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Abstract
Responsible use of authorship verification (AV)
systems requires not only high-accuracy but
also interpretable solutions. Specifically, for
systems to be deployed in contexts where de-
cisions have real-world consequences, their
predictions must be explainable through in-
terpretable features that can be traced to the
original text. Neural methods achieve high ac-
curacies, but their representations lack direct
interpretability. Furthermore, LLM predictions
cannot be explained faithfully – if there is an ex-
planation given for a prediction, it doesn’t rep-
resent the reasoning process behind the model’s
prediction. To address this gap, we introduce
residualized similarity (RS), 1 a novel method
that supplements systems using interpretable
features with a neural network to improve their
performance while maintaining interpretabil-
ity. Authorship verification is fundamentally
a similarity task, where the goal is to measure
how likely two documents are to be written by
the same author. The key idea is to use a neu-
ral network to predict a residual similarity, i.e.
the error in the similarity predicted by the in-
terpretable system. Our evaluation across four
datasets shows that not only can we match the
performance of state-of-the-art authorship ver-
ification models, but we can show how and to
what degree the final prediction is faithful and
interpretable.

1 Introduction

Identifying the author of a text or a collection of
texts is a task with many use cases. In forensic in-
vestigations, stylometry techniques and authorship
identification help link anonymous social media
accounts (Weerasinghe et al., 2022), narrow down
suspects (Cafiero and Camps, 2023), and provide
supporting evidence in court (Shuy, 1996; M. et al.,
2016). Plagiarism and academic dishonesty are
cases of intentionally false authorship claims (En-
riquez et al., 2023; Kalgutkar et al., 2019).

1https://github.com/peterzeng/rsp

Figure 1: Demonstration of the task of Authorship Ver-
ification. A forensic linguist is trying to determine if
two texts share the same author. They may use either
an interpretable system comprising linguistic features
faithful to the source text or a neural model, which has
good performance but lacks interpretability. Our system
combines the relative strengths of both by using a neural
model to correct the error in the interpretable system’s
prediction.

Forensic and related applications of AI, and of
authorship analysis models in particular, require
explainable AI (Mersha et al., 2024). All stake-
holders need to be able to verify the authorship
claims made by any automated system. Further-
more, the explanation must be faithful: it “should
accurately represent the reasoning process behind
the model’s prediction" (Lyu et al., 2024). But this
is not enough: the reasoning process itself must be
based on interpretable features derived from the
analyzed texts, i.e., the features must be meaning-
ful to humans. Authorship claims from a system
using uninterpretable text embeddings cannot be
trusted, even if they are used in an explainable
reasoning process. But interpretable features are
still not enough. Even if the input features are inter-
pretable, they need to be traceable. This means that
each feature can be traced back to the text(s) being
analyzed, and the value of the feature is based on
reproducible evidence from the text. A traceable
feature cannot be a feature on whose value reason-
able observers may disagree after examining the
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text, such as “formality".
As with many NLP tasks, authorship systems

that use representations derived from neural lan-
guage models often achieve better verification per-
formance than interpretable representations do (De-
vlin, 2018; Vaswani, 2017). However, neural rep-
resentations are limited in many critical domains
because they are not directly interpretable. When
attempts are made to interpret predictions, such
as by Alshomary et al. (2024), the explanations
for a model’s predictions are not guaranteed to be
faithful to how the prediction was made. In this
paper, we ask how one can combine the relative
strengths of the two methods: the interpretability
and traceability of linguistic representations and
the high performance of neural models.

As the main contribution of the paper, we in-
troduce residualized similarity (RS), which uses
the idea of estimating the residual of a predictor
i.e., the error in a model’s prediction. We approach
Authorship Verification as a similarity task, as is
standard in the field. For each pair of documents
we obtain some similarity score from a system;
if the score is above a certain threshold, we con-
clude the documents share the same author, and if
the score is below the threshold, we say the docu-
ments are from different authors. Suppose we start
with an explainable system using interpretable and
traceable features as the initial similarity estima-
tor. We can then train a neural model as a residual
predictor, which predicts the error or correction
to the interpretable system’s similarity score. The
final prediction is a simple sum of the interpretable
model’s similarity score and the predicted resid-
ual, i.e., a similarity adjustment made by the neural
model.

This combined system can achieve the trade-off
we desire: (i) when the interpretable model is likely
to be correct, the residual should be low, providing
interpretability and faithfulness while remaining
accurate, and (ii) when the interpretable model is
likely to be incorrect, the residual should provide
the necessary correction, improving accuracy but
reducing interpretability to a degree proportional to
the error. This approach is inspired by the residual-
ized control approach (Zamani et al., 2018), which
trains a residual model for a regression problem,
combining numerous linguistic features with a few
interpretable health-relevant attributes to predict
community health indicators. We describe our ap-
proach in detail in Section 3.

We use Gram2vec (Sclafani, 2023) as our inter-

pretable feature system, which records normalized
frequencies of morphological and syntactic features
for input texts. We evaluate our RS approach by
combining Gram2vec with a state-of-the-art AV
neural model, LUAR (Rivera-Soto et al., 2021),
finding that RS can match the performance of using
LUAR alone, while introducing faithful explana-
tions using interpretable and traceable features. We
perform a case study on how our system retains in-
terpretability, measured by an interpretability con-
fidence (IC) metric, which indicates the extent to
which the interpretable system is used for a given
input. Details of this are in Section 7.

2 Related Work

Authorship verification, authorship attribution, and
authorship profiling are all part of authorship analy-
sis, which has been explored through a wide range
of approaches (see surveys El and Kassou (2014);
Misini et al. (2022); Huang et al. (2025)).

Interpretable Methods Previous stylometric ap-
proaches (Stamatatos, 2016) often make use of
readily interpretable features to train classifiers.
Some examples include lexical features such as
vocabulary, lexical patterns (Mendenhall, 1887;
van Halteren, 2004), syntactic rules (Varela et al.,
2016), and others. Gram2vec, the interpretable
component of residualized similarity falls into this
category.

Neural Models Authorship verification has ben-
efited from models built upon RNNs Gupta et al.
(2019), CNNs (Hossain et al., 2021), BERT-like
architectures (Manolache et al., 2021), and Long-
formers (Ordoñez et al., 2020; Nguyen et al., 2023).
More recently, sentence-transformer-based models
(Wegmann et al., 2022; Rivera-Soto et al., 2021)
have obtained state-of-the-art performance for AV
tasks. As we are interested in improving the per-
formance of interpretable authorship verification,
we focus on these SOTA AV models, particularly
LUAR (Rivera-Soto et al., 2021).

Our work uses residual similarity analysis to
combine interpretability and neural models’ high
performance for authorship verification. Similar
residual approaches have been used previously for
improving performance in health outcome predic-
tion, by combining lexical and health-relevant at-
tributes (Zamani et al., 2018), and in a recent work
that combines statistical and neural methods for
machine translation (Benko et al., 2024). Other
works have focused on generating explanations,
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often layering other mechanisms on top of inter-
pretable input features (Boenninghoff et al., 2019;
Setzu et al., 2024; Theophilo et al., 2022) or doing
a post-hoc evaluation on a latent, non-interpretable
space (Alshomary et al., 2024). Some recent work
also explores prompting large language models to
derive interpretable stylometric features for author-
ship analysis (Hung et al., 2023; Patel et al., 2023).
However, these features are not traceable in a text
as the approaches rely on LLMs to generate the
features, and the generations do not represent the
reasoning process behind attributing a set of fea-
tures to a text.

3 Residualized Similarity

3.1 Problem Statement:

As we argued earlier, we want to develop an au-
thorship verification system for applications such
as forensic linguistics, where we want the system
to use traceable interpretable features as much as
possible but also be highly accurate. To this end,
we introduce an interpretable variant of the author-
ship verification problem, which not only requires
an output decision but also requires an explicit con-
fidence metric that shows the extent to which the
decision can be attributed to the traceable inter-
pretable features. On the one extreme, linguistic
feature-based classifiers (e.g., Gram2Vec (Sclafani,
2023)) will have an interpretability confidence that
is 100% but lower accuracy, while on the other ex-
treme, a neural embedding-based classifier (Rivera-
Soto et al., 2021) will likely have higher accuracy
but 0% interpretability confidence. The goal then
is to design a system that achieves high accuracy
and high interpretability confidence."

3.2 Method Description

To address the above-mentioned problem, we use
residualized similarity (RS), whose key idea is to
train a neural model to predict the residual simi-
larity, i.e., the difference between the cosine simi-
larity obtained from the interpretable system and
the ground truth. Per each train/dev/test set, we
first generate interpretable feature vectors for each
document using Gram2vec. Next, to account for
difference in variance, the feature vectors are stan-
dardized (z-scored) per feature against their respec-
tive dataset. Finally, the cosine similarity is cal-
culated between the standardized pairs of vector-
ized documents. The ground truth label is 1 for
a pair of documents written by the same author

Figure 2: Residualized Similarity Architecture. To
incorporate signal from the interpretable feature vectors,
we add an attention layer over both the interpretable
feature vectors as well as the neural embeddings from
the model we’re fine-tuning. Boxes colored in green
indicate that they’re updated during training. On the
left-hand side, we show the system in use at inference
time. The final similarity score is a simple sum of the
interpretable cosine similarity score and the predicted
residual.

and -1 otherwise. RS is trained to predict a resid-
ual r(i) = y(i) − sim(f(d1), f(d2)), where y is
the gold label, sim represents the cosine similarity
between the pair of vectorized documents, d1 and
d2 are the two documents, and f is the Gram2vec
vector function. We will call this the ground truth
residual.

Figure 2 illustrates the specifics of training the
RS model and usage at inference time. The pro-
cess of training RS begins with pairs of documents.
These are vectorized both by the interpretable sys-
tem and by the neural model we are fine-tuning,
giving us four embeddings. Next, an attention layer
is placed over all four embeddings, for RS to learn
how much to weigh the interpretable features and
the neural embeddings when making the residual
prediction. Note that this step is only for the train-
ing stage. At inference time, given a pair of docu-
ments, the final similarity score is a simple summa-
tion of the cosine similarity from our interpretable
system and the predicted residual.

Training Objective Given a batch of document
pairs B = {(d(i)1 , d

(i)
2 , r(i))}ni=1, where r(i) is the

ground-truth residual for the pair (d(i)1 , d
(i)
2 ), the

model aims to predict the residual similarity, de-
noted as r̂(i). The training objective is to minimize
the Mean Squared Error (MSE) between the pre-
dicted and actual residuals:
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L(B) = 1

n

n∑

i=1

(
r̂(i) − r(i)

)2

3.3 Interpretability Confidence

We introduce the notion of “interpretability confi-
dence”(INTCONF), which is a way to measure how
interpretable a particular prediction using residu-
alized similarity is. We define INTCONF based
on the final prediction. Let the similarity between
two texts determined by Gram2vec alone be simg2v.
Thus, INTCONF represents the relative contribution
of Gram2vec to the overall similarity score, com-
posed of the Gram2vec-derived score and the resid-
ual predicted by RS. We distinguish two cases: the
RS system predicts that the texts are by the same
author, or it predicts different authors. If the predic-
tion is same author, the correct prediction is a high
similarity score. The contribution of Gram2vec is
the distance from -1, the lowest similarity score pos-
sible, so we quantify the contribution of Gram2vec
as 1 + simg2v, and divide it by the sum of the
Gram2vec contribution and the contribution of the
residual component, |predicted residual|. Thus, we
get:

1 + simg2v

1 + simg2v + |predicted residual|

(or 0, if 1 + simg2v + |predicted residual| = 0).
If the prediction of the system is different author,
then the contribution of the Gram2vec component
is the distance from +1, the highest similarity score.
Thus, in this case, INTCONF is defined as:

1− simg2v

1− simg2v + |predicted residual|

The INTCONF always takes values between 0 and
1. Note that we can calculate the INTCONF for any
specific pair of documents after running RS.

We note that sometimes the predicted residual
“flips" the prediction of the Gram2vec-only system,
from “same author" to “different authors" or v.v.
This possibility is of course precisely why we are
predicting the residual. We emphasize that even
in cases where the prediction is flipped after us-
ing RS we can still make use of the underlying
interpretable system for interpretation. We show in
section 7 that when the prediction was changed, the
underlying interpretable system can help explain
why a prediction was made.

4 Experimental Setup

We perform experiments across a variety of neu-
ral models, in order to evaluate robustness and
ability to generalize of our technique. We specif-
ically leverage sentence-transformer-based mod-
els (Reimers and Gurevych, 2019), which were
developed as a distinct technology in parallel to
generative LLMs. Embedding models specialize
in creating fixed-length semantic representations
optimized for similarity computations–the way au-
thorship verification is evaluated.

4.1 Models

We evaluate a diverse set of pre-trained encoders
to ensure the method is model-agnostic and ro-
bust across architectures. We include RoBERTa
(Liu, 2019) as a general purpose transformer and
Longformer (Beltagy et al., 2020) to handle long
documents. We try specialized authorship repre-
sentation models–LUAR (Rivera-Soto et al., 2021)
and a Style-Embedding model, (Wegmann et al.,
2022)–both pre-trained to capture distinctive style
features. We also test all-mpnet-base-v2 (Song
et al., 2020), a sentence-transformer model at the
top of the SBERT.net leaderboard, and a more
recent model, mxbai-embed-large-v1 (Li and Li,
2023; Lee et al., 2024), which achieves SOTA for
BERT-large sized models on the Massive text em-
bedding benchmark (MTEB) (Muennighoff et al.,
2023).

4.2 Baselines

We compare residualized similarity against two
classes of baselines: the interpretable Gram2vec
baseline, and the non-interpretable neural baselines.
The models used for the neural baselines are mir-
rored in the models we tune in our system to pre-
dict the residual, all of which have less than one
billion parameters. We fine-tune these models in a
Siamese network using a contrastive loss function
as the training objective. This approach is simi-
lar to SBERT (Reimers and Gurevych, 2019), but
we use the architecture to learn document-level, as
opposed to sentence-level, embeddings.

4.3 Residualized Similarity Framework

Let d1, d2 be two documents. Let y ∈ {1,−1} be
the gold label, where 1 indicates the same author
and −1 indicates different authors. Let f represent
the Gram2vec vectorizer. Let sim(v1, v2) be the co-
sine similarity function between two vectors v1 and
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v2. The interpretable system’s similarity score is
s = sim(f(d1), f(d2)). The ground truth residual
(actual residual) is defined as res_actual = y − s.
Let res_pred be the residual predicted by a neural
model Mres. The model Mres is trained to approxi-
mate res_actual. The final similarity score is given
by final_score = s+ res_pred. Let t be the clas-
sification threshold, which depends on preferences
for false positives over false negatives and can be
obtained by tuning on a held-out set. The final
authorship prediction is obtained by comparing fi-
nal_score to the threshold: same author if greater
than t, different author if less than t.

Training Details All neural models and RS
are trained using LoRA (Hu et al., 2021), which
reduces the number of trainable parameters and
memory requirements. We observe that using
LoRA also yields better performance overall
for all models as compared to a full fine-tuning.
For evaluation of system performance, we use
receiver-operating curve area under curve (AUC),
which doesn’t require tuning of a threshold.
Additional training details are in Appendix A.

4.4 Data
We train and evaluate our residualized similarity
system on four datasets covering diverse genres.
We choose the first three as they are the datasets
used by Rivera-Soto et al. (2021) from the original
training of LUAR, and we include the Russian
dataset Pikabu to evaluate our method on another
language as we had access to a Russian version of
LUAR.

In order to train both RS and the contrastive-loss
fine-tuned baseline, we require the data to be in a
labeled paired format: {Document 1, Document
2} and same/different author. For the contrastive-
loss fine-tuned baseline, the aim is to push pairs
of documents by the same author together, and to
push pairs of documents by different authors apart.

Reddit Comments We use a dataset of Reddit
comments from 100 active subreddits curated by
ConvoKit (Chang et al., 2020). We use a version
preprocessed by (Wegmann et al., 2022), as in-
valid comments, comments containing only some
sort of white space, and deleted comments are re-
moved. We create pairs of comments, label them
for author verification. Reddit comments can be
naturally very short, so we further filter the com-
ment pairs and keep only comments longer than
20 words. This results in roughly 50,000 train-

ing pairs, 10,000 validation pairs, and 10,000 test-
ing pairs. For the rest of the datasets, in order to
have comparable train/validation/test sizes, we ran-
domly sample them to match the size of the Reddit
train/validation/test splits.

Amazon Reviews From the Amazon review
dataset (Ni et al., 2019), we take reviews from three
categories: Office Products; Patio, Lawn and Gar-
den; and Video games. We use a reduced dataset
where all items and users have at least 5 reviews,
and we keep authors with at least two reviews of
20 or more words. The validation set is split from
the training set by taking stories from 1/6 of the
authors. Then, we sample same author pairs by ran-
domly choosing an author and two texts written by
them. For different author pairs, two authors and
one text from each author are randomly chosen.

Fanfiction Stories The fanfiction dataset contains
75,806 stories from 52,601 authors in the training
set and 20,695 stories from 14,311 authors in the
evaluation set. We use the pre-processing script
from LUAR (Rivera-Soto et al., 2021) to split each
story into paragraphs since fanfictions can be very
long. The process of sampling pairs of reviews is
the same as in the Amazon dataset.

Pikabu comments We start with the Pikabu
dataset from Ilya Gusev (2024) available on Hug-
gingFace. We drop documents with fewer than
100 characters, and authors with fewer than two
documents; we then anonymize the data, redact-
ing credit card numbers, IP addresses, names, and
phone numbers.

For all four datasets, we use 50K, 10K, and 10K
pairs for the training, validation, and test sets re-
spectively. The ratio of same to different author
pairs of all datasets is 1:1.

5 Results

Metrics We evaluate RS against both Gram2vec
and neural models on the receiver-operating
curve area-under-curve (AUC), which represents a
model’s performance across all thresholds. It calcu-
lates the true positive rate (TPR) and false positive
rate (FPR) at every threshold, and graphs TPR over
FPR. We use AUC as it is threshold-independent
and the data we use is balanced, providing a direct
comparison of the various systems.
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RedditAUC AmazonAUC FanfictionAUC PikabuAUC

G2V (Gram2Vec) 0.63 0.71 0.69 0.65

Neural Models Neural RS Neural RS Neural RS Neural RS

RoBERTa-Base 0.69 0.72 0.87 0.85 0.88 0.87 - -
RoBERTa-Large 0.71 0.70 0.90 0.86 0.91 0.86 - -
Longformer 0.74 0.71 0.88 0.85 0.89 0.86 - -
LUAR/LUAR-RU 0.84 0.80 0.91 0.90 0.89 0.87 0.74 0.76
Style 0.77 0.76 0.83 0.83 0.72 0.78 - -
all-mpnet-base-v2 0.66 0.62 0.86 0.84 0.90 0.85 - -
mxbai-embed-large 0.72 0.69 0.88 0.85 0.87 0.89 - -

Table 1: Model performance across three datasets: Reddit, Amazon, and Fanfiction. Gram2vec represents the fully
interpretable baseline, the neural columns represents the non-interpretable contrastive-loss fine-tuned baseline, and
Residual is our system. Pikabu is a Russian dataset, and we use LUAR-RU as the neural model in RS (its English
counterpart generally performed the strongest in the English datasets). The best performing system in each column
is bolded.

5.1 System Evaluation

We show the performance of our RS system in Ta-
ble 1. The results of Gram2vec alone are given in
the first row. We then show the results of testing
seven different neural models on three English cor-
pora, and one neural model on a Russian corpus.
For each neural model and dataset, we present two
results, the first being the neural baseline, and the
second being our RS system performance. For all
combinations of datasets and models, we see that
the uninterpretable neural system and the partially
interpretable RS system perform approximately
similarly, with no clear pattern emerging with re-
spect to the neural system and/or to the corpus.
We see that Gram2vec performs consistently worse
than any neural system or any of our RS systems,
but above the random baseline (0.5).

We see that LUAR outperforms all other neu-
ral models for Reddit and Amazon, and performs
competitively for Fanfiction. This is expected be-
cause LUAR is trained for authorship attribution.
Furthermore, LUAR is particularly good for Red-
dit, which is also expected, as LUAR is trained on
Reddit exclusively. Therefore, we now concentrate
on LUAR.

The performance for RS using LUAR and the
uninterpretable LUAR neural baseline are nearly
identical in AUC for each dataset, with RS perform-
ing slightly worse for Reddit, and slightly better
Pikabu. However, we observe a big increase in
performance compared to using Gram2vec alone,
with the biggest improvement being an increase of

19 points on the Amazon dataset.2

5.2 Architecture Ablation

We experiment with two alternative residual archi-
tectures: (i) a simpler version that passes only the
neural embeddings into the regression head, lever-
aging the representation power of language models
like RoBERTa for sequence classification through
the [CLS] token, and (ii) a variant that directly
appends the interpretable feature vectors to the neu-
ral embeddings before passing into the regression
head to predict the residual. The latter incorporates
signal directly from the interpretable system into
the training of RS. We provide an ablation study
comparing these two variants with our final version
in Table 2.

Data RS Only-Neural Appended

Reddit 0.80 0.73 0.73
Amazon 0.90 0.84 0.85
Fanfiction 0.87 0.74 0.77

Table 2: An ablation study of the different variants of
our system. This table is a comparison of our final resid-
ualized similarity (RS) system, which uses an attention
layer to combine the interpretable feature vectors with
the neural embeddings, compared to an initial version
that passed the neural embeddings directly into the re-
gression head (Only-Neural), and another version that
concatenated the neural embeddings to the interpretable
features directly (Appended).

2We perform significance tests (paired bootstrap on AUC,
two-sided) to compare RS to Gram2Vec, and for all four
corpora this difference is significant with p < 0.001.
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Data Gram2vec Gram2vec-RS ELFEN ELFEN-RS Combined Combined-RS

Reddit 0.63 0.80 0.59 0.80 0.63 0.80
Amazon 0.71 0.90 0.71 0.90 0.74 0.88
Fanfiction 0.69 0.87 0.66 0.88 0.70 0.86

Table 3: The results of a residualized similarity (RS) system with Gram2vec, ELFEN, and the concatenation of
both as the interpretable system. While the concatenation of the two tends to perform a bit better than either feature
set alone, the RS system trained on top of the concatenation performs worse than either RS system trained on a
single interpretable system.

Figure 3: The distribution of interpretability confidence
scores in the predictions using residualized similarity
with LUAR on the Reddit dataset.

5.3 Analysis of Interpretability Confidence

We plot the distribution of interpretability confi-
dence scores in the predictions using RS with
LUAR on the Reddit dataset shown in figure 3.
Notably, we observe in most cases, we have an
INTCONF of greater than 0.5, and a mean of .65.
This suggests that our RS system retains a use-
ful amount of interpretability from the Gram2vec
system while increasing performance.

6 Robustness of the Technique

To show that our technique is not dependent on
any single interpretable base system, we try an-
other feature extractor in place of Gram2vec. We
turn our attention towards Efficient Linguistic Fea-
ture Extraction for Natural Language Datasets, or
ELFEN (Maurer, 2025). While some features over-
lap, ELFEN captures several unique categories of
features from Gram2vec, and as such, provides a
good alternative interpretable system to use in our
RS framework. ELFEN feature areas include de-
pendency, emotion, entities, information, lexical
richness, morphological, part-of-speech, readabil-
ity, semantic, and surface. We provide brief expla-
nations of the different features in Appendix C.

We perform experiments using ELFEN in place
of Gram2vec as the interpretable system, as well
as the concatenation of the two interpretable fea-
ture sets as the interpretable system. We perform
these experiments using LUAR as the neural model
as it is generally the strongest performing neural
model of our primary experiments. We find that
on its own, ELFEN is a little less performant or
on par with Gram2vec, while concatenating the
two feature sets tends to improve a bit on either.
However, notably, the RS model performs about
the same regardless of the interpretable system that
it is trained on. We consider this to be a success of
the residualized similarity technique as it is able to
boost the performance of two separate interpretable
systems.3

7 Case Study of Two Pairs of Documents

We present two cases to illustrate how RS can give
a user insight while performing a specific author-
ship verification task. We present two pairs of
documents, one of which is indeed from the same
author, and one of which is not. Given the range of
cosine similarity from -1 to 1, we set a threshold of
0.5, representing a moderately strong alignment in
vector space and suggesting that documents need
to be more similar than dissimilar to be consid-
ered by the same author. We show how our ap-
proach can tell the user which Gram2vec features
were used in the determination, and to what extent
they determined the confidence of the prediction.
Since Gram2vec contains over 600 features, we
define a criterion to select features to present to the
user, depending on whether a pair of documents
are predicted to be by the same or different au-
thors. When a pair of documents is predicted to be
written by the same author, we want to maximize
the absolute values of the feature values (features

3We perform significance tests (paired bootstrap on AUC,
two-sided) to compare Gram2vec-RS to Gram2vec alone,
ELFEN-RS to ELFEN alone, and Combined-RS to Combined
alone. For all three corpora and all three pairs of systems, this
difference is significant with p < 0.001.
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Example Pair 1: Different Author
Document 1:
Whirling like a scythe, the saber sliced her up-
per torso, putting an end to the vengeful Sith .
Dropping to her knees again, Jameh crawled to
her fallen Master , cradling him in her arms. A
new darkness grew in her heart now, one like a
cold, lonely mist. Pilae, Obi-Wan, and Anakin
stood nearby, dismayed at the sight that met their
eyes: a dismembered former Senator , a shorn
and wounded Padawan , and a Jedi Master on the
verge of death. " Master, please, you can"t leave me.
I need you; I"m not ready!"

Document 2:
He scanned the field beyond and was dumbfounded
when he didn"t see any rats. He pelted back through

the entrance and into the clearing. The Clan had
been alerted by Redfur"s yowl of surprise, so they
had stopped chatting and lowered their bodies into a
crouch, getting ready for the rats. But when they
saw the four rats clinging to Redfur"s fur, they hissed
in astonishment at the size of them.

Gram2vec Cosine Similarity: 0.09, RS Predicted
Residual: 0.29, Final Score: 0.38
Interpretability Confidence: 0.76 Flipped: False

Example Pair 2: Same Author
Document 1:
GET UP! School time!" Sora called from the door.
" I"m up! " he hollered back before throwing the
cover"s off him. It"s been a week. A week since
Roxas started hearing that voice. Throughout that
time he had figured out that it was connected to the
mirror he had gotten at the same time. "

Document 2:
It was passed down through generations to keep

him in the glass." At this he closed the book and
plopped on the bed. " What about the rhyme?" De-
myx stroked his chin in a pondering position. "
It was created to scare children from letting him

out. Though the ending part. "" A curse to never be
free of. Until this demon admits love" Is exactly
what it says.

Gram2vec Cosine Similarity: 0.20, RS Predicted
Residual: 0.82, Final Score: 1.02
Interpretability Confidence: 0.59 Flipped: True

Figure 4: Example Pairs for Case Study. Pair 1 is by
two different authors, and Pair 2 is by the same author.

that distinguish these documents from the large
set of background documents) while making sure
the values are similar for both documents. When
a pair of documents is predicted to be written by
different authors, we simply find the largest magni-
tudes of differences in the feature values. Thus, for
identifying features for same-author pairs, we use
the following metrics for ordering features, where

val_1 represents the feature’s score for document
1, and val_2 represents the feature’s score for doc-
ument 2.: |val_1|+ |val_2|−|val_1−val_2|. For
ordering features using different author pairs, we
use |val_1 − val_2|. We then choose the top n
features; in the examples below, we use n = 5.

Feature Score Doc 1 Doc 2

func_words:further 5.4 -0.1 5.3
pos_bigrams:ADJ PROPN 4.1 3.8 -0.3
pos_bigrams:PUNCT DET 3.8 3.4 -0.4
morph_tags:Definite=Ind 2.8 2.4 -0.4
func_words:when 2.6 -0.4 2.2

pos_bigrams:PREP PUNCT 6.1 4.1 3.0
passive sentence 5.4 2.7 4.6
dep_labels:nsubjpass 4.4 2.2 3.8
pos_bigrams:PREP VERB 4.3 2.9 2.1
punctuation:, 3.4 -1.7 -1.7

Table 4: Top half: The feature scores comparison be-
tween the Example 1 document pair by different authors.
Bottom half: The feature scores comparison between
the Example 2 document pair by the same author.

7.1 Example 1: Different Author Pair
In the first example in Figure 4, both Gram2vec and
RS predict that these two documents are written
by different authors: the Gram2vec similarity is
0.09 < 0.5 and RS’s is 0.09 + 0.29 = 0.38 < 0.5,
and thus that the label is not flipped. Since the
prediction is “different author", we use the formula
defined in Section 3.3 to calculate the INTCONF

as:
1− 0.09

1− 0.09 + 0.29
= 0.76

giving us a high confidence in the interpretability.
In the top half of Table 4, we show the top 5 fea-
tures and their values that were identified using the
different author pair metric: |val_1− val_2|. We
calculate this score for every feature in document
1 and document 2, and sort the top 5 features in
descending order. These represent the 5 most dif-
fering features in the pair of documents. Looking
at the features, we first note several function words
which can be found in document 2 but not in docu-
ment 1; for example, document 2 uses when twice
in a fairly short text, while document 1 does not use
it at all. In contrast, document 1 uses several part-
of-speech (POS) bigrams far more frequently than
the background corpus, while document 2’s distri-
bution of POS bigrams is more standard. A strik-
ing example is the bigram adjective-proper noun,
which is unusual in general but very frequent in
document 1 (vengeful Sith, fallen Master, former
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Senator, wounded Padawan). Finally, we note the
high frequency of the indefinite article in docu-
ment 1: a scythe, a new darkness, a cold, lonely
mist, a dismembered former senator, a shorn and
wounded Padawan, a Jedi Master. These indefinite
noun phrases provide a sense of change (indefi-
nites introduce new discourse objects). Document
2, in contrast, has few indefinites, and the narration
centers on entities known to the readers and the
characters in the story.

7.2 Example 2: Same Author Pair
Gram2vec predicts that the two documents are
written by different authors, getting the prediction
wrong on its own. But overall, RS predicts cor-
rectly that these two documents are written by the
same author. Since the prediction is “same author",
we use the formula defined in Section 3.3 to calcu-
late the INTCONF as:

1 + 0.20

1 + 0.20 + 0.82
= 0.59

giving us a moderately high confidence in the in-
terpretability. Even though the label was flipped
from Gram2vec to RS in this case, we observe
that there are still features that are similar between
the two documents, which we can use in explana-
tion, since they in fact contributed to the final pre-
diction. When identifying similar features in two
documents, we use the metric |val_1|+ |val_2| −
|val_1− val_2| and take the top 5 features in de-
scending order, shown in the bottom half of Ta-
ble 4. Thus, these are features which occur in
both documents either much more or much less
frequently than on average across a background
corpus. One example is the bigram preposition-
punctuation. In both texts, we find examples: UP!,
up! (in document 1), out., of. (in document 2).
The two documents also use passive voice clauses
more frequently than on average: it was connected
(document 1), it was passed down, it was created
(document 2). Both of these linguistic features are
relatively rare in standard written English. The two
documents share a negative value for the punctua-
tion mark comma. Indeed, neither text contains a
comma, which in general is a very common punc-
tuation mark.

We note that this paper does not propose an end-
to-end explainable system. Instead, we have shown
how our RS system can identify measurable fea-
tures which it actually used in determining its find-
ing (faithfulness), and it can quantify to what extent

these features explain why the system came to its
result.

8 Conclusion

We introduce residualized similarity, a method of
improving the performance of an interpretable fea-
ture set by training a language model to predict
the residual, or difference, between the similarity
output from an interpretable system and the ground
truth. We apply this technique to the task of author-
ship verification, where interpretability is of the
utmost importance. Using residualized similarity,
we are able to achieve state-of-the-art performance
on the task of authorship verification while main-
taining a quantifiable degree of interpretability.

To measure interpretability, we introduce the
interpretability confidence, a measure of how in-
terpretable a prediction from our system is. We
then do a case study to observe how using RS, we
are able to correct a prediction that was initially
incorrect from an interpretable system. In both the
case where the prediction was corrected and the
case where the prediction from the interpretable
system and RS agreed, we show that there is mean-
ingful interpretability in the features, as well as the
ability to trace such features back to the text from
which they were extracted.

We believe this approach to be a promising di-
rection for developing more interpretable and effec-
tive NLP systems, bridging the gap between neural
methods and interpretable linguistic features while
allowing for faithfully explainable systems.

Limitations

We present preliminary results on residualized sim-
ilarity (RS), a novel method of supplementing sys-
tems using interpretable linguistic features with a
neural network to improve their performance while
maintaining interpretability. In order to get these re-
sults, we use a relatively small subset of data from
the original datasets we chose. While we choose
a variety of datasets, our experiments are by no
means conclusive.

An explainable system built on top of our system
would require, in addition, two types of decisions:
how do we choose how many and which features to
present to the user, and exactly how should the in-
terface look? These are, at base, human-computer
interface (HCI) issues: explanations are always for
a particular type of user, and need to be tailored
to that user. If, for example, our target audience
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is forensic linguists, then we can assume that they
know the meaning of linguistic features and are
willing to get to know a more complex interface
(which, for example, may allow them to drill down,
or to include or exclude certain types of linguistic
features). If, on the other hand, the target audience
is crowdsourced workers (because we are evaluat-
ing a paper for a submission to an NLP conference,
for example), then of course we cannot assume the
users will know the meaning of our features, nor
that they will take the time to get to know the capa-
bilities of a more complex interface. We leave this
HCI work to a future publication.

Ethics Statement

The underlying datasets we use are publicly avail-
able and are anonymized. Our work improves the
interpretability of authorship verification models,
allowing for more transparency and easier detec-
tion of potential biases and errors in the model.
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A Training Details

We experiment with a variety of strategies to de-
crease training times and GPU memory require-
ments. All our experiments take place on a server
with four 48GB A6000 GPUs. Using the following
strategies, our largest model, with approximately
360 million parameters, takes about 5 hours to train.
The fastest training time we observed was around
1 hour for our smaller models, which have approx-
imately 150 million parameters. We optimize the
model using AdamW (Loshchilov, 2017) with a
learning rate of 5e-5, a standard value for fine-
tuning pre-trained language models. We train for a
maximum of 10 epochs with early stopping based
on validation loss to avoid overfitting. With respect
to hyperparameters, we manually tune them during
the training of RS. We use these hyperparameters
in the rest of our experiments.

We experiment with the use of LoRA (Hu et al.,
2021), reducing the number of trainable parameters
and lowering memory requirements. Somewhat
surprisingly, in our initial experiments, fine-tuning
RoBERTa for binary classification and for our resid-
ual prediction model, performance without LoRA
was far lower than performance using LoRA. We
hypothesize that LoRA could be acting as a regular-
izer in this case. We use this to inform our decision
to use LoRA in all other experiments in this paper.

Neural Model Contrastive Loss Fine-Tuned
Baseline We fine-tune the previously chosen neu-
ral models in a Siamese network using a contrastive
loss function as our training objective. The archi-
tecture for this was heavily inspired by SBERT
(Reimers and Gurevych, 2019). We replace SBERT
with LUAR or LUARru, and use the pooler output
to obtain the embedding for the documents.

Residualized Similarity Details As RS is a re-
gression model, we use mean-squared error loss
as our training objective, and train over 10 epochs.
We utilize early stopping to avoid over-fitting. We
add a regression head with multiple dense layers
using ReLU activations and dropout for regulariza-
tion. We then ensure the output is between -1 and
1 by using a tanh activation.

B Cross-Domain Experiments

We evaluate RS models trained on one domain
on the other domains, similar to the cross-domain
experiments in the LUAR paper (Rivera-Soto et al.,
2021). In addition, we evaluate a RS model trained

on the English Reddit data on the Russian Pikabu
data to observe if there is any cross-lingual transfer.

Trained On Dataset G2V RSP

Reddit
Reddit 0.63 0.80

Amazon 0.71 0.81
Fanfiction 0.69 0.71

Amazon
Reddit 0.63 0.71

Amazon 0.71 0.90
Fanfiction 0.69 0.72

Fanfiction
Reddit 0.63 0.67

Amazon 0.71 0.75
Fanfiction 0.69 0.87

Reddit Pikabu 0.65 0.62

Table 5: Cross-domain experiments. Unsurprisingly,
models trained on one domain tend to do a bit worse
when evaluating on the other two domains. However, the
performance in all cases still beat using just Gram2vec.
We also witness no cross-lingual transfer, suggesting a
model trained on English data would not be able to help
in evaluation performance on Russian data.

C ELFEN Feature Categories

Efficient Linguistic Feature Extraction for Natural
Language Datasets (ELFEN) (Maurer, 2025) is an
interpretable feature extractor. We provide brief
explanations of the different feature types; the full
feature list can be found at the github4.

• Dependency: dependency features are based
on the dependency tree of the text data, with
features such as tree width, tree depth, and
more.

• Emotion: emotion features include valence,
arousal, dominance dimensions, Plutchik emo-
tions, the sentiment and emotion intensity of
text data. Calculating these features uses the
NRC VAD Lexicon (Mohammad and Turney,
2013), the NRC Emotion Intensity Lexicon
(Mohammad, 2018a), and the NRC Sentiment
Lexicon (Mohammad, 2018b).

• Entities: entity features include named
entity-related features such as ’PERSON’,
’MONEY’, ’PRODUCT’, ’TIME’, and ’PER-
CENT’.

• Information: this area includes information-
theoretic metrics, in particular, compressibil-
ity and Shannon Entropy.

4https://github.com/mmmaurer/elfen/blob/main/features.md
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• Lexical Richness: this area contains various
lexical richness metrics such as lemma/token
ratio, type/token ratio, and root type/token
ratio.

• Morphological: this area captures the counts
of tokens with a specific type of morphologi-
cal tag such as "VerbForm" or "Number".

• Part-of-Speech: this area includes various
part-of-speech (POS) related features such as
POS variability and number of tokens per POS
tag.

• Readability: this area includes different read-
ability/complexity scores such as number of
syllables and number of mono/poly-syllables.

• Semantic: this area includes different types
of semantic features such as number of hedge
words and ratio of hedge words.

• Surface: this area includes “surface-level" fea-
tures such as raw sequence length, number of
tokens, and number of sentences.

15837


