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Abstract

Despite recent advances in Reasoning Lan-
guage Models (RLMs), most research focuses
solely on English, even though many models
are pretrained on multilingual data. In this
work, we investigate: Is English the most token-
efficient language for reasoning? We evalu-
ate three open-source RLMs: DEEPSEEK R1,
QWEN 2.5, and QWEN 3, across four math
datasets and seven typologically diverse lan-
guages. We find that reasoning in non-English
languages not only reduces token usage, but
also preserves accuracy. These gains persist
even after translating the reasoning traces into
English, suggesting genuine shifts in reason-
ing behavior rather than surface-level linguistic
effects. The extent of improvement, however,
depends on the model’s multilingual strength.
Our findings motivate a broader view of rea-
soning in language models, highlighting the po-
tential of multilingual reasoning and the impor-
tance of strong multilingual foundations. The
code for our work can be found here.

1 Introduction

Recent advancements have shown that increas-
ing inference-time compute can significantly en-
hance the downstream performance of large lan-
guage models. In particular, RLMs benefit from ex-
tended test-time computation through long chains-
of-thought, resulting in improved reasoning capa-
bilities and task performance (DeepSeek-AI, 2025;
OpenAI et al., 2024b). Despite this progress, the
majority of prior work has focused on reasoning
in English, implicitly assuming it as the default
or optimal language for thought (Wendler et al.,
2024).

A key limitation of current RLMs lies in the num-
ber of “thinking tokens” they consume during infer-
ence. Since test-time compute scales with the num-
ber of tokens generated, longer reasoning traces di-
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rectly impact latency and cost. This inefficiency is
often exacerbated by the phenomenon of overthink-
ing (Cuadron et al., 2025b), where models produce
unnecessarily verbose intermediate reasoning. To
address this, several works have explored length-
aware rewards in reinforcement learning setups to
encourage brevity in reasoning traces (Aggarwal
and Welleck, 2025; Sui et al., 2025b). However,
these approaches typically require model retraining,
which is computationally expensive and infeasible
for many practitioners.

In this work, we take a different perspective on
language and reasoning by asking a simple yet un-
derexplored question: Is English the most efficient
language for reasoning? We explore whether rea-
soning in other languages can produce shorter but
equally effective reasoning traces, potentially re-
ducing inference-time compute. This question is
timely for two reasons: (1) many reasoning lan-
guage models (RLMs) are multilingual by design
(Team, 2025a); and (2) prior work suggests that
languages vary in how clearly they express math-
ematical ideas, affecting reasoning performance
(Han, 2001). Our key contributions are:
- We show that across a range of mathematical rea-

soning datasets, reasoning in alternative languages
consistently results in fewer tokens, often matching
the final English accuracy.
- We demonstrate that even when translated back

to English, reasoning traces originally generated
in other languages remain shorter than those na-
tively generated in English. This suggests that the
reduction in token count is not merely a function
of tokenizer fertility or linguistic compactness, but
reflects genuine differences in the characteristics
of reasoning traces compared to their English coun-
terparts.
- We provide quantitative evidence that English

is not always the most effective language for rea-
soning, with traces in other languages consistently
preferred for their conciseness, clarity, and struc-
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ture.

2 Experiments

To assess whether reasoning in other languages can
enhance thinking token efficiency, we experiment
with seven typologically diverse languages: Chi-
nese, Russian, Spanish, Hindi, Arabic, Korean, and
Turkish, along with English. We prompt the rea-
soning models in English, instructing them to carry
out their reasoning in the target language while
providing the final answer in English. This setup
allows us to isolate the effect of language on the
reasoning process itself. For inferencing, we used
the SGLang framework (Zheng et al., 2024), which
facilitates the extraction of intermediate reasoning
traces.1 We now detail our experimental setup.
Datasets: We evaluate our hypothesis in a va-
riety of math datasets, which we categorize
into easy and difficult subsets based on the
complexity of the problem and the typical per-
formance of existing models. The difficult
datasets include AIME2024 (Veeraboina, 2023)
and AIME2025 (Art of Problem Solving, 2025a,b),
which feature competition-level problems that re-
quire advanced reasoning. The easy datasets in-
clude AMC23 (Art of Problem Solving, 2023a,b),
and MATH500 (Lightman et al., 2023) comprising
of simpler problems.
Models: We explore three open-weight reason-
ing models for our experiments: DEEPSEEK R1
(DeepSeek-AI, 2025), QwQ (based on the 32B
variant of QWEN 2.5) (Yang et al., 2024; Team,
2025b), and QWEN3 (Qwen3-235B-A22B), the lat-
est model focused on reasoning of the Qwen family
(Team, 2025a).
Evaluation: Following the evaluation setup of
DEEPSEEK R1, we set the maximum generation
length to 32,768 tokens. For response generation,
we use a sampling temperature of 0.6 and a top-p
value of 0.95, generating n = 16 responses across
all models and datasets.
Metrics: Different RLMs vary in their ability to
follow prompt instructions for generating reason-
ing traces in the indicated target language. To better
evaluate multilingual reasoning performance, we
introduce two complimentary metrics: Target Lan-
guage Consistency (TLC), and Target Language
Pass @k (TLP@k) in conjunction with the com-
monly used Pass@k metric. We use k = 4 in all
our results.

1The exact prompt we use can be found in Appendix A.

Target Language Consistency (TLC): mea-
sures how well models adhere to the target lan-
guage constraint when prompted. Given a dataset
of size m, with question-answer pairs (qi, yi), and
target language j, let R(k)(i, j) = {r1, ..., rk} be
the set of generated reasoning traces under the
prompt to reason in language j. TLC for a sample
is the fraction of traces in the correct language, and
the overall TLC is the average across all samples.
We use a LID model (Joulin et al., 2016) to detect
the language of a reasoning trace.

Target Language Pass @k (TLP@k): Analo-
gous to the Pass@k metric, we propose TLP@k to
measure the fraction of samples where at least one
of the top-k reasoning traces both elicits the cor-
rect answer and is in the target language. Extend-
ing Chen et al. (2021), for measuring TLP@k, we

use a low variance estimator 1
m

∑m
i=1

[
1− (n−c

k )
(nk)

]
,

where c is the number of reasoning traces that yield
the correct answer and are in the correct target lan-
guage among the n generated traces. The final
TLP@k is the average across all samples. Further
details about the implementation of this estimator
are provided in the Appendix A.2.

3 Analysis

This section explores a series of research questions
aimed at validating our thesis.
RQ1: Is English the optimal language for rea-
soning for LRMs ? Table 1 shows per-language
model performance relative to English (absolute
scores in Table 8). Across models, high TLC cor-
relates with smaller performance drops when rea-
soning in non-English languages—despite using
significantly fewer tokens. In contrast, models with
weaker multilingual foundations (e.g., QWEN 2.5)
show larger performance gaps.
To analyze task and language effects in more detail,
we examine DEEPSEEK R1 (due to its strong TLC)
across datasets (Tables 2, 4, Fig. 1, 2). Detailed
results for QWEN 2.5 and QWEN 3 are provided in
Appendix A.3. We observe that
- For easy tasks (e.g., MATH500), language

choice has little effect on accuracy, while non-
English reasoning uses fewer tokens.
- As task difficulty ↑, we see a relative drop in per-

formance of up to 12. 52% on average in AIME25
compared to English.
- For harder tasks, high-resource languages (Zh,

Ru) outperform low-resource ones (Hi).
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Model en zh ru es

TLP@4 TLC Tok. ∆%TLP@4 TLC ∆%Tok ∆%TLP@4 TLC ∆%Tok ∆%TLP@4 TLC ∆%Tok

DEEPSEEK R1 0.87 1.000 3816 4.6% 1.000 21.1% 4.3% 1.000 14.1% -0.9% 0.985 29.9%
QWEN 2.5 0.87 1.000 6249 3.8% 0.796 21.4% 23.3% 0.340 38.2% 82.0% 0.056 88.1%
QWEN 3 0.89 0.998 6123 0.9% 0.987 27.7% -0.3% 0.996 35.8% 1.7% 0.583 73.0%

(a) Performance relative to English (TLP@4 and Tok. as % change).

Model ar tr hi ko

∆%TLP@4 TLC ∆%Tok ∆%TLP@4 TLC ∆%Tok ∆%TLP@4 TLC ∆%Tok ∆%TLP@4 TLC ∆%Tok

DEEPSEEK R1 7.4% 0.901 28.2% 8.3% 1.000 8.3% 8.0% 0.971 7.7% 9.5% 0.997 43.9%
QWEN 2.5 57.2% 0.177 68.1% 29.3% 0.444 52.3% 58.3% 0.097 41.3% 81.4% 0.059 90.1%
QWEN 3 15.7% 0.666 47.4% 18.5% 0.721 59.6% 16.3% 0.887 23.7% 17.1% 0.574 47.4%

(b) Performance relative to English (TLP@4 and Tok. as % change).

Table 1: Performance relative to English: TLP@4 and mean token count are reported as percentage change from
English; Target Language Consistency (TLC) is reported directly.

en ko es zh hi ru tr ar

Dataset TLP@4 Tokens ∆%TLP@4 ∆%Tok ∆%TLP@4 ∆%Tok ∆%TLP@4 ∆%Tok ∆%TLP@4 ∆%Tok ∆%TLP@4 ∆%Tok ∆%TLP@4 ∆%Tok ∆%TLP@4 ∆%Tok

MATH500 0.77 1404.24 0.00 37.80 0.00 32.85 0.00 18.41 0.00 17.81 0.00 36.96 0.00 5.78 0.00 26.98
AMC23 1.00 3571.1 -3.00 42.09 0.00 25.20 -1.00 14.44 -2.00 -0.83 -3.00 27.22 -4.00 -12.29 -4.00 25.87
AIME2024 0.89 5637.27 -12.36 42.40 -4.49 21.95 -11.24 27.07 -12.36 -13.58 -8.99 0.57 -11.24 -11.08 -11.24 17.43
AIME2025 -0.81 7979.17 -24.69 47.78 -2.47 36.54 -4.94 20.43 -18.52 25.79 -4.94 13.29 -18.52 32.13 -13.58 37.24

Table 2: Both TLP@4 and mean token count are reported as percentage changes from English. Color intensity
ranges from orange to green/yellow, where brighter shades (green/yellow) indicate greater deviation from English
performance, while duller shades like orange represent minimal or no deviation.

- Multilingual reasoning consistently achieves sig-
nificant token savings across all settings.
In conclusion, while English remains the top-
performing language for reasoning in most RLMs,
it isn’t always optimal - especially in terms of token
efficiency. Models with strong multilingual capa-
bilities can reason effectively in other languages
with minimal accuracy loss and significant token
savings. For high-resource languages, especially,
multilingual reasoning offers a competitive and ef-
ficient alternative to English.
RQ2: Do multilingual reasoning traces differ
meaningfully from their English counterparts?
To answer this, we examine whether token effi-
ciency gains arise from linguistic conciseness or
deeper semantic differences in reasoning. We use
GPT-4o (temperature = 0.6, top-p = 0.95) to trans-
late non-English traces into English and compare
their token counts to the original English versions.
As shown in Figure 1, the translated traces remain
significantly shorter, indicating that non-English
prompts can elicit more concise reasoning paths.
This suggests that multilingual prompting can un-
cover efficient strategies not naturally produced in
English.
In conclusion, multilingual reasoning traces are
meaningfully different and often more concise.

Their brevity persists after translation, suggesting
more efficient reasoning strategies—not just lin-
guistic differences.
RQ3: Are Multilingual Reasoning Traces Better
Than English? To further assess whether non-
English reasoning traces are better overall than
their English counterparts, we conduct an auto-
mated pairwise comparison using GPT-4o as the
judge. For each language, we select cases where
both English and non-English reasoning are cor-
rect. We then compare the English trace to the
GPT-4o-translated non-English trace, leveraging
GPT-4o’s high translation quality (OpenAI et al.,
2024a) to control for linguistic brevity. Evaluations
use GPT-4o with greedy decoding and a prompt
(Appendix A.1) focused on clarity, logic, and ef-
ficiency. To reduce position bias, we assess each
pair in both orders, (A, B) and (B, A) and retain
only consistent preferences. We leverage a one-
sided binomial test to establish if reasoning in the
native language is (statistically) significantly bet-
ter than reasoning in English. Table 3 reports re-
sults for DEEPSEEK R1. Across benchmarks, most
languages show significant gains when reasoning
in the native language, with Arabic, Korean, and
Spanish exceeding 90% win rates. QWEN 3 shows
similar gains across all non-English languages (Ta-
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Figure 1: Token Count Ratio vs. number of problems with at least one correct answer in both English and the target
language (min. 5 shared cases), computed relative to the average English token count per problem for DEEPSEEK
R1.

AIME2024 AIME2025 AMC23 MATH500
Lang N Win% Sig? N Win% Sig? N Win% Sig? N Win% Sig?

ar 5 100.0 ✓ 16 93.8 ✓ 21 100.0 ✓ 250 92.8 ✓
zh 5 100.0 ✓ 17 94.1 ✓ 12 58.3 ✗ 192 55.7 ✗
hi 11 100.0 ✓ 17 88.2 ✓ 16 93.8 ✓ 263 95.4 ✓
ko 12 100.0 ✓ 21 100.0 ✓ 27 96.3 ✓ 273 90.5 ✓
ru 6 83.3 ✗ 17 82.4 ✓ 21 90.5 ✓ 243 93.8 ✓
es 6 100.0 ✓ 12 91.7 ✓ 22 90.9 ✓ 241 97.1 ✓
tr 8 75.0 ✗ 16 93.8 ✓ 20 85.0 ✓ 199 85.9 ✓

Table 3: Binomial test results comparing non-English vs English reasoning responses from DEEPSEEK R1. ✓
indicates p < 0.05, ✗ indicates no significant difference. N denotes the number of samples wherein both the
answers in English and the target language are correct.

ble 9, Appendix A.4). We also observe qualitative
difference between English outputs and language
translated outputs (Ref Appendix A.5 for a QWEN

3 example). We omit QWEN 2.5 due to its low
Target Language Consistency, which makes such
comparisons unreliable (Table 1).
These findings suggest that multilingual reasoning
can enhance the quality of a model’s thought pro-
cess. Since all responses are translated to English
for evaluation, structural differences are controlled
for, indicating that gains likely arise from improved
clarity, structure, and conciseness.

4 Related Work

Efficient Reasoning: Recent interest in LRMs has
spurred investigations into reasoning efficiency as
to why some tasks demand more reasoning tokens
and whether models can answer correctly with-
out explicit reasoning steps (Cuadron et al., 2025a;

Hashemi et al., 2025; Sui et al., 2025a; Chen et al.,
2025; Ma et al., 2025; Marjanović et al., 2025).
This work explores reasoning efficiency from a
multilingual perspective, analyzing whether certain
reasoning paths across languages are both accurate
and token-efficient.

Multilingual Reasoning: Prior studies showed
that prompting models in the target language of-
ten underperforms compared to reasoning in En-
glish (Qin et al., 2023; Shi et al., 2022; Ko et al.,
2025). However, RLMs like Deepseek R1 and
Qwen have shown stronger multilingual reasoning
without explicit tuning (DeepSeek-AI, 2025; Team,
2025a; Yang et al., 2024). We build on this by intro-
ducing tighter evaluation bounds and fine-grained
trace-level analysis, uncovering language-specific
reasoning paths that are both accurate and token-
efficient.

Concurrently, several recent works have also begun
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to explore multilingual reasoning in depth (Gao
et al., 2025; Bajpai and Chakraborty, 2025).

5 Conclusion and Future Work

In this work, we explore two central questions: (1)
Is English the optimal language for reasoning? and
(2) Are multilingual reasoning traces meaningfully
different from their English counterparts?
We find that multilingual prompting can reduce to-
ken usage by 20–40% without compromising accu-
racy, presenting a simple yet effective strategy for
improving inference efficiency without retraining.
These efficiency gains persist even after translat-
ing the outputs back to English, suggesting that
the improvements stem from genuine differences
in reasoning behavior rather than mere linguistic
compactness.
Importantly, the effectiveness of this approach is
tied to the model’s underlying multilingual strength.
Our findings highlight the need to improve base
multilingual alignment to better support efficient
and high-quality reasoning across languages. Fu-
ture work should explore training and preference
optimization across more diverse languages to un-
lock these benefits more broadly.

Limitations

In this work, we focus exclusively on reasoning
traces generated through English prompts. The
behavior of models may vary when prompted in
target languages or when guided using techniques
like teacher-forcing with a few target-language to-
kens. Our analysis is limited to seven languages
and relies solely on open-source reasoning models.
Proprietary models such as OpenAI’s o1 (OpenAI
et al., 2024b) may exhibit different behavior from
those studied here.
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A Appendix

A.1 Prompts

Model Prompt

You MUST give your reasoning AND start
in {lang} between <think> and </think>
tags only. Keep the tags for the thinking part
in your response. Do not generate anything
outside these tags except for the final an-
swer, which you MUST give in ENGLISH.
Please reason step by step in {lang} and put
your final answer within
boxed{{}} in ENGLISH.

A.2 Unbiased Estimator for TLP@k

For a given language l and k, we want to estimate
The naive estimator for the above on a dataset D =
{(x0, y0), . . . , (xm, ym)} can be defined as
However, as shown in (Chen et al., 2021), this es-
timator has a high variance. Consequently, we
extend the low variance estimator proposed in
(Chen et al., 2021) for estimating Pass@k(l) as

ˆPass@k(l, n) = 1
m

∑m
i=1

[
1− (n−c(xi,yi)

k )
(nk)

]
with
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Evaluation Prompt

Evaluation Criteria for a Better Response:
You will be comparing two responses that both arrive at the correct final answer. Your task is
to evaluate the quality of the reasoning and explanation leading to that answer. A better response
generally excels in the following areas:

1. Clarity & Logic:

• Presents reasoning in a clear, step-by-step, and logical manner.
• Is easy to follow and understand.
• Avoids ambiguity in its explanations.

2. Efficiency & Conciseness (Relative to Clarity):

• Avoids unnecessary detours, excessive repetition, or significant over-explanation of
simple concepts that detract from clarity or add significant bloat.

3. Structure & Presentation:

• Organizes the solution in a well-structured way.
• May include helpful checks or clarifications that genuinely aid understanding without

being redundant or overly verbose.

Important Note on Positional Bias: The order in which responses are presented below (A then B)
is arbitrary. Please strive to evaluate each response on its own merits against the criteria before
making a comparative judgment. Your final decision should not be influenced by this presentation
order.

Your Task:
You are shown a math question and two responses, labeled “A” and “B”. Please follow these steps
in your evaluation process:

1. Assess Individually:

• First, carefully read and assess the response labeled “A” based solely on the “Evaluation
Criteria” above. Note its strengths and weaknesses.

• Next, carefully read and assess the response labeled “B” based solely on the “Evaluation
Criteria” above. Note its strengths and weaknesses.

2. Compare and Decide:

• Now, compare your independent assessments of “A” and “B”.
• Decide which response is better overall.
• If they are of very similar quality, or if their different strengths and weaknesses balance

out making a clear preference difficult, you may indicate they are “Neither – Roughly
Equal”.

3. Explain Your Decision:

• Provide a brief but specific explanation for your final comparative choice. Justify why
the chosen response is superior, or why they are roughly equal, referencing specific
aspects of the criteria and your comparative judgment.
Example: “A was ultimately preferred because its clearer logical flow outweighed its
slight verbosity compared to B.”
Example: “Neither – Roughly Equal because while A was more concise, B offered a
more intuitive structural breakdown needed for this question.”

Question: {question}
Response A: {response_1_text}
Response B: {response_2_text}

Respond ONLY in this JSON format:
{
"better_response_label": "A" or "B" or "Neither - Roughly Equal",
"explanation": "<Your specific explanation for the final comparative decision,
reflecting the comparison>"
}
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Pass@k(l) = Ex

[
1

(
∃r ∈ R(k)(x)

∣∣∣ LLM(x, r) = y ∧ LID(r) = l
)]

ˆPass@k(l) =
1

m

m∑

i=1

1

(
∃r ∈ R(k)(xi)

∣∣∣ LLM(xi, r) = yi ∧ LID(r) = l
)

c(xi, yi) =
∑

r∈R(n)(xi)
1
(
LLM(xi, r) = yi ∧

LID(r) = l
)
. Thus, for a fixed k by increasing

the number of reasoning traces n, we reduce the
variance of the estimator. Calculating this estimator
directly results in very large numbers and numeri-
cal instability. Instead, we use A.2 below, as done
in (Chen et al., 2021).

def pass_at_k(n, c, k):
"""
:param n: total number of samples

generated
:param c: number of correct samples

as defined above
:param k: k in TLP@k%
"""
if n - c < k: return 1.0
return 1.0 - np.prod (1.0 - k /

np.arange(n - c + 1, n + 1))

A.3 TLA Results
To provide a finer-grained view, we also define
Target Language Accuracy (TLA) as the average
accuracy over faithful traces:

TLA(j) =
1

m

m∑

i=1

∑
r∈T (i,j) 1 [LLM(r) = yi]

|T (i, j)| (1)

Detailed TLA results for DEEPSEEK R1 in Table 4
and Figure 2, for QWEN 2.5 in Table 5 and Figure
4. For QWEN 3 in Table 6 and Figure 3.

A.4 Detailed Comparison Test Results
Check Table 9 for the results for QWEN 3.

A.5 Qualitative analysis done for a QWEN 3
output in Chinese

Check Figure 5 and Table 10 for a qualitative check
on QWEN 3 output.
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Figure 2: DEEPSEEK R1 analysis: TLA versus mean thinking tokens per language, with point size indicating how
often the target language was used (out of 16 samples).
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(a) Figure 3a shows TLA versus mean thinking tokens per language, with point size indicating how
often the target language was used (out of 16 samples).

zh
(n

=2
7) es

(n
=1

9) ru
(n

=2
7) ar

(n
=2

0) hi
(n

=2
4) tr

(n
=2

0) ko
(n

=2
3)

Languages

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ke

n
C

ou
nt

R
at

io

AIME2024

zh
(n

=2
5) es

(n
=1

9) ru
(n

=2
6) ar

(n
=1

8) hi
(n

=2
3) tr

(n
=2

0) ko
(n

=2
2)

Languages

AIME2025

zh
(n

=4
0) es

(n
=3

8) ru
(n

=4
0) ar

(n
=3

7) hi
(n

=3
9) tr

(n
=3

7) ko
(n

=3
7)

Languages

AMC23

zh
(n

=4
05

) es
(n

=3
91

) ru
(n

=4
06

) ar
(n

=3
99

) hi
(n

=4
01

) tr
(n

=3
97

) ko
(n

=3
47

)

Languages

MATH500

Token Counts Across All Datasets (Problems Correct in Both Languages)

Original Language Tokens Original Language Tokens Translated to English

(b) Figure 3b plots the Token Count Ratio against the number of problems with at least one correct
answer in both English and the target language (minimum 5 shared instances). The ratio is computed
relative to the average English token count for each problem.

Figure 3: QWEN 3 analysis
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(a) Figure 4a shows TLA versus mean thinking tokens per language, with point size indicating how
often the target language was used (out of 16 samples).
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(b) Figure 4b plots the Token Count Ratio against the number of problems with at least one correct
answer in both English and the target language (minimum 5 shared instances). The ratio is computed
relative to the average English token count for each problem.

Figure 4: QWEN 2.5 analysis
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Example problem from MATH500 solved by QWEN 3 in Chinese

Question: Simplify
√
242.

Response in English: Okay, so I need to simplify the square root of 242. Hmm, let me think. First,
I remember that simplifying a square root involves factoring the number into its prime factors and
then looking for pairs of the same number because each pair can be taken out of the square root as
a single number.
Alright, starting with 242. Let me try dividing by small primes first. The number 242 is even,
right? Because it ends with a 2, so it should be divisible by 2. Let me check: 242 divided by 2
equals 121. So that gives me 2 times 121. Now, I need to factor 121. Hmm, 121... I think that’s a
square number. Wait, 11 times 11 is 121. Yes, that’s right! So putting that all together, the prime
factorization of 242 is 2× 11× 11.
So, writing that out as a product of primes: 2× 112. Now, when simplifying square roots, every
pair of primes can be taken out of the square root. Here, we have a pair of 11s and a single 2. That
means the square root of 242 can be written as

√
112 × 2.

Using the property of square roots that
√
a× b =

√
a ×

√
b, this becomes

√
112 ×

√
2. Since√

112 is 11, the simplified form should be 11×
√
2.

Wait a second, let me double-check. If I square 11
√
2, I should get back the original number. Let’s

see: (11
√
2)2 = 112 × (

√
2)2 = 121× 2 = 242. Yep, that checks out.

But hold on, did I factorize correctly? Let me confirm. 2× 121 = 242. Then 121 is 11 squared.
Correct. So there are no other factors. There’s a single 2 and a pair of 11s. So taking the pair out,
leaving the 2 inside.
Is there a possibility that 242 could be factored differently? Let’s see. Suppose I didn’t start with 2.
What if I tried dividing by 11 first? Let’s try: 242 divided by 11 is 22. Then 22 divided by 11 is 2.
So that gives the same result: 11 × 11 × 2. So regardless of the order, the prime factors are the
same. Therefore, regardless of the method, the simplified square root should be 11

√
2.

I think that’s all. I don’t see any mistakes in my reasoning. So the answer should be 11 times the
square root of 2.

Translated Response for Chinese to English: First, I need to simplify
√
242. To simplify the

square root, I need to find the square factors of the number under the root. First, I will factorize
242 into its prime factors. Dividing 242 by 2 gives 121, so 242 = 2× 121. Next, 121 is a known
square number because 11× 11 = 121. Therefore,

√
242 can be broken down into

√
2× 121.

According to the multiplication property of square roots,
√
a× b =

√
a ×

√
b, so

√
2× 121 =√

2×
√
121. Since

√
121 = 11, the entire expression can be simplified to 11

√
2.

Therefore, the simplified form of
√
242 is 11

√
2.

Figure 5: Example problem solved by QWEN 3
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Dataset en zh ru es ar tr hi ko

MATH500 0.75 0.75 0.74 0.74 0.74 0.74 0.74 0.74
AMC23 0.97 0.96 0.93 0.93 0.94 0.94 0.94 0.91
AIME2024 0.78 0.70 0.71 0.72 0.69 0.65 0.66 0.61
AIME2025 0.66 0.55 0.60 0.55 0.53 0.50 0.50 0.46

Table 4: TLA scores as defined in Equation: A.3 for DEEPSEEK R1

Dataset en zh ru es ar tr hi ko

MATH500 0.77 0.77 0.79 0.76 0.77 0.76 0.75 0.67
AMC23 0.97 0.94 0.94 0.78 0.79 0.68 0.72 0.71
AIME2024 0.85 0.79 0.77 0.42 0.51 0.41 0.36 0.54
AIME2025 0.80 0.74 0.70 0.36 0.44 0.36 0.36 0.41

Table 5: TLA scores as defined in Equation: A.3 for QWEN 2.5

Dataset en zh ru es ar tr hi ko

MATH500 0.77 0.77 0.79 0.76 0.77 0.76 0.75 0.67
AMC23 0.97 0.94 0.94 0.78 0.79 0.68 0.72 0.71
AIME2024 0.85 0.79 0.77 0.42 0.51 0.41 0.36 0.54
AIME2025 0.80 0.74 0.70 0.36 0.44 0.36 0.36 0.41

Table 6: TLA scores as defined in Equation: A.3 for QWEN 3

en zh ru es ar tr hi ko

Dataset TLP@k Tokens ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok

MATH500 0.78 2482.11 -78.21 61.31 -14.10 41.62 -3.85 17.86 -71.79 84.31 -51.28 65.76 -51.28 57.73 -76.92 91.80
AMC23 1.00 6860.88 -67.00 40.64 -27.00 47.45 0.00 9.48 -85.00 87.35 -65.00 75.34 -22.00 29.43 -85.00 89.34
AIME2024 0.90 10310.63 -41.11 27.53 -44.44 61.88 -14.44 35.90 -74.44 81.92 -52.22 67.30 -14.44 32.04 -96.67 92.85
AIME2025 0.87 10725.53 -54.02 46.16 39.08 50.12 -11.49 16.95 -96.55 96.49 -54.02 66.08 -19.54 42.21 -85.06 88.86

(a) QWEN 2.5
en zh ru es ar tr hi ko

Dataset TLP@k Tokens ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok ∆%TLP ∆%Tok

MATH500 0.81 2913.68 0.00 22.05 0.00 38.74 -3.70 81.08 -1.23 44.75 -2.47 60.59 -1.23 33.46 -14.81 56.61
AMC23 1.00 6138.45 0.00 19.60 0.00 38.67 -5.00 77.58 -7.00 34.71 -7.00 47.76 -2.00 21.61 -7.00 32.97
AIME2024 0.93 9399.33 -3.23 23.83 -3.23 32.86 -32.26 77.18 -27.96 50.84 -27.96 62.29 -13.98 36.94 -17.20 49.07
AIME2025 0.93 11200.1 -10.75 37.32 -6.45 35.43 -32.26 64.32 -35.48 50.57 -27.96 62.32 -17.20 11.02 -21.51 49.44

(b) QWEN 3

Table 7: Performance and token efficiency of native-language reasoning using QWEN models. In each subtable,
TLP@4 and mean token count are reported as percentage change from English
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Model en zh ru es

TLP@4 TLC Tok. TLP@4 TLC Tok. TLP@4 TLC Tok. TLP@4 TLC Tok.

DEEPSEEK R1 0.87 1.00 3816 0.83 1.00 3009 0.83 1.00 3276 0.88 0.99 2677
QWEN 2.5 0.87 1.00 6249 0.84 0.80 4912 0.67 0.34 3861 0.16 0.06 746
QWEN 3 0.89 1.00 6123 0.88 0.99 4427 0.89 1.00 3932 0.88 0.58 1656

(a) Performance across English, Chinese, Russian, and Spanish.

Model ar tr hi ko

TLP@4 TLC Tok. TLP@4 TLC Tok. TLP@4 TLC Tok. TLP@4 TLC Tok.

DEEPSEEK R1 0.80 0.90 2738 0.80 1.00 3498 0.80 0.97 3521 0.79 1.00 2140
QWEN 2.5 0.37 0.18 1996 0.62 0.44 2978 0.36 0.10 3668 0.16 0.06 616
QWEN 3 0.75 0.67 3223 0.73 0.72 2476 0.75 0.89 4675 0.74 0.57 3221

(b) Performance across Arabic, Turkish, Hindi, and Korean.

Table 8: Performance metrics (TLP@4, TLC, Mean Token count) across different languages and models.

AIME2024 AIME2025 AMC23 MATH500

Lang N Win (%) Sig? N Win (%) Sig? N Win (%) Sig? N Win (%) Sig?

ar 12 100.0 ✓ 10 100.0 ✓ 21 100.0 ✓ 295 98.6 ✓
zh 11 90.9 ✓ 13 100.0 ✓ 11 81.8 ✓ 94 73.4 ✓
hi 20 100.0 ✓ 18 94.4 ✓ 34 94.1 ✓ 368 98.1 ✓
ko 17 100.0 ✓ 19 94.7 ✓ 31 96.8 ✓ 298 99.3 ✓
ru 12 91.7 ✓ 15 100.0 ✓ 21 95.2 ✓ 252 99.6 ✓
es 16 93.8 ✓ 12 91.7 ✓ 36 100.0 ✓ 370 100.0 ✓
tr 18 94.4 ✓ 15 93.3 ✓ 27 100.0 ✓ 345 99.1 ✓

Table 9: Binomial test results comparing non-English vs English reasoning responses obtained from QWEN 3, using
consistent GPT-4o judgments. ✓ indicates p < 0.05, and ✗ indicates no significant difference.

Phenomenon English Response Chinese Response

Self-dialogue "Hmm, let me think..." First, simplify
√
242.

Verification "11 × 11 is 121... Yes!" 121 is a known square number...
Redundant check "Let me double-check..." No equivalent step
Alternative path "What if I didn’t start with

2..."
No alternative explored

Repeated confirma-
tion

"I don’t see any mis-
takes..."

√
242 is 11

√
2.

Table 10: Comparison of English and translated Chinese traces (Qwen 3, MATH500). English shows overthinking.
Full output in Figure 5.
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