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Abstract

Large Language Models (LLMs) excel in Nat-
ural Language Processing (NLP) tasks but of-
ten propagate societal biases from their train-
ing data, leading to discriminatory outputs.
These biases are amplified by the models’ self-
attention mechanisms, which disproportion-
ately emphasize biased correlations with sensi-
tive tokens, like "he" or "she", reflecting the
sensitive attributes such as gender and race.
To address this issue, we propose a novel fine-
tuning method, called Cross-Attention-based
Weight Decay (CrAWD), which modifies the
LLM architecture to mitigate bias. CrAWD in-
troduces a cross-attention mechanism between
an input sequence and a sensitive token se-
quence, enabling the model to identify and
selectively decay the attention weights of to-
kens associated with sensitive tokens. This re-
duces the influence of biased association on the
model’s generation while maintaining task per-
formance. Evaluations on real-world datasets
demonstrate the effectiveness of our proposed
CrAWD method. Notably, our method can han-
dle multiple sensitive attributes by adjusting
the sensitive token sequence, and it does not
require full knowledge of sensitive tokens pre-
sented in the dataset, underscoring CrAWD’s
versatility in promoting fair LLMs across vari-
ous applications.

1 Introduction

Large language models (LLMs) trained on vast
datasets have demonstrated remarkable capabili-
ties on different natural language processing (NLP)
tasks, including text generation (Brown et al., 2020)
and, text classification (Zhang et al., 2024). How-
ever, their widespread usage in real-world settings
has also raised concerns about the propagation of
societal biases embedded in their training data (Kir-
itchenko and Mohammad, 2018). These biases can
result in discriminatory outputs, affecting down-
stream applications in significant ways (Bender
et al., 2021; Zhao et al., 2017a). Addressing bias in

Figure 1: Text generation bias due to biased associations
encoded in pre-trained LLMs.

LLMs is essential for building more equitable and
responsible AI systems.

Bias in the NLP tasks is reported as biased or
stereotypical associations with some sensitive at-
tributes, such as gender, race, language, religion,
etc. (Bolukbasi et al., 2016; Barocas et al., 2019).
For LLMs, the bias arises from the training data
and is then encoded in the models’ internal archi-
tectures. Pre-training on large corpora drawn from
the web often means the data contains inherent so-
cietal biases related to race, gender, and other sen-
sitive attributes (Caliskan et al., 2017). Pre-trained
LLMs also exhibit significant bias amplification,
meaning that even subtle biases in the training data
become more pronounced in the model’s output
(Bender et al., 2021). The transformer-based mod-
els allocate attention weights to different tokens
during training using the self-attention mechanisms
(Vaswani et al., 2017). When exposed to biased
training content, the model can disproportionately
focus on biased associations with sensitive tokens,
such as gendered pronouns or racially coded words.
This leads to biased predictions, especially in tasks
like text classification and generation (He et al.,
2022; Haque et al., 2024). For example (shown in
Figure 1), LLM learns a biased association between
gender and occupations from the training data via
self-attentions (Yang et al., 2025). For the next
token generation, “My friend works at the hospi-
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tal. He is a ___”, it generates “doctor” with a high
probability due to the high attention weights from
“hospital” and “he”, where the association between
“he” and “doctor” is biased. A fair LLM should gen-
erate tokens based mainly on the relevant context
of “hospital”.

Various approaches have been proposed to mit-
igate bias in LLMs, ranging from data-level inter-
ventions to model-level adjustments. Data-level
methods include balancing the training data or re-
moving biased examples (Zhao et al., 2017b), while
model-level techniques focus on architectural mod-
ifications or post-processing steps that reduce the
impact of biased outputs (Dong et al., 2024; Dige
et al., 2023). For example, Dong et al. (2024) mea-
sures bias as explicit mentions of gender pronouns.
Their fine-tuning method directly adds a gender
probability loss, derived from their bias metric, to
the total loss to mitigate bias. Bias mitigation fine-
tuning to minimize a specific evaluation metric
requires prior knowledge of the evaluation task and
sensitive tokens, which lack generalizability across
different types of biases in LLMs. There is no
single metric to summarize all types of biases in
LLMs. These studies focus on bias defined by spe-
cific model output, which limits their mitigation
methods to generalize to other tasks. Instead of
a specific metric on the model output, we believe
that the model’s internal self-attention mechanism
plays an important role in encoding and perpetuat-
ing bias.

To address these challenges, we propose a bias
mitigation technique, called Cross-Attention-based
Weight Decay (CrAWD), which modifies the LLM
architecture to reduce the influence of biased as-
sociation during LLM fine-tuning. Specifically,
our approach introduces a cross-attention mecha-
nism between an input sequence and a reference se-
quence consisting of sensitive tokens, such as "he"
and "she". This cross-attention enables the model
to identify the input tokens that have strong correla-
tions with sensitive tokens. By selectively decaying
the attention weights of these tokens during fine-
tuning, we can scale down their biased influence
on the model’s predictions without significantly
degrading the overall performance of correctness.
The contribution of this work is as follows:

• This work addresses bias in LLMs by propos-
ing a novel cross-attention-based bias miti-
gation technique. Our method effectively re-
duces the influence of biased associations in

the input sequences, enabling the model to
learn the contextual information without unin-
tended biases.

• Our method achieves a good balance between
bias mitigation and performance preservation.
It maintains the self-attention component to
capture contextual relationships and employs
a decayed cross-attention component to re-
duce the influence of biased associations.

• This method does not require full knowledge
of the potential sensitive tokens in the fine-
tuning task. It can work with multiple sensi-
tive attributes simultaneously by adjusting the
reference sensitive sequence.

• The evaluation on real-world datasets demon-
strates the versatility and effectiveness of our
proposed method in a variety of settings.

Our codes are available at
https://github.com/FarsheedHaque/crawd

2 Related Work

Bias in NLP systems has emerged as a significant
concern, particularly as language models become
increasingly integral to a wide range of applica-
tions. Bolukbasi et al. (2016) and Caliskan et al.
(2017) demonstrated that societal biases like gen-
der, racial, and cultural stereotypes, which may
lead to discriminatory outcomes are embedded in
model representations. Large-scale datasets, of-
ten sourced from unfiltered content on the inter-
net, are a primary contributor to bias in language
models. These datasets frequently reflect societal
prejudices, which models inadvertently learn and
sometimes amplify during text generation (Sheng
et al., 2019; Bender et al., 2021). As Wan et al.
(2023) highlighted, such biases do not just per-
sist but may intensify in model outputs, leading to
harmful stereotypes being reproduced at scale.

To address this issue, researchers have devel-
oped several tools to measure bias in large lan-
guage models (LLMs). Notable among these are
the StereoSet dataset (Nadeem et al., 2021) and
the Crows-Pairs dataset (Nangia et al., 2020), both
designed to assess the presence of societal bias in
generated text. In addition to measuring bias, vari-
ous mitigation techniques have been explored. One
popular approach involves generation-based strate-
gies, such as zero-shot (Gallegos et al., 2024; Liu
et al., 2024) and few-shot prompting (Wang et al.,
2023; Ko et al., 2023; Ma et al., 2023), where care-
fully crafted prompts are employed to guide models
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toward more equitable outputs. Another strategy
is the use of Chain of Thought (CoT) reasoning,
which has been shown to improve the fairness of
model generations by making the model’s decision-
making process more transparent and deliberate
(Tian et al., 2023).

While these approaches have made significant
strides in mitigating bias during text generation,
there has been limited research on fine-tuning tech-
niques specifically aimed at addressing bias during
model training. For instance, Dong et al. (2024)
proposed metrics to assess both explicit and im-
plicit gender bias in generated text, incorporating
these metrics into the loss function as a regular-
ization technique to reduce bias. Similarly, He
et al. (2022) introduced an auxiliary model that
predicts protected attributes, using the negative
log-likelihood from these predictions as an energy-
based constraint to minimize the influence of bi-
ased tokens on the output. Contrastive learning
has also been employed as a bias mitigation tech-
nique, where stereotypical data points are pushed
away while non-stereotypical data points are pulled
closer in the model’s latent space (Zhou et al.,
2024).

3 Bias in LLMs from the Attention
Perspective

Large Language Models (LLMs) are pre-trained
on vast corpora of data, which often contain social
biases associated with sensitive attributes such as
gender, race, or ethnicity. These biases are em-
bedded in the model during pre-training and can
propagate into downstream tasks. We aim to miti-
gate such bias embedded in the pre-trained LLMs
using a fair fine-tuning method.

We use the next token generation task for
LLM fine-tuning. Given an input sequence x =
{ti}ni=1, where ti denotes the i-th token in the se-
quence and n is the sequence length, the LLM
predicts the next token tn+1 by adjusting its pa-
rameters θ to maximize the conditional probabil-
ity Pθ(tn+1|t1, t2, . . . , tn). LLMs utilize the self-
attention (SA) mechanism to learn a robust and con-
textual representation of each token (Vaswani et al.,
2017). SA mechanism assigns attention weights to
all input tokens {t1, t2, . . . , tn} based on their con-
textual relevance to the target token tn+1. Specifi-
cally, the self-attention mechanism is defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V, (1)

where Q, K, and V represent the query, key, and
value matrices, and d is the embedding dimen-
sion. The attention mechanism computes attention
weight αij , which quantifies how much token ti
contributes to the updated representation of token
tj . In other words, the attention weight αij deter-
mines the degree of influence that token ti has on
token tj during the representation learning process.
A higher αij means that more weight is given to the
information from the token ti when updating the
representation of the token tj . The hidden state of
each token representation is updated as a weighted
sum of all tokens’ representations in the sequence,
including itself.

Unintended biases are embedded into LLMs
when a sensitive token ts (such as “he”, “Alice”,
etc.) related to a sensitive attribute receives dis-
proportionately higher attention weights compared
to a non-sensitive token in the task context. The
disproportionate association of ts in the attention
mechanism is the root of the bias. It skews the
probability distribution on the next token predic-
tion, causing it to prioritize the sensitive token in
its output. It leads to biased or stereotypical as-
sociations in LLM representation, prediction, and
generation tasks, reflected in different evaluation
metrics.

Our goal is to mitigate the effect of the sensitive
token ts during fine-tuning, ensuring that the rep-
resentation learned from the self-attention mecha-
nism does not disproportionately emphasize the bi-
ased associations, thus reducing bias in the model’s
output while maintaining overall performance in
downstream tasks.

4 Cross-Attention-based Weight Decay

In this section, we propose a novel fair fine-tuning
method, called Cross-Attention-based Weight
Decaying (CrAWD), to mitigate bias in pre-trained
LLMs. The core mechanism in CrAWD is a
cross-attention (CA) mechanism between input se-
quences and reference sensitive tokens. The cross-
attention mechanism helps to identify potentially
biased associations. Through weight decay, the
fine-tuned LLM tries to deemphasize these biased
associations. In the end, it learns a debiased con-
textual representation for downstream tasks.

4.1 Overview

Figure 2 shows the overall architecture of CrAWD.
Other than the regular input sequence x, CrAWD
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Figure 2: The CrAWD Architecture

also takes a reference sensitive sequence b as in-
put. The reference sensitive sequence consists of
a series of sensitive tokens that represent various
sensitive attributes, such as gender, race, religion,
ethnicity, or language. The self-attention blocks
(SABs) learns the hidden representations Hx

self and
Hb

self for x and b, respectively. Then CrAWD intro-
duces a cross-attention block (CAB), which takes
in Hx

self and Hb
self to identify biased associations.

Then, CrAWD instructs the model to deemphasize
these biased associations by decaying the cross-
attention weights. The final representation Hfinal
of LLM consists of two parts: the regular SA rep-
resentation Hx

self for the input x to preserve the
model performance, and the CA representation af-
ter weight decay Hcross to reduce the influence of
biased associations. In this way, the LLM can gen-
erate fair output without over-penalizing the overall
performance.

4.2 Reference Sensitive Sequence

To identify biased associations in the pre-trained
LLMs, CrAWD takes a pre-defined list of sensitive
tokens as references, denoted as reference sensitive
sequence b = {ts}ms=1, where m is the length of
the sequence. The reference sensitive tokens are
representative sensitive tokens related to one or
multiple sensitive attributes of interest. We do not
require b to be a complete list with the full pre-
defined knowledge of potential biases in the fine-
tuning dataset and downstream tasks. It can be
just one reference token for each sensitive attribute
group. The cross-attention mechanism only uses b
as a reference. In the embedding space, it examines
similar tokens related to the sensitive attributes and

discovers biased associations with those tokens.
The input embeddings of the input sequence x

and the reference sensitive sequence b are E(x)
and E(b), respectively. Each of them is passed
through L self-attention (SA) layers, feed-forward
networks (FFN), and normalization, to produce
self-attended hidden representations Hx

self ∈ Rn×d

and Hb
self ∈ Rm×d. Here, Hx

self and Hb
self repre-

sent the updated last hidden state of the SA block
that captures the contextual relationships within the
input sequence.

4.3 Cross-Attention Mechanism
After getting the hidden representations Hx

self and
Hb

self from the input sequence and the reference sen-
sitive sequence. CrAWD calculates cross-attention
weights from the cross-attention (CA) mechanism,
which can be used to identify biased associations
in the pre-trained LLMs.

The CA block contains a single cross-attention
layer with both Hx

self and Hb
self as its input. The

cross-attention weights are calculated by follow-
ing Equation 1, where the query, key, and value
matrices are computed through linear projections:

Q = Hx
selfWQ with WQ ∈ Rd×d,

K = Hb
selfWK with WK ∈ Rd×d,

V = Hb
selfWV with WV ∈ Rd×d.

The cross-attention mechanism enables the
model to compute the influence of sensitive at-
tributes on the input sequence x by comparing the
query Q (from x) with the key K (from b), and
using the value V (from b) to update the hidden
state. The hidden representation Hx

self of the input
sequence x represents the contextual information
within the input sequence, which may include bi-
ased information with any sensitive token. The hid-
den representation Hb

self of the reference sensitive
sequence b represents the sensitive attributes and
all potential sensitive tokens related to them (not
just the ts listed in b). The cross-attention weights
capture the strength of biased associations between
the input sequence and the sensitive tokens. Specif-
ically, a higher cross-attention weight βis from the
cross-attention matrix represents a higher possibil-
ity that there are biased associations between the
input token ti and the sensitive attribute represented
by ts. It can be a direct bias between ti and another
input token in x that is similar to ts, or an indirect
bias between ti and a sensitive context (without the
presence of a direct sensitive token).
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4.4 Weight Decay
The cross-attention mechanism captures the poten-
tial biased association between the input token ti
and the sensitive attributes. To mitigate bias, we use
weight decay to deemphasize (but not completely
ignore) these tokens during the fine-tuning.

From the cross-attention matrix, we select the
top-K% of attention weights as these weights re-
flect the most likely biased associations between
the input token ti and the sensitive attributes.
CrAWD decays the attention weights on these to-
kens by a small factor λ during the fine-tuning, The
attention weights for these tokens are adjusted as
follows:

β′
is =

{
λ · βis, if βis ≥ τ,

βis, otherwise,
(2)

where τ is the cutoff threshold at the top-K% at-
tention weights.

Weight decay on β reduces the impact of biased
associations on the final prediction. The fine-tuned
model mainly focuses on the other associations
actually related to the task context. Thus, the model
can make unbiased predictions in a context similar
to the fine-tuning task.

After weight decay, the decayed cross-attention
weights join the residual connection, followed by a
normalization layer. Then the output goes through
a position-wise fully connected feed-forward net-
work (FFN) layer and a normalization layer, to
compute the cross-attention hidden representation
as the output of the CA block:

Hcross = FFN(Cross-Attentiondecay(Hx
self, H

b
self)),

where Cross-Attention weights β is modified by
following Equation 2, and Hcross ∈ Rn×d. The re-
sulting cross-attention hidden representation Hcross
encodes the identified biased associations in LLMs.

4.5 Final Hidden Representation
Once the biased associations are deemphasized
through weight decay, the final hidden represen-
tation of the input sequence is obtained by combin-
ing the self-attention representation Hx

self with the
decayed cross-attention representation Hcross. The
final hidden representation Hfinal is computed as:

Hfinal = Concat(Hx
self, Hcross).

Here, the self-attention component captures the
essential contextual information within the input

sequence, while the decayed cross-attention com-
ponent selectively adjusts the influence of biased
associations with sensitive attributes without over-
penalization. By integrating these two components,
the final hidden representation Hfinal ∈ Rn×2d in-
corporates both rich contextual information for the
fine-tuned task and mitigation of unintended biases.
At the end, the final hidden representation Hfinal is
passed through linear and softmax layers to predict
the next token tn+1 in the sequence.

Our mitigation method also applies to
transformer-based text classification models.

5 Experiment Setup

5.1 Research Questions

We aim to answer the following questions with our
experiments:

• RQ1: Does fine-tuning with CrAWD mitigate
bias in different pre-trained LLMs?

• RQ2: How does the performance of CrAWD
compare to existing fine-tuning techniques for
mitigating different biases in text generation
or classification?

• RQ3: How does identification of biased as-
sociation (with different top-K%) and weight
decay (with different λ) affect the utility-
fairness trade-off of CrAWD?

5.2 Datasets

The Jigsaw Unintended Bias in Toxicity dataset
(cjadams et al., 2019) consists of approximately 2
million public comments annotated for toxicity and
the protected attributes of the comment targets. We
select 21,000 records for fine-tuning.

The Bias in Bios dataset (De-Arteaga et al.,
2019) contains textual biographies used to investi-
gate bias in NLP models, featuring 28 different oc-
cupations and a balanced gender distribution with
binary gender as the sensitive attribute. We ran-
domly select 100k records for fine-tuning.

The Stanford Natural Language Inference
(SNLI) corpus (Bowman et al., 2015) comprises
570k human-written English sentence pairs, each
consisting of a premise and a hypothesis labeled as
entailment, contradiction, or neutral. It mentions
sensitive attributes like gender, ethnicity, age, etc.
We select 100k premises for fine-tuning.

The Measuring Hate Speech Corpus (Sachdeva
et al., 2022) contains 50,070 social media com-
ments, annotated by 11,143 Amazon Mechanical
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Turk contributors using faceted Rasch measure-
ment theory (RMT) to assess hate speech. A subset
of 27,818 comments, focused on racial hate speech
detection, includes 11,418 hate speech records and
16,400 non-hate speech records. We use it for the
evaluation of text classification tasks.

5.3 Baselines

For text generation, we use different pre-trained
models for evaluations, including GPT2 (Rad-
ford et al., 2019), Llama2 (7B version) (Touvron
et al., 2023), Llama3 (8B version)(Dubey et al.,
2024), and Falcon (5B version) (Almazrouei et al.,
2023), Flan-T5 (3B version) (Chung et al., 2022),
DeepSeek (6.7B version) (DeepSeek-AI et al.,
2025).

We adopt several fine-tuning methods as base-
lines. We first compare our model with the Vanilla
Fine-tuning on pre-trained models. Vanilla Fine-
tuned models gain task-specific knowledge from
the fine-tuning datasets, but there is no fairness
mechanism built in to mitigate bias.

Indirect Bias Mitigation (IBM) (Haque et al.,
2024) method uses attention-based explanation to
calculate similarity between important tokens in the
instance and sensitive information and then uses
the similarity as a regularizer in the loss function
to mitigate bias.

Debias Tuning (DT) (Dong et al., 2024) explore
different metrics to disclose explicit and implicit
gender bias in LLMs. They design a regularization
term for each metric and add it to the loss function
to mitigate bias in fine-tuning.

Implication Prompting (IP) (Furniturewala
et al., 2024) is prompt based debiasing method
where a reasoning is provided along the the gener-
ated text for the LLM to understand biased text.

Knowledge Debias (KGDebias) (Ma et al.,
2024) leverages structured knowledge to reduce
bias in LLMs by extracting textual data from struc-
tured knowledge for a second pre-training phase
then continue pre-training the LLM on this data,
then fine-tune for specific downstream tasks.

Deep Soft Debias (DSD) (Rakshit et al., 2025)
is a post-hoc debiasing technique that routes token
embeddings through a compact residual MLP. A
dual objective retains original geometric structure
while forcing outputs to lie orthogonal to a hand-
crafted bias subspace, thereby suppressing linear
demographic bias with negligible task-performance
loss.

For text classification, we use the pre-trained
BERT-base model (Devlin et al., 2019) as the base
model. Other than Vanilla and IBM, we also adopt
the following fine-tuning methods as baselines.

Adversarial Debias (AD) (Zhao et al., 2018)
is an in-processing mitigation technique that em-
ploys adversarial learning to reduce the correlation
between the predicted outcome and the protected
attribute, aiming to achieve equality of opportunity.

Controlling Bias Exposure (CBE) (He et al.,
2022) is an in-processing mitigation technique that
employs an auxiliary model to predict a protected
attribute. The negative log-likelihood from this
prediction acts as an energy-based constraint, regu-
lating the impact of biased tokens on the output.

5.4 Metrics

Perplexity (PPL) is a metric used to evaluate the
quality of text generated by a language model. It
measures how well the model predicts a sequence
of words by assessing the probability of the model’s
predictions across a given text. (lower is better).

GPT as Judge (GPT Judge) is a metric where
we generate text using the fine-tuned model and
ask GPT-4o to evaluate the quality of the generated
text on the scale of 1-10 (10 being the highest) for
every prompt and report the average quality

For text classification, we use Accuracy as a
utility metric to evaluate the correctness of the clas-
sification model

We use the Idealized Context Association Test
(ICAT) from StereoSet (Nadeem et al., 2021) to
evaluate the model’s tendency to produce stereo-
typical associations. ICAT combines a Language
Modeling Score (LMS) and a Stereotype Score
(SS). A higher ICAT indicates strong modeling
with reduced stereotyping.

The Word Embedding Association Test
(WEAT) (Caliskan et al., 2017) measures bias via
cosine similarity of target-attribute word sets (lower
scores imply less bias).

The Gender Attribute Score (GAS) is a
straightforward metric for evaluating gender bias in
generated sentences by checking for the presence
of gender-specific words in a list (see Appendix
A.2). Lower values indicate more neutral text.

The True Positive Rate (TPR) gap (Zhao et al.,
2018) evaluates Equality of Opportunity by measur-
ing differences in TPRs between subgroups (lower
gaps are fairer).

Finally, the Area Under Similarity Curve

15790



Table 1: Average fine-tuning performance of CrAWD in different pre-trained LLMs over 5-repeat runs. ∗ denotes
that the model fine-tuned by our proposed CrAWD method has statistically significant differences with both
pre-trained and vanilla fine-tuned models under a one-tailed t-test with p < 0.05.

LLM Pre-Trained Vanilla CrAWD
ICAT↑ WEAT↓ ICAT↑ WEAT↓ ICAT↑ WEAT↓

GPT2 63.817 0.980 67.078 0.693 67.997 0.374∗

Llama2-7B 65.527 0.863 67.756 0.722 69.560∗ 0.406∗

Llama3-8B 64.924 0.583 64.706 0.557 66.136∗ 0.345∗

Falcon-7B 66.476 0.498 67.711 0.340 69.471∗ 0.247∗

FlanT5-3B 66.000 0.496 67.123 0.508 68.241∗ 0.431
Deepseek-6.7B 66.667 0.221 65.432 0.897 68.452∗ 0.200

(AUSC) (Haque et al., 2024) evaluates indirect bias
via attention-based explanations; higher AUSC sug-
gests greater reliance on sensitive context tokens.

6 Result Analysis

6.1 Fine-tuning Performance (RQ1)

We fine-tune different pre-trained LLMs using
CrAWD on the Jigsaw dataset. Table 1 shows
the bias in the pre-trained models, the vanilla fine-
tuned models, and the CrAWD fine-tuned models.
We run all the models 5-repeat rounds and report
the average value of each metric in Table 1. For
ICAT, which combines LM performance (LMS)
and stereotype bias (SS), CrAWD has the high-
est ICAT for each LLM. Notably, CrAWD sig-
nificantly outperforms both pre-trained and stan-
dard fine-tuned models across all LLMs, except
for GPT-2. This suggests that CrAWD effectively
reduces stereotype bias while maintaining high util-
ity. For WEAT, which measures the association
bias in the embedding space, CrAWD has the low-
est WEAT for each LLM. The results indicate that
fine-tuning with CrAWD can effectively mitigate
association bias. Specifically, CrAWD consistently
achieves significantly lower WEAT scores than
both pre-trained and fine-tuned methods across
all pre-trained LLMs, except for FLanT5-3B and
Deepseek-6.7B. A possible reason for the rela-
tively low WEAT scores of pre-trained FlanT5 and
DeepSeek is that these models have already incor-
porated bias-mitigation mechanisms in their word
embeddings during pre-training (e.g., instruction
tuning for FlanT5 (Chung et al., 2022) and domain-
diverse training corpora for Deepseek (DeepSeek-
AI et al., 2025)). In addition, the vanilla fine-tuning
Deepseek model resulted in a dramatic increase in
bias, suggesting that the vanilla fine-tuning process
without bias-mitigation mechanisms can amplify
biases even in an initially unbiased LLM. In con-
clusion, it is advantageous to use CrAWD during

LLM fine-tuning for all LLMs.
For qualitative assessment, we analyse outputs

from Llama-2-7B fine-tuned on Bias in Bios with
the Vanilla and CrAWD (Figure. 3, Appendix A.4).
Vanilla fine-tuning introduces explicit gender to-
kens and reproduces occupational gender stereo-
types, whereas CrAWD produces gender-neutral
generations devoid of such bias. In Appendix
A.4, Figure. 4, attention-map visualization for the
prompt “The doctor said that. . . ” illustrates the ef-
fect: cross-attention can successfully identify the
biased association between “doctor” in the prompt
and “she” in the reference bias token with the high-
est attention score in the cross attention matrix.

6.2 Comparison with Baselines (RQ2)

We use three datasets to evaluate CrAWD against
other fine-tuning methods to mitigate different bi-
ases in text generation or classification. We fine-
tune Llama2-7B and Llama3-8B for text generation
and BERT-base for classification.

We evaluate gender bias in text generation in
Llama2-7B and Llama3-8B models fine-tuned on
the Bias in Bios dataset. As shown in Table 2,
CrAWD has the lowest scores on GAS and WEAT.
It mitigates bias in the model’s attention mech-
anism, which is reflected in multiple bias met-
rics. For text generation utility evaluated by PPL,
CrAWD has a slightly higher utility cost in this
setting as the result of utility-fairness trade-off. De-
bias Tuning can only mitigate for a specific metric
target, GAS, so it does not generalize to other eval-
uations.

To consider a more realistic scenario, in Table 3
we limit the model’s prior knowledge of the evalu-
ation task. Both Debias Tuning and CrAWD only
consider token “he” and “she” for gender during
fine-tuning. The evaluation uses Appendix A.2 to
calculate GAS and even more for WEAT in LLama
models. CrAWD only needs a simple reference
{“he”, “she”} to mitigate bias effectively. Whereas,
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Table 2: Gender bias in text generation in fine-tuned models on the Bias in Bios dataset

LLM Model GAS↓ WEAT↓ PPL↓ GPT Judge↑

Llama2-7b

Vanilla 0.860 0.582 15.360 8.000
IBM 0.800 0.613 17.108 7.500
DT 0.790 0.589 21.896 8.000
IP 0.630 0.443 20.582 8.000

KGDebias 0.843 0.627 23.028 7.000
DSD 0.750 0.526 15.553 7.500

CrAWD 0.340 0.194 22.646 7.500

Llama3-8B

Vanilla 0.895 0.640 19.906 8.500
IBM 0.835 0.632 28.527 7.500
DT 0.870 0.697 41.533 8.000
IP 0.780 0.699 28.002 8.000

KGDebias 0.875 0.760 43.240 7.500
DSD 0.900 0.704 41.677 8.000

CrAWD 0.550 0.639 46.993 7.500

Table 3: Model training with different amounts of prior knowledge (in terms of sensitive tokens)

Sensitive sequence Debias Tuning (DT) CrAWD
GAS↓ WEAT↓ PPL↓ GAS↓ WEAT↓ PPL↓

he, she 0.790 0.589 21.896 0.340 0.194 22.646
he, she, man, woman 0.750 0.546 21.797 0.485 0.339 22.421

he, she, man, woman, male, female 0.710 0.595 24.339 0.405 0.295 23.103

Table 4: Racial bias in text classification in BERT-base
models fine-tuned on the Hate Speech dataset

Model Accuracy↑ TPR Gap↓ AUSC↓
Vanilla 0.944 0.181 0.717

AD 0.916 0.035 0.702
CBE 0.924 0.053 0.604
IBM 0.874 0.050 0.636

CrAWD 0.972 0.042 0.413

Debias Tuning’s mitigation performance is very
limited to the prior knowledge during training. It
needs more information to achieve good perfor-
mance on GAS and WEAT and even then the per-
formance is not as good as CrAWD. In addition, it
can be also observed that the relative performance
improvement between the CrAWD method fine-
tuned on “he, she” and “he, she, man, woman, male,
female” is 17.14% for GAS and 52.05% for WEAT,
while the performance drop for PPL is only 2.02%.
The results clearly indicate that using simple refer-
ences in CrAWD fine-tuned method dramatically
improves LLM performance on GAS and WEAT
while maintaining comparable PPL.

We also evaluate racial bias using their related
sensitive tokens (see Appendix A.1) in text clas-
sification in BERT-base models fine-tuned on the
Hate Speech dataset. As shown in Table 4, CrAWD
has the second lowest TPR gap and lowest AUSC,
indicating that it is effective in removing both di-
rect bias in model prediction and indirect bias in
model explanation. CrAWD has the highest ac-

Table 5: The performance of CrAWD using different
Top-K%

Top-K% GAS↓ WEAT↓ PPL↓
10 0.485 0.660 16.609
20 0.430 0.624 15.642
30 0.400 0.606 19.687
40 0.340 0.194 22.646
50 0.310 0.190 26.371

Table 6: The performance of CrAWD using different
weight decay values λ

Weight Decay (λ) GAS↓ WEAT↓ PPL↓
0.0 0.315 0.579 16.119
0.1 0.176 0.665 15.180
0.2 0.340 0.194 22.646
0.3 0.125 0.341 19.298
0.4 0.410 0.421 22.197

curacy (higher than Vanilla), which shows that
CrAWD has a good balance of model utility and
fairness. We also evaluate multiple types of biases
in text generation in fine-tuned models on the SNLI
dataset (see Appendix A.3).

6.3 Trade-off Analysis (RQ3)
We evaluate the performance of CrAWD using dif-
ferent values of hyperparameters when fine-tuning
Llama2-7B on the Bias in Bios dataset. The values
with the optimal trade-off between fairness (mea-
sured by WEAT) and utility (measured by PPL) are
used for all other CrAWD experiments.

Top-K% defines the percentage of cross-
attention weights selected to decay. A higher K%
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identifies more tokens that have biased associations
with sensitive attributes. As shown in Table 5, with
K increases, the model discovers more biased asso-
ciations and better mitigates bias as indicated by the
lower WEAT score. However, it also mis-identifies
meaningful associations as bias and worsen the
model utility as indicated by the higher PPL score.
At Top-40%, the bias is low and the model utility
is still satisfactory.

Weight Decay value λ controls the strength of
weight decay applied to the identified biased to-
kens. A lower value of λ leads to a stronger bias
mitigation, which trade-off more utility for fair-
ness. As shown in Table 6, with λ decreases, the
model deemphasizes more on tokens with biased
associations. It lowers the WEAT acore and better
mitigates bias. It also degrades the model utility as
indicated by the higher PPL score. At λ = 0.2, the
bias is low and the model utility is still satisfactory.

7 Conclusion

In this work, we introduced Cross-Attention-based
Weight Decay (CrAWD), a method for mitigating
multiple types of bias in LLMs. CrAWD uses cross-
attention mechanism to identify and reduce biased
associations with sensitive attributes during fine-
tuning, without requiring prior knowledge of bias.
Our approach successfully reduces bias in model
outputs while preserving performance, offering a
versatile and effective solution for promoting fair-
ness in diverse NLP tasks across various domains.

8 Limitations

The CrAWD method introduces a cross-attention
layer, adding extra parameters to the LLM archi-
tecture and increasing runtime complexity during
training and inference. This additional compu-
tational overhead may limit its applicability in
resource-constrained environments or scenarios re-
quiring low latency. In future work, we will explore
parameter-light alternative solutions to reduce com-
putational costs, which effectively mitigate bias
without increasing model complexity.

9 Ethical Considerations

We aim to mitigate biases in LLMs using the
CrAWD method. While we utilize widely used cor-
pora for training, we acknowledge that they may
contain harmful or biased content, we are not re-
sponsible for any offensive material they include.
Our focus is on reducing biased associations within

models to generate less biased outputs, assessed
through bias-related metrics, without compromis-
ing overall performance. We do not explore the
potential extrinsic harms that might arise from em-
ploying the debiasing methods studied.
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A Appendix

A.1 Implementation Details
For LLM fine-tuning, we employ QLoRA
(Dettmers et al., 2024) for parameter-efficient train-
ing with the following configuration parameters:
rank = 16, alpha = 32, dropout = 0.1, and task_type
= “causal_lm”. The model undergoes training for 5
epochs with a learning rate of 10−5. We use cross-
entropy as our loss function and optimize it with
the AdamW8bit optimizer. We conducted all the
experiments on 2 NVIDIA Tesla A100 GPUs with
400GB memory. For experiments of RQ1, we run
all the models for 5-repeat rounds and report the av-
erage value of each metric. All experiment results
are reproducible using a provided set of random
seeds.

For the detailed architecture of CrAWD, we
use the pre-trained LLama2-7B-chat from Hug-
ging Face as an example. LLama2-7B-chat com-
prises 32 decoder layers, each featuring 8 atten-
tion heads and a dropout rate of 0.1. The em-
bedding size of the model is 4,096. In CrAWD
fine-tuning, we enhance this architecture by adding
a single cross-attention layer using PyTorch’s
nn.MultiheadAttention, is also configured with a
dropout rate of 0.1. This cross-attention layer in-
troduces additional parameters which is less than
1% of the model and it take 15% additional com-
puting time per epoch. Both the input sequence x
and the sensitive sequence b are fed into the model.
We pad both sequences to a maximum length of
32, i.e., n = m = 32. After computing the cross-
attention weights, we select the Top-40% of the
highest weights and apply weight decay by mul-
tiplying them by weight decay parameter λ = 0.2,
effectively reducing their values by 80%.

The sensitive sequence b consists of the follow-
ing tokens {“he”, “she”, “gay”, “straight”, “young”,
“old”, “black”, “white”, “Asian”, “European”,
“American”, “Mexican”, “disabled”, “abled”, “Mus-
lim”, “Christian”, “Jewish”, “fat”, “thin”, “rich”,
“poor”}. It only needs one reference token for each
sensitive attribute group. In the embedding space,
the cross-attention mechanism examines similar to-
kens related to the sensitive attribute and discovers
the biased associations with those tokens. For dif-
ferent datasets, we use a subset of b. We use only
gender tokens for the Bias in Bios dataset, racial
tokens for the Hate Speech dataset, and the full set
for the SNLI dataset.

For the WEAT calculation, we use ChatGPT o1

mini to make suggestions on the word sets for the
considered sensitive attributes.

A.2 Gender Attribute Score (GAS)
Evaluation Set

In the GAS metric for assessing gender bias in
the model’s text generation, we use the follow-
ing evaluation test set {“he”, “she”, “him”, “her”,
“his”, “hers”, “man”, “woman”, “male”, “female”,
“boy”, “girl”, “father”, “mother”, “son”, “daugh-
ter”, “brother”, “sister”, “king”, “queen”, “actor”,
“actress”, “husband”, “wife”, “uncle”, “aunt”, “sir”,
“madam”}. Any generated text containing at least
one word from this set is considered as biased,
whereas text that excludes all such words is consid-
ered as neutral.

A.3 Handling Multiple Types of Bias
To evaluate how our model performs in mitigating
multiple types of bias, we fine-tuned LLaMA2-
7b and LLaMA3-8B models on the SNLI dataset,
which contains sensitive tokens related to gender,
race, and age (See Appendix A.1). Our reference
sequence, b, is designed to discover and mitigate
multiple types of biases simultaneously, without re-
lying on full knowledge of the evaluation task. As
shown in Table 7, baseline models struggle to ad-
dress all three sensitive attributes effectively. While
they may perform well for one type of bias, they
often fail to mitigate others. For instance, models
like IBM might significantly reduce gender bias
in Llama3-8B, but they do so at the expense of
race or age bias, typically sacrificing perplexity.
Similarly, Debias Tuning excels in mitigating one
type of bias, but leaves other dimensions relatively
unchecked. In contrast, CrAWD provides a more
stable and balanced approach. It consistently ranks
among the top two methods across all bias metrics
in both LLaMA2-7b and LLaMA3-8B, effectively
reducing gender, race, and age biases without sig-
nificantly harming perplexity. This stability arises
because CrAWD adapts its reference sequence b
to address various sensitive tokens simultaneously,
rather than focusing on a single bias at the expense
of others. As a result, CrAWD offers a more holis-
tic and reliable debiasing solution, mitigating multi-
ple biases at once while maintaining model fluency.
for 45 seconds

A.4 Case Study
For qualitative analysis, we examine some text ex-
amples generated by Llama2-7B fine-tuned on the

15797



Table 7: Multiple bias in text generation in fine-tuned models on the SNLI dataset

LLM Model WEAT↓ PPL↓Gender Race Age

LLaMA2-7b

Vanilla 0.955 0.526 0.049 18.243
IBM 0.942 0.846 0.006 19.958

Debias Tuning 0.929 0.667 0.072 17.512
CrAWD 0.938 0.445 0.028 20.004

LLaMA3-8B

Vanilla 0.901 0.190 0.565 32.072
IBM 0.546 0.302 0.984 111.783

Debias Tuning 0.878 0.247 0.708 29.154
CrAWD 0.885 0.349 0.576 35.952

Figure 3: Examples generated by Llamma2-7B fine-
tuned using the Vanilla and CrAWD methods

Bias in Bios dataset using the Vanilla and CrAWD
methods, shown in Figure 3. The vanilla fine-tuned
model generates texts with a gender narrative (with
the presence of specific gender token), where it
exhibits gender stereotyping bias in occupations.
The CrAWD model generates gender neutral texts,
which do not have a gender narrative nor show any
gender bias associated with occupations.

To further inspect, we visualize the final decoder
layer’s cross-attention matrix with the predefined
sensitive sequence {“he”, “she”} for the prompt

Figure 4: Cross-attention visualization for the prompt
“The doctor said that. . . ”

“The doctor said that. . . ”. Figure. 4 shows the
strongest weight links to the input token “doctor”
to the word “she”, meaning the model’s decision
is driven mainly by the word “doctor”. This pro-
nounced attention link exposes an implicit gender
association for the profession, evidence that in the
model’s training it picks up association bias with
certain gender specific words which lead to biased
text generation and CrAWD can successfully re-
duce this association with the weight decay trick.
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