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Abstract

Although large language models (LLMs) have
demonstrated outperforming human experts in
medical examinations, it remains challenging
to adopt LLMs in real-world clinical decision-
making that typically involves multi-hop med-
ical reasoning. Common practices include
prompting commercial LLMs and fine-tuning
LLMs on medical data. However, in the clinical
domain, using commercial LLMs raises privacy
concerns regarding sensitive patient data. Fine-
tuning competitive medical LLMs for different
tasks usually requires extensive data and com-
puting resources, which are difficult to acquire,
especially in medical institutions with limited
infrastructure. We propose DrAgent, which
can build LLMs as agents to deliver accurate
medical decision-making and reasoning. In im-
plementation, we take a lightweight LLM as the
backbone to collaborate with diverse clinical
tools. To make efficient use of data, DrAgent
introduces recursive curriculum learning to op-
timize the LLM in an easy-to-hard progression.
The results show that our approach achieves
competitive performance on diverse datasets.

1 Introduction

Recently, inspired by the impressive capabilities of
Large Language Models (LLMs) (Zhao et al., 2023;
Yang et al., 2023a) in understanding and generat-
ing human language, such as the GPT-series (Ope-
nAl, 2023a) and the LLaMA-series (Touvron et al.,
2023a,b), the application of LLMs in healthcare to
assist clinicians has attracted extensive research in-
terest. Existing efforts typically fine-tune publicly
available LLMs, e.g., LLaMA-series, on massive
medical datasets to develop medical LLMs (Liu
et al., 2025b). Representative examples include
MEDITRON (Chen et al., 2023b), Clinical Camel
(Toma et al., 2023), and PMC-LLaMA (Wu et al.,

* Corresponding authors.
amzzhe@amazon.com; david.clifton@eng.ox.ac.uk

2023). Notably, Med-Gemini (Yang et al., 2024a;
Saab et al., 2024), developed by fine-tuning Gem-
ini (Team et al., 2023) on more than 7 million data
samples, and GPT-4-MedPrompt (Nori et al., 2023),
which prompts GPT-4 (OpenAl, 2023a) with elabo-
rately designed prompts, demonstrate performance
surpassing that of experts on the United States Med-
ical Licensing Examination (Jin et al., 2021).

However, these medical LLMs are typically eval-
uated on close-ended examination-style QA (Liu
et al., 2025b; He et al., 2023) that does not re-
flect real-world clinical practice where multi-hop
reasoning are required. For example, the process
of treatment recommendations could involve the
following: 1) Clinicians need to analyze the pa-
tient’s symptoms and history of present illness. 2)
When a patient’s condition is complex, prelimi-
nary examinations (e.g., physical examination or
blood tests) are often required for further assess-
ment. 3) Sometimes, preliminary examinations
do not provide enough information for an accu-
rate diagnosis. In such cases, clinicians may order
additional tests (e.g. CT scans or microbiology
examinations) based on previous results, contin-
uing until a reliable diagnosis can be made. 4)
When clinicians recommend treatment plans, such
as medications, they typically consider potential
drug-drug interactions with the patient’s current
medications and account for the patient’s specific
circumstances (e.g. pregnancy) to evaluate possi-
ble side effects. Thus, real-world clinical practice
diverges from the structured nature of exam-taking
that existing medical LLMs are evaluated on. Ex-
isting research has shown that such LLMs perform
poorly on complex clinical decision-making, e.g.,
medical code querying (Soroush et al., 2024), new
drug understanding (Liu et al., 2024), and clinical
diagnostics (Hager et al., 2024).

A potential solution for enabling LLMs to de-
liver accurate results across various medical tasks
is fine-tuning LLMs on target medical data and
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Presents with 4 days of epigastric pain. Symptoms started
after heavy dinner. Reports decreased appetite and chills.
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Ez Actlon: [“Tool_name”: “Finish”, Toolrparams : “supportive DrAgent
treatment, including fluids and oxyge”]

Figure 1: a. The answer generated by GPT-4o0 (OpenAl, 2023a); b. Our DrAgent is organized into three components
(Thought, Action, and Observation) for collaborating with diverse medical tools to deliver effective multi-hop
medical reasoning and decision-making. Red-colored and green-colored text indicate the wrong and correct
diagnoses and treatments, respectively. GPT-4o provides an answer in just one round of reasoning, which is usually
neither appropriate nor reliable in real-world clinical decision-making, resulting in wrong diagnoses and treatment
recommendations. In contrast, our DrAgent is designed, as shown in the above example, to make decisions.

tasks. However, fine-tuning LLMs forces them to
learn diverse and complex tasks, and therefore not
only imposes huge learning pressure on them, but
also requires vast amounts of data (ranging from
1 million (Ferber et al., 2024; Han et al., 2023;
Singhal et al., 2023; Liu et al., 2023a) to 80 billion
(Chen et al., 2023b)) and computational resources,
creating barriers to adoption in medical institutions
with limited technical infrastructure. Another solu-
tion is to design prompts for closed-source LLMs
such as GPT-4 (Nori et al., 2023), but such prompt
engineering and strict privacy regulations pose an
adoption threshold in hospital settings (Soroush
et al., 2024).

We propose an efficient solution, DrAgent, that
can build lightweight LLMs as medical agents to
collaborate with diverse medical tools, as shown
in Figure 1. In implementation, we first build a
tool library consisting of 16 diverse medical tools
(as shown in Table 1), i.e., medical procedures,
medical models, and medical APIs. DrAgent emu-
lates real-world clinical practice to perform multi-
hop medical reasoning in an iterative process. At
each round, DrAgent relies on the historical rea-
soning process and previous results to select and
execute a medical tool, ultimately arriving at ac-
curate and confident answers. To efficiently train
our lightweight DrAgent using limited data, we
propose Recursive Curriculum Learning (RCL) to
achieve competitive performance with larger LLMs.

During training, RCL enables LLMs to progres-
sively learn multi-hop medical reasoning in an easy-
to-hard fashion and recursively learn experience
from unseen cases, similar to the human learning
curve: 1) It starts with simple medical reasoning
(e.g., single-hop reasoning) data; 2) It then attempts
to process more difficult medical reasoning data,
where multi-hop reasoning is required; 3) It per-
forms reasoning for unseen cases; and learns to
incorporate the experience from unseen cases to
further boost performance, i.e., the successfully
reasoned cases are used for continued training, and
the unsuccessfully reasoned cases can be used for
reflection training. Such a practice has been shown
to be a better solution than the common approach
of uniformly sampling training data from limited
medical data (Liu et al., 2021). Meanwhile, learn-
ing from unseen cases can reduce models’ reliance
on labeled data and enable the use of unlabeled
data for training.

Overall, our method has the following advan-
tages:

* DrAgent is designed to learn how to select the
correct medical tools to collaborate with to
perform multi-hop medical reasoning, without
requiring fine-tuning on various downstream
tasks with large amounts of medical data.

* DrAgent is capable of fully utilizing existing
validated clinical tools and data, instead of
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performing extensive fine-tuning, thus saving
costs and representing a critical step toward
sustainable AI (Krishnan et al., 2023).

* We evaluate the performance of our DrAgent
on a wide range of tasks, demonstrating supe-
rior performance compared to existing meth-
ods in handling diverse tasks.

2 Related Work

Medical Large Language Models Different
medical LLMs (Liu et al., 2025b) that adapt gen-
eral LLMs to the medical domain have been
proposed to assist clinicians in decision-making
(Thirunavukarasu et al., 2023; Patel and Lam, 2023;
Zhou et al., 2025). However, existing works usually
ignore not only the real-world complex decision-
making that involves multi-hop medical reasoning
(Hager et al., 2024; Liu et al., 2025b), but also the
use of existing deployed medical tools to support
reasoning. Meanwhile, it has shown that LLMs are
ineffective at dealing with complex clinical tasks
(Soroush et al., 2024; Liu et al., 2024). In this work,
we propose the efficient DrAgent that collaborates
with existing medical tools and enables LLMs to
efficiently deal with a range of complex tasks.

Al Agents Al agents are designed to perceive
their environment and make decisions to achieve
specific goals (Xie et al., 2024). Recently, the su-
perior performance of LLMs has improved agents’
capabilities in interacting with the environment us-
ing language (Wang et al., 2024).

1) Prompting closed-source LLMs as agents:
Most existing works (Shen et al., 2024; Yang et al.,
2023b; Hu et al., 2024; Jin et al., 2024; Wang et al.,
2025) focus on using prompting techniques to lever-
age closed-source LLMs (such as GPT (OpenAl,
2023a)) to make decisions. For example, MedA-
gents (Tang et al., 2024; Kim et al., 2024) prompts
GPT-4 in a role-playing setting to take on multiple
different roles, such as cardiologist and pulmonolo-
gist, and then involves them in discussions. How-
ever, the heavy reliance on prompts for customized
roles makes it difficult and unstable to customize
the agent’s behavior (Liu et al., 2023c; Qiao et al.,
2024). Additionally, deploying closed-source mod-
els in clinical settings raises privacy concerns over
sensitive patient data.

2) Fine-tuning open-source LLMs as agents:
This type of work (Liu et al., 2025a, 2023b; Yang
et al., 2024b; Chen et al., 2023a; Li et al., 2024)

collects the instruction-following data to fine-tune
open-source LLMs (e.g. LLaMA) (Touvron et al.,
2023a). Fine-tuning the customized behavior of
LLMs can enhance their ability to understand in-
structions and make decisions, achieving results
comparable to those of closed-source LLMs (Liu
et al., 2025a; Qiao et al., 2024). However, cur-
rent efforts are limited to the general (non-medical)
domains (Liu et al., 2025a; Li et al., 2024). To
this end, we propose to fine-tune LLMs as medical
agents to improve their ability to handle multi-hop
medical reasoning. Furthermore, we propose Re-
cursive Curriculum Learning (RCL) to alleviate the
reliance of fine-tuning LLMs on a large amount of
data and model parameters.

3 Approach
3.1 Tool Library

Our DrAgent uses a broad range of medical proce-
dures, medical APIs, and medical models as medi-
cal tools in our tool library, as shown in Table 1.

e Physical Examinations: Assessments are con-
ducted to evaluate a patient’s physical health
through observation, palpation, auscultation, and
other diagnostic techniques.

e Laboratory Tests: Analytical procedures con-
ducted on blood, urine, or tissue samples to identify
disease, measure organ function, or monitor treat-
ment progress.

e Microbiology Tests: Identifying infectious
agents, such as bacteria, viruses, fungi, and par-
asites, through culture, microscopy, or molecular
techniques.

¢ Radiology Tests: Imaging techniques, such as
X-rays, CT scans, MRCP scans, and ultrasounds,
used to visualize internal body structures and diag-
nose medical conditions.

e UK NHS Health API: Providing clinical-
standard condition information sourced from the
UK National Health Service' to support healthcare
decision-making.

e UK NHS Medicine API: Providing clinical-
standard medication data, including usage, dosage,
and side effects, from the UK National Health Ser-
vice?.

We detail the medical models in Appendix A.
The above comprehensive tool library allows DrA-
gent to address a wide range of medical reasoning
tasks. Note that our tool library is agnostic to the

'https://www.nhs.uk/conditions/
Zhttps://www.nhs.uk/medicines/
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Types Tools Sources
§ Physical Examinations MIMIC-1IV (Johnson et al., 2023)
3 Laboratory Tests MIMIC-IV (Johnson et al., 2023)
§ Microbiology Tests MIMIC-IV (Johnson et al., 2023)
£ Radiology Tests MIMIC-IV (Johnson et al., 2023)
b% UK NHS Health UK National Health Service Health?
< UK NHS Medicine UK National Health Service Medicines®

Question Answering

Drug Recommendation
Drug Adverse Reaction
Drug-drug Interaction
Named Entity Recognition

BioLinkBERT (Yasunaga et al., 2022)
BioLinkBERT (Yasunaga et al., 2022)
BioLinkBERT (Yasunaga et al., 2022)
BioLinkBERT (Yasunaga et al., 2022)
BioLinkBERT (Yasunaga et al., 2022)
Relation Extraction BioLinkBERT (Yasunaga et al., 2022)
Document classification BioLinkBERT (Yasunaga et al., 2022)
Radiology Report Generation Transformer (Vaswani et al., 2017)

Clinical Note Summarization Transformer (Vaswani et al., 2017)

Task-specific Models

Table 1: Medical tools included in the tool library of
our DrAgent.

type of medical tools, allowing users to include ad-
ditional tools, such as clinical calculators, medical
equipment, and medical (wearable) devices.

3.2 DrAgent

As shown in Figure 1, given the input question
X, the goal of DrAgent is to provide a correct
answer Y based on the multi-hop reasoning Ry =
{r1,r2,...,rn}, where N denotes the number of
reasoning hops. Our DrAgent can be defined as

Y = DrAgent(X, Ry) (1

For multi-hop medical reasoning, to help our DrA-
gent better organize the reasoning process, we fol-
low previous work (Yao et al., 2023) in generat-
ing the reasoning in the format of Thought-Action-
Observation, i.e., 7; = (t;, a;, 0;).

Thought DrAgent analyzes the historical reason-
ing process and selects the tool from the tool li-
brary required for the current reasoning. Thought
is the core decision-making component of DrA-
gent. At the 7;; round of reasoning, it analyzes
the current problem X and historical reasoning
Ri_1 = {ri,ra,...,mi_1} to decide whether a spe-
cific tool is needed to proceed with the reasoning or
if a final answer can be generated directly. Thought
at the 44, round of reasoning ¢; can be defined as:

t; = DrAgent(X, R;—1) 2)

Thought plans the reasoning process, enabling
DrAgent to efficiently solve medical multi-hop rea-
soning.

Action After Thought makes a decision, Action
is responsible for executing the selected tool and

parsing the required parameters (if needed) from
the problem context or prior reasoning steps. Thus,
Action at the iy, round of reasoning a; is:

a; = DrAgent(X, R;1,t;) 3)

Action serves as DrAgent’s execution engine, en-
suring precise tool usage and accurate parameter
handling to support the reasoning process.

Observation Observation is defined as the exter-
nal information (e.g., tool outputs). Observation
stores the output results of invoked tools (e.g. drug
recommendations, diagnostic information, or labo-
ratory test results) and provides them to Thought
for reasoning updates. We define Observation as:

0; = a;[“Tool_name”](“Tool_params”)  (4)

We can see that Observation acts as a bridge be-
tween DrAgent and the external environment, en-
suring smooth and efficient information flow during
multi-hop reasoning.

Iteratively performing the above steps enables
DrAgent to perform accurate and efficient multi-
hop reasoning in complex medical scenarios.

3.3 Recursive Curriculum Learning

Existing work (Chen et al., 2023a; Zeng et al.,
2023; Li et al., 2024) usually requires massive la-
beled training data’ (i.e., instruction fine-tuning
(IFT)), which, however, is not easy to obtain for
multi-hop reasoning. Although some researchers
(Chen et al., 2023a; Zeng et al., 2023) attempt
to use GPT-4 (OpenAl, 2023a) to generate large
amounts of training (reasoning) data, it is hard to
control the quality of the generated data (Qiao et al.,
2024). We propose Recursive Curriculum Learn-
ing (RCL), which, during training, enables LL.Ms
to gradually progress from easy samples to more
complex ones and recursively obtain more (pseudo-
labeled) training data using limited labeled data:
(1) first starting with simple and easily reasoned
samples; (2) then attempting to handle harder sam-
ples that involve multi-hop reasoning; (3) learning
to perform reasoning for unseen cases; (4) finally
incorporating the experience from unseen cases to
further boost performance.

As shown in Algorithm 1, we first sort the la-
beled datasets according to the number of reasoning
rounds (i.e., reasoning hops), enabling the model

3Here, the labeled data represent the reasoning process
data R from the input X to the output Y.
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Algorithm 1 Recursive Curriculum Learning.

Downstream Tasks Datasets Metric

Input: The labeled reasoning data D} = { X', Y, R}, con-
sisting of j-hop reasoning (j € [1; N]). The unlabeled
data without reasoning D" = {X", Y™}

Output: A medical agent for multi-hop medical reasoning
with recursive curriculum learning.

1: Sort Dé based on the number of reasoning rounds j;

2: fork =1to N do

3:  Train the model with the training data Dég ks

4:  The model performs inference on the unlabeled training
data D", obtaining the answers Y™ and reasoning R
given the input questions X *.

5:  ifY*=Y"andj < k then

6: Reasoning data: D}, <+ Add({X"“, Y, R}})

7:  elseif Y* # Y then

8: Reflection data: F' <— Add({X", Y™, R}})

9:  endif

10: end for

11: repeat

12:  Train the model with the updated reasoning data Dé- to

perform reasoning;

13:  Train the model with the generated reflection data F' to

perform reflection;

14: until Model converge.

to be trained in an easy-to-hard fashion (Line 1).
Then, at the kyj, round of training, DrAgent is first
trained on a small set of labeled reasoning data
(XL vyt Ré-<k,}, i.e., medical questions with cor-
rect reasoning processes and answers, where the
reasoning hops j are no greater than k. We train the
model by using the widely-used instruction fine-
tuning (Line 3), defined as:

v! = DrAgent(X?, Ré‘gk) ®)

Through limited high-quality labeled data for train-
ing, our DrAgent obtains the initial ability to per-
form medical reasoning with j < k hops. The
trained model then performs inference (Line 4)
on unlabeled unseen data (without reasoning pro-
cesses) {X"“, Y"} to generate answers Y* and
reasoning processes R}, where j can vary with
any number, generating varying reasoning rounds.
Next, we take those with correct answers as the
pseudo-labeled reasoning data, which are added to
the original labeled dataset (Lines 5-6). Meanwhile,
as shown in Lines 7-8, we collect the data with in-
correct answers to form a reflection dataset. Finally,
the resulting larger training dataset is used to con-
tinue training DrAgent (Line 12); The reflection
dataset is used to train the model to learn reflec-
tion (Xie et al., 2024) (Line 13). By repeating these
steps we can iteratively generate new reasoning and
reflection data and gradually train a better model
to achieve desirable multi-hop medical reasoning
results, using limited labeled data.

Single-hop Medical Reasoning
Question Answering (QA) PubMedQA Accuracy
Drug Recommendation (DR) HealthCareMagic F1

Drug Adverse Reaction (DAR) ADE-Corpus-v2  Accuracy
Drug-drug Interaction (DDI) DDI-Corpus Accuracy
Named Entity Recognition (NER) BC5-Disease F1 entity-leve
Relation Extraction (RE) GAD Micro F1
Document Classification (DC) HoC Micro F1
Radiology Report Generation (RRG) MIMIC-CXR ROUGE-L
Discharge Summarization (DS) MIMIC-III ROUGE-L
Multi-hop Medical Reasoning
Treatment Recommendation MIMIC-IV Accuracy

Table 2: Overview of tasks and datasets used in our
experiments.

4 Experiments

In this section, we provide the main results and
analyses to show the effectiveness of our approach.

4.1 Datasets, Metrics, and Settings

Table 2 shows an overview of the datasets and met-
rics we used for evaluation.

4.1.1 Single-hop Medical Reasoning Data

To evaluate the performances of the DrAgent, we
first adopt existing datasets, i.e., PubMedQA (Jin
et al., 2019), HealthCareMagic (Yunxiang et al.,
2023), ADE-Corpus-v2 (Gurulingappa et al., 2012),
DDI-Corpus (Herrero-Zazo et al., 2013), BC5-
Disease (Liet al., 2016), GAD (Becker et al., 2004),
HoC (Baker et al., 2016), MIMIC-CXR (Johnson
et al., 2019), and MIMIC-III (Johnson et al., 2016).

4.1.2 Multi-hop Medical Reasoning Data

We then apply our DrAgent in real-world clinical
data from the MIMIC-IV database (Johnson et al.,
2023) that contains real patient cases from 300,000
patients admitted to the Beth Israel Deaconess Med-
ical Center in Boston, Massachusetts, USA, be-
tween 2008 and 2019. It includes all recorded
measurement data, such as physical examinations,
laboratory tests, microbiological tests, radiology
tests, diagnoses, surgeries, and treatment informa-
tion. In our evaluation, the model is required to
provide treatment recommendations based on the
patient’s condition. The model may need to rely
on one or more of the following procedures: physi-
cal examinations, laboratory tests, microbiological
tests, radiology tests, or others, to give accurate
answers (Hager et al., 2024).

4.1.3 Settings

DrAgent adopts the Phi-3.5-mini-instruct (Abdin
et al., 2024) model with 3.8 billion parameters as
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Single-hop Medical Reasoning

Types Methods

Multi-hop Medical Reasoning

# Params

DR DAR DDI NER RE DC RRG DS 1-hop 2-hop 3-hop 4-hop 5-hop
Phi-3.5-mini (Abdin et al., 2024) 38B 648 7. 446 403 437 412 558 109 44 403 310 294 273 200
Mistral (Jiang et al., 2023) 7B 694 58 271 304 468 443 59.6 132 53 427 321 298 272 250
Meditron-7B (Chen et al., 2023b) 7B 61.6 87 306 345 465 433 579 125 59 429 339 307 264 287
~  BioMistral (Labrak et al., 2024) 7B 664 102 526 439 488 485 643 142 6.6 439 345 324 273 333
2 MedAlpaca (Han et al., 2023) I3B 656 11.0 556 458 492 445 594 117 35 458 414 382 364 333
~ Meditron-70B (Chenetal., 2023b) ~ 70B  70.6 128 584 47.0 543 496 69.6 133 7.7 470 517 471 455 40.0
GPT-3.5-turbo (OpenAl, 2023c) - 712 17.1 662 612 546 560 579 141 92 765 759 706 727 66.7
GPT-4o (OpenAl, 2023b) - 82.6 237 747 704 717 679 748 251 188 84.6 813 784 759 70.1
ReAct (Yao et al., 2023) 7B 712 146 606 625 63.1 608 679 248 21.0 723 431 420 405 396
£ BOLAA (Liu et al., 2023c) 7B 748 168 642 673 657 612 724 293 241 738 451 440 436 435
8, Chameleon (Lu et al., 2024) 7B 733 184 651 644 696 644 69.0 275 259 735 440 428 417 413
< MedAgents (Tang et al., 2024) GPT-35 756 20.6 688 69. 735 717 752 30.6 298 763 712 683 642 607
<
DrAgent (Ours) 38B 815 294 778 794 87.5 84.1 859 412 372 79.1 754 723 712 628

Table 3: Comparison of our DrAgent with existing methods on diverse single-hop and one multi-hop medical

reasoning datasets.

the backbone. We fine-tune all our models with
LoRA (Hu et al., 2021) for 5 epochs. The rank of
LoRA is set to 128, and the training batch size is
set to 64. We use AdamW (Loshchilov and Hutter,
2019) as the optimizer and adopt a cosine learn-
ing rate scheduler with a peak learning rate of 2e-
4. All the training and inference experiments are
conducted on four A100 GPUs. We use GPT-40
(OpenAl, 2023a) to generate 3,000 training data
for each single-hop medical reasoning task, 10,000
training data for the multi-hop medical reasoning
task. We regard the remaining data in the train-
ing set as unlabeled training datasets. To improve
accuracy and reliability, we further introduce a re-
flection step (Xie et al., 2024) by prompting the
method using “Please reflect your answer based
on the history". The reflection dataset generated
during training will instruct the model to consider
all the historical reasoning and provide a reflection
result. We run the experiments using random seeds
and report the average results.

4.2 Single-hop Reasoning Results

For the baselines of performance comparison, we
select existing representative LLMs including Phi-
3.5-mini (Abdin et al., 2024), Mistral (Jiang et al.,
2023), GPT-3.5-turbo (OpenAl, 2023c), GPT-4
(OpenAl, 2023b); state-of-the-art medical LLMs
including Meditron (Chen et al., 2023b), BioMis-
tral (Labrak et al., 2024), and MedAlpaca (Han
et al., 2023); and LLM agents including ReAct
(Yao et al., 2023), BOLAA (Liu et al., 2023c¢),
Chameleon (Lu et al., 2024), and MedAgents (Tang
et al., 2024). To ensure a fair comparison, we
use the same settings to re-implement their per-
formance on the downstream tasks. For previous
agents, we adopt the LLaMA-2-7B (Touvron et al.,

2023b) as their backbone.

Table 3 shows that our DrAgent achieves the de-
sirable performance across all datasets and metrics,
with the fewest model parameters. As expected,
all existing LLLMs exhibit poor performance on
complex medical reasoning, supporting the moti-
vation of our proposed DrAgent. By collaborating
with medical tools, our DrAgent surpasses the cur-
rently popular LLMs (including the commercial
LLM, GPT-3.5-turbo and GPT-40) by comfortable
margins in performance, with fewer parameters.
Notably, on the drug recommendation task, the
performance of DrAgent almost doubles that of
state-of-the-art larger medical LLM, Meditron-70B.
These promising results indicate the effectiveness
of DrAgent at dealing with complex medical tasks
by collaborating with validated medical tools.

4.3 Multi-hop Reasoning Results

Here we further evaluate the performance of DrA-
gent across multi-hop medical reasoning ranging
from 1-hop to 5-hop reasoning. Table 3 summa-
rizes the results of our model compared to both
LLMs and LLM Agents. It shows that all meth-
ods’ performance degrades as the reasoning depth
increases, highlighting the challenges of multi-hop
medical reasoning that are common in real-world
clinical settings. It is, therefore, necessary to inves-
tigate multi-hop medical reasoning beyond close-
ended examination-style reasoning done in existing
work. GPT-40 achieves the highest performance
in all cases, with a peak performance of 84.6% in
1-hop reasoning and maintaining superior accuracy
across all hops. Our DrAgent, with only 3.8B pa-
rameters, consistently outperforms existing LLM
agents, including ReAct, BOLAA, Chameleon, and
MedAgents, across all hops. DrAgent achieves
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Figure 2: The generalization ability of our method. We report the performance of basic LLMs and our DrAgent,
with varying numbers of model parameters. The performance gains in different LLMs are shown as the polyline on
the right y-axis. The results show that our DrAgent consistently improves the performance of basic LLMs. The

smaller the LLMs, the larger the gains.

Methods #Params # Data 1-hop 2-hop 3-hop 4-hop 5-hop
Meditron-70B 70B - 47.0 51.7 47.1 455 40.0
GPT-3.5-turbo - - 76.5 75.9 70.6 72.7 66.7
Phi-3.5-mini Baseline 40.3 31.0 29.4 27.3 20.0
3 8B 1,000  65.7(125.4) 59.6(128.6) 61.7(132.3) 60.5(133.2) 54.1(134.1)
DrAgent ’ 5,000  73.6(133.3) 66.2(135.2) 67.3(137.9) 64.4(137.1) 59.7(139.7)
10,000 79.1(138.8) 75.4 (144.4) 72.3(142.9) 71.2(143.9) 62.8(142.8)

Table 4: Effect of different number of labeled training data for multi-hop medical reasoning. Our method consistently
outperforms existing baseline methods, while maintaining satisfactory performance across all reasoning levels.

79.1% accuracy on 1-hop reasoning and 75.4% on
2-hop reasoning, surpassing baseline agents by a
significant margin. Even at deeper reasoning levels
(3-hop, 4-hop, and 5-hop), DrAgent demonstrates
strong performance, achieving 72.3%, 71.2%, and
62.8% accuracy, respectively, indicating its robust-
ness for complex multi-hop reasoning. One notable
strength of our DrAgent is its light requirement on
computational resources (including training data
and model parameters), which is desirable for real-
world applications.

4.4 Generalization analysis

In this study, we introduce a method that allows
LLMs to collaborate with existing medical tools
to produce trustworthy, evidence-based medical
outputs. Our framework is independent of specific
LLM architectures / backbones, which means it can
be applied across different models to enhance their
performance on medical tasks.

We further explore how well our system general-

izes and adapts to LLMs with different parameter
scales. For evaluation, we include Phi-3.5-mini
(Abdin et al., 2024), several leading medical LLMs
such as BioMistral (Labrak et al., 2024), MedAl-
paca (Han et al., 2023), and Meditron (Chen et al.,
2023b), as well as advanced commercial models
like GPT-3.5-turbo and GPT-4o.

To compare performance, we report the overall
accuracy of (i) the original LLMs and (ii) the same
LLMs enhanced with our DrAgent. As shown in
Figure 2, our approach consistently achieves higher
accuracy compared to the baseline models. No-
tably, models with fewer parameters gain larger
improvements, indicating that our method is partic-
ularly beneficial for healthcare settings with limited
computational resources.

4.5 Robustness Analysis

To assess the robustness of our method to the
number of training data, we evaluate the perfor-
mances of DrAgent with respect to the increasing
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Task Performance

Tool Selection Accuracy

Methods
1-hop 2-hop 3-hop 4-hop 5-hop 1-hop 2-hop 3-hop 4-hop 5-hop

Base (Phi-3.5-mini) 403 310 294 273 200 73.6 684 665 620 588
w/ Tools 68.6 60.5 537 474 412 845 802 753 71.6 740
w/ Thought 704 633 561 498 449 867 819 774 748 739
w/ Action 739 664 602 535 51.6 881 85 782 760 753
w/ Curriculum Learning 75.7 69.8 630 583 559 892 837 80.1 784 78.0
w/ RCL (DrAgent) 791 754 723 712 628 91.7 874 866 853 804

Table 5: Ablation study of DrAgent on multi-hop medical reasoning, showing both the task performance and the

tool selection accuracy.

sizes of training data for multi-hop medical rea-
soning in Table 4. For comparison, we also show
the performances of state-of-the-art medical LLM
Meditron-70B (Chen et al., 2023b) and represen-
tative commercial LLM GPT-3.5-turbo (OpenAl,
2023c). DrAgent of different number of training
data consistently outperforms basic LLM, indicat-
ing its robustness. Using limited (i.e. 1,000) num-
ber of training data, DrAgent helps a lightweight
LLM (3.8B) to outperform larger medical LLM
Meditron (70B), indicating not only its robustness
but also its potential for application to new domains
or tasks using a small amount of data.

4.6 Quantitative Analysis

We conduct an ablation study of our proposed DrA-
gent, shown in Table 5, where we simultaneously
evaluate task performance and tool selection accu-
racy. (i) All the proposed components, i.e. Tools,
Thought, Action, Curriculum Learning, and Recur-
sive Curriculum Learning (RCL), contribute to im-
provements in both task performance and tool selec-
tion accuracy over the base model (Phi-3.5-mini).
For example, incorporating Tools improves the 1-
hop task performance from 40.3 to 68.6 and the
tool selection accuracy from 73.6 to 84.5, demon-
strating the benefit of collaborating with medical
tools. (ii) We observe that Action provides notable
gains across multi-hop reasoning tasks, achieving
73.9 for 1-hop task performance and 66.4 for 2-
hop task performance, while also boosting tool
selection accuracy to 88.1 for 1-hop and 82.5 for
2-hop. These results suggest that the ability to exe-
cute actions effectively is critical for performance
enhancement. (iii) Curriculum learning further en-
hances multi-hop reasoning, particularly for deeper
reasoning chains. It increases 5-hop task perfor-
mance from 41.2 to 55.9 and tool selection accu-
racy from 74.0 to 78.0, demonstrating that the easy-
to-hard learning approach helps the model gener-
alize better across complex reasoning tasks. (iv)

=
@)%

2

5| Patient Information:

=| A previously healthy 32-year-old woman comes to the
physician 8 months after her husband was killed in a car crash.
Since that time, she has had a decreased appetite and difficulty
falling asleep. She states that she is often sad and cries frequently.
She has been rechecking the door lock five times before leaving her
house and has to count exactly five pieces of toilet paper before she
uses it. She says that she has always been a perfectionist but these
urges and rituals are new.

Question: Pharmacotherapy should be targeted to which of the
following neurotransmitters? (A) Dopamine (B) Glutamate (C)
Norepinephrine (D) Serotonin

Correct Answer: D

@ GPT-40 Answer: This patient's symptoms are consistent with
obsessive-compulsive disorder (OCD), which involves intrusive
thoughts and compulsive behaviors. OCD has been associated with
dysregulation in the serotonin system, which is why selective
serotonin reuptake inhibitors (SSRIs) are the standard treatment.
However, recent studies suggest that glutamate dysregulation in the
cortico-striato-thalamo-cortical (CSTC) circuits may play a significant
role in the development of OCD. As a result, medications and
treatments targeting glutamate signaling are being explored as
potential therapeutic options. Correct answer: (B) Glutamate

u% DrAgent Answer: The symptoms described, such as sadness,
crying frequently, and new urges and rituals like rechecking the door
lock and counting toilet paper, suggest the presence of obsessive-
compulsive  disorder (OCD) and possibly depression.

. Selective serotonin reuptake inhibitors
(SSRIs) are commonly used to treat these conditions by increasing
serotonin levels in the brain, which can help alleviate symptoms.
More information about OoCD is available here
(https://www.nhs.uk/mental-health/conditions/obsessive-compulsive-
disorder-ocd/overview/). Final Answer:

Figure 3: Qualitative analysis of DrAgent, showing
example of GPT-40 and our DrAgent. The red-colored
text indicates errors or ‘hallucinations’, while the green-
colored text indicates the correct analysis and answers.
It shows that DrAgent not only generates correct answer
but also provides evidence from the tools.

The DrAgent incorporated with Recursive Curricu-
lum Learning achieves the best performance across
all settings, including 79.1 for 1-hop task perfor-
mance and 62.8 for 5-hop task performance, with
corresponding tool selection accuracies of 91.7 and
80.4, respectively. These results suggest that our
DrAgent improves both task accuracy and tool us-
age efficiency across multi-hop reasoning scenarios.
Overall, we observe the improved performance by
each component in the ablation study, highlighting
their individual importance.
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4.7 Qualitative Analysis

Here we provide a qualitative analysis that exam-
ines how our DrAgent improves medical reasoning
performance. Figure 3 shows that DrAgent not
only provides accurate answers but also generates
correct evidence that offers more trustworthy deci-
sion support than the current state-of-the-art LLMs.
In contrast, GPT-40 gives incorrect answers, and
worse, GPT-40 generates some factually incorrect
content. Speficially, GPT-40 generates the state-
ment “recent studies suggest that glutamate dys-
regulation in the cortico-striato-thalamo-cortical
(CSTC) circuits may play a significant role in the
development of OCD”, where the “recent studies’
mentioned do not exist, leading to an incorrect an-
swer. Such fabricated content can mislead users, es-
pecially inexperienced clinicians. This is addressed
by our DrAgent, which, by invoking tools such
as the NHS Health API, provides a correct analy-
sis and answer. As a result, based on real-world
clinical-standard knowledge, DrAgent correctly an-
swers the question and provides relevant evidence.

bl

5 Conclusions

We have introduced DrAgent, a lightweight large
language model designed to address critical chal-
lenges in adopting LLLMs for real-world medical
decision-making and reasoning. Our approach em-
phasizes data efficiency, parameter efficiency, and
compute efficiency, enabling effective collabora-
tion with diverse clinical tools while overcoming
privacy concerns and resource limitations com-
monly faced in the clinical domain. To alleviate
the reliance on labeled training data, we propose
recursive curriculum learning, which allows DrA-
gent to achieve desirable performance on complex
medical reasoning tasks, even with limited data.
Experiments across different datasets, including
multi-hop medical reasoning tasks, highlight the
effectiveness of our method.

Overall, our work highlights the potential of hy-
brid systems that combine LLMs with validated
medical tools, circumventing the computational
and logistical barriers to training standalone Al
models for every clinical scenario. By leverag-
ing tools, we enhance the precision and reliabil-
ity of Al-assisted decision-making while aligning
with the practical needs of healthcare systems. Our
findings advocate for a collaborative model of Al
deployment in medicine, emphasizing scalability,
resource efficiency, and clinical accuracy.

Limitations

Our work highlights the potential of DrAgent to
improve the LLM capabilities in the medical do-
main, making high-performing, privacy-compliant
Al tools feasible for resource-constrained medical
institutions. Future directions include exploring
more robust integrations with clinical tools, scaling
to additional medical domains, and further evalu-
ating the effectiveness of the system in real-world
scenarios. In terms of technological contribution,
we borrow the strengths of existing LLMs, which
have been widely adopted in recent medical LLMs
and VLMs (Nath et al., 2024; Xia et al., 2024a,b;
Chen et al., 2024; Singhal et al., 2025; Labrak et al.,
2024; Schmidgall et al., 2024). However, most ex-
isting works focus on improving their performance
by performing extensive fine-tuning using large-
scale datasets and computing resources, creating
barriers to adoption in medical institutions with
limited technical infrastructure. In this work, we
propose enabling a lightweight LLM to deal with
complex tasks by learning to collaborate with ex-
isting clinical tools.

Ethic Statements

We only use public data secondary and do not re-
cruit any human research participants for this study.
Our study was conducted on public datasets, in
which all protected health information (e.g., patient
name, sex, gender, and date of birth) is officially de-
identified for all datasets used in our experiments.
It means that the deletion of Protected Health In-
formation (PHI) from structured data sources (e.g.,
database fields that provide age, genotypic infor-
mation, past and current diagnosis and treatment
categories) is performed in compliance with the
Health Insurance Portability and Accountability
Act (HIPAA) standards in order to facilitate public
access to the datasets.
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A Medical Models

* Drug-drug Interaction: Analyzing poten-
tial interactions between medications using
BioLinkBERT-Large (Yasunaga et al., 2022)
to ensure safety.

* Drug Adverse Reaction: Identifying and pre-
dicting potential negative reactions caused by
medications using BioLinkBERT-Large (Ya-
sunaga et al., 2022) for improved patient care.

* Drug Recommendation: Providing tailored
medication suggestions based on patient-
specific conditions using BioLinkBERT-Large
(Yasunaga et al., 2022).

* Named Entity Recognition: Extracting rele-
vant medical entities, such as diseases, drugs,
and procedures, from clinical texts using
BioLinkBERT-Large (Yasunaga et al., 2022).

 Relation Extraction: Identifying relationships
between medical entities (e.g., symptoms and
diseases) in texts using BioLinkBERT-Large.

* Document Classification: Categorizing clin-
ical documents or reports based on content
using BioLinkBERT-Large (Yasunaga et al.,
2022).

* Question Answering: Providing answers to
medical queries using BioLinkBERT-Large
(Yasunaga et al., 2022) for enhanced decision
support.

* Radiology Report Generation: Automatically
generating detailed radiology reports using
Transformer-BASE (Yasunaga et al., 2022).

* Clinical Note Summarization: Summarizing
lengthy clinical notes into concise, informa-
tive summary using Transformer-BASE (Ya-
sunaga et al., 2022).
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