Can VLMs Recall Factual Associations From Visual References?

Dhananjay Ashok[‡], Ashutosh Chaubey[†], Hirona J. Arai[†], Jonathan May[‡] and Jesse Thomason[†]

† University of Southern California

[‡] Information Sciences Institute, University of Southern California {ashokd, jonmay}@isi.edu, {achaubey, hjarai, jessetho}@usc.edu

Abstract

Through a controlled study, we identify a systematic deficiency in the multimodal grounding of Vision Language Models (VLMs). While VLMs can recall factual associations when provided a textual reference to an entity, their ability to do so is significantly diminished when the reference is visual instead. Forcing VLMs to rely on image representations of an entity halves their ability to recall factual knowledge, suggesting that VLMs struggle to link their internal knowledge of an entity with its image representation. We show that such linking failures are correlated with the expression of distinct patterns in model internal states, and that probes on these internal states achieve over 92% accuracy at flagging cases where the VLM response is unreliable. These probes can be applied, without retraining, to identify when a VLM will fail to correctly answer a question that requires an understanding of multimodal input. When used to facilitate selective prediction on a visual question answering task, the probes increase coverage by 7.87% (absolute) while also reducing the risk of error by 0.9% (absolute). Addressing the systematic, detectable deficiency is an important avenue in language grounding, and we provide informed recommendations for future directions.

1 Introduction

Systems that incorporate multiple modalities, such as image and text, address the 'symbol grounding problem,' i.e., the problem of connecting symbolic concepts to sensory properties of objects in the world (Harnad, 1990). It has been argued that addressing this problem is a prerequisite to truly 'understanding meaning' (Bender and Koller, 2020), making multimodal grounding a vital frontier in the pursuit of capable AI systems (Bisk et al., 2020; Bommasani et al., 2021).

An important instance of this problem is that of vision-language grounding (Kazemzadeh et al.,

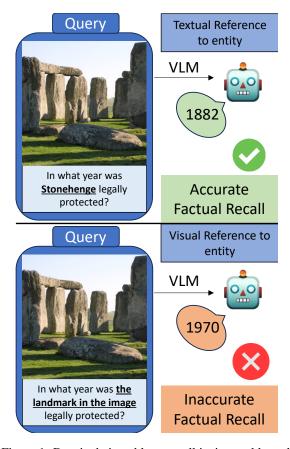


Figure 1: Despite being able to recall its internal knowledge of an entity (here, 'STONEHENGE') when provided a textual reference, LLaVa-Vicuna-7B (Liu et al., 2023) fails to recall this knowledge with a visual reference.

2014), with modern Vision Language Models (VLMs) making significant progress on tasks that combine the visual and textual modalities (Antol et al., 2015; Alayrac et al., 2022). VLMs contain facts on a wide range of entities (Petroni et al., 2019), and can use this knowledge to reason over objects present in an image (Zellers et al., 2019).

A consistently grounded multimodal system should recall facts about a symbolic entity (e.g., 'STONEHENGE') independent of the sensory modality by which it is observed (e.g., the word 'Stonehenge' versus an image of the same, Figure 1).

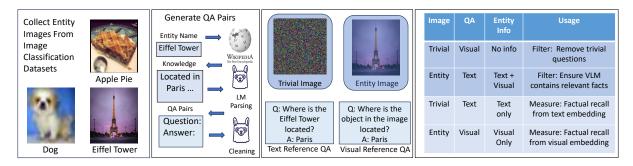


Figure 2: For each question, we create a *textual reference* version which names the entity in the text, and a *visual reference* version in which the text only refers to the image. Similarly, we have an entity image that identifies the entity, and an uninformative image (e.g., uniformly random pixels) which contains no information about the entity. We precisely control the modality that contains entity-specific information, isolating the ability of a VLM to recall the factual knowledge it contains based on the modality in which this information is presented.

In this work, we test several state-of-the-art VLMs for this capability. We design a controlled experiment to isolate their ability to recall facts when using visual representations of the entity, and observe, on average, a 58.95% performance degradation in visual question answering capability.

We evaluate seven VLMs across the Instruct-BLIP (Li et al., 2023a), LLaVA (Liu et al., 2023) and GPT4-V (OpenAI, 2023) families, encompassing a variety of vision-language pretraining paradigms, backbone language models and model scales. Every VLM we investigate, without exception, experiences significant performance degradation when forced to rely on its image representation, with answer accuracy consistently falling by over 50%. The decline in performance is persistent across models of varying sizes, suggesting that scaling the model is insufficient to fully address this grounding gap. VLMs struggle to link their internal knowledge of entities with their image representation, relying heavily on the presence of text tokens that explicitly name the entity and failing to achieve the modality independence expected by a consistently grounded model.

Having established that VLMs often fail to link images of entities to their internal knowledge, we next turn to detecting and avoiding such failures. We employ techniques of mechanistic interpretability (Nostalgebraist, 2020) on the hidden states of the VLM and visualize how predictions of the next output token are built during inference. We observe a consistent pattern: cases of linking failure build confidence in a VLM's prediction at later layers when compared to cases of linking success. We

use linear probes on these hidden states to create warning systems for such linking failures. The probes significantly outperform the next best baseline (by 25 percentage points on average), achieve accuracies in excess of 92% and generalize to out-of-domain datasets. These probes can be used, without retraining, to determine whether or not a VLM will correctly answer a question from the OKVQA (Marino et al., 2019) dataset. When used in a selective prediction (De Stefano et al., 2000) framework, our method achieves higher coverage than all baselines, with an absolute improvement of 7.87%, while also reducing errors by 0.9%.

2 Background and Related Work

Efforts to jointly model textual and visual modalities have made significant progress in recent years (Zhang et al., 2024a), growing from approaches that were limited to representing isolated word meanings (Barnard and Johnson, 2005) to powerful systems that can handle arbitrary image and textual inputs on a wide variety of tasks (Alayrac et al., 2022; Li et al., 2023a).

These methods take advantage of powerful pretrained language models (LMs) (Zhang et al., 2024a), training visual encoders that convert images to representations that can be passed into the LMs (Liu et al., 2023), with minimal changes to the LM itself (Li et al., 2023a). Since pretraining LMs on internet-scale corpora imbues them with factual knowledge (Petroni et al., 2019), the resulting system can recall facts about entities present in the images they are provided (Marino et al., 2019).

This approach to vision-language grounding does not jointly learn representations, raising concerns of a grounding gap between the visual repre-

Ihttps://github.com/DhananjayAshok/VLM_ Grounding

sentations and the LM component (Li et al., 2023b; Tong et al., 2024). Qualitative studies on the semantic representations of such VLMs reveal notable differences between multimodal and text-only representations of words (Pezzelle et al., 2021; Tikhonov et al., 2023). However, whether such differences affect downstream performance, such as the capability of a VLM to access the internal knowledge that it contains, remains an open question.

Prior work evaluates VLMs on their ability to recall factual knowledge by asking knowledgeintensive visual questions (Antol et al., 2015; Marino et al., 2019; Cheng et al., 2025; Das et al., 2024; Saikh et al., 2022). However, these approaches are oriented towards benchmarking the overall capability of VLMs, and are not able to isolate failures in multimodal grounding specifically. A failure to answer a question from these benchmarks could be due to a failure to link the visual representation with the VLMs internal knowledge, however, it may also be due to a failure in identifying the image, a gap in the knowledge contained in the VLM, a reasoning error, or some combination of these. We create an experiment that controls for such confounding factors, isolating the ability of a VLM to access its internal knowledge using only visual representations of an entity. While contemporary work explores this problem (Cohen et al., 2025) from the lens of mechanistic interpretability, they focus only on the PopVQA dataset. In this work, we construct a testbed from multiple datasets that span a range of entities, showing that VLMs struggle to recall factual associations from visual references over a wide variety of entity types.

3 Creating the Benchmark

We start by collecting images of various entities from image classification datasets, with each class label serving as a distinct entity. We source from: **CIFAR100** (Krizhevsky et al., 2009): A general-purpose dataset with entities ranging from insects such as 'BEETLE' to vehicles such as 'TRAIN'.

Food101 (Bossard et al., 2014): A food dataset, with entities including 'BAKLAVA' and 'CEVICHE'. **Landmarks** (Weyand et al., 2020): A dataset of famous landmarks, with entities such as 'NIAGARA FALLS' and 'STONEHENGE'.

For each entity, we compile general knowledge question-answer (QA) pairs. Unlike most existing benchmarks (Antol et al., 2015; Goyal et al., 2017), our questions are well-formed in text alone, i.e.,

the answer can be determined without referring to any specific, contextualized image of the entity.

We use the Wikipedia API (Majlis, 2025) to automatically gather text containing common knowledge about each entity, and use Llama3.1-8B (Grattafiori et al., 2024) as a parser that extracts question-answer (QA) pairs from the text. We additionally directly prompt Llama3.1-8B to generate QA pairs for each entity. The collected pairs are filtered through multiple steps to ensure they are valid questions with a single correct answer (Appendix A). Finally, three authors of the paper conduct a round of human annotation and establish, with substantial inter-annotator agreement ($\kappa > 0.65$), that the remaining QA pairs are both relevant to the entity and ones where the answer to the question is correct.

For each question, we create an analogous version that does not state the entity but instead refers to the image. Ultimately, each datapoint in our testbed (Figure 2) consists of an entity's image, a *textual reference* question that explicitly mentions the entity and a *visual reference* question that does not name the entity. Separate from this pipeline, we also design a task based on the MNIST (Deng, 2012) dataset. For each digit in the dataset, we randomly generate addition and multiplication questions with a single other operand of no more than 2 digits (e.g. for the digit '5', we may generate the *textual reference question* '5 + 17 =' and *visual reference question* 'the digit in the image + 17 =').

However, when given the image and visual reference question, there are multiple reasons why a VLM may answer incorrectly. The VLM might have misidentified the entity, or may not contain the relevant information, which are scenarios where even a perfectly grounded system will fail. To control for these factors, we conduct an additional round of filtering. For each datapoint, we ask the VLM under evaluation to identify the object in the entity image. We also have it answer the question when given both the entity image and the text reference version of the question. We retain the question only if the identification is accurate and the answer is correct, ensuring that the VLM recognizes the entity and contains the relevant internal knowledge. We also ask the VLM to answer the question when provided a trivial image with no information about the entity (e.g., random pixel values) and the visual reference version of the question. These instances should be unanswerable as they do not contain the information required to

identify the entity, and a correct response indicates that the question's answer can be guessed using language-based priors. We remove such instances to ensure that our testbed contains questions which require knowledge of the entity to answer correctly. In practice, we aggregate the VLMs output over multiple different trivial images, for details see Appendix B. The final benchmark allows us to isolate the VLMs ability to perform factual recall from different modalities in a way that is not possible with existing complex VQA benchmarks. Consider the visual reasoning question answering benchmark, GQA (Hudson and Manning, 2019). This benchmark includes highly compositional images and may contain, for instance, an image of an apple and an orange on a table. We may create the textual reference question 'What colour is an apple?', which has the analogous visual reference question 'What color is the object in the image?'. However, since the image contains multiple objects, the correct answer to the textual reference question (red) is no longer the only correct answer to the visual question (red or orange). By sourcing our images from simple, single-image datasets, we can precisely isolate the entity and ensure that the textual and visual questions have the same answers.

The final number of datapoints varies by dataset and model, with an average of **792** distinct image-question pairs remaining per dataset-model combination. For dataset-model specific counts, see Appendix A

4 Evaluating VLMs Factual Recall using Different Modalities

We evaluate the VLMs under two different settings, isolating the capability of the LM component to use the textual and visual representations to recall the relevant fact regarding an entity. In both settings, the VLM is prompted to directly state the answer.

Text Only: We provide a trivial image and the textual reference question that states the entity. This setting measures the VLM's ability to recall factual associations from the textual representation of the entity.

Visual: We provide the image of the entity, and the *visual reference* question that does not name the entity in text. This setting forces the VLM to rely on its representation of the image to identify and access the facts it has stored about the entity.

We evaluate VLMs from the following families: **InstructBLIP:** An approach that leaves the LM

and vision encoder frozen, learning a Q-Former (Li et al., 2023a) to convert image representations to visual tokens that the LM can use.

LLaVA: A method that keeps the vision encoder frozen, but learns a linear projection from the image representation to the input space of the LM and also learns updates to the LM weights.

GPT4V: A state-of-the-art frontier model whose internal details are proprietary.

To evaluate a model response string r against the gold answer string a we use the metrics of two-way string inclusion ($r \in a \lor a \in r$, where \in is the substring property) and exact match (a = r), which estimate the correctness of the response with a binary signal. We also use BLEU (Papineni et al., 2002), a continuous metric which gives higher values when the answer and response have greater n-gram overlaps.

5 Results

A consistently grounded VLM that can access its internal knowledge using references from either modality should achieve comparable performance in both test settings. The results (Figure 3) show that answer correctness under the Text Only setting, as judged by the two-way inclusion metric, is consistently high at 84.70% on average. This performance strikes a stark contrast with the average correctness of the Visual setting (42.05%), which is less than half of the performance of the Text Only setting. This divide is also seen when using the exact match (52.87% vs 23.85%) and BLEU (55.93% vs 21.92%) metrics (Appendix C). When recalling factual associations regarding an entity, VLM performance declines by over half if it is forced to rely on visual representations of the entity instead of textual representations.

The grounding gap, which occurs consistently across all models and datasets, is a systematic failure in the ability of VLMs to recall factual associations using image representations of entities. This gap is most chronic in the MNIST dataset, where the Text Only setting achieves near perfect performance (98.66%), but the Visual setting achieves only 31.28% correctness.

Concerningly, the gap continues to be wide even for the most powerful VLM, GPT4V, suggesting that it is a failure that will not be resolved naturally through a scaling of model parameters and dataset sizes. Within the same model family, models of higher scales occasionally have less of a gap;

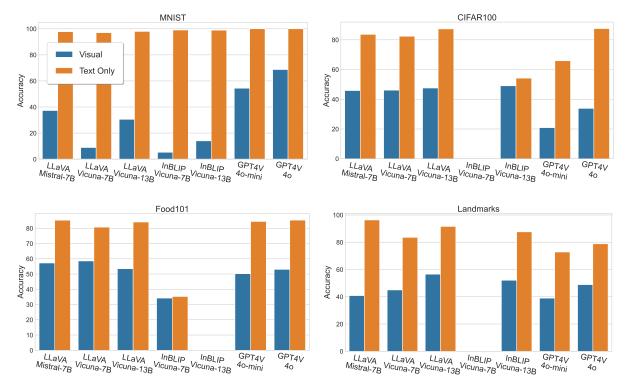


Figure 3: Performance (two-way inclusion) on VLMs when forced to rely on visual (Visual) or textual (Text Only) representations of an entity. Empty bars for InstructBLIP are datasets where fewer than 100 datapoints passed filters. While the Text Only setting shows performance decreases (15.3%), the performance in the Visual declines by 58.95% (nearly 4x the decline). This decline is evidence that VLMs, across pretraining paradigms, architectures and scales, struggle to link their internal knowledge of an entity with visual representations of it.

however, as seen in the Food101 and Landmarks datasets, the improvement is often marginal.

6 Identifying Linking Failures

Our controlled experiments have shown significant declines in the ability of a VLM to access its internal knowledge of an entity using visual references, a grounding gap which makes these systems more vulnerable to false utterances. Such responses can be particularly harmful in settings where users depend on the model (MacLeod et al., 2017), trust in its output (Ji et al., 2023) or use its output to make consequential decisions (Xie et al., 2024). In this section, we develop methods that identify when a VLM will fail to link its visual representation of an entity with its internal knowledge, allowing model providers to flag instances where the response should not be trusted, and minimize the harms of linking failures. We focus on LLaVA-Vicuna7B and investigate the hidden representations of the last input token in the LM component. During the forward pass on datapoint i, specifically after the computation at layer l of a Transformer LM layer, the last input token is represented by a d-dimensional vector $h_i^{(l)}$.

6.1 Visualizing Hidden States

The unembedding layer of the VLM is a linear operation (of form: $U \in \mathbb{R}^{|V|,d}$) trained to map the last token embedding of the penultimate layer to the vocabulary space. We use this layer to compute $\operatorname{softmax}(Uh_i^{(i)})$, which can be seen (Nostalgebraist, 2020; Geva et al., 2021) as an approximation of the distribution of the next token over the vocabulary space at a given layer of the VLM. We study how this distribution varies for the successful and unsuccessful cases of linking the visual reference of an entity with internal knowledge about that entity. However, the very first token generated by the VLM may be the same for both correct and incorrect answers, preventing us from observing a clear trend. Hence, we use Llama-3.1-8B to reformulate the QA pairs into multiple-choice QAs with four options (prompts in Appendix A). Taking inspiration from the setup in Rimsky et al. (2024), the first token generated is now the letter associated with the option that the VLM selects, and hence completely determines whether or not the question has been answered correctly. Figure 4 (Top) shows how the model builds its prediction over the forward pass.

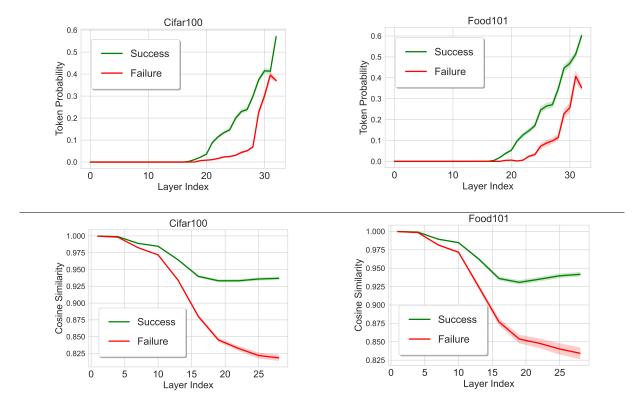


Figure 4: Cases of linking failure correlate with the expression of distinct patterns in the hidden states produced by the VLM. **Top:** The probability of the eventual output token across layers of the forward pass. Cases of linking success gain probability mass earlier than linking failures, and achieve higher eventual probability on average. **Bottom:** The Cosine Similarity between internal states produced by the VLM when run in the Visual and Full Info settings (in the Full Info setting, the VLM is given both textual and visual entity references). The internal states of linking failure cases are less similar to the internal states produced in the Full Info setting, suggesting that linking failure occurs when the internal representations lack the information required to trigger the recall of relevant facts.

Cases of linking success begin gaining probability earlier than linking failures, and achieve higher eventual probability on average. The patterns suggest that the layers most responsible for promoting the final answer vary based on whether or not factual linking is successful. The layers responsible for factual answers are the mid-to-late layers, 15-25. Answers that gain most of their probability mass after this range are often a result of linking failure. The special role of the mid-to-late layers in our results is consistent with previous work (Meng et al., 2022; Azaria and Mitchell, 2023), which suggests that these layers play a disproportionate role in the storage of factual associations.

We also compare the differences between the hidden states generated when the modality of entity information varies. Specifically, for a given datapoint, we run in both the Visual and Full Info settings (the Full Info setting provides the VLM with both the entity image and the *textual reference* to the entity). These two runs produce the hidden states $\{h_i^l|l\in\{1,2,\ldots L\}\}_{i=1}^N$ and

 $\{\tilde{h}_i^l|l\in\{1,2,\dots L\}\}_{i=1}^N$ respectively (for an LM with L layers). To perform a layerwise comparison of the internal states produced by both of these runs, we compute the cosine similarity of $h_i^{(l)}$ and $\tilde{h}_i^{(l)}$ for every datapoint, at every layer.

Unlike the probability distributions, the cosine similarities of the successful and failing linking cases diverge steadily (Figure 4, Bottom). By the final layers (in the *visual* setting), the internal states of the successful cases of linking are substantially more similar to the internal states produced in the *full information* setting. These patterns suggest that linking fails when the internal state does not contain sufficient information or a strong enough signal to trigger the recollection of relevant facts.

6.2 Early Warning for Linking Failure

A failure to link an entity representation with the VLMs internal knowledge could lead to hallucination and ungrounded outputs. A system that can notify users when such linking failures have occured, would better allow them to calibrate their

Dataset	Perplexity		Probe		Ensemble		Δ (Perplexity \rightarrow Ensemble)	
	Coverage	Risk	Coverage	Risk	Coverage	Risk	Coverage (%)	Risk (%)
CIFAR100	43.52	22.86	52.41	23.22	52.12	22.33	+19.76	-2.31
Food101	56.78	15.85	59.18	16.83	60.38	15.90	+6.34	+0.31
Landmarks	51.92	29.42	54.28	31.12	53.78	29.33	+3.58	-0.30
OKVQA	57.97	42.08	66.58	39.23	59.02	41.53	+1.81	-1.30

Table 1: Performance of probes when used for selective prediction in the out-of-distribution setting. Probes are trained on all three other datasets and applied to the test dataset without retraining. Coverage (percentage of datapoints the system predicts on) is typically higher for the probes, however the perplexity baseline can incur lower risk (error-rate on predicted samples). An ensemble approach that combines the two often leads to higher coverage than the perplexity baseline with a minor decrease in the error-risk.

belief in the VLMs response. We build such a system, training a probe to flag cases when a VLM has failed to link its internal knowledge of an entity with its visual representation. We collect the 20th layer, final output token hidden states produced during the visual setting and train a linear probe (Alain and Bengio, 2017) to identify whether or not linking has failed. Similar approaches have been used to identify false utterances (Azaria and Mitchell, 2023), and a range of other degenerate behaviours in LMs (Ashok and May, 2025). We consider the base rate of the most frequently occurring class to be the random baseline performance. For a stronger baseline, we implement a dominant method in LM confidence elicitation (Kumar et al., 2024) and selective prediction (Srinivasan et al., 2024) with VLMs—learning a threshold on the per-token-perplexity of the output, and flagging for linking failure if the answer token perplexity lies above this threshold. Our linking detection probes (Table 2) significantly outperform all baselines.

Dataset	Random	Perplexity	Probe
MNIST	81.46	54.97	99.34
CIFAR100	64.01	64.98	98.07
Food101	66.47	67.66	94.61
Landmarks	52.80	68.32	92.55
OKVQA	51.34	60.16	64.32

Table 2: On all datasets, our probes significantly outperform all baselines, showing that the information contained in the hidden states allows us to build a powerful predictor for linking failures.

Next, we ask whether these probes can generalize to unseen datasets and prove useful in identifying linking failures under shifting distributions. We train a single probe on the CIFAR100, Food101 and

Landmark datasets and apply this probe, without retraining, to the OKVQA dataset (Marino et al., 2019). This dataset is a testbed for commonsense knowledge in visual question answering, and asks for knowledge related to the entities in the image. We use the signal from our probe to enable selective prediction on OKVQA, i.e., deciding when the VLM should abstain from answering a question because it is unlikely to answer correctly.

Following previous work (Srinivasan et al., 2024), we evaluate selective prediction with coverage and risk (El-Yaniv et al., 2010). Given a labelled evaluation dataset with image, question, and answer tuples, the coverage is the percentage of questions where the system makes a prediction, and the risk is the error rate on the questions where a prediction is made.

The probes achieve (Table 1) higher coverage than the perplexity baseline with marginally higher risk. However, when we average the predictions of the two methods (Ensemble), we can achieve significantly higher coverage (10.4% on average) than the perplexity baseline while simultaneously reducing the risk (-0.9%). This strong performance demonstrates the value of hidden state probes in practical settings and their ability to identify linking failures under shifting distributions.

7 Addressing the Grounding Gap

The controlled experiments above have demonstrated that VLMs struggle to link their internal knowledge of an entity with a visual representation of it. However, one might argue that the VLM can always verbalize the image's contents first, allowing it to rely on the textual representation for factual recall. We advance several arguments to motivate the claim that the grounding gap shown

in this work will limit the performance of VLMs in practical settings.

Inference Cost: The most direct consequence of relying on the VLM to verbalize the contents of an image before answering is an increase in the number of tokens generated before the final answer can be provided. With the increasing scale of LMs (Hoffmann et al., 2022), this threatens to become prohibitively expensive for both users (Zhou et al., 2024) and the environment (Strubell et al., 2020). Addressing this grounding gap would enable the visual representation of the entity to recall the information directly and enable more efficient and accessible systems.

Conflicts between text and image modalities: In practice, the information in the text used to describe an associated image may conflict with the information in the image's contents. Recent work shows (Parcalabescu and Frank, 2025) that answer generation is primarily driven by the text component and that in such cases where the modalities conflict, text information is given more weight. A superior system would make contextual decisions based on the strength of the evidence in each modality. However, VLMs that rely disproportionately on the textual modality for factual recall will consistently favour the text modality and lack this capability.

Verbalization Failures: VLMs that rely on verbalization to recall factual associations face a failure mode—inability to access factual, internally stored information about the objects in the image, because they were not explicitly verbalized when describing the image. This concern is most pressing for images that have many objects or entities that the query could involve, leading the VLM to only state a subset of them, or hallucinate objects that are not in the image (Li et al., 2023b). Certain VLM architectures, such as the LLaVA approach (Liu et al., 2023), create visual representations that are agnostic to the text of the input prompt. These approaches may be more vulnerable to such failures, because the image encoding used to drive the verbalization cannot allow for a greater focus on the regions of the image most relevant to the text

Lack of Visual Knowledge in Text Training Data: LMs are trained on internet-scaled text corpora (Brown, 2020) and hence store factual associations from the texts they have encountered (Petroni et al., 2019). However, the concepts that are well learned from text data often do not fully include

visual concepts such as spatial understanding (Yamada et al., 2023), leading to LMs that struggle on questions requiring spatial knowledge (Wang et al., 2024). If VLMs remain reliant on their LM subcomponents for factual recall, they risk being limited in their ability to answer questions requiring a deep understanding of such visual concepts.

A Novel Data Augmentation Approach: We suggest a novel training paradigm, a supplement to current pretraining procedures that may help address the grounding gap shown in this work. While our results (Figure 3) show that VLMs struggle to recall factual associations from visual references, most models still retain some capacity to do this. This suggests that the various architectures of these models do not necessarily prevent them from being consistently grounded across modalities. We suggest a variation of the feature-alignment pretraining procedure used to construct the LLaVa models (Liu et al., 2023). The suggested procedure assumes only that the vision component and language component are linked with a trainable bridging module.

The current practice is to use an image captioning dataset, where the inputs to the VLMs are images and the target output is the caption. The bridging module is tuned to maximize the likelihood of the caption given the image, hence serving as an interface between the visual and textual modalities. We suggest that this paradigm be expanded to include factual recall. This would include collecting QA pairs for the entities in the captions of the images, a procedure which, as shown in this paper, can be done automatically at moderate scales. Instead of only using the captioning task for feature alignment, the pretraining phase can include tuning the bridging module to maximize the likelihood of the answer given the question. This paradigm may allow the bridging module to learn how to transform the visual representation such that it can draw out relevant facts from the layers of the LM.

8 Conclusion

In this work, we show that Vision Language Models of various pretraining paradigms, architectures and scales suffer from a multimodal grounding gap. Specifically, we use a controlled experiment to demonstrate that VLMs struggle to recall factual associations regarding an entity from a visual reference, as opposed to a textual reference. This failure to link an entity's visual representation with its internal knowledge correlates with the expres-

sion of distinct patterns in the activations of the hidden states, and probes trained on these hidden states show promise in identifying these cases as well as providing a signal for selective prediction. We argue that addressing this gap is an important avenue for future research and suggest novel future directions to do so.

9 Limitations

This work primarily focuses on robustly showing that VLMs struggle to link their internal knowledge of an entity with their visual representations. In our work, we focus exclusively on VLMs, leaving an open question as to whether or not similar gaps can be found in other multimodal LMs (e.g., audio language models). We provide tools to identify when a VLM has failed to link an entity with its internal knowledge and also suggest directions to bridge this gap. However, the paper does not address mitigating linking failure during VLM training. Additionally, we do not identify which particular design decision (training stage, data distribution, architectural decisions, etc.) leads to this grounding gap. However, our results show that models which have a wide variety of such decisions all exhibit this gap, suggesting that it is not a flaw that is introduced during the training process, but rather a capability that is never fully learned during training. We hope future work will deepen our understanding of this grounding gap and help build models that can robustly access their internal factual knowledge regardless of the modality of access.

10 Ethical Considerations

Persistent grounding gaps between the vision and textual modality make VLMs prone to object hallucinations (Li et al., 2023b) and diminish the robustness of these systems. In safety-critical settings, such hallucinations could cause active harm to individuals, making work that closes this grounding gap an important avenue of future research. However, a successful effort to close the grounding gap between modalities would make multimodal models more capable, which is not without its own risks (Zhang et al., 2024b). We refer the reader to recent surveys on the potential harm of strong, multimodal foundation models (Xu et al., 2025; Li et al., 2024) for a description of such risks.

Acknowledgements

Dhananjay Ashok and Jonathan May acknowledge support from Open Philanthropy. This research is supported by the U.S. Defense Advanced Research Projects Agency (DARPA) Other Transaction awards HR00112490374 and HR00112490376 from the Friction for Accountability in Conversational Transactions (FACT) program. Any opinions, findings, conclusions, or recommendations expressed here are those of the authors and do not necessarily reflect the view of the sponsors.

References

Guillaume Alain and Yoshua Bengio. 2017. Understanding intermediate layers using linear classifier probes.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. 2022. Flamingo: a visual language model for few-shot learning. Advances in neural information processing systems, 35:23716–23736.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision*, pages 2425–2433.

Dhananjay Ashok and Jonathan May. 2025. Language models can predict their own behavior. *arXiv* preprint arXiv:2502.13329.

Amos Azaria and Tom Mitchell. 2023. The internal state of an llm knows when it's lying. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 967–976.

Kobus Barnard and Matthew Johnson. 2005. Word sense disambiguation with pictures. *Artificial Intelligence*, 167(1-2):13–30.

Emily M Bender and Alexander Koller. 2020. Climbing towards nlu: On meaning, form, and understanding in the age of data. In *Proceedings of the 58th annual meeting of the association for computational linguistics*, pages 5185–5198.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, and Joseph Turian. 2020. Experience grounds language. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 8718–8735, Online. Association for Computational Linguistics.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,

- Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. 2021. On the opportunities and risks of foundation models. *arXiv* preprint *arXiv*:2108.07258.
- Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101 mining discriminative components with random forests. In *European Conference on Computer Vision*.
- Tom B Brown. 2020. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*.
- Xianfu Cheng, Wei Zhang, Shiwei Zhang, Jian Yang, Xiangyuan Guan, Xianjie Wu, Xiang Li, Ge Zhang, Jiaheng Liu, Yuying Mai, Yutao Zeng, Zhoufutu Wen, Ke Jin, Baorui Wang, Wei ye Zhou, Yun Lu, Tongliang Li, Wenhao Huang, and Zhoujun Li. 2025. Simplevqa: Multimodal factuality evaluation for multimodal large language models. *ArXiv*, abs/2502.13059.
- Ido Cohen, Daniela Gottesman, Mor Geva, and Raja Giryes. 2025. Performance gap in entity knowledge extraction across modalities in vision language models. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 29095–29108, Vienna, Austria. Association for Computational Linguistics.
- Rocktim Das, Simeon Hristov, Haonan Li, Dimitar Dimitrov, Ivan Koychev, and Preslav Nakov. 2024. EXAMS-V: A multi-discipline multilingual multimodal exam benchmark for evaluating vision language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 7768–7791, Bangkok, Thailand. Association for Computational Linguistics.
- Claudio De Stefano, Carlo Sansone, and Mario Vento. 2000. To reject or not to reject: that is the questionan answer in case of neural classifiers. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 30(1):84–94.
- Li Deng. 2012. The mnist database of handwritten digit images for machine learning research [best of the web]. *IEEE signal processing magazine*, 29(6):141–142.
- Ran El-Yaniv et al. 2010. On the foundations of noisefree selective classification. *Journal of Machine Learning Research*, 11(5).
- Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer feed-forward layers are key-value memories. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pages 5484–5495.
- Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. 2017. Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In *Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783.
- Stevan Harnad. 1990. The symbol grounding problem. *Physica D: Nonlinear Phenomena*, 42(1-3):335–346.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. 2022. Training computeoptimal large language models.
- Drew A Hudson and Christopher D Manning. 2019. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6700–6709.
- Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of hallucination in natural language generation. ACM computing surveys, 55(12):1–38.
- Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. 2014. Referitgame: Referring to objects in photographs of natural scenes. In *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*, pages 787–798.
- Alex Krizhevsky et al. 2009. Learning multiple layers of features from tiny images.
- Abhishek Kumar, Robert Morabito, Sanzhar Umbet, Jad Kabbara, and Ali Emami. 2024. Confidence under the hood: An investigation into the confidence-probability alignment in large language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 315–334.
- Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al. 2024. Multimodal foundation models: From specialists to general-purpose assistants. *Foundations and Trends® in Computer Graphics and Vision*, 16(1-2):1–214.
- Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023a. Blip-2: Bootstrapping language-image pretraining with frozen image encoders and large language models. In *International conference on machine learning*, pages 19730–19742. PMLR.
- Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. 2023b. Evaluating object hallucination in large vision-language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 292–305, Singapore. Association for Computational Linguistics.

- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916.
- Haley MacLeod, Cynthia L. Bennett, Meredith Ringel Morris, and Edward Cutrell. 2017. Understanding blind people's experiences with computer-generated captions of social media images. In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, CHI '17, page 5988–5999, New York, NY, USA. Association for Computing Machinery.
- Martin Majlis. 2025. Wikipedia-api: easy to use python wrapper for wikipedias' api.
- Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. 2019. Ok-vqa: A visual question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvf conference on computer vision and pattern recognition*, pages 3195–3204.
- Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating and editing factual associations in gpt. *Advances in neural information processing systems*, 35:17359–17372.
- Nostalgebraist. 2020. Interpreting gpt: the logit lens. *Less Wrong*.
- OpenAI. 2023. Gpt4v(ision) system card.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the* 40th annual meeting of the Association for Computational Linguistics, pages 311–318.
- Letitia Parcalabescu and Anette Frank. 2025. Do vision & language decoders use images and text equally? how self-consistent are their explanations? In *The Thirteenth International Conference on Learning Representations*.
- Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473.
- Sandro Pezzelle, Ece Takmaz, and Raquel Fernández. 2021. Word representation learning in multimodal pre-trained transformers: An intrinsic evaluation. *Transactions of the Association for Computational Linguistics*, 9:1563–1579.
- Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner. 2024. Steering llama 2 via contrastive activation addition. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:

- *Long Papers*), pages 15504–15522, Bangkok, Thailand. Association for Computational Linguistics.
- Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. 2022. Scienceqa: A novel resource for question answering on scholarly articles. *International Journal on Digital Libraries*, 23(3):289–301.
- Tejas Srinivasan, Jack Hessel, Tanmay Gupta, Bill Yuchen Lin, Yejin Choi, Jesse Thomason, and Khyathi Chandu. 2024. Selective "selective prediction": Reducing unnecessary abstention in vision-language reasoning. In *Findings of the Association for Computational Linguistics ACL 2024*, pages 12935–12948.
- Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2020. Energy and policy considerations for modern deep learning research. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages 13693–13696.
- Alexey Tikhonov, Lisa Bylinina, and Denis Paperno. 2023. Leverage points in modality shifts: Comparing language-only and multimodal word representations. In *Proceedings of the 12th Joint Conference on Lexical and Computational Semantics* (* SEM 2023), pages 11–17.
- Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. 2024. Eyes wide shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 9568–9578.
- Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Sharon Li, and Neel Joshi. 2024. Is a picture worth a thousand words? delving into spatial reasoning for vision language models. Advances in Neural Information Processing Systems, 37:75392– 75421.
- Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. 2020. Google landmarks dataset v2-a large-scale benchmark for instance-level recognition and retrieval. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 2575–2584.
- Junlin Xie, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. 2024. Large multimodal agents: A survey. arXiv preprint arXiv:2402.15116.
- Chejian Xu, Jiawei Zhang, Zhaorun Chen, Chulin Xie, Mintong Kang, Yujin Potter, Zhun Wang, Zhuowen Yuan, Alexander Xiong, Zidi Xiong, et al. 2025. Mmdt: Decoding the trustworthiness and safety of multimodal foundation models. *arXiv preprint arXiv:2503.14827*.
- Yutaro Yamada, Yihan Bao, Andrew Kyle Lampinen, Jungo Kasai, and Ilker Yildirim. 2023. Evaluating spatial understanding of large language models. *Transactions on Machine Learning Research*.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. From recognition to cognition: Visual commonsense reasoning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6720–6731.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. 2024a. Vision-language models for vision tasks: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.

Yichi Zhang, Yao Huang, Yitong Sun, Chang Liu, Zhe Zhao, Zhengwei Fang, Yifan Wang, Huanran Chen, Xiao Yang, Xingxing Wei, et al. 2024b. Multitrust: A comprehensive benchmark towards trustworthy multimodal large language models. *Advances in Neural Information Processing Systems*, 37:49279–49383.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, et al. 2024. A survey on efficient inference for large language models. *arXiv* preprint arXiv:2404.14294.

A Additional Details on QA Generation Pipeline

The pipeline for QA data generation consists of the following steps:

- 1. Retrieve the Wikipedia entry for a given entity
- Parse the entry to split it such that every split of the entry consists of no more than two sentences
- 3. Remove all splits that do not contain the entity name.
- 4. For each split, prompt Llama-3.1-8B to generate question-answer pairs from it

We note that this use case is in line with the license for the API https://www.mediawiki.org/wiki/Special:Version/License/MediaWiki.

The questions then undergo multiple rounds of data cleaning:

- 1. Remove pair if answer has more than 7 words
- Remove pair if answer contains entity. This is because we want to measure factual recall, not the ability to state the object in the image.
- 3. Remove pair if the question does not contain the entity. This is to ensure the text alone can identify the entity.
- 4. Remove pair if Llama-3.1-8B decides that its answer is not unique. This helps reduce the number of ambiguous, unclear or subjective questions that are not fact-based.

5. Remove pair if Llama-3.1-8B answers the question incorrectly.

Finally, the QA pairs are deduplicated using both exact match and Llama-3.1-8B. We then randomly sample 5 images of the entity and pair them with a single QA pair to make 5 datapoints in our testbed. The four image classification datasets (MNIST, Food101, Landmarks and CIFAR100) have either a CreativeCommons or GNU General Public License, making this use case permissible.

The next set of filters are specific to each VLM.

- 1. Remove an Image, QA pair if the VLM cannot identify the entity in the image
- 2. Remove an Image, QA pair if the VLM cannot answer the QA pair correctly when provided both the *textual reference* question and the image (see Figure 2 and Section 3). This ensures the VLM being tested contains the relevant internal knowledge.
- 3. Remove an Image, QA pair if the VLM can correctly answer the QA pair when provided the *visual reference* question and a trivial image. This filters questions that are trivially easy to answer using language priors from the sentence.

After all steps of data filtering, the number of points in our testbed is dataset and VLM specific, with an average of 955 datapoints for each VLM and dataset combination. The exact breakdown is provided in Table 3. The main paper does not discuss results for VLM, dataset combinations that have fewer than 100 datapoints remaining after all filters.

Finally, we conduct a round of human annotation. Three authors of this paper manually annotated a subset of 33 questions per dataset in CIFAR100, Food101 and Landmarks (a total of 99 questions). The questions were judged on two metrics: whether the question is relevant to the entity in the image, and whether the answer is a valid and correct answer to the provided question.

Specifically, the following instructions were provided to each annotator:

You are to look at the following entity, QA-pair sets and annotate them for two criteria:

1. Question Relevance

Dataset	VLM	LM	Datapoints
MNIST	LLaVA	Mistral-7B	633
		Vicuna-7B	674
		Vicuna-13B	590
	InstructBLIP	Vicuna-7B	423
		Vicuna-13B	464
	GPT4V	4o-mini	873
		4o	983
CIFAR100	LLaVA	Mistral-7B	1411
		Vicuna-7B	1232
		Vicuna-13B	1222
	InstructBLIP	Vicuna-7B	73
		Vicuna-13B	155
	GPT4V	4o-mini	1556
		4o	1536
Food101	LLaVA	Mistral-7B	819
		Vicuna-7B	542
		Vicuna-13B	446
	InstructBLIP	Vicuna-7B	190
		Vicuna-13B	43
	GPT4V	4o-mini	1387
		4o	1296
Landmarks	LLaVA	Mistral-7B	359
		Vicuna-7B	643
		Vicuna-13B	689
	InstructBLIP	Vicuna-7B	0
		Vicuna-13B	121
	GPT4V	4o-mini	810
		40	728
Average			791.28

Table 3: Number of datapoints remaining after filtering

2. QA Pair Correctness

The standard for whether a question is relevantairs are given in Appendix A.2. to an entity is whether or not the knowledge tested is associated with the stated entity (as opposed to some other entity).

The standard for Correctness is whether or not the answer provided an acceptable answer for the given question. The answer does not have to enumerate all possible answers to the question, but rather state one such answer to the question at hand.

The results show (Table 4) considerable agreement on most datasets, suggesting that the questions are of high quality.

The prompts for all steps involving use of a LM are provided in Appendix A.1 and example QA

A.1 Prompts Used:

QA Extraction:

You are a logical system tasked with extracting questions for an entity from a given text. The question should have a unique answer, and should be very short.

Entity: Tench

Text: The tench or doctor fish (Tinca tinca) is a fresh- and brackish-water fish of the order

	Question Relevant to Entity				Answer Correct			
Dataset	Mean	Tot. Agree	Kappa	Agreement	Mean	Tot. Agree	Kappa	Agreement
CIFAR100	86.86	79.7	12.85	Slight	92.73	75.75	17.23	Slight
Food101	86.87	90.9	74.31	Substantial	88.89	81.81	38.28	Fair
Landmarks	94.95	93.94	65.07	Substantial	90.91	90.91	64.78	Substantial
All	94.94	93.94	65.07	Substantial	90.91	90.91	65.78	Substantial

Table 4: Annotation results, judging whether the questions are relevant to the entities in the image, and whether the answers to the questions were correct. Total Agreement is the percentage of instances where all three annotators agreed. Kappa is the Fleiss Kappa score. The results show that the questions are relevant and correct with substantial agreement between annotators, suggesting that the questions are of high quality.

Cypriniformes found throughout
Eurasia from Western Europe including
Britain and Ireland east into Asia
as far as the Ob and Yenisei Rivers.
It is also found in Lake Baikal.
It normally inhabits slow-moving
freshwater habitats, particularly
lakes and lowland rivers.

Rationale: The tench is said to also be called the doctor fish. There is no other alternate name. Question: What is another name

for the tench?
Answer: doctor fish

[SEP]

Rationale: The order of the tench $% \left(1\right) =\left(1\right) \left(1\right$

is Cypriniformes.

Animals can only belong to one order.

Question: What is the order

of the tench?

Answer: Cypriniformes

[SEP]

Rationale: The usual habitat of the tench is freshwater.

Question: What kind of water does

the tench usually live in?

Answer: freshwater

[STOP]

Entity: Baklava

Text: Baklava is a layered pastry dessert made of filo pastry, filled with chopped nuts, and sweetened with syrup or honey. It was one of the most popular sweet pastries of Ottoman cuisine. There are several theories for the origin of the pre-Ottoman version of the dish.

In modern times, it is a common dessert among cuisines of countries in West Asia,
Southeast Europe, Central Asia, and North Africa. It is also enjoyed in Pakistan and Afghanistan, where, although not a traditional sweet, it has carved out a niche in urban centers.

Rationale: Baklava is

associated with Ottoman cuisine.

Question: What ancient

cuisine is Baklava associated with?

Answer: Ottoman

ΓSEP1

Rationale: Baklava is made of

filo pastry.

Question: What kind of pastry

is Baklava made of?

Answer: filo

[STOP]

Entity: <NEW ENTITY>

Text: <SPLIT FROM WIKIPEDIA>

Identifying whether a question is ambiguous:

Given a text and a question, judge whether the question has a unique answer, or can be answered with multiple valid responses.

Text: The tench or doctor ...

Question: What is the tench

also known as?

Rationale: The text mentions only one other name for the tench,

which is doctor fish.
Judgment: Unique [STOP]

Text: The tench ...

Question: Which lake is
the tench found in?

Rationale: The text mentions that the tench is found in Lake Baikal. However, it is very likely that the tench is found in other lakes as well.

Judgment: Multiple [STOP]

Text: <SPLIT FROM WIKIPEDIA>
Question: <GENERATED QUESTION>

Question Answering:

You are a knowledgeable system tasked with answering the question based on your knowledge.

Question: What is the tench

also known as?

Answer: doctor fish [STOP]

Question: What kind of pastry

is Baklava made of? Answer: Filo [STOP]

Question: In which city is the Eiffel Tower located? Answer: Paris [STOP]

Question: <GENERATED QUESTION>

Duplicate Identification:

You are a logical system tasked with determining if two question answer pairs are duplicates of each other.

Question: What is the tench

also known as?
Answer: doctor fish

Question: What is another name

for the tench?

Answer: the doctor fish Rationale: The two questions are asking the same thing, and

have the same answer.

Judgment: Duplicate [STOP]

Question: What pastry is

Baklava made of?
Answer: filo

Question: What kind of nuts are used to make Baklava?

Answer: walnuts

Rationale: The two questions are asking about different

things, and have different answers. Judgment: Unique [STOP]

Question: <GENERATED Q1>
Answer: <GENERATED A1>
Question: <GENERATED Q2>
Answer: <GENERATED A2>

MCQA Conversion:

You are a logical system tasked with generating incorrect options for multiple choice questions.
You are given the text, question

and answer.

Come up with a numbered list of three plausible but incorrect options

Text: The tench ...

Question: What is the tench

also known as?

Correct Answer: doctor fish
Incorrect Option 1: miracle fish

Incorrect Option 2: salmon
Incorrect Option 3: hidden fish

[STOP]

Text: <TEXT>

Question: <QUESTION>

Correct Answer: <CORRECT ANSWER>

A.2 QA Pair Examples:

The following QA pairs are randomly sampled from their datasets:

CIFAR100:

Entity: Television

Question: What is the title of a book about the invention of the television?

Answer: Tube: the Invention of Television

Entity: road

Question: Which road reaches the North

Slope of Alaska?

Answer: Dalton Highway

Entity: sunflower

Question: When were sunflower seeds

brought to Europe?
Answer: 16th century

Entity: snake

Question: What Hindu festival is

associated with snakes?
Answer: Nag Panchami

Food101:

Entity: oysters

Question: What sauce is often paired

with oysters?
Answer: mignonette

Entity: Edamame

Question: In which cuisine is edamame a common side dish?

Answer: Japanese

Entity: sushi

Question: How is sushi served in the

kaiten zushi style?

Answer: on a conveyor belt

Entity: Ice cream

Question: Can ice cream be made

with a blender? Answer: Yes

Landmarks:

Entity: Grand Canyon

Question: Who led an expedition to the

Grand Canyon?

Answer: John Wesley Powell

Entity: Gateway of India

Question: In which city is the Gateway of

India located?
Answer: Mumbai

Entity: Eiffel Tower

Question: When did the Eiffel Tower

stop broadcasting analogue

television signals?

Answer: 2011

Entity: Machu Pichu

Question: In which country is Machu

Picchu located?
Answer: Peru

Entity: Golden Gate Bridge

Question: What speed do jumpers hit the

water at when jumping from the

Golden Gate Bridge? Answer: 75 mph

B Vision Language Model Inference

All VLM inference uses greedy decoding and is hence deterministic.

To measure the performance of a VLM with trivial images, we use four different kinds of trivial images:

1. Black: A pure black image

2. White: A pure white image

3. Noise: A noised image where each colour channel (RGB) value for each pixel is sampled

uniformly from 0 to 255.

4. None: For VLMs that leave the LM unchanged (e.g. InstructBLIP), we do only a forward pass through the LM. For VLMs which tune the LM in any way (e.g. LLaVA), we pass in a null image. The image representation that results is then an average image representation over all images seen during the

VLMs training.

We collect the output of the VLM from all four of these trivial images (with the same text prompt). The final output of the VLM in this setting is the result of a majority vote on the output (or the modal output from all trivial images). Ties are broken randomly.

C Robustness to choice of metric

The main text shows the results for the two way inclusion metric. Here we show results for exact match (Figure 5) and BLEU (Figure 6). In all cases, we see a significant performance gap between the TextOnly and the Visual Setting

D Hardware for experiments

The experiments conducted in this paper were run on three distinct compute clusters, with different specifications for each one. We list all of the core details below:

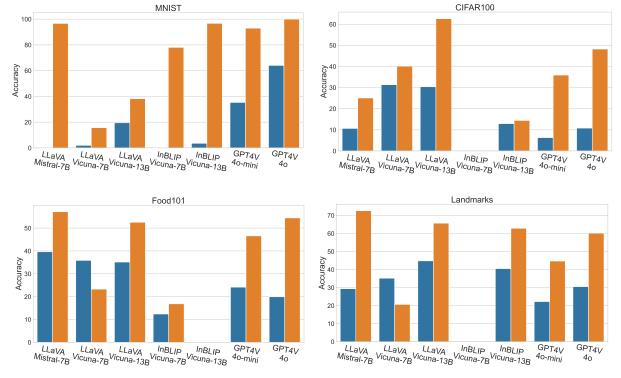


Figure 5: Exact Match Performance on VLMs when forced to rely on visual representations (Visual) as well as textual representations (Text Only) of an entity.

- A cluster with 5 RTX 2080 TI GPUs. 64GB of RAM and 5 Intel(R) Xeon(R) Gold 5215 CPUs @2.50 GHz
- A cluster with 8 NVIDIA L40s GPUs (48G GPU memory each). 800GB of RAM and 256 AMD EPYC 9554 64-Core Processor.
- 3. A cluster with 4 NVIDIA A100 GPUs (40G or 80G GPU memory each), 514GB of RAM, and 96-core Intel(R) Xeon(R) Platinum 8272CL CPUs @2.60GHz.

The time taken to run each part of the experiment varies with the hardware used. However typically all experiments for a single dataset (start to finish from data generation to final results) can be completed within 4 GPU days.

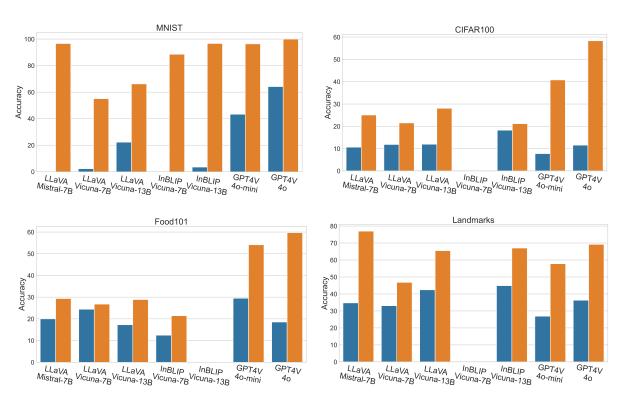


Figure 6: BLEU Performance on VLMs when forced to rely on visual representations (Visual) as well as textual representations (Text Only) of an entity.