailed performance on the MME-Hallucination benchmark. Scores are reported as mean. Higher scores
↑ indicate better performance. For each model group LLaVA-1.5, InstructBLIP, results for "Ours" are bolded if
they are the best in that column. Other best results in a column are also bolded. Underlined values score typically
represent the second-best performing method or a notable baseline. The "Ours" rows are highlighted.
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Question: Provide a short 
description of the image.

Answer: A bunch of green 
lemons.

Question: Provide a short 
description of the image.

Answer: A bunch of green 
and yellow lemons.

Question: Provide a short 
description of the image.

Answer: A bunch of green 
and yellow lemons.

Question: Provide a short 
description of the image.

Answer: A bunch of green 
and yellow lemons.

Question: Please describe the image in details.

Answer: The image features a large assortment of 
oranges, with a prominent display prominently 
displayed in an accessible location. Surrounding the 
crate of fresh oranges, there are various other 
boxes containing even more lemons of different 
sizes and colors. 

Question: Please describe the image in details.

Answer: The image features a large pile of lemons, 
with many of them being green and yellow. The 
lemons are arranged in various positions, some 
stacked on top of each other and others sitting next 
to each other. The pile is quite large, occupying a 
significant portion of the image. The lemons are 
displayed in a way that showcases their vibrant 
colors and abundance.

Question: Provide a short 
description of the image.

Answer: The elephant is in 
the water.

Question: Provide a short 
description of the image.

Answer: The elephant is in 
the water.

Question: The elephant is in 
the water.

Answer: The elephant is in 
the water.

Question: Provide a short 
description of the image.

Answer: The elephant is in 
the water.

Question: Please describe the image in details.

Answer: The image showcases two elephants 
splashing around and playing in a lake together. The 
first elephant, on the left side of the scene, is 
partially submerged, displaying its trunk out of the 
water as it interacts with the other elephant. The 
second elephant, located on the right side, is in full 
view and appears to be playfully prodding the first 
elephant. 

Question: Please describe the image in details.

Answer: The image features two elephants in a 
body of water, possibly a lake or a river. One 
elephant is larger and appears to be an adult, while 
the other is smaller and likely a baby elephant. The 
baby elephant is resting its body on the larger 
elephant, creating a heartwarming scene.

Figure 8: Qualitative comparison of captions generated by Regular decoding (Red) and our MRFD (Green) on an
image from the CHAIR evaluation set.
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Question: Provide a short 
description of the image.

Answer: A piece of chicken in 
a sandwich.

Question: Provide a short 
description of the image.

Answer: A side of french 
fires.

Question: Provide a short 
description of the image.

Answer: Two pieces of 
sandwich.

Question: Provide a short 
description of the image.

Answer: Sandwichs with 
two forks.

Question: Please describe the image in details.

Answer: The image shows a wooden dining table where 
a delicious combination of food and beverages is served. 
There are various sandwiches on a plate and a tray of 
chips, accompanied by cups containing drinks, possibly 
beers since two beer forks are present. In addition to the 
main dishes, the table is also set with three forks, two of 
which are positioned in similar directions and near the 
sandwiches, while three knives are placed around the 
plate and tray. 

Question: Please describe the image in details.

Answer: The image features a delicious meal 
consisting of four sandwich and a side of french 
fries. The sandwich is cut in half, revealing the meat 
and vegetables inside. The fries are scattered 
around the sandwich, with some pieces placed near 
the sandwich and others further away. In addition 
to the main dishes, the table is also set with four 
forks.

Question: Provide a short 
description of the image.

Answer: A toilet in a bathroom.

Question: Provide a short 
description of the image.

Answer: The toilet seat is 
white.

Question: Provide a short 
description of the image.

Answer: A silver handle on 
the wall.

Question: Provide a short 
description of the image.

Answer: The toilet seat is 
white.

Question: Please describe the image in details.

Answer: The scene is a public bathroom with a 
toilet mounted on the wall. A white urinal is 
attached below a podium, featuring an electronic 
device likely for display purposes. There is another 
toilet in the room, situated on the left side with the 
blanket displaying a picture on it, likely giving the 
toilet a unique appearance. 

Question: Please describe the image in details.

Answer: The image features a white toilet in a 
bathroom. The toilet is situated next to a wall, and 
there is a silver handle on the wall. The toilet is 
positioned in the lower left corner of the image. 
The bathroom appears to be clean and well-
maintained.

Figure 9: Qualitative comparison of captions generated by Regular decoding (Red) and our MRFD (Green) on an
image from the CHAIR evaluation set.
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