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Abstract

Through a controlled study, we identify a sys-
tematic deficiency in the multimodal grounding
of Vision Language Models (VLMs). While
VLMs can recall factual associations when pro-
vided a textual reference to an entity, their abil-
ity to do so is significantly diminished when
the reference is visual instead. Forcing VLMs
to rely on image representations of an entity
halves their ability to recall factual knowledge,
suggesting that VLMs struggle to link their
internal knowledge of an entity with its im-
age representation. We show that such linking
failures are correlated with the expression of
distinct patterns in model internal states, and
that probes on these internal states achieve over
92% accuracy at flagging cases where the VLM
response is unreliable. These probes can be ap-
plied, without retraining, to identify when a
VLM will fail to correctly answer a question
that requires an understanding of multimodal
input. When used to facilitate selective pre-
diction on a visual question answering task,
the probes increase coverage by 7.87% (abso-
lute) while also reducing the risk of error by
0.9% (absolute). Addressing the systematic,
detectable deficiency is an important avenue in
language grounding, and we provide informed
recommendations for future directions.

1 Introduction

Systems that incorporate multiple modalities, such
as image and text, address the ‘symbol grounding
problem,’ i.e., the problem of connecting symbolic
concepts to sensory properties of objects in the
world (Harnad, 1990). It has been argued that ad-
dressing this problem is a prerequisite to truly “un-
derstanding meaning’ (Bender and Koller, 2020),
making multimodal grounding a vital frontier in
the pursuit of capable Al systems (Bisk et al., 2020;
Bommasani et al., 2021).

An important instance of this problem is that
of vision-language grounding (Kazemzadeh et al.,
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Figure 1: Despite being able to recall its internal knowl-
edge of an entity (here, ‘STONEHENGE’) when provided
a textual reference, LLaVa-Vicuna-7B (Liu et al., 2023)
fails to recall this knowledge with a visual reference.

2014), with modern Vision Language Models
(VLMs) making significant progress on tasks that
combine the visual and textual modalities (Antol
et al., 2015; Alayrac et al., 2022). VLMs contain
facts on a wide range of entities (Petroni et al.,
2019), and can use this knowledge to reason over
objects present in an image (Zellers et al., 2019).
A consistently grounded multimodal system
should recall facts about a symbolic entity (e.g.,
‘STONEHENGE’) independent of the sensory modal-
ity by which it is observed (e.g., the word ‘Stone-
henge’ versus an image of the same, Figure 1).
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Figure 2: For each question, we create a textual reference version which names the entity in the text, and a visual
reference version in which the text only refers to the image. Similarly, we have an entity image that identifies the
entity, and an uninformative image (e.g., uniformly random pixels) which contains no information about the entity.
We precisely control the modality that contains entity-specific information, isolating the ability of a VLM to recall
the factual knowledge it contains based on the modality in which this information is presented.

In this work, we test several state-of-the-art
VLMs for this capability. We design a controlled
experiment to isolate their ability to recall facts
when using visual representations of the entity, and
observe, on average, a 58.95% performance degra-
dation in visual question answering capability.

We evaluate seven VLMs across the Instruct-
BLIP (Li et al., 2023a), LLaVA (Liu et al., 2023)
and GPT4-V (OpenAl, 2023) families, encom-
passing a variety of vision-language pretraining
paradigms, backbone language models and model
scales.! Every VLM we investigate, without excep-
tion, experiences significant performance degrada-
tion when forced to rely on its image representa-
tion, with answer accuracy consistently falling by
over 50%. The decline in performance is persis-
tent across models of varying sizes, suggesting that
scaling the model is insufficient to fully address
this grounding gap. VLMs struggle to link their
internal knowledge of entities with their image rep-
resentation, relying heavily on the presence of text
tokens that explicitly name the entity and failing to
achieve the modality independence expected by a
consistently grounded model.

Having established that VLLMs often fail to link
images of entities to their internal knowledge, we
next turn to detecting and avoiding such failures.
We employ techniques of mechanistic interpretabil-
ity (Nostalgebraist, 2020) on the hidden states of
the VLM and visualize how predictions of the next
output token are built during inference. We observe
a consistent pattern: cases of linking failure build
confidence in a VLM’s prediction at later layers
when compared to cases of linking success. We

1https ://github.com/DhananjayAshok/VLM_
Grounding

use linear probes on these hidden states to create
warning systems for such linking failures. The
probes significantly outperform the next best base-
line (by 25 percentage points on average), achieve
accuracies in excess of 92% and generalize to out-
of-domain datasets. These probes can be used,
without retraining, to determine whether or not a
VLM will correctly answer a question from the
OKVQA (Marino et al., 2019) dataset. When used
in a selective prediction (De Stefano et al., 2000)
framework, our method achieves higher coverage
than all baselines, with an absolute improvement
of 7.87%, while also reducing errors by 0.9%.

2 Background and Related Work

Efforts to jointly model textual and visual modal-
ities have made significant progress in recent
years (Zhang et al., 2024a), growing from ap-
proaches that were limited to representing iso-
lated word meanings (Barnard and Johnson, 2005)
to powerful systems that can handle arbitrary
image and textual inputs on a wide variety of
tasks (Alayrac et al., 2022; Li et al., 2023a).
These methods take advantage of powerful pre-
trained language models (LMs) (Zhang et al.,
2024a), training visual encoders that convert im-
ages to representations that can be passed into the
LMs (Liu et al., 2023), with minimal changes to
the LM itself (Li et al., 2023a). Since pretraining
LMs on internet-scale corpora imbues them with
factual knowledge (Petroni et al., 2019), the result-
ing system can recall facts about entities present in
the images they are provided (Marino et al., 2019).
This approach to vision-language grounding
does not jointly learn representations, raising con-
cerns of a grounding gap between the visual repre-
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sentations and the LM component (Li et al., 2023b;
Tong et al., 2024). Qualitative studies on the seman-
tic representations of such VLMs reveal notable dif-
ferences between multimodal and text-only repre-
sentations of words (Pezzelle et al., 2021; Tikhonov
et al., 2023). However, whether such differences
affect downstream performance, such as the capa-
bility of a VLM to access the internal knowledge
that it contains, remains an open question.

Prior work evaluates VLMs on their ability to
recall factual knowledge by asking knowledge-
intensive visual questions (Antol et al., 2015;
Marino et al., 2019; Cheng et al., 2025; Das et al.,
2024; Saikh et al., 2022). However, these ap-
proaches are oriented towards benchmarking the
overall capability of VLMs, and are not able to iso-
late failures in multimodal grounding specifically.
A failure to answer a question from these bench-
marks could be due to a failure to link the visual
representation with the VLMs internal knowledge,
however, it may also be due to a failure in identify-
ing the image, a gap in the knowledge contained in
the VLM, a reasoning error, or some combination
of these. We create an experiment that controls for
such confounding factors, isolating the ability of a
VLM to access its internal knowledge using only
visual representations of an entity. While contem-
porary work explores this problem (Cohen et al.,
2025) from the lens of mechanistic interpretability,
they focus only on the PopVQA dataset. In this
work, we construct a testbed from multiple datasets
that span a range of entities, showing that VLMs
struggle to recall factual associations from visual
references over a wide variety of entity types.

3 Creating the Benchmark

We start by collecting images of various entities
from image classification datasets, with each class
label serving as a distinct entity. We source from:
CIFAR100 (Krizhevsky et al., 2009): A general-
purpose dataset with entities ranging from insects
such as ‘BEETLE’ to vehicles such as ‘TRAIN’.
Food101 (Bossard et al., 2014): A food dataset,
with entities including ‘BAKLAVA’ and ‘CEVICHE’.
Landmarks (Weyand et al., 2020): A dataset of
famous landmarks, with entities such as ‘NTAGARA
FALLS’ and ‘STONEHENGE’.

For each entity, we compile general knowledge
question-answer (QA) pairs. Unlike most existing
benchmarks (Antol et al., 2015; Goyal et al., 2017),
our questions are well-formed in text alone, i.e.,

the answer can be determined without referring to
any specific, contextualized image of the entity.

We use the Wikipedia API (Majlis, 2025)
to automatically gather text containing common
knowledge about each entity, and use Llama3.1-
8B (Grattafiori et al., 2024) as a parser that ex-
tracts question-answer (QA) pairs from the text.
We additionally directly prompt Llama3.1-8B to
generate QA pairs for each entity. The collected
pairs are filtered through multiple steps to ensure
they are valid questions with a single correct an-
swer (Appendix A). Finally, three authors of the
paper conduct a round of human annotation and es-
tablish, with substantial inter-annotator agreement
(k > 0.65), that the remaining QA pairs are both
relevant to the entity and ones where the answer to
the question is correct.

For each question, we create an analogous ver-
sion that does not state the entity but instead refers
to the image. Ultimately, each datapoint in our
testbed (Figure 2) consists of an entity’s image, a
textual reference question that explicitly mentions
the entity and a visual reference question that does
not name the entity. Separate from this pipeline,
we also design a task based on the MNIST (Deng,
2012) dataset. For each digit in the dataset, we ran-
domly generate addition and multiplication ques-
tions with a single other operand of no more than
2 digits (e.g. for the digit ‘5’, we may generate
the textual reference question ‘5 + 17 =" and visual
reference question ‘the digit in the image + 17 =).

However, when given the image and visual ref-
erence question, there are multiple reasons why a
VLM may answer incorrectly. The VLM might
have misidentified the entity, or may not contain
the relevant information, which are scenarios where
even a perfectly grounded system will fail. To con-
trol for these factors, we conduct an additional
round of filtering. For each datapoint, we ask the
VLM under evaluation to identify the object in the
entity image. We also have it answer the ques-
tion when given both the entity image and the fext
reference version of the question. We retain the
question only if the identification is accurate and
the answer is correct, ensuring that the VLM recog-
nizes the entity and contains the relevant internal
knowledge. We also ask the VLM to answer the
question when provided a trivial image with no
information about the entity (e.g., random pixel
values) and the visual reference version of the ques-
tion. These instances should be unanswerable as
they do not contain the information required to

15693



identify the entity, and a correct response indicates
that the question’s answer can be guessed using
language-based priors. We remove such instances
to ensure that our testbed contains questions which
require knowledge of the entity to answer correctly.
In practice, we aggregate the VLMs output over
multiple different trivial images, for details see Ap-
pendix B. The final benchmark allows us to isolate
the VLMs ability to perform factual recall from dif-
ferent modalities in a way that is not possible with
existing complex VQA benchmarks. Consider the
visual reasoning question answering benchmark,
GQA (Hudson and Manning, 2019). This bench-
mark includes highly compositional images and
may contain, for instance, an image of an apple
and an orange on a table. We may create the fex-
tual reference question ‘“What colour is an apple?’,
which has the analogous visual reference question
‘What color is the object in the image?’. However,
since the image contains multiple objects, the cor-
rect answer to the textual reference question (red)
is no longer the only correct answer to the visual
question (red or orange). By sourcing our images
from simple, single-image datasets, we can pre-
cisely isolate the entity and ensure that the textual
and visual questions have the same answers.

The final number of datapoints varies by dataset
and model, with an average of 792 distinct image-
question pairs remaining per dataset-model com-
bination. For dataset-model specific counts, see
Appendix A

4 Evaluating VLMs Factual Recall using
Different Modalities

We evaluate the VLMs under two different settings,
isolating the capability of the LM component to use
the textual and visual representations to recall the
relevant fact regarding an entity. In both settings,
the VLM is prompted to directly state the answer.
We provide a trivial image and the tex-

tual reference question that states the entity. This
setting measures the VLM’s ability to recall factual
associations from the textual representation of the
entity.
Visual: We provide the image of the entity, and the
visual reference question that does not name the
entity in text. This setting forces the VLM to rely
on its representation of the image to identify and
access the facts it has stored about the entity.

We evaluate VLLMs from the following families:
InstructBLIP: An approach that leaves the LM

and vision encoder frozen, learning a Q-Former (Li
et al., 2023a) to convert image representations to
visual tokens that the LM can use.

LLaVA: A method that keeps the vision encoder
frozen, but learns a linear projection from the image
representation to the input space of the LM and also
learns updates to the LM weights.

GPT4V: A state-of-the-art frontier model whose
internal details are proprietary.

To evaluate a model response string r against
the gold answer string a we use the metrics of two-
way string inclusion (r € a V a € r, where € is
the substring property) and exact match (a = r),
which estimate the correctness of the response with
a binary signal. We also use BLEU (Papineni et al.,
2002), a continuous metric which gives higher val-
ues when the answer and response have greater
n-gram overlaps.

5 Results

A consistently grounded VLM that can access its
internal knowledge using references from either
modality should achieve comparable performance
in both test settings. The results (Figure 3) show
that answer correctness under the set-
ting, as judged by the two-way inclusion metric,
is consistently high at 84.70% on average. This
performance strikes a stark contrast with the av-
erage correctness of the Visual setting (42.05%),
which is less than half of the performance of the

setting. This divide is also seen when
using the exact match (52.87% vs 23.85%) and
BLEU (55.93% vs 21.92%) metrics (Appendix C).
When recalling factual associations regarding an
entity, VLM performance declines by over half if
it is forced to rely on visual representations of the
entity instead of textual representations.

The grounding gap, which occurs consistently
across all models and datasets, is a systematic fail-
ure in the ability of VLMs to recall factual associa-
tions using image representations of entities. This
gap is most chronic in the MNIST dataset, where
the setting achieves near perfect perfor-
mance (98.66%), but the Visual setting achieves
only 31.28% correctness.

Concerningly, the gap continues to be wide even
for the most powerful VLM, GPT4YV, suggesting
that it is a failure that will not be resolved natu-
rally through a scaling of model parameters and
dataset sizes. Within the same model family, mod-
els of higher scales occasionally have less of a gap;
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Figure 3: Performance (two-way inclusion) on VLMs when forced to rely on visual (Visual) or textual (Text Only)
representations of an entity. Empty bars for InstructBLIP are datasets where fewer than 100 datapoints passed
filters. While the Text Only setting shows performance decreases (15.3%), the performance in the Visual declines
by 58.95% (nearly 4x the decline). This decline is evidence that VLMs, across pretraining paradigms, architectures
and scales, struggle to link their internal knowledge of an entity with visual representations of it.

however, as seen in the Food101 and Landmarks
datasets, the improvement is often marginal.

6 Identifying Linking Failures

Our controlled experiments have shown significant
declines in the ability of a VLM to access its inter-
nal knowledge of an entity using visual references,
a grounding gap which makes these systems more
vulnerable to false utterances. Such responses can
be particularly harmful in settings where users de-
pend on the model (MacLeod et al., 2017), trust
in its output (Ji et al., 2023) or use its output to
make consequential decisions (Xie et al., 2024).
In this section, we develop methods that identify
when a VLM will fail to link its visual represen-
tation of an entity with its internal knowledge, al-
lowing model providers to flag instances where the
response should not be trusted, and minimize the
harms of linking failures. We focus on LLaVA-
Vicuna7B and investigate the hidden representa-
tions of the last input token in the LM component.
During the forward pass on datapoint 4, specifically
after the computation at layer [ of a Transformer
LM layer, the last input goken is represented by a
l

d-dimensional vector hl(- .

6.1 Visualizing Hidden States

The unembedding layer of the VLM is a linear op-
eration (of form: U € RIV|4) trained to map the
last token embedding of the penultimate layer to
the vocabulary space. We use this layer to compute
softmax(UhEl) ), which can be seen (Nostalgebraist,
2020; Geva et al., 2021) as an approximation of the
distribution of the next token over the vocabulary
space at a given layer of the VLM. We study how
this distribution varies for the successful and un-
successful cases of linking the visual reference of
an entity with internal knowledge about that en-
tity. However, the very first token generated by the
VLM may be the same for both correct and incor-
rect answers, preventing us from observing a clear
trend. Hence, we use Llama-3.1-8B to reformulate
the QA pairs into multiple-choice QAs with four
options (prompts in Appendix A). Taking inspira-
tion from the setup in Rimsky et al. (2024), the first
token generated is now the letter associated with the
option that the VLM selects, and hence completely
determines whether or not the question has been
answered correctly. Figure 4 (Top) shows how the
model builds its prediction over the forward pass.
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Figure 4: Cases of linking failure correlate with the expression of distinct patterns in the hidden states produced by
the VLM. Top: The probability of the eventual output token across layers of the forward pass. Cases of linking
success gain probability mass earlier than linking failures, and achieve higher eventual probability on average.
Bottom: The Cosine Similarity between internal states produced by the VLM when run in the Visual and Full Info
settings (in the Full Info setting, the VLM is given both textual and visual entity references). The internal states of
linking failure cases are less similar to the internal states produced in the Full Info setting, suggesting that linking
failure occurs when the internal representations lack the information required to trigger the recall of relevant facts.

Cases of linking success begin gaining probabil-
ity earlier than linking failures, and achieve higher
eventual probability on average. The patterns sug-
gest that the layers most responsible for promoting
the final answer vary based on whether or not fac-
tual linking is successful. The layers responsible
for factual answers are the mid-to-late layers, 15-
25. Answers that gain most of their probability
mass after this range are often a result of linking
failure. The special role of the mid-to-late layers in
our results is consistent with previous work (Meng
et al., 2022; Azaria and Mitchell, 2023), which sug-
gests that these layers play a disproportionate role
in the storage of factual associations.

We also compare the differences between the
hidden states generated when the modality of en-
tity information varies. Specifically, for a given
datapoint, we run in both the Visual and Full Info
settings (the Full Info setting provides the VLM
with both the entity image and the textual ref-
erence to the entity). These two runs produce
the hidden states {hi|l € {1,2,...L}}¥ and

{Ri|l € {1,2,... L}}N, respectively (for an LM
with L layers). To perform a layerwise compari-

son of the internal states produced by both of these
0

runs, we compute the cosine similarity of 4, and

ﬁgl) for every datapoint, at every layer.

Unlike the probability distributions, the cosine
similarities of the successful and failing linking
cases diverge steadily (Figure 4, Bottom). By the
final layers (in the visual setting), the internal states
of the successful cases of linking are substantially
more similar to the internal states produced in the
full information setting. These patterns suggest
that linking fails when the internal state does not
contain sufficient information or a strong enough

signal to trigger the recollection of relevant facts.

6.2 Early Warning for Linking Failure

A failure to link an entity representation with the
VLM:s internal knowledge could lead to hallucina-
tion and ungrounded outputs. A system that can
notify users when such linking failures have oc-
cured, would better allow them to calibrate their
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Dataset Perplexity Probe Ensemble A (Perplexity—Ensemble)
Coverage Risk Coverage Risk Coverage Risk Coverage (%) Risk (%)
CIFAR100 43.52 22.86 52.41 2322 52.12  22.33 +19.76 -2.31
Food101 56.78 15.85 59.18 16.83 60.38 15.90 +6.34 +0.31
Landmarks 51.92 2942 54.28 31.12 53.78 29.33 +3.58 -0.30
OKVQA 57.97 42.08 66.58 39.23 59.02 41.53 +1.81 -1.30

Table 1: Performance of probes when used for selective prediction in the out-of-distribution setting. Probes are
trained on all three other datasets and applied to the test dataset without retraining. Coverage (percentage of
datapoints the system predicts on) is typically higher for the probes, however the perplexity baseline can incur lower
risk (error-rate on predicted samples). An ensemble approach that combines the two often leads to higher coverage
than the perplexity baseline with a minor decrease in the error-risk.

belief in the VLMs response. We build such a sys-
tem, training a probe to flag cases when a VLM
has failed to link its internal knowledge of an en-
tity with its visual representation. We collect the
20th layer, final output token hidden states pro-
duced during the visual setting and train a linear
probe (Alain and Bengio, 2017) to identify whether
or not linking has failed. Similar approaches have
been used to identify false utterances (Azaria and
Mitchell, 2023), and a range of other degenerate
behaviours in LMs (Ashok and May, 2025). We
consider the base rate of the most frequently occur-
ring class to be the random baseline performance.
For a stronger baseline, we implement a dominant
method in LM confidence elicitation (Kumar et al.,
2024) and selective prediction (Srinivasan et al.,
2024) with VLMs—Iearning a threshold on the
per-token-perplexity of the output, and flagging for
linking failure if the answer token perplexity lies
above this threshold. Our linking detection probes
(Table 2) significantly outperform all baselines.

Dataset Random Perplexity Probe
MNIST 81.46 5497  99.34
CIFAR100 64.01 64.98  98.07
Food101 66.47 67.66  94.61
Landmarks 52.80 68.32  92.55
OKVQA 51.34 60.16  64.32

Table 2: On all datasets, our probes significantly out-
perform all baselines, showing that the information con-
tained in the hidden states allows us to build a powerful
predictor for linking failures.

Next, we ask whether these probes can general-
ize to unseen datasets and prove useful in identify-
ing linking failures under shifting distributions. We
train a single probe on the CIFAR100, Food101 and

Landmark datasets and apply this probe, without
retraining, to the OKVQA dataset (Marino et al.,
2019). This dataset is a testbed for commonsense
knowledge in visual question answering, and asks
for knowledge related to the entities in the image.
We use the signal from our probe to enable selec-
tive prediction on OKVQA, i.e., deciding when the
VLM should abstain from answering a question
because it is unlikely to answer correctly.

Following previous work (Srinivasan et al.,
2024), we evaluate selective prediction with cov-
erage and risk (El-Yaniv et al., 2010). Given a
labelled evaluation dataset with image, question,
and answer tuples, the coverage is the percentage
of questions where the system makes a prediction,
and the risk is the error rate on the questions where
a prediction is made.

The probes achieve (Table 1) higher coverage
than the perplexity baseline with marginally higher
risk. However, when we average the predictions
of the two methods (Ensemble), we can achieve
significantly higher coverage (10.4% on average)
than the perplexity baseline while simultaneously
reducing the risk (-0.9%). This strong performance
demonstrates the value of hidden state probes in
practical settings and their ability to identify linking
failures under shifting distributions.

7 Addressing the Grounding Gap

The controlled experiments above have demon-
strated that VLMs struggle to link their internal
knowledge of an entity with a visual representa-
tion of it. However, one might argue that the VLM
can always verbalize the image’s contents first, al-
lowing it to rely on the textual representation for
factual recall. We advance several arguments to
motivate the claim that the grounding gap shown
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in this work will limit the performance of VLMs in
practical settings.

Inference Cost: The most direct consequence of
relying on the VLM to verbalize the contents of
an image before answering is an increase in the
number of tokens generated before the final an-
swer can be provided. With the increasing scale of
LMs (Hoffmann et al., 2022), this threatens to be-
come prohibitively expensive for both users (Zhou
et al., 2024) and the environment (Strubell et al.,
2020). Addressing this grounding gap would en-
able the visual representation of the entity to recall
the information directly and enable more efficient
and accessible systems.

Conlflicts between text and image modalities: In
practice, the information in the text used to de-
scribe an associated image may conflict with the
information in the image’s contents. Recent work
shows (Parcalabescu and Frank, 2025) that answer
generation is primarily driven by the text compo-
nent and that in such cases where the modalities
conflict, text information is given more weight. A
superior system would make contextual decisions
based on the strength of the evidence in each modal-
ity. However, VLMs that rely disproportionately
on the textual modality for factual recall will con-
sistently favour the text modality and lack this ca-
pability.

Verbalization Failures: VLMs that rely on verbal-
ization to recall factual associations face a failure
mode—inability to access factual, internally stored
information about the objects in the image, because
they were not explicitly verbalized when describ-
ing the image. This concern is most pressing for
images that have many objects or entities that the
query could involve, leading the VLM to only state
a subset of them, or hallucinate objects that are
not in the image (Li et al., 2023b). Certain VLM
architectures, such as the LLaVA approach (Liu
et al., 2023), create visual representations that are
agnostic to the text of the input prompt. These
approaches may be more vulnerable to such fail-
ures, because the image encoding used to drive the
verbalization cannot allow for a greater focus on
the regions of the image most relevant to the text
query.

Lack of Visual Knowledge in Text Training
Data: L.Ms are trained on internet-scaled text cor-
pora (Brown, 2020) and hence store factual associa-
tions from the texts they have encountered (Petroni
et al., 2019). However, the concepts that are well
learned from text data often do not fully include

visual concepts such as spatial understanding (Ya-
mada et al., 2023), leading to LMs that struggle
on questions requiring spatial knowledge (Wang
et al., 2024). If VLMs remain reliant on their LM
subcomponents for factual recall, they risk being
limited in their ability to answer questions requir-
ing a deep understanding of such visual concepts.
A Novel Data Augmentation Approach: We sug-
gest a novel training paradigm, a supplement to
current pretraining procedures that may help ad-
dress the grounding gap shown in this work. While
our results (Figure 3) show that VLMs struggle to
recall factual associations from visual references,
most models still retain some capacity to do this.
This suggests that the various architectures of these
models do not necessarily prevent them from being
consistently grounded across modalities. We sug-
gest a variation of the feature-alignment pretraining
procedure used to construct the LL.aVa models (Liu
et al., 2023). The suggested procedure assumes
only that the vision component and language com-
ponent are linked with a trainable bridging module.

The current practice is to use an image caption-
ing dataset, where the inputs to the VLMs are im-
ages and the target output is the caption. The bridg-
ing module is tuned to maximize the likelihood of
the caption given the image, hence serving as an
interface between the visual and textual modalities.
We suggest that this paradigm be expanded to in-
clude factual recall. This would include collecting
QA pairs for the entities in the captions of the im-
ages, a procedure which, as shown in this paper,
can be done automatically at moderate scales. In-
stead of only using the captioning task for feature
alignment, the pretraining phase can include tuning
the bridging module to maximize the likelihood of
the answer given the question. This paradigm may
allow the bridging module to learn how to trans-
form the visual representation such that it can draw
out relevant facts from the layers of the LM.

8 Conclusion

In this work, we show that Vision Language Mod-
els of various pretraining paradigms, architectures
and scales suffer from a multimodal grounding
gap. Specifically, we use a controlled experiment
to demonstrate that VLMs struggle to recall fac-
tual associations regarding an entity from a visual
reference, as opposed to a textual reference. This
failure to link an entity’s visual representation with
its internal knowledge correlates with the expres-
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sion of distinct patterns in the activations of the
hidden states, and probes trained on these hidden
states show promise in identifying these cases as
well as providing a signal for selective prediction.
We argue that addressing this gap is an important
avenue for future research and suggest novel future
directions to do so.

9 Limitations

This work primarily focuses on robustly showing
that VLMs struggle to link their internal knowledge
of an entity with their visual representations. In our
work, we focus exclusively on VLMs, leaving an
open question as to whether or not similar gaps can
be found in other multimodal LMs (e.g., audio lan-
guage models). We provide tools to identify when
a VLM has failed to link an entity with its internal
knowledge and also suggest directions to bridge
this gap. However, the paper does not address miti-
gating linking failure during VLM training. Addi-
tionally, we do not identify which particular design
decision (training stage, data distribution, architec-
tural decisions, etc.) leads to this grounding gap.
However, our results show that models which have
a wide variety of such decisions all exhibit this gap,
suggesting that it is not a flaw that is introduced
during the training process, but rather a capabil-
ity that is never fully learned during training. We
hope future work will deepen our understanding
of this grounding gap and help build models that
can robustly access their internal factual knowledge
regardless of the modality of access.

10 Ethical Considerations

Persistent grounding gaps between the vision and
textual modality make VLMs prone to object hallu-
cinations (Li et al., 2023b) and diminish the robust-
ness of these systems. In safety-critical settings,
such hallucinations could cause active harm to in-
dividuals, making work that closes this grounding
gap an important avenue of future research. How-
ever, a successful effort to close the grounding gap
between modalities would make multimodal mod-
els more capable, which is not without its own
risks (Zhang et al., 2024b). We refer the reader
to recent surveys on the potential harm of strong,
multimodal foundation models (Xu et al., 2025; Li
et al., 2024) for a description of such risks.
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A Additional Details on QA Generation
Pipeline

The pipeline for QA data generation consists of the
following steps:

1. Retrieve the Wikipedia entry for a given entity

2. Parse the entry to split it such that every split
of the entry consists of no more than two sen-
tences

3. Remove all splits that do not contain the entity
name

4. For each split, prompt Llama-3.1-8B to gener-
ate question-answer pairs from it

We note that this use case is in line with the li-
cense for the API https://www.mediawiki.org/
wiki/Special:Version/License/MediaWiki.

The questions then undergo multiple rounds of
data cleaning:

1. Remove pair if answer has more than 7 words

2. Remove pair if answer contains entity. This
is because we want to measure factual recall,
not the ability to state the object in the image.

3. Remove pair if the question does not contain
the entity. This is to ensure the text alone can
identify the entity.

4. Remove pair if Llama-3.1-8B decides that its
answer is not unique. This helps reduce the
number of ambiguous, unclear or subjective
questions that are not fact-based.

5. Remove pair if Llama-3.1-8B answers the
question incorrectly.

Finally, the QA pairs are deduplicated using both
exact match and Llama-3.1-8B. We then randomly
sample 5 images of the entity and pair them with a
single QA pair to make 5 datapoints in our testbed.
The four image classification datasets (MNIST,
Food101, Landmarks and CIFAR100) have either a
CreativeCommons or GNU General Public License,
making this use case permissible.

The next set of filters are specific to each VLM.

1. Remove an Image, QA pair if the VLM cannot
identify the entity in the image

2. Remove an Image, QA pair if the VLM cannot
answer the QA pair correctly when provided
both the textual reference question and the im-
age (see Figure 2 and Section 3). This ensures
the VLM being tested contains the relevant
internal knowledge.

3. Remove an Image, QA pair if the VLM can
correctly answer the QA pair when provided
the visual reference question and a trivial im-
age. This filters questions that are trivially
easy to answer using language priors from the
sentence.

After all steps of data filtering, the number of
points in our testbed is dataset and VLM specific,
with an average of 955 datapoints for each VLM
and dataset combination. The exact breakdown
is provided in Table 3. The main paper does not
discuss results for VLM, dataset combinations that
have fewer than 100 datapoints remaining after all
filters.

Finally, we conduct a round of human annotation.
Three authors of this paper manually annotated a
subset of 33 questions per dataset in CIFAR100,
Food101 and Landmarks (a total of 99 questions).
The questions were judged on two metrics: whether
the question is relevant to the entity in the image,
and whether the answer is a valid and correct an-
swer to the provided question.

Specifically, the following instructions were pro-
vided to each annotator:

You are to look at the following entity,
QA-pair sets and annotate
them for two criteria:

1. Question Relevance
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Dataset VLM LM Datapoints

MNIST LLaVA Mistral-7B 633
Vicuna-7B 674

Vicuna-13B 590

InstructBLIP  Vicuna-7B 423

Vicuna-13B 464

GPT4V 40-mini 873

40 983

CIFAR100 LLaVA Mistral-7B 1411
Vicuna-7B 1232

Vicuna-13B 1222

InstructBLIP  Vicuna-7B 73

Vicuna-13B 155

GPT4V 40-mini 1556

40 1536

Food101 LLaVA Mistral-7B 819
Vicuna-7B 542

Vicuna-13B 446

InstructBLIP  Vicuna-7B 190

Vicuna-13B 43

GPT4V 40-mini 1387

40 1296

Landmarks LLaVA Mistral-7B 359
Vicuna-7B 643

Vicuna-13B 689

InstructBLIP  Vicuna-7B 0

Vicuna-13B 121

GPT4V 40-mini 810

40 728

Average 791.28

Table 3: Number of datapoints remaining after filtering

2. QA Pair Correctness The prompts for all steps involving use of a LM
are provided in Appendix A.1 and example QA

The standard for whether a question is relevarphirs are given in Appendix A.2.

to an entity is whether or not the knowledge

tested is associated with the stated entity A-1 Prompts Used:

(as opposed to some other entity). QA Extraction:

You are a logical system tasked with
extracting questions for an entity
from a given text. The question
should have a unique answer, and
should be very short.

The standard for Correctness is whether or not
the answer provided an acceptable answer for
the given question. The answer does not have
to enumerate all possible answers to the
question, but rather state one such answer

to the question at hand. Entity: Tench

The results show (Table 4) considerable agree- Text: The tench or doctor fish
ment on most datasets, suggesting that the ques- (Tinca tinca) is a fresh- and
tions are of high quality. brackish-water fish of the order
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Question Relevant to Entity Answer Correct

Dataset Mean Tot. Agree Kappa Agreement Mean Tot. Agree Kappa Agreement
CIFAR100 86.86 79.7  12.85 Slight 92.73 7575 17.23  Slight
Food101 86.87 909 7431 Substantial 88.89 81.81 38.28 Fair
Landmarks 94.95 93.94 65.07 Substantial 90.91 9091 64.78 Substantial
All 94.94 9394 65.07 Substantial 90.91 9091 65.78 Substantial

Table 4: Annotation results, judging whether the questions are relevant to the entities in the image, and whether the
answers to the questions were correct. Total Agreement is the percentage of instances where all three annotators
agreed. Kappa is the Fleiss Kappa score. The results show that the questions are relevant and correct with substantial

agreement between annotators, suggesting that the questions are of high quality.

Cypriniformes found throughout
Eurasia from Western Europe including
Britain and Ireland east into Asia
as far as the Ob and Yenisei Rivers.
It is also found in Lake Baikal.

It normally inhabits slow-moving
freshwater habitats, particularly
lakes and lowland rivers.

Rationale: The tench is said to
also be called the doctor fish.
There is no other alternate name.
Question: What is another name
for the tench?

Answer: doctor fish

[SEP]

Rationale: The order of the tench
is Cypriniformes.

Animals can only belong to one order.
Question: What is the order

of the tench?

Answer: Cypriniformes

[SEP]

Rationale: The usual habitat

of the tench is freshwater.
Question: What kind of water does
the tench usually live in?
Answer: freshwater

[STOP]

Entity: Baklava

Text: Baklava is a layered pastry
dessert made of filo pastry,
filled with chopped nuts,

and sweetened with syrup or honey.
It was one of the most popular
sweet pastries of Ottoman cuisine.
There are several theories for
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the origin of the pre-Ottoman
version of the dish.

In modern times, it is a common
dessert among cuisines of
countries in West Asia,
Southeast Europe, Central Asia,
and North Africa. It is also
enjoyed in Pakistan and
Afghanistan, where, although
not a traditional sweet, it

has carved out a niche in

urban centers.

Rationale: Baklava is
associated with Ottoman cuisine.
Question: What ancient

cuisine is Baklava associated with?
Answer: Ottoman

[SEP]

Rationale: Baklava is made of
filo pastry.

Question: What kind of pastry
is Baklava made of?

Answer: filo

[STOP]

Entity: <NEW ENTITY>
Text: <SPLIT FROM WIKIPEDIA>

Identifying whether a question is ambiguous:

Given a text and a question,
judge whether the question has
a unique answer, or can be
answered with multiple valid responses.

Text: The tench or doctor ...
Question: What is the tench

also known as?

Rationale: The text mentions only
one other name for the tench,



which is doctor fish.
Judgment: Unique [STOP]

Text: The tench ...
Question: Which lake is
the tench found in?

Rationale: The text mentions
that the tench is found in

Lake Baikal. However, it is
very likely that the tench

is found in other lakes as well.
Judgment: Multiple [STOP]

Text: <SPLIT FROM WIKIPEDIA>
Question: <GENERATED QUESTION>

Question Answering:

You are a knowledgeable
system tasked with answering

the question based on your knowledge.

Question: What is the tench
also known as?
Answer: doctor fish [STOP]

Question: What kind of pastry
is Baklava made of?
Answer: Filo [STOP]

Question: In which city is
the Eiffel Tower located?
Answer: Paris [STOP]

Question: <GENERATED QUESTION>

Duplicate Identification:

You are a logical system tasked
with determining if two question
answer pairs are duplicates of

Question: What pastry is
Baklava made of?

Answer: filo

Question: What kind of nuts
are used to make Baklava?
Answer: walnuts

Rationale: The two questions
are asking about different
things, and have

different answers.
Judgment: Unique [STOP]

Question: <GENERATED Q1>
Answer: <GENERATED A1>
Question: <GENERATED Q2>
Answer: <GENERATED A2>

MCQA Conversion:

You are a logical system tasked
with generating incorrect options
for multiple choice questions.
You are given the text, question
and answer.

Come up with a numbered

list of three plausible

but incorrect options

Text: The tench ...

Question: What is the tench

also known as?

Correct Answer: doctor fish
Incorrect Option 1: miracle fish
Incorrect Option 2: salmon
Incorrect Option 3: hidden fish
[STOP]

Text: <TEXT>
Question: <QUESTION>
Correct Answer: <CORRECT ANSWER>

each other. A.2 QA Pair Examples:

The following QA pairs are randomly sampled
from their datasets:
CIFAR100:

Entity: Television

Question: What is the tench
also known as?

Answer: doctor fish

Question: What is another name
for the tench? Question: What is the title of a book
Answer: the doctor fish about the invention of the television?
Rationale: The two questions Answer: Tube: the

are asking the same thing, and Invention of Television

have the same answer.
Judgment: Duplicate [STOP] Entity: road

Question: Which road reaches the North
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Slope of Alaska?
Answer: Dalton Highway

Entity: sunflower

Question: When were sunflower
brought to Europe?

Answer: 16th century

seeds

Entity: snake

Question: What Hindu festival is
associated with snakes?

Answer: Nag Panchami

Food101:
Entity: oysters
Question: What sauce is often

with oysters?
Answer: mignonette

paired

Entity: Edamame

Question: In which cuisine is
edamame a common side dish?
Answer: Japanese

Entity: sushi

Question: How is sushi served
kaiten zushi style?

Answer: on a conveyor belt

in the

Entity: Ice cream

Question: Can ice cream be made
with a blender?

Answer: Yes

Landmarks:

Entity: Grand Canyon

Question: Who led an expedition to the
Grand Canyon?

Answer: John Wesley Powell

Entity: Gateway of India

Question: In which city is the Gateway of
India located?
Answer: Mumbai

Entity: Eiffel Tower

Question: When did the Eiffel Tower
stop broadcasting analogue
television signals?

Answer: 2011

Entity: Machu Pichu
Question: In which country is Machu

Picchu located?
Answer: Peru

Entity: Golden Gate Bridge

Question: What speed do jumpers hit the
water at when jumping from the
Golden Gate Bridge?
Answer: 75 mph

B Vision Language Model Inference

All VLM inference uses greedy decoding and is
hence deterministic.

To measure the performance of a VLM with
trivial images, we use four different kinds of trivial
images:

1. Black: A pure black image
2. White: A pure white image

3. Noise: A noised image where each colour
channel (RGB) value for each pixel is sampled
uniformly from O to 255.

4. None: For VLMs that leave the LM un-
changed (e.g. InstructBLIP), we do only a for-
ward pass through the LM. For VLMs which
tune the LM in any way (e.g. LLaVA), we
pass in a null image. The image represen-
tation that results is then an average image
representation over all images seen during the
VLMSs training.

We collect the output of the VLM from all four
of these trivial images (with the same text prompt).
The final output of the VLM in this setting is the
result of a majority vote on the output (or the modal
output from all trivial images). Ties are broken
randomly.

C Robustness to choice of metric

The main text shows the results for the two way
inclusion metric. Here we show results for exact
match (Figure 5) and BLEU (Figure 6). In all cases,
we see a significant performance gap between the
TextOnly and the Visual Setting

D Hardware for experiments

The experiments conducted in this paper were run
on three distinct compute clusters, with different
specifications for each one. We list all of the core
details below:
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Figure 5: Exact Match Performance on VLMs when forced to rely on visual representations (Visual) as well as
textual representations (Text Only) of an entity.

1. A cluster with 5 RTX 2080 TI GPUs. 64GB
of RAM and 5 Intel(R) Xeon(R) Gold 5215
CPUs @2.50 GHz

2. A cluster with 8 NVIDIA L40s GPUs (48G
GPU memory each). 800GB of RAM and 256
AMD EPYC 9554 64-Core Processor.

3. A cluster with 4 NVIDIA A100 GPUs (40G
or 80G GPU memory each), 514GB of
RAM, and 96-core Intel(R) Xeon(R) Platinum
8272CL CPUs @2.60GHz.

The time taken to run each part of the experiment
varies with the hardware used. However typically
all experiments for a single dataset (start to finish
from data generation to final results) can be com-
pleted within 4 GPU days.
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Figure 6: BLEU Performance on VLMs when forced to rely on visual representations (Visual) as well as textual
representations (Text Only) of an entity.
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