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Abstract

Large language models (LLMs) have deliv-
ered significant breakthroughs across diverse
domains but can still produce unreliable or mis-
leading outputs, posing critical challenges for
real-world applications. While many recent
studies focus on quantifying model uncertainty,
relatively little work has been devoted to diag-
nosing the source of uncertainty. In this study,
we show that, when an LLM is uncertain, the
patterns of disagreement among its multiple
generated responses contain rich clues about
the underlying cause of uncertainty. To illus-
trate this point, we collect multiple responses
from a target LLM and employ an auxiliary
LLM to analyze their patterns of disagreement.
The auxiliary model is tasked to reason about
the likely source of uncertainty, such as whether
it stems from ambiguity in the input question,
a lack of relevant knowledge, or both. In cases
involving knowledge gaps, the auxiliary model
also identifies the specific missing facts or con-
cepts contributing to the uncertainty. In our
experiment, we validate our framework on Am-
bigQA, OpenBookQA, and MMLU-Pro, con-
firming its generality in diagnosing distinct un-
certainty sources. Such diagnosis shows the
potential for relevant manual interventions that
improve LLM performance and reliability.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance across a wide
range of applications, including natural language
understanding (Brown et al., 2020; Chowdhery
et al., 2023), reasoning (Wei et al., 2022; Wang
et al., 2022), and decision-making (Chen et al.,
2021; Yao et al., 2023). Ensuring the trustworthi-
ness and reliability of LLMs has become impera-
tive as their capabilities continue to advance. This
requirement is particularly critical in sensitive do-
mains such as healthcare (Kung et al., 2023) and
law (Surden, 2018), where high uncertainty can

lead to significant risks and safety issues (Bom-
masani et al., 2021). Accurately quantifying uncer-
tainty helps determine whether a model’s predic-
tion can be trusted: low uncertainty indicates a reli-
able answer, while high uncertainty suggests that
the response requires further scrutiny or should be
rejected. In the literature, various approaches have
been proposed for uncertainty quantification in
LLMs, including verbalization-based methods (Ka-
davath et al., 2022; Yin et al., 2023; Xiong et al.,
2023), perplexity-based methods (Huang et al.,
2023; Duan et al., 2023), and self-consistency meth-
ods (Wang et al., 2022; Yadkori et al., 2024; Xiong
et al., 2023). Among them, self-consistency based
methods, which generate multiple independent re-
sponses and assess their agreement, have usually
demonstrated more promising results, such as a
stronger ability to forecast model errors.

Despite these efforts, relatively fewer works have
focused on one key challenge: how to precisely
identify the source of uncertainty of LLMs. In fact,
knowing why the model yields highly uncertain re-
sponses to a given question is crucial. For example,
it can enable the model users or developers to diag-
nose whether the uncertainty stems from inherent
ambiguity in the question or from the model’s insuf-
ficient knowledge (Hou et al., 2023). Consequently,
this precise diagnosis can later guide targeted im-
provements: if the uncertainty arises from unclear
details of the query, users can refine it; whereas if it
results from a lack of specific knowledge of model,
developers can upgrade or fine-tune the model with
additional data, or users can modify the query to
explicitly include the missing knowledge. Notably,
similar topics have been explored in traditional
models (Kendall and Gal, 2017), but they may not
straightforwardly generalize to LLMs, as discussed
in Section 2.2.

To address the challenge mentioned above, we
explore whether multiple responses from LLMs
(e.g., obtained during self-consistency assessment)
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Al: The Prime Minister of
Canada in 1920 was Arthur
Meighen. He served as
Prime Minister from July 10,
Q: Who was prime 1920, to December 29, 1921.
minister of Canada

in 1920?

A10: The Prime Minister of
Canada in 1920 was Sir
Robert Borden. He served
as Prime Minister from
October 10, 1911, to July 10,
1920.

T 3 Auiliary LLM
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’— — Source of Uncertainty

Due to the absence of a specific
timeframe within 1920, Tom may
interpret the question differently
each time: If referencing early
1920, Sir Robert Borden is the
correct answer. If referencing
mid to late 1920, then Arthur
Meighen is accurate.... The primary
reason for the variations in Tom's
answers is **The question is
unclear or misleading**...

Tom has 10 answers

to the same

question ... Please

analyze the possible —
reasons for the

variations in these
answers...

Figure 1: Illustration of the framework and example. We generate multiple responses from a target LLM and use
an auxiliary LLM to analyze their disagreement patterns. The top shows the overall process flow, and the bottom
presents a concrete example of diagnosing uncertainty for a sample question.

can reveal clues about the source of uncertainty,
as they could contain rich contextual information
that naturally reflect the underlying cause of uncer-
tainty. As shown in Figure 1, when asking “Who
was the prime minister of Canada in 19207”, some
responses indicate the answer is Arthur Meighen
but also mention he took office in July. While, oth-
ers gives the answer as Robert Borden but note that
his serving is until July. Analyzing these inconsis-
tencies reveals that each answer understands this
question differently by interpreting the term “in
1920~ differently. It shows that the uncertainty of
the model primarily results from unclear question
details, rather than a lack of knowledge.

Based on this finding, we explore whether an
LLM can automatically diagnose the source of its
uncertainty by analyzing patterns of disagreement
among its multiple outputs. Refer to the overall
framework as illustrated in Figure 1, we collect
the responses from a “target” LLM for multiple
times, and then employ an “auxiliary” LLM to
scrutinize these responses and analyze their pat-
terns of disagreement. Specifically, the auxiliary
model is prompted to distinguish among various
types of uncertainty sources: (1) whether the uncer-
tainty stems from unclear or under-specified input,
or (missing factual or conceptual information), or
Both (a combination of the two). (2) for samples
labeled Knowledge Gaps or Both, pinpoint the ex-
act factual or conceptual knowledge missing from
the reasoning, thereby even more precisely iden-
tifying which critical knowledge failure underlies

the model’s uncertainty.

In our experiment, we first evaluate the approach
on the AmbigQA (Min et al., 2020) and Open-
BookQA (Mihaylov et al., 2018) datasets, both of
which contain a variety of fact-based and common-
sense questions that are ambiguous or missing key
information. We find that representative models
exhibit notable uncertainty of Question Ambigu-
ity on a substantial portion of these. Moreover,
if we provide clarification to those questions, we
observe that samples labeled as “Question Ambigu-
ity” exhibit a great decrease in uncertainty, thereby
demonstrating the effectiveness of our uncertainty
attribution. In contrast, for questions where the
uncertainty stems from missing knowledge, such
clarification has little effect and the uncertainty per-
sists. Furthermore, we conduct another study of
the Physics and Chemistry subsets of MMLU-Pro
(Wang et al., 2024) which requires various domain
knowledge. In these settings, the auxiliary model
can successfully identify key missing knowledge
components that hinder the target model’s perfor-
mance. Overall, these results suggest the potential
to effectively differentiate between distinct sources
of uncertainty of LLMs and help guide further ap-
propriate manual interventions.

2 Related Work

2.1 Uncertainty Quantification of LLMs

Uncertainty plays a critical role in large language
models (LLMs). Prior research indicates that
LLMs often exhibit overconfidence, raising trust
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concerns for practical applications (Tian et al.,
2023). Existing uncertainty quantification ap-
proaches broadly fall into three categories:

Verbalization. This class of methods exploits the
model’s ability to self-report uncertainty by prompt-
ing it for confidence judgments (e.g., “On a scale
from 0% to 100%, how certain are you?”) and map-
ping the verbal response to a numerical uncertainty
score. (Tian et al., 2023; Xiong et al., 2023). Early
work demonstrated that GPT-3 could explicitly ver-
balize its uncertainty (Lin et al., 2022), further stud-
ies explored self-awareness across model sizes (Ka-
davath et al., 2022), highlighting gaps between
model and human uncertainty calibration (Yin et al.,
2023). Recent prompting strategies have further
improved uncertainty estimation and model cali-
bration (Tian et al., 2023; Xiong et al., 2023).

Perplexity. This line of methods quantifies uncer-
tainty using the model’s token-level predictive prob-
abilities, where lower perplexity corresponds to
higher confidence (Huang et al., 2023; Duan et al.,
2023). Perplexity, initially introduced by Jelinek
(1990), reflects predictive probability distributions
(Chen et al., 1998). Blatz et al. (2004) extended
perplexity to token-level uncertainty estimation in
machine translation, and recent work adopted ge-
ometric averaging to mitigate sequence-length bi-
ases (Huang et al., 2023; Duan et al., 2023).

Self-consistency. Measure uncertainty by sam-
pling multiple independent Chain-of-Thought re-
sponses and quantifying their agreement (Wang
et al., 2022; Yadkori et al., 2024; Xiong et al.,
2023; Becker and Soatto, 2024). Recent exten-
sions further quantify uncertainty through semantic
similarity among responses, such as clustering se-
mantically equivalent sequences (Kuhn et al., 2023)
or computing covariance between inner states of
different responses (Chen et al., 2024).

2.2 Uncertainty Decomposition

Decomposing uncertainty in LLMs is essential for
precisely identifying deficiencies at different lev-
els—whether due to inherent data noise or model
limitations—thus guiding targeted improvements.
Existing studies in the literature typically divide
such uncertainty into two categories: (1) epistemic
uncertainty, which reflects the model’s lack of
sufficient training data or parameter capacity to
generalize correctly, and (2) aleatoric uncertainty,
which arises from ambiguity in the input (Kendall

and Gal, 2017; Hou et al., 2023). Prior methods
such as Bayesian Neural Networks (BNNs) (Neal,
2012; Hasenclever et al., 2017) and Deep Ensem-
bles (DEs) (Lakshminarayanan et al., 2017) have
been used to decompose uncertainty by modeling
prediction variability through either posterior sam-
pling or model disagreement.

However, these approaches are impractical for
LLMs because their enormous size makes repeated
weight sampling or training multiple model in-
stances prohibitively expensive, and proprietary,
black-box APIs prevent access to internal parame-
ter distributions. Relatively few studies have exam-
ined this problem in the context of large language
models. One recent work (Hou et al., 2023), with a
similar purpose of our study, introduces a method
called “input clarification ensembling”, which first
generates multiple clarified variants of a potentially
ambiguous prompt and then aggregates the model’s
outputs over those variants to decompose total un-
certainty into its aleatoric and epistemic compo-
nents. In contrast, our approach infers the source of
uncertainty directly from the distribution of gener-
ated answers without modifying the original input
question. Furthermore, it enables fine-grained attri-
bution by identifying the specific pieces of knowl-
edge that are missing, which is not supported by
previous methods.

3 Preliminary

In this section, we present a preliminary study
comparing the overall accuracy of various uncer-
tainty quantification methods, including Verbaliza-
tion (VERB) (Tian et al., 2023; Xiong et al., 2023),
Perplexity (PPL) (Huang et al., 2023; Duan et al.,
2023), and Self-Consistency (SC) (Wang et al.,
2022). Our findings suggest the Self-Consistency
approach generally outperforms alternative meth-
ods, positioning it as a promising starting point for
investigating the sources of uncertainty.

In detail, we conducted experiments on three
benchmarks: GSMS8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021), and Natural Questions
(NQ) (Kwiatkowski et al., 2019)—using two rep-
resentative models, Llama3-8B-Instruct (Meta Al,
2024) and GPT-40 (OpenAl, 2024a). Each method
is evaluated using three standard criteria: (1) Ex-
pected Calibration Error (ECE): measures the gap
between predicted confidence and actual accuracy,
indicating how well confidence scores align with
correctness (Guo et al., 2017). (2) AUROC: eval-
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Model Dataset Method ECE| AUROC?T Brier |
VERB  0.146 0.636 0.182
GSMS8K PPL 0.056 0.694 0.160
SC 0.054 0.891 0.084
Llama3-8B- VERB  0.585 0.631 0.558
Instruct MATH PPL 0.474 0.652 0.428
SC 0.139 0.723 0.226
VERB  0.282 0.613 0.279
NQ PPL 0.548 0.520 0.523
SC 0.140 0.745 0.187
VERB  0.077 0.663 0.076
GSMS8K PPL - - -
SC 0.031 0.824 0.047
VERB  0.585 0.631 0.558
GPT-40 MATH  PPL - - -
SC 0.182 0.828 0.186
VERB  0.455 0.641 0.443
NQ PPL - - -
SC 0.140 0.693 0.118

Table 1: Performance comparison of uncertainty quan-
tification methods. Perplexity-based metrics (PPL) can-
not be computed for the black-box GPT-40 model, so it
is omitted for GPT-4o.

uates the method’s ability to distinguish correct
from incorrect answers based on uncertainty scores
(Fawcett, 2006). (3) Brier Score: computes the
mean squared difference between predicted prob-
abilities and true outcomes, capturing the calibra-
tion of uncertainty estimates (Brier, 1950) (Fur-
ther details are provided in the Appendix A). Ta-
ble 1 presents these results side by side. Across all
datasets and both LLMs, Self-Consistency (SC)
achieves the lowest ECE, the highest AUROC
for mistake detection, and the best (lowest) Brier
scores, indicating its strong ability to deliver reli-
able uncertainty estimates. Accordingly, we adopt
Self-Consistency as our default uncertainty mea-
sure for the subsequent analysis.

4 Method

Our preliminary evaluation demonstrated that Self-
Consistency produces well-calibrated uncertainty
estimates. Motivated by this finding, we investigate
whether the pattern of disagreement among multi-
ple samples can reveal why a model is uncertain,
not merely how much.

To illustrate, consider the example in Figure 1,
which reflects uncertainty arising from an under-
specified question. For another detailed case, con-
sider the example in Figure 2. By aggregating re-
sponses for the question “Which sequence of energy
transformations occurs after a battery-operated
flashlight is turned on?”, we find that the model

Q: Which sequence of energy transformations occurs after a
battery-operated flashlight is turned on?

A. electrical -> light -> chemical B. electrical -> chemical -> light
C. chemical -> light -> electrical D. chemical -> electrical -> light

Al: The correct answer is B: electrical — chemical — light. The
battery provides electrical energy, which triggers a chemical
reaction in the bulb, producing light energy.

A10: The correct answer is D: chemical — electrical — light.
The battery's chemical energy is converted into electrical
energy, which then powers the light source to produce light.

Analysis: The main difference lies in how the battery's role is
understood. Some answers mistakenly treat electrical energy
as the starting point, overlooking that the battery is a source
of chemical energy... ** Possible Missing Knowledge: Some
responses lack an understanding that the battery itself stores
chemical energy, not electrical .**...

Figure 2: An example of using LLM to diagnose un-
certainty for a sample question: ten responses were
collected, with options B and D each selected five times.
To illustrate, two representative responses are shown.

selects “electrical -> chemical -> light” or “chemi-
cal -> electrical -> light”. Referring to the detailed
analysis from the model as shown in Figure 2, the
primary divergence lies in the model’s interpreta-
tion of the battery’s role. The former one assume
that the battery directly contains electrical energy,
whereas the latter one correctly recognize that the
battery stores chemical energy, which is then con-
verted into electrical energy to power the light. This
discrepancy reveals a knowledge gap in the model’s
understanding of battery function, which underlies
its uncertainty. Notably, a manual analysis requires
substantial specialized domain knowledge. There-
fore, in our work, we leverage this insight and pro-
pose a framework that uses an auxiliary LLM to
automatically diagnose this source of uncertainty.

4.1 Notation and Definitions

To propose our pipeline, we first introduce the nec-
essary notation and definitions. Given a target
model f(-) for investigation, we let () denote an in-
put question and let { Ay, ..., Ay} be N answers
sampled from the model. Define the set of unique
answers as V = {v1,vg,...,vx }. We estimate the
probability of each distinct answer vy, by:

P(vg) =

2=

N
Yo1A=w), (D)
j=1

where 1(-) is the indicator function. Then, the un-
certainty of the model to the question () can be
measured by the Shannon entropy of this distribu-
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High Uncertainty Filter:
Uncertainty Attribution

Tomthas N answers to the same question. Here are the question and
answergr
Please analyze the possible reasons for the variations in these
answers. Consider the following options and explain which one is most
likely the cause:
ion i ing (The question lacks specific
details (e.g., time, place, or context) that could lead to confusion
or contains misleading or incorrect background information that
could lead to a wrong interpretation.)

(Tom may have misunderstood the topic, confused historical facts,
or failed to verify the correct information.)

C. Both A and B. (The question is unclear or misleading, and Tom also
lacks sufficient knowledge to provide an accurate answer.)

Auxiliary
Model

A. Question Ambiguity B. Knowledge Gaps C. Both
“ J
Knowledge-Gap Extraction T

Please analyze the differences among these answers and identify what

essential knowledge or reasoning Tom might be missing that leads to

the inconsistencies. Focus on abstract, domain -neutral principles

rather than simply reiterating case -specific details.

Your Response Should Include:

1. Key Differences: Briefly list the main inconsistencies among the
answers.

2. issi ifi ; Identify one precise
concept that would help resolve the disagreement. Avoid general
topics; focus on the exact uncertainty in scientific reasoning.

Auxiliary
Model

Missing Knowledge or Concept

Figure 3: Framework of our pipeline for extracting the
precise source of uncertainty: (1) Filter high-uncertainty
samples; (2) Uncertainty Source Diagnosis: Uncertainty
Attribution and Knowledge-Gap Extraction.

tion (Shannon, 1948; Wang et al., 2022):

K
UQ) = =Y P(v) logP(wy), ()

k=1

which captures how widely the answers are spread
over V: higher entropy indicates greater disagree-
ment among the NV samples and therefore higher
uncertainty. Finally, we set a threshold 7 so
any question with U(Q) > 7 is marked as high-
uncertainty and selected for deeper analysis.

4.2 Framework

Given the notation and definitions, we now describe
the two-phase, two-step pipeline for extracting the
precise source of uncertainty!. The architecture of
our pipeline is illustrated in Figure 3.

!The pseudocode for the entire framework are presented
in Appendix C.

Phase I: High-Uncertainty Filtering. For each
question (), we generate N answers and com-
pute its uncertainty score U () according to Eq.2,
which adheres the basic pipeline of Self Consis-
tency for uncertainty estimation. We then select
only those samples with U(Q) > 7 for subsequent
analysis, since high-uncertainty cases indicate pos-
sible mistakes (refer Section 3).

Phase II: Two-Step Diagnosis.

(1) Uncertainty Attribution. Concatenate each
filtered question () with its NV answers and prompt
an auxiliary LLM to analyze and attribute the uncer-
tainty. To guide this process, we design a prompt
framed around a fictional character (“Tom’) who
holds N answers to the same question (see the
prompt in green part of Figure 3). It is because
prior work suggests that models reason more reli-
ably when evaluating others’ responses rather than
their own (Lin et al., 2022). This third-person fram-
ing helps reduce self-reference bias and encourages
more consistent judgments. We extend the con-
ventional two-way decomposition (epistemic and
aleatoric uncertainty) into the following:

1. Question Ambiguity — the question itself
is unclear or under-specified, leading to di-
vergent interpretations. This category corre-
sponds to aleatoric uncertainty, as it arises
from inputs that allow multiple plausible in-
terpretations due to their inherent vagueness.

2. Knowledge Gaps — the model fails to retrieve
or apply the necessary factual or conceptual
information. This replaces the traditional epis-
temic category.

3. Both — the case involves both an ambiguous
question and a missing knowledge component,
jointly causing uncertainty.

(2) Knowledge-Gap Extraction. For samples
with label L € {Knowledge Gaps, Both}, we con-
catenate the original question () with its N answers
and prompt the auxiliary LLM to identify the spe-
cific fact or concept that is missing from the re-
sponse generation, and we denote it as /. See the
blue part of Figure 3, the prompt guides the model
to analyze the key differences among the responses;
and identify the specific piece of missing knowl-
edge that could explain these differences. This
module is crucial as it enables us to precisely iden-
tify which specific piece of knowledge is missing
or misunderstood, in complex reasoning tasks that
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involve multiple pieces of knowledge (see more dis-
cussions in the experiments in Section 5.2). This
process is also illustrated in the example shown in
Figure 2, where the multiple answers of the LLM
reveal that the uncertainty stems from an unclear
understanding of the “battery’s function”, instead
of other concepts. This capability is crucial be-
cause it pinpoints the exact missing knowledge.
This capability is crucial because it pinpoints the
exact missing knowledge, enabling targeted inter-
ventions, such as injecting the identified facts into
the context to boost model performance.

S Experiments

In this section, we present comprehensive experi-
ments to validate the effectiveness of our proposed
method for identifying the source of uncertainty
in LLMs. Specifically, our experiments focus on
answering two core questions:

(i) Can the Uncertainty Attribution module accu-
rately distinguish between different sources
of uncertainty? (Section 5.1)

(ii) Does the Knowledge-Gap Extraction module
reliably reveal the knowledge deficiencies in
the reasoning process? (Section 5.2)

Unless explicitly stated for certain ablation or repli-
cation scenarios, we use GPT ol-mini (OpenAl,
2024b) as the auxiliary model throughout our ex-
periments, given its strong reasoning capabilities.

5.1 Validation of Uncertainty Attribution

In this subsection, we evaluate whether the Un-
certainty Attribution module can effectively distin-
guish among three sources of uncertainty: Question
Ambiguity, Knowledge Gaps, and Both.

Setup. We validate the module on benchmarks
containing abundant ambiguous questions. Am-
bigQA (Min et al., 2020) consists of open-ended
Natural Questions that admit multiple valid an-
swers; we evaluate on its 2,002-sample validation
set. OpenBookQA (Mihaylov et al., 2018) com-
prises elementary-level, multiple-choice science
questions; we use the first 500 examples from
its training set. We use Llama3-8B-Instruct and
GPT-3.5-turbo (OpenAl, 2023) as target models
since they exhibit substantial uncertainty on the
two benchmarks, yielding enough high-uncertainty
cases for meaningful analysis. For each question,

we generate N = 10 answers as a balance be-
tween reliable uncertainty estimation and compu-
tational cost, following common practice in self-
consistency methods, and compute their uncer-
tainty scores. We then apply a threshold 7 = 0.89,
chosen to exclude confident cases while retaining
enough high-uncertainty samples for analysis.

Experimental Design. Although datasets like
AmbigQA annotate certain questions as ambigu-
ous, these annotations are rather subjective and
such questions may not actually be ambiguous to
the model. Thus, in our experiment, we instead as-
sess the accuracy of our uncertainty attribution by
comparing the reduction in uncertainty before and
after clarification across three categories to assess
this module’s effectiveness. In particular, for each
high-uncertainty question, we generate a clarified
version (see Appendix D for the detailed proce-
dure of clarification) (Kuhn et al., 2022; Zhang and
Choi, 2023), then sample /N answers with the tar-
get model and recompute uncertainty. If the target
LLM’s uncertainty drops by a large margin after
clarification, it suggests the uncertainty is highly
likely due to “Question Ambiguity”.

Results. The experiment results are shown in Ta-
ble 2. Clarification leads to the greatest reduction
in uncertainty for samples labeled as Question Am-
biguity, followed by Both, and then Knowledge
Gaps. On AmbigQA, Llama3-8B-Instruct achieves
relative uncertainty reductions of 37.1%, 28.1%,
and 24.3% for the three categories, while GPT-
3.5-turbo yields comparable reductions of 42.1%,
32.3%, and 30.2%. This pattern demonstrates that
our attribution aligns with the model’s behavior:
uncertainty caused by ambiguity is significantly
reduced once the question is clarified. Notably,
“Knowledge Gaps” cases exhibit a modest decrease,
since the extra clarification can enhance model un-
derstanding to reduce uncertainty. In the only base-
line work (Hou et al., 2023), they also employ the
idea of input clarification to attribute uncertainty.
Our result in Table 2 shows high alignment with
their results. Overall, these findings confirm the
validity of our Uncertainty Attribution module?.
In our study, the auxiliary model is more ad-
vanced than the target model, which may not reflect
realistic deployment scenarios. Thus, we replicate
the key experiments using a single LLM (Llama3-

“Representative examples of multiple responses and their
analyses are provided in Appendix E.
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Dataset Model Label Unc. (Before) Unc. (After) Unc. Reduction Unc. Reduction Rate (%)
Question Ambiguity 1.869 1.176 0.693 37.08
_Llfsr;?i;SB Both 2.005 1.442 0.563 28.08
AmbigQA Knowledge Gaps 1.902 1.440 0.462 24.30
GPT3.5 Question Ambiguity 1.522 0.881 0.641 42.09
—turbo ’ Both 1.673 1.133 0.540 32.29
Knowledge Gaps 1.572 1.097 0.475 30.20
Question Ambiguity 1.340 0.441 0.899 67.08
.ersr:rii_tSB Both 1.264 0.585 0.680 53.75
OpenbookQA Knowledge Gaps 1.058 0.511 0.547 51.69
GPT3.5 Question Ambiguity 1.171 0.846 0.324 27.70
—turb(; ’ Both 1.349 1.028 0.322 23.84
Knowledge Gaps 1.214 0.926 0.288 23.72

Table 2: Validation results of Uncertainty Attribution. All results are computed on high-uncertainty samples. Unc.
denotes model uncertainty. Unc. (Before) and Unc. (After) refer to the average uncertainty before and after
clarification, respectively. Unc. Reduction indicates the absolute decrease in uncertainty, while Unc. Reduction

Rate (%) quantifies the relative reduction.

Dataset Label Unc.  Unc. Unc.  Unc. Reduct.
(Before) (After) Reduction Rate (%)

Question Ambig. 1.92 1.39 0.53 27.73

AmbigQA Both 1.96 1.51 0.45 22.90
Knowledge Gaps  1.91 1.50 0.41 21.38
Question Ambig. 1.37 0.44 0.93 67.74

OpenbookQA Both 1.13 0.41 0.72 63.60
Knowledge Gaps  1.23 0.66 0.57 46.72

Table 3: Evaluation results using Llama3-8B-Instruct
for both generation and analysis. Table format and
metrics follow those of Table 2.

8B-Instruct) for both answer generation and uncer-
tainty analysis. As shown in Table 3, the overall
trends mirror those obtained with ol-mini: uncer-
tainty reduction still follows the order Question
Ambiguity > Both > Knowledge Gaps across both
datasets, which reconfirms our conclusion.

5.2 Validation of Knowledge-Gap Extraction

In this subsection, we check whether Knowledge-
Gap Extraction module can identify the specific
knowledge that contributes to model uncertainty.

Setup. We select two challenging subdomains,
Physics and Chemistry, from the MMLU-Pro
dataset (Wang et al., 2024). It is a highly de-
manding benchmark featuring expert-level, cross-
disciplinary multiple-choice questions designed to
test advanced reasoning capabilities across profes-
sional domains. Each question includes ten answer
options, often requiring nuanced understanding and
multi-step inference. Moreover, due to the curated
nature of MMLU-Pro, the questions are generally
well-formed and unambiguous, allowing us to pro-
ceed directly with knowledge extraction without
performing prior uncertainty attribution. These

characteristics make MMLU-Pro a suitable testbed
for rigorously evaluating whether our module can
identify and compensate for missing knowledge
in complex reasoning scenarios. We evaluate our
method across four LLMs: Llama3-8B-Instruct,
GPT-3.5-turbo, GPT-40, and ol-mini. All other
settings are identical to those in Section 5.1.

Experimental Design. To validate the effective-
ness of our knowledge extraction module, we sup-
plement the original question with relevant “exter-
nal knowledge”, which are retrieved based on the
missing concept identified by our module. Then,
we check whether it can improve the model’s per-
formance. Specifically, for each high-uncertainty
sample labeled as Knowledge Gaps or Both, we
first extract a concise description of the key miss-
ing knowledge. The extracted knowledge phrase
is used as a query via the OpenAl web-search tool
(OpenAl, 2025a,b) to retrieve a short passage that
explains the concept in more detail. For example, if
the missing knowledge involves an unclear under-
standing of how a battery works, we retrieve a brief
explanation of battery functionality. The retrieved
passage is prepended to the original question as
additional context. We then sample /N answers
from the target model, compute uncertainty and
accuracy after injecting the retrieved knowledge,
and compare these metrics to the original results to
assess the module’s effectiveness.

Results. The validation results are presented in
Table 4. Our method effectively identifies spe-
cific knowledge gaps, as evidenced by consistent
improvements in both uncertainty and accuracy
across all models and datasets after knowledge
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Before After Unc. Reduction Acc. Improvement

Dataset Model
Unc. Acc. (%) Unc. Acc. (%) Rate(%) Rate(%)
Llama3-8B-Instruct  1.83 2829  1.59 3478 13.26 6.49
. GPT-3.5-turbo 181 3943 165 4348 8.97 4.05
MMLU-Pro-Physics by 4 176 2963 094 7222 46.51 42.59
ol-mini 139 5000 105 7083 24.63 20.83
Llama3-8B-Instruct  1.90  30.77  1.64 3590 13.64 5.13
. GPT-3.5-turbo 188 4167 163  50.00 13.45 8.33
MMLU-Pro-Chemistry  pp. 4 177 37.04 071 7407 60.01 37.04
ol-mini 158 5217 133  56.52 15.69 435

Table 4: Validation results of Knowledge-Gap Extraction. All results are computed on high-uncertainty samples.
Unc. denotes uncertainty and Ace. denotes accuracy. Before refers to the original performance, while After reflects
performance with knowledge added.Unc. Reduction Rate indicates the relative decrease in uncertainty, and Acc.
Improvement Rate represents the increase in accuracy.

injection. Particularly notable are the results for
GPT-40, which achieves uncertainty reductions of
46.51% and 60.01%, accompanied by accuracy im-
provements of 42.59% and 37.04% on Physics and
Chemistry, respectively. Furthermore, when both
the target and auxiliary models are instantiated as
ol-mini, we still observe significant gains: on the
Physics subset, uncertainty decreases by 24.63%
and accuracy increases by 20.83%, underscoring
that our framework’s effectiveness derives from its
design rather than reliance on any particular model.
Additional results are provided in Appendix B.

Additional Analysis. In our result from Table 4,
the additionally retrieved knowledge does not al-
ways lead a correct answer. To investigate the
reason, we randomly sampled 20 high-uncertainty
questions from MMLU-Pro-Physics and 20 from
MMLU-Pro-Chemistry for manual inspection. In
the samples, even after knowledge injection, the
model still erred on 12 Physics and 11 Chemistry
samples. Under these errors, we find they usu-
ally stem from lapses in logic and the complexity
of multi-step calculations For an example (which
presented in Figure 12 in Appendix), when ad-
dressing the acid—base pH calculation, our method
identifies the Knowledge Gap as “Stoichiomet-
ric Calculations in Acid-Base Reactions”. The
incorrect responses exhibit mole—concentration
confusion (mole <> concentration; Answers 2,
6), limiting-reagent misidentification (Answers 1,
7), arithmetic/logarithm slip-ups (Answers 3, 10),
and pH/pOH formula misuse (Answer 8). Simi-
larly, in Figure 13 the model mis-uses the phase-
inversion rule and optical-path-difference formula,
and makes arithmetic or unit-conversion mistakes.
Under these types of knowledge gaps, the model

will still make mistake even supplementary in-
formation is provided. In contrast, in cases like
those in Figures 11 and 10—where only concep-
tual knowledge is missing—knowledge injection
alone sufficed to correct the model’s output. This
contrast shows that, although our module reliably
diagnoses exactly which fact or principle is miss-
ing, solving gaps that require multi-step quantita-
tive reasoning may demand not just better context
but also improvements in the model’s inferential
and arithmetic capacities. Crucially, these observa-
tions do not detract from our method’s validity: our
primary goal is to identify the source of uncertainty.
The detailed error analysis, together with the over-
all reductions in uncertainty and improvements in
accuracy, confirms that our Knowledge-Gap Ex-
traction module accurately pinpoints the factual
deficits driving model uncertainty.

6 Conclusion

In this paper, we propose a unified and generaliz-
able framework for diagnosing the source of uncer-
tainty in LLMs, addressing a critical gap in the cur-
rent literature. By analyzing disagreement across
multiple generated answers, our method identifies
whether uncertainty arises from question ambigu-
ity, missing specific knowledge during inference,
or both. Experiments across diverse models and
datasets show that our framework can effectively
diagnose the source of uncertainty. In particular,
its ability to pinpoint missing knowledge elements
offers a new perspective for improving reasoning
performance in LLMs. Overall, precisely diag-
nosing these uncertainty sources enables targeted
interventions that reduce uncertainty, bolster model
trustworthiness, and facilitate reliable deployment
in sensitive, high-stakes applications.
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7 Limitations

Inference Cost. One limitation of our framework
lies in its inference cost. Since each question
requires sampling multiple responses (N = 10)
and then running two rounds of auxiliary analysis
(Uncertainty Attribution and Knowledge-Gap Ex-
traction), the total number of model invocations
can be substantial. This repeated generation and
classification may limit the method’s scalability in
latency-sensitive or resource-constrained environ-
ments, such as real-time applications or deploy-
ment on edge devices.

Lack of Direct Evaluation Metrics. Because di-
agnosing the source of uncertainty in LLMs is a
relatively new task, there are no established quanti-
tative metrics for (i) the accuracy of the uncertainty
labels produced in the first step, nor for (ii) the
precision of the extracted knowledge in the second
step. We considered using a separate LLM to score
or validate these outputs, but LLM-based evalua-
tion is itself subjective, highly sensitive to prompt
design, and often unreliable for fine-grained judg-
ments. Manual annotation could help, but it in-
troduces human subjectivity and does not scale.
Instead, we validated the first step by measuring
differential uncertainty reduction across the three
label categories after input clarification. We vali-
dated the second step by measuring performance
gains after injecting retrieved knowledge. The first
validation cannot provide a precise measure of attri-
bution accuracy because it relies on indirect behav-
ioral signals rather than ground-truth labels. The
second validation may understate the true value
of the extracted information because models some-
times fail to fully comprehend the provided context,
a limitation driven both by their reasoning capacity
and by the inclusion of relatively long passages
that dilute focus on the key facts. Nonetheless,
in the absence of established benchmarks for un-
certainty diagnosis, our combined behavioral and
performance-based evaluation remains the most rig-
orous and objective framework currently available.
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A Preliminary Evaluation Details

A.1 Uncertainty Quantification Methods

Verbalization Given input question x and a sin-
gle model response § = M (x), we prompt:

43 ”»

Question:
Answer: “g
Provide the reasoning correctness
probability for the answer.

T

”

The model’s numeric reply v € [0, 1] is taken as
the verbalization confidence score py “2B (7 | z).

Perplexity Let the answer § = [t1,...,y] be
the model’s token sequence (excluding any end-of-
sequence token). We collect the likelihood of each
token under its conditional context,

b =pa(ti | x,t<i),

and define the geometric-mean confidence

pPPL(y|x —exp( Zlnﬁ)

Self-Consistency For each input x, we sample n
independent answers {g; }7_; ~ M(- | x). Let

%

g = argmgx’{i: Qi:a}‘

be the most frequent answer, and let f* = |{7 :
9; = U*}| denote its count. We then define the
self-consistency confidence as

*
sC f
x) = —,
Py (x) n
i.e. the relative frequency of the majority answer
among the n samples.

A.2 Experimental Setup

We evaluate on three benchmarks by selecting the
first 300 examples of GSM8K and MATH, and
the first 200 examples of Natural Questions. For
Verbalization and Perplexity, we generate one re-
sponse per question. For Self-Consistency, we draw
N = 10 samples per question to estimate p°C. All
experiments use Llama3-8B-Instruct and GPT-4o.

A.3 Evaluation Metrics

Expected Calibration Error (ECE) Partition
predictions into K confidence bins { By} and com-
pute

K

Z acc (Bg) — conf(Bk)’
k=

where acc(By) is the empirical accuracy and
conf(By) the average confidence in bin k& (Guo
etal., 2017).

AUROC Compute the Area Under the Receiver
Operating Characteristic curve by ranking predic-
tions by uncertainty and measuring true/false posi-
tive rates (Fawcett, 2000).
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Brier Score For each example ¢, let u; be the pre-
dicted confidence and y; € {0, 1} the correctness
indicator. Then

1 N
=y Lt

which captures both calibration and sharpness of
the uncertainty estimates (Brier, 1950).

B Additional Results
B.1 Experimental Setup

In the main experiments (Section 5.2), retrieved
knowledge were obtained via web search. To eval-
uate whether prompt-based context synthesis can
serve as a viable alternative to external retrieval,
we instead generate the missing knowledge context
directly with ol-mini using a concise prompt (Fig-
ure 6). We conduct these ablations on the Physics,
Chemistry, and Law subsets of MMLU-Pro. All
other settings remain the same: sample N = 10
answers per question; apply the same uncertainty
threshold 7 = 0.89; and prepend the generated con-
text before re-evaluating uncertainty and accuracy.

B.2 Results

Table 5 presents the prompt-only validation of our
Knowledge-Gap Extraction module. Across the
three MMLU-Pro sub-domains, we again observe
clear improvements in both uncertainty and accu-
racy after context injection. In the Physics subset,
uncertainty falls by 13.90%-34.35% and accuracy
rises by 7.31%—-14.28%; in Chemistry, uncertainty
decreases by 5.29%—12.04% with accuracy gains of
0.38%—-3.93%; and in Law, uncertainty is reduced
by 38.11%-58.27% while accuracy improves by
3.76%-5.12%. These results confirm that—even
when missing knowledge is synthesized via prompt
rather than retrieved externally—our module re-
mains effective at diagnosing and mitigating knowl-
edge deficiencies to reduce uncertainty and boost
model performance.

C Pseudocode of Framework

The complete procedure for our two-phase, two-
step uncertainty diagnosis framework is detailed
in Algorithm 1. Given a test set of questions
D = {QWIM | the model first generates N in-
dependent answers per question using stochastic
decoding. Each question is then assigned an un-
certainty score U (Q)) computed as described in

Eq. 2. Only samples with U(Q(") > T are retained
for further analysis, as low-uncertainty cases offer
limited diagnostic value.

For each retained question, we apply a structured
diagnostic process consisting of two steps. In the
first step—Uncertainty Attribution—we prompt the
LLM to identify whether the cause of uncertainty
arises from ambiguity in the question, a knowledge
gap, or both. This classification is produced using a
third-person prompt format to reduce self-reference
bias. In the second step—Knowledge-Gap Extrac-
tion—we prompt the LLM to extract the specific
missing fact or concept K (*) that would resolve
the observed inconsistency. This step is applied
only when the uncertainty is attributed to a knowl-
edge gap or both causes. The final output of the
pipeline includes an uncertainty label L% for each
high-uncertainty question and, when applicable, a
corresponding knowledge snippet K ().

Algorithm 1 Pipeline for Uncertainty Diagnosis

Input: Test set D = {QW}M, threshold 7, num-
ber of samples N
Output: For each Q(): uncertainty label L") and,
if applicable, knowledge snippet & (*
1: for each Q¥ € D do
AP, & Q)
Compute uncertainty U (Q(*) via Eq. 2
if U(Q) > 7 then
L@ HM Prompty (Q, {Ay)})
1 Uncertainty Attribution
if L) £ Question Ambzguzty then

LLM (QU, {A§i)})

a

7: KO &2 Promptyqp (@
/I Knowledge-Gap Extraction
8: end if
9: end if
10: end for

D Prompts

We provide the full prompt templates used for each
stage of our framework below. Each prompt is care-
fully designed to guide the model through a struc-
tured diagnostic or generation process; complete
examples and formatting details are as follows:

1. Uncertainty Attribution Prompt (Figure 4):
Frames the task around a fictional charac-
ter (“Tom”) who offers multiple answers,
asks the auxiliary LLM to compare these re-
sponses, and choose among “Question Am-
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Before After Unc. Reduction Acc. Improvement
Dataset Model
Unc. Acc. (%) Unc. Ace. (%) Rate(%) Rate(%)

Llama3-8B-Instruct 1.83 28.29 1.58 35.60 13.90 7.31
MMLU-Pro-Physics GPT-3.5-turbo 1.87 37.61 1.57 43.28 15.92 5.67

GPT-40 1.75 35.72 1.15 50.00 34.35 14.28

Llama3-8B-Instruct 1.83 30.71 1.61 34.64 12.04 3.93
MMLU-Pro-Chemistry  GPT-3.5-turbo 1.85 39.68 1.68 40.71 9.52 1.03

GPT-4o 1.76 34.94 1.66 35.31 5.29 0.38

Llama3-8B-Instruct 1.35 18.09 0.67 23.21 50.01 5.12
MMLU-Pro-Law GPT-3.5-turbo 1.42 26.73 0.88 30.50 38.11 3.76

GPT-40 1.41 40.63 0.82 44.72 58.27 4.09

Table 5: Validation results of Knowledge-Gap Extraction. All results are computed on high-uncertainty samples.
Unc. denotes uncertainty and Acc. denotes accuracy. Before refers to the original performance, while After reflects
performance with knowledge added.Unc. Reduction Rate indicates the relative decrease in uncertainty, and Acc.
Improvement Rate represents the increase in accuracy.

biguity,” “Knowledge Gaps,” or “Both” as
the source of disagreement. This third-person
setup reduces self-reference bias and encour-
ages consistent classification.

2. Knowledge-Gap Extraction Prompt (Fig-
ure 5): Instructs the auxiliary LLM to first
summarize key differences across the sam-
pled answers and then pinpoint the single, pre-
cise piece of missing factual or conceptual
knowledge that would resolve the inconsis-
tency. The prompt explicitly breaks the task
into two steps—difference analysis and knowl-
edge identification—to ensure clarity and fo-
cus.

3. Knowledge Synthesis Prompt (Figure 6):
Takes a concise knowledge keyword or con-
cept identified in the previous step and in-
structs ol-mini to generate a self-contained
explanatory snippet. This snippet includes
a clear definition, core explanation, and any
critical conditions or formulas, formatted as a
standalone block that can be prefixed to any
question as supplemental context. It is only
employed in the appendix B experiments.

4. Input Clarification Prompt (Figure 7): Guides
the model to detect real-world ambiguities
in the original question—such as unspecified
timeframes, locations, or referents—and, if
needed, to inject succinct, fact-grounded clari-
fications without altering the question’s intent.
If the question is already clear, the prompt
simply reproduces it unchanged.

E Examples

We present six examples (text truncated for brevity).
Figures 8 and 9 illustrate the Uncertainty Attribu-
tion step. By comparing multiple responses, our
method correctly classifies one AmbigQA question
as Both (under-specified phrasing + missing fact)
and one OpenBookQA item as Question Ambiguity
alone. This demonstrates that the attribution mod-
ule can reliably pinpoint the nature of uncertainty.
The remaining four cases (discussed in Section 5.2)
focus on Knowledge-Gap Extraction: In two exam-
ples without heavy calculation (Figure 10, Figure
11), injecting the extracted conceptual fact fully
resolves uncertainty and yields the correct answer
with low entropy. In two more complex examples
(Figure 12, Figure 13) involving multi-step numeri-
cal or physical-chemical reasoning, the model still
errs after context injection. Nonetheless, in each
case the extracted knowledge gap is precisely the
missing formula or principle, confirming our mod-
ule’s ability to localize exactly which piece of do-
main knowledge the model failed to apply.
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Tom has 10 answers to the same question. Here are the question and answers:

Question: [Specific Question Here]
Answer 1: [Specific Answer 1 Here]
Answer 2: [Specific Answer 2 Here]

Answer 10: [Specific Answer 10 Here]

Please analyze the possible reasons for the variations in these answers. Consider the following
options and explain which one is most likely the cause:

- A. The question is unclear or misleading. (The question lacks specific details (e.g., time, place,
or information that could lead to a wrong interpretation.)

- B. Tom context) that could lead to confusion or contains misleading or incorrect background lacks
sufficient knowledge to answer the question accurately. (Tom may have misunderstood the topic,
confused historical facts, or failed to verify the correct information.)

- C. Both A and B. (The question is unclear or misleading, and Tom also lacks sufficient knowledge to
provide an accurate answer.)

Figure 4: Prompt template for the Uncertainty Attribution step via multi-answer analysis.

Tom has 10 answers to the same question. Here are the question and answers:
Question: [Specific Question Here]

Answerl: [Specific Answerl Herel

Answer2: [Specific Answer2 Here]

AnswerlO: [Specific Answerl(O Here]

Your task is to analyze the differences among these answers and identify the essential *topics of
missing or uncertain knowledge* that lead to these inconsistencies.

Please structure your response as follows:
- 1. Key Differences: Briefly list the main inconsistencies among the answers.

- 2. Missing Knowledge (Specific Concept): Identify one precise concept that would help resolve the
disagreement. Avoid general topics; focus on the exact uncertainty in scientific reasoning.

Figure 5: Prompt template for the Knowledge-Gap Extraction step via multi-answer analysis.

Concept: [Missing Knowledge (Specific Concept) ]

Your task is to generate a complete, self-contained knowledge snippet based solely on this concept.
The snippet should include:

- 1. Definition: A clear, concise definition of the concept.

- 2. Core Explanation: A paragraph describing the principle in depth and illustrating its importance
in scientific reasoning.

- 3. Key Details: Any critical conditions, formulas, or boundaries that define the concept’s
applicability.

Produce the snippet as a standalone text block that can be prefixed to any question to supply the
essential missing knowledge.

Figure 6: Prompt template for synthesizing a standalone “knowledge snippet” for a given concept.

In this task, you will analyze a question to determine if it contains ambiguities based on real-world
facts. Consider the following aspects of ambiguity:

- Entities, objects, or events have multiple references or interpretations.

- Unclear timestamps (e.g., "When" without specifying a year or date).

- Unclear locations (e.g., "Where" without a specific place).

- Unclear answer types (e.g., "Who" could refer to a person or a team).

If the question is ambiguous:
- Add clarifications by providing specific conditions or explanations grounded in real-world facts.
- Do not change the intent or semantics of the question.

If the question is clear:
- Output the question as it is.

**Input**
Original Question: [Specific Question Here

**Qutput Format**
Clarified Question:

Figure 7: Prompt template for the Input Clarification step, used to detect and resolve ambiguities.
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Question: Who played tony in only fools and horses?

Answer 1: A classic British sitcom! In the BBC comedy series \"Only Fools and Horses\", the character of Anthony \"Tony\" Mullen,
also known as \"Tony the Bookmaker\", was played by actor Patrick Murray.

Answer 2: A classic British TV show! In the popular BBC sitcom \"Only Fools and Horses\", the character Tony, also known as
\"Trigger\", was played by actor Roger Lloyd-Pack.

Answer 3: The character of Tony Angelino, the lovable but dodgy businessman, was played by actor Kenneth MacDonald in the
BBC sitcom \"Only Fools and Horses\".

Answer 4: The character Tony in the British sitcom "Only Fools and Horses" was played by actor Patrick Murray.

Answer 5: The character of Tony Angelotti in the BBC sitcom "Only Fools and Horses" was played by actor Kenneth MacDonald.
Answer 6: The character of Tony, the lovable but dodgy market trader, was played by actor James Whale in the BBC sitcom "Only
Fools and Horses".

Answer 7: A classic British sitcom! In the BBC sitcom "Only Fools and Horses", the character of Anthony "Tony" Mullen was played
by actor Patrick Murray.

Answer 8: A classic British sitcom! The character of Tony Carpenter was played by actor James Bolam in the BBC sitcom "Only
Fools and Horses".

Answer 9: The character Tony in the British sitcom "Only Fools and Horses" was played by actor Patrick Murray.

Answer 10: The character of Tony Angelino, the uncle of Rodney Trotter, was played by actor Kenneth MacDonald in the British
sitcom "Only Fools and Horses".

Analysis: After reviewing the variations in Tom’s answers to the question “Who played Tony in Only Fools and Horses?”, the most
likely cause is: C. Both A and B

Explanation:

1. Unclear or Misleading Question: The question lacks specificity regarding which “Tony” is being referred to in the context of
*Only Fools and Horses*. The show primarily features main characters like Del Boy, Rodney, and Trigger, but does not prominently
feature a character named Tony. This ambiguity can lead to confusion, causing respondents to guess or mix up minor characters
or even characters from other shows.

2. Insufficient Knowledge: The wide range of answers, some of which contain inaccuracies (e.g., incorrect actor—character
associations or referencing actors unrelated to the show), suggests that Tom may not have a strong grasp of the show’s details.
This lack of precise knowledge leads to inconsistent and sometimes incorrect responses.

Figure 8: Example from an AmbigQA sample where the Uncertainty Attribution module pinpoints the source of
uncertainty.

Question: slope is a measure of the difference in elevation from the top to the base of a
Options: A. penny. B. tower C. pyramid D. box

Answer 1: The correct answer is B: tower. Only a tower has a defined vertical rise over a horizontal base, making it the only
structure with a measurable slope under classical definitions.

Answer 2: The correct answer is C: pyramid. A pyramid’s triangular faces rise at a fixed incline from base to apex, giving it a natural
geometric slope that can be precisely calculated.

Answer 3: The correct answer is C: pyramid. Its four triangular sides slope uniformly upward from the base to the apex, whereas a
penny is flat, a tower is strictly vertical, and a box has no inclined faces.

Answer 4: The correct answer is C: pyramid. The slope is defined by the angle between each triangular side and the horizontal
base—an attribute unique to a pyramid’s precise geometry.

Answer 5: The correct answer is B: tower. A tower’s fagade or walls exhibit an incline measured as rise over run, unlike the flat
coin, the right-angled pyramid faces, or the box’s uninclined surfaces.

Answer 6: The correct answer is B: tower. Only a tower has a clear elevation change from base to top with measurable incline; the
other shapes lack both distinct top and classic slope.

Answer 7: The correct answer is B: tower. Its gradual rise from foundation to summit defines slope in architectural terms; a penny,
pyramid, or box do not exhibit that continuous incline.

Answer 8: The correct answer is B: tower. A tower often includes angled surfaces—walls or roofs—whose steepness is measured
as slope, in contrast to the other shapes’ flat or sharp-edged geometry.

Answer 9: The correct answer is B: tower. The steepness of a tower’s side (rise over run) defines its slope; the other options lack
comparable continuous incline or structural rise.

Answer 10: The correct answer is C: pyramid. The ratio of its height to half its base width defines the consistent slope of its
faces—unlike the flat, vertical, or right-angled alternatives.

Analysis: Based on the variations in Tom’s answers, the most likely cause is: A. The question is unclear or misleading.
Explanation:

1. Inconsistent Interpretation: - Tom’s answers oscillate between selecting **B: tower** and **C: pyramid** as the correct
answer. - This inconsistency indicates that the question’s phrasing might be open to multiple interpretations, leading to different
conclusions based on how Tom perceives the term “slope” in context.

2. Ambiguity in Definitions: - Both a **tower** and a **pyramid** can be associated with slopes: - A **tower** can have slopes
in its design, such as inclined walls or roofs. - A **pyramid** inherently has slopes as part of its geometric structure. - Without
clear context or specific criteria, Tom might reasonably argue for either option based on different interpretations of what aspect
of “slope” the question is emphasizing.

Figure 9: Example from an OpenBookQA sample where the Uncertainty Attribution module pinpoints the source of
uncertainty.
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Question: Consider the Lewis structures for the following molecules: CO2, CO32-, NO2-, and NO3-. Which molecule or molecules
exhibit sp2 hybridization around the central atom?

Options: A. NO,” only B. CO; and CO3?>~ C. CO; only D.CO; and NOs~ E. NO,” and NO3~ F. CO3%” and NOs~

G. NOs~ only H.CO; and NO,™ I. COs?~ only J. COs2, NO,~, and NO5~

Answer 1: The correct answer is D: CO, and NO;~. CO, and NOs~ both have trigonal planar arrangements around the central
atom—each with n-bond character—requiring sp? hybridization.

Answer 2: The correct answer is E: NO,~ and NO;~. Both NO,™ (bent with one double bond) and NO;™ (trigonal planar with
delocalized rt bonds) exhibit sp? hybridization at nitrogen.

Answer 3: The correct answer is B: CO; and CO;?". In CO, (0=C=0) and COs?*" (trigonal planar carbonate), the central carbon uses
three sp? orbitals to form o bonds and one unhybridized p to form rt bonds.

Answer 4: The correct answer is J: COs27, NO,"~, and NOs". Each of these ions has a planar geometry with at least one 1t bond
around the central atom, indicating sp? hybridization.

Answer 5: The correct answer is B: CO; and COs?". Both molecules feature a carbon center bonded in a trigonal planar fashion with
n-bonding, consistent with sp? hybrid orbitals.

Answer 6: The correct answer is B: CO; and COs%". Counting electron domains shows three bonding regions around C in both
species, implying sp? hybridization.

Answer 7: The correct answer is J: CO3%7, NO;", and NO;™. Their planar (or bent but 120°) geometries with it bonds require
sp2-hybrid orbitals at the central atom.

Answer 8: The correct answer is B: CO; and COs?". Focusing on o-bond frameworks in planar structures, only CO, and COs2~ match
sp? hybridization.

Answer 9: The correct answer is J: CO327, NO;"~, and NO;". Detailed orbital-overlap analysis revealed unhybridized p orbitals
forming 1 bonds in these three ions, characteristic of sp? centers.

Answer 10: The correct answer is D: CO, and NO3~. CO, and NO;~ both show planar geometries with delocalized m systems around
the central atom, fitting sp? hybridization.

Final Answer: B; Uncertainty: 1.847

Knowledge Gap: Determining Hybridization from Molecular Geometry and Electron Domains

Context: To find an atom’s hybridization from its molecular geometry and electron domains:
1. **|dentify the Central Atom**
Determine which atom you’re examining.
2. **Count Electron Domains**
- Each o bond (single, double or triple bond each count as one)
- Each lone pair counts as one domain
3. ¥*Compute Steric Number**
Steric number = (number of 6 bonds) + (number of lone pairs)
4. **Map Steric Number to Hybridization**
| Domains | Hybridization | Electron-Domain Geometry |
| 2mmmmeem HE HE H
| 2 | sp | Linear |

| 3 | sp? | Trigonal planar / Bent |

| 4 | sp® | Tetrahedral / Trigonal pyramidal / Bent |

| 5 | sp3d | Trigonal bipyramidal / See-saw / T-shaped / Linear |
|6 | spd? | Octahedral / Square pyramidal / Square planar |

5. **Adjust for Lone Pairs**
Lone pairs occupy domains (thus contribute to steric number) but affect **molecular shape** rather than the count of hybrid
orbitals.

Answer 1: The correct answer is J: CO327, NO;~, and NO;~. CO3*" (one double + two singles) and NO,™ (one lone pair + two bonds)
give three domains; NO3™ (three bonds) also has three domains.

Answer 2: The correct answer is J: CO3%, NO;~, and NOs™. Each central atom has three electron-density regions (double or single
bonds, lone pairs) > sp2.

Answer 3: The correct answer is J: CO327, NO,~, and NOs". sp? requires one s + two p orbitals (three domains) around C in COs2~ and
Nin NO;7/NOs™.

Answer 4: The correct answer is J: CO327, NO,~, and NOs". Three regions of electron density around the central atom in each ion >
sp2.

Answer 5: The correct answer is J: CO327, NO,~, and NOs~. COs*" (trigonal planar), NO,™ (bent but 120°), NOs™ (trigonal planar) all
use sp? orbitals.

Answer 6: The correct answer is J: COs%, NO,~, and NOs™. Three ¢ bonds or two ¢ + one lone pair around the central atom = sp%
Answer 7: The correct answer is J: CO327, NO,~, and NOs". Only species with three electron domains (bonding + lone pairs) on the
central atom are sp2.

Answer 8: The correct answer is A: NO;~ only. NO,™ has two bonds + one lone pair (three domains); the others have either two or
four domains.

Answer 9: The correct answer is J: CO327, NO;~, and NO;". Detailed orbital overlap shows three sp? o—bonds around C in CO3*" and
N in NO,7/NOs".

Answer 10: The correct answer is A: NO,~ only. Only NO,™ has exactly three electron domains (two bonds + one lone pair) around
N.

Final Answer: J; Uncertainty: 0.722

Figure 10: Example from an MMLU-Pro-Chemistry sample where the model makes a correct prediction after
incorporating external knowledge.
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Question: Approximately how far away is the Andromeda Galaxy?
Options:A.5Mly B.25Mly C.21Mly D.19Mly E.32Mly F.4Mly G.1.7Mly H.35Mly L 1.2Mly J.2.8Mly

Answer 1: The correct answer is B: 2.5 Mly. M31 is the closest major spiral galaxy, approaching at ~250,000 mph; its distance
(=2.5 Mly) is confirmed by Cepheid variables, the Tully—Fisher relation, supernova light curves, and redshift.

Answer 2 : The correct answer is B: 2.5 Mly. As a Local- Group member moving toward us at ~250,000 mph, its distance (=2.5
Mly) is derived from stellar motions, “standard candles” (Cepheids, supernovae), and parallax.

Answer 3 : The correct answer is C: 2.1 Mly. M31’s distance can be estimated via Cepheid variables, Type la supernovae, and
water masers, which yield values near 2.1 Mly (though most modern work centers on =2.5 Mly).

Answer 4 : The correct answer is B: 2.5 Mly. While early 20th century Cepheid work once gave =1.7 Mly, HST Cepheid and Gaia
parallax data now consistently place M31 at =2.5 Mly.

Answer 5: The correct answer is C: 2.1 Mly. Planetary Nebula Luminosity Function measurements combined with water maser
interferometry provide a distance of =2.1 Mly, independent of Cepheids or supernovae.

Answer 6 : The correct answer is G: 1.7 Mly. This reflects the earliest Cepheid-based distance; later HST/WFC3 work (2012)
revised it to =2.54 Mly—historical estimates thus ranged ~1.7-2.6 Mly.

Answer 7 : The correct answer is C: 2.1 Mly. M31’s rotation speed (Tully—Fisher relation) and Cepheid data from HST/Spitzer give
=2.1 Mly.

Answer 8 : The correct answer is C: 2.1 Mly. Cepheid variables, Type la supernovae, and gas kinematics yield 2.1-2.5 Mly (2012
HST preferred value: 2.537 £+ 0.250 Mly).

Answer 9 : The correct answer is C: 2.1 Mly. Edwin Hubble’s stellar- brightness work, refined by Cepheids, supernovae, parallax,
and Tully—Fisher, converges on =2.1 Mly.

Answer 10 : The correct answer is G: 1.7 Mly. Early Cepheid measurements gave ~1.7 Mly; modern consensus (HST, Gaia) is 2.5
Mly, but historical estimates cluster at ~1.7 Mly.

Final Answer: C; Uncertainty: 1.485

Knowledge Gap: Astronomical Distance Measurement Techniques

Context: Astronomical distance measurement techniques are methods used by astronomers to determine the distances to
celestial objects. These techniques vary depending on the distance of the object, from nearby stars within our galaxy to distant
galaxies billions of light-years away. Here are some common astronomical distance measurement techniques:

1. Parallax Method — used for nearby stars; measures apparent shift as Earth orbits the Sun; distance via trigonometry; effective
up to a few thousand light-years.

2. Cepheid Variable Stars — luminosity—period relation; measure pulsation period for intrinsic brightness; compare to apparent
brightness for distance; useful for nearby galaxies.

3. Tully-Fisher Relation — for spiral galaxies; luminosity scales with rotation speed; measure rotation to estimate luminosity and
thus distance.

4. Type la Supernovae — consistent peak luminosity; compare observed to intrinsic brightness to calculate distance; important for
distant galaxies.

5. Redshift & Hubble’s Law — for very distant galaxies; measure redshift to infer recessional velocity; apply Hubble’s Law (v = Hod)
to find distance.

6. Main Sequence Fitting — star clusters; align H—R diagram main sequence with that of a reference cluster; infer distance from the
offset.

7. Surface Brightness Fluctuations — galaxies; analyze pixel-to-pixel brightness variations; use fluctuation amplitude to estimate
distance.

Answer 1: The correct answer is B: 2.5 Mly. This estimate comes from applying Redshift and Hubble’s Law—measuring
Andromeda’s redshift and converting its recessional velocity via Ho yields =2.5 Mly, consistent with multiple independent
methods.

Answer 2: The correct answer is B: 2.5 Mly. Here, the distance is derived from the observed redshift of M31; plugging that
velocity into Hubble’s Law reproduces the well-established =2.5 Mly figure.

Answer 3: The correct answer is B: 2.5 Mly. Using Hubble’s Law on Andromeda’s measured redshift gives =2.5 Mly, in agreement
with Cepheid and supernova standard-candle calibrations.

Answer 4: The correct answer is B: 2.5 Mly. Type la supernovae observed in M31 serve as “standard candles,” and their peak
brightness measurements yield a distance near 2.5 Mly.

Answer 5: The correct answer is B: 2.5 Mly. Again, Redshift and Hubble’s Law applied to Andromeda’s spectrum provides the
=2.5 Mly value, corroborated by Cepheid and supernova data.

Answer 6: The correct answer is B: 2.5 Mly. Cepheid variable stars in M31 follow a period—luminosity relation that, when
calibrated against local Cepheids, gives =2.5 Mly.

Answer 7: The correct answer is B: 2.5 Mly. The Tully—Fisher relation uses M31’s rotation speed to infer its luminosity and hence
distance, producing =2.5 Mly.

Answer 8: The correct answer is B: 2.5 Mly. By measuring the Andromeda Galaxy’s rotation curve and applying the Tully—Fisher
relation, one arrives at =2.5 Mly.

Answer 9: The correct answer is B: 2.5 Mly. Once more, Redshift combined with Hubble’s Law converts the galaxy’s recessional
velocity into =2.5 Mly.

Answer 10: The correct answer is B: 2.5 Mly. Using the Tully—Fisher relation on M31’s rotational velocity yields a luminosity-
based distance estimate near 2.5 Mly.

Final Answer: B; Uncertainty: 0.0

Figure 11: Example from an MMLU-Pro-Physics sample where the model makes a correct prediction after
incorporating external knowledge.
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Question: A 50.0 mL sample of 0.0025 M HBr is mixed with 50.0 mL of 0.0023 M KOH. What is the pH of the resulting mixture?
Options: A.6 B.7 C.3 D.1 E.4 F.11 G.2 H. 12 .5 J.9

Answer 1: The correct answer is C: 3. Mixing 50 mL of 0.0025 M HBr (0.125 mmol H*) with 50 mL of 0.0023 M KOH (0.115 mmol
OH") leaves 0.010 mmol H* in 100 mL, so [H*]=0.001 M and pH=—log0(0.001)=3.

Answer 2: The correct answer is G: 2. You begin with 0.00125 mol H* and 0.00115 mol OH" in a total volume of 0.100 L, giving
0.00010 mol excess H* or [H*]=0.0011 M; pH=—log10(0.0011)=2.04, which rounds to 2.

Answer 3: The correct answer is G: 2. After 0.0125 mol H* (from HBr) reacts with 0.0115 mol OH~ (from KOH), 0.0010 mol H*
remains in 0.100 L, so [H*]=0.010 M and pH=—log;0(0.010)=2.

Answer 4: The correct answer is D: 1. With 0.0125 mol HBr and 0.0115 mol KOH, you have 0.0010 mol H* left in 0.100 L
([H*]=0.010 M); —log10(0.010)=2, yet this solution unusually rounds to pH 1.

Answer 5: The correct answer is D: 1. Treating HBr and KOH as fully dissociated gives 0.0125 mol H* and 0.0115 mol OH", so
0.0010 mol net H* in 0.100 L ([H*]=0.010 M) and pH=2, again rounded to 1.

Answer 6: The correct answer is D: 1. Subtracting 0.0023 M OH™ from 0.0025 M H* yields 0.0002 M net H* in 1 L, which they scale
t0 0.100 L as [H*]=0.002 M; —log(0.002)=2.7 is then rounded down to pH 1.

Answer 7: The correct answer is G: 2. As before, 0.0125 mol H* minus 0.0115 mol OH" leaves 0.0010 mol H* in 0.100 L ([H*]=0.010
M), giving pH=—log10(0.010)=2.

Answer 8: The correct answer is A: 6. Using pH = 7.00 — logio([OH™]/[H*]) with [OH"]=0.0115 M and [H*]=0.001 M yields pH=5.94,
rounding to 6.

Answer 9: The correct answer is G: 2. Treating KOH as limiting reagent, 0.0115 mol OH™ neutralizes 0.0115 mol H*, leaving 0.0010
mol H*in 0.100 L ([H*]=0.010 M), so pH=2.

Answer 10: The correct answer is C: 3. Calculating [H*]=0.0025 mol/0.100 L=0.025 M gives pH=—log0(0.025)=1.60, though this
solution reports 3, indicating an arithmetic mismatch.

Final Answer: G; Uncertainty: 1.847

Knowledge Gap: Stoichiometric Calculations in Acid-Base Reactions

Context: Stoichiometric calculations in acid-base reactions involve determining the quantities of reactants and products involved
based on their balanced chemical equation. Here’s a step-by-step guide:
1. ¥*Write the Balanced Chemical Equation:**
Identify the acid, base, and their products. Balance the equation to ensure the number of atoms of each element is equal on
both sides. For example: \[ \mathrm{HCI} + \mathrm{NaOH} \rightarrow \mathrm{NaCl} + \mathrm{H_20}]
2. **Determine the Moles of Known Substance:**
Use the given mass, volume, or concentration to calculate the moles of the reactant or product you know.
- For solutions: \( \text{moles} = \text{molarity} \times \text{volume (in liters)}\)
- For solids: \( \text{moles} = \frac{\text{mass}}{\text{molar mass}}\)
3. **Use Mole Ratios:**
From the balanced equation, relate the moles of the known substance to the moles of the unknown substance.
4. **Calculate Unknown Quantity:**
Convert moles of the unknown substance back to desired units (mass, volume, concentration).
**Example:**
If you have 0.5 L of 0.1 M HCI, how many grams of NaOH are needed to neutralize it?
- Calculate moles of HCI: \[ 0.1 \,\text{M} \times 0.5 \,\text{L} = 0.05 \, \text{moles} \]
- From the equation, mole ratio HCl : NaOH is 1 : 1, so moles of NaOH needed = 0.05 mol.
- Calculate mass of NaOH: \[ 0.05 \,\text{mol} \times 40 \,\frac{\text{g}}\text{mol}} = 2 \ \text{g}\]
So, 2 grams of NaOH are needed to neutralize 0.5 L of 0.1 M HCI.

Answer 1: The correct answer is G: 2. By writing the balanced equation \[\mathrm{HBr} + \mathrm{KOH} \rightarrow
\mathrm{KBr} + \mathrm{H_20}], then calculating 0.0125 mol H* versus 0.0115 mol OH" in 0.100 L, you find 0.0010 mol excess
H* = [H*]=0.010 M and pH = 2.

Answer 2: The correct answer is C: 3. Although the original solution mis-added moles, the proper neutralization gives 0.00010 mol
H* leftover from 0.00125 mol H* and 0.00115 mol OH™ in 0.100 L - [H*]=0.0010 M = pH = 3.

Answer 3: The correct answer is G: 2. Subtracting 0.0115 mol OH™ from 0.0125 mol H* yields 0.0010 mol H* in 0.100 L, so
[H*]=0.010 M and pH = 2.

Answer 4: The correct answer is G: 2. Following the 1 : 1 mole ratio and calculating 0.0010 mol H* left in 0.100 L gives pH = 2.
Answer 5: The correct answer is G: 2. Using the same stoichiometry—0.0125 mol HBr versus 0.0115 mol KOH—leaves 0.0010 mol
H*in 0.100 L - [H*]=0.010 M - pH = 2.

Answer 6: The correct answer is C: 3. Taking net [H*] = (0.0025 M — 0.0023 M) in 1 L (=0.0002 M) scaled to 0.100 L yields
[H*]=0.002 M => pH = 2.7.

Answer 7: The correct answer is F: 11. Again, 0.0010 mol H* remains in 0.100 L (pH = 2), and option 11 is the only entry listing “2”
for this problem.

Answer 8: The correct answer is A: 6. Applying pH = 7 — log([OH"]/[H*]) with [OH"]=0.0115 M and [H*]=0.001 M gives pH = 5.94
- 6.

Answer 9: The correct answer is G: 2. Treating KOH as limiting leaves 0.0010 mol H* in 0.100 L (pH = 2).

Answer 10: The correct answer is G: 2. Proper moles-subtraction yields [H*]=0.025M - pH = 1.6 - 2.

Final Answer: G; Uncertainty: 1.571

Figure 12: Example from an MMLU-Pro-Chemistry sample where the model makes a incorrect prediction after
incorporating external knowledge
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Question: White light is normally incident on a puddle of water (index of refraction 1.33). A thin (500 nm) layer of oil (index of
refraction 1.5) floats on the surface of the puddle. Of the following, the most strongly reflected wavelength is
Options: A. 750 nm B. 350 nm C. 450 nm D. 650 nm E. 550 nm F. 500 nm G. 600 nm H. 400 nm I. 700 nm J. 800 nm

Answer 1: The correct answer is C: 450 nm. Total internal reflection at the oil-water interface combined with thin-film
interference conditions favors mid-visible wavelengths; 450 nm sits closest to the constructive-interference maxima for a 500 nm
oil layer and thus reflects most strongly.

Answer 2: The correct answer is G: 600 nm. For a 500 nm oil film, 2 n d =1500 nm gives m=2.5 - A=600 nm; this aligns with
reflection at that wavelength.

Answer 3: The correct answer is D: 650 nm. Snell’s law gives a critical angle of ~48.6°, and the effective optical path 2 d/n = 667
nm falls nearest to 650 nm, making it the wavelength that experiences the strongest constructive interference.

Answer 4: The correct answer is B: 350 nm. Shorter wavelengths penetrate less before reflecting, and at 350 nm both TIR and
film-thickness interference reinforce, boosting reflection at longer wavelengths.

Answer 5: The correct answer is E: 550 nm. The quarter-wavelength condition (A = 2 d/(n2—n,)) for 500 nm oil yields A=550 nm,
light of this wavelength constructively interferes and reflects strongly.

Answer 6: The correct answer is F: 500 nm. When the free-space wavelength matches the film thickness, multiple reflections
interfere constructively at that same wavelength, producing the strongest reflected intensity at 500 nm.

Answer 7: The correct answer is D: 650 nm. Applying 2 n d = m A for m=2 in a 500 nm oil layer (n=1.5) gives A = 667 nm, so 650 hm
is the closest option that satisfies the constructive-interference requirement.

Answer 8: The correct answer is H: 400 nm. Since TIR efficiency increases at shorter wavelengths and 400 nm lies in the near-UV
visible spectrum, it shows strong reflectivity under TIR conditions.

Answer 9: The correct answer is I: 800 nm. The Fresnel reflection coefficient R o¢ ((n—n;)/(n+n;))? slowly increases with
wavelength, making the longest available wavelength (800 nm) the most strongly reflected by the oil layer.

Answer 10: The correct answer is B: 350 nm. Critical-angle analysis shows the smallest wavelength has the largest refractive-index
contrast effect, so 350 nm light surpasses longer wavelengths under TIR at the oil-water boundary.

Final Answer: B; Uncertainty: 2.922

Knowledge Gap: Thin-Film Interference Principles

Context: Thin-film interference occurs when light reflects off both the top and bottom of a thin layer, causing the two reflected
waves to overlap and interfere.
1. **Film & Substrate:** A film (nanometers to micrometers thick) lies on a substrate (e.g., oil on water or anti-reflective film on
glass).
2. **Dual Reflections:** Incident light partly reflects at the film’s top surface; the remainder enters the film, reflects off its bottom
surface, then exits.
3. *¥*QOptical Path Difference:** The two reflected beams traverse different distances. This extra path (2 n t, where n = film index
and t = thickness) determines their relative phase.
4. **Phase Shifts on Reflection:** - Reflection into higher-n medium adds a half-wavelength (% A) phase shift.

- Reflection into lower-n medium adds no phase shift.
5. **Constructive vs. Destructive:** - Constructive when2nt=mA (m =0, 1, 2...), yielding bright maxima.

- Destructive when 2 n t = (m + %) A, producing dark minima.
6. **Wavelength Dependence:** Different wavelengths satisfy these conditions at different angles or thicknesses, creating
colorful fringes that shift with viewing angle or film thickness.

Answer 1: The correct answer is G: 600 nm. Including the 180° phase shift at the oil-water interface (n, = 1.5 over n; = 1.33) turns
the constructive condition into 2nt = (m + %)A. For m = 0, this gives A = (2:1.5-500 nm)/0.5 = 600 nm, the first visible maximum.
Answer 2: The correct answer is D: 650 nm. Using the condition for constructive interference with a 180° phase shift at the
oil-water interface (2 nt = (m + %) A), set n = 1.5, t = 500 nm, and m = 1. This gives A = (2:1.5-500 nm)/1.5 = 1000 nm/1.5 = 667 nm,
which rounds to 650 nm under the available options.

Answer 3: The correct answer is F: 500 nm. For m =2 in 2nt = (m + %)A, A = (2:1.5-500 nm)/2.5 = 600 nm; stepping to m = 3 gives
A =(2:1.5-500)/3.5 = 429 nm, so the dominant visible maximum is at A = 500 nm.

Answer 4: The correct answer is D: 650 nm. Solving 2nt = mA for m = 2 yields A = 750 nm; including the half-wavelength phase
shift (2nt = (m + %)A) for m = 1 gives A = (2:1.5-500)/1.5 = 1000/1.5 = 667 nm, closest to 650 nm.

Answer 5: The correct answer is A: 750 nm. Ignoring any phase shifts, the simplest constructive-interference condition 2nt = mA
with m = 2 gives A = (2:1.5-500 nm)/2 = 750 nm, the first visible maximum without reversal.

Answer 6: The correct answer is B: 350 nm. Applying 2nt = (m + %)\ for m = 3 yields A = (2:1.5-:500 nm)/3.5 = 429 nm; increasing m
to 4 brings A = 300 nm, so the closest listed is 350 nm.

Answer 7: The correct answer is H: 400 nm. Using 2nt = (m + %)A for m =4 - A = (2:1.5-500)/4.5 = 333 nm; form =5 > A = 273
nm, so the strongest mid-visible fringe is at 400 nm.

Answer 8: The correct answer is I: 700 nm. When m = 1 in 2nt = mA you get 1500 nm; subtracting the half-wavelength reversal
(2nt = (m + %)A) for m = 0 gives A = 600 nm, so the next candidate under plain constructive is 700 nm.

Answer 9: The correct answer is E: 550 nm. Iterating 2nt = mA for m = 2 gives 750 nm and m = 3 gives 500 nm; applying the
half-shift shows a strong fringe near 550 nm.

Answer 10: The correct answer is G: 600 nm. Re-evaluating m = 0 in 2nt = (m + %)\ with full phase reversal yields A = 600 nm again
as the most intense reflected color.

Final Answer: D; Uncertainty: 2.922

Figure 13: Example from an MMLU-Pro-Physics sample where the model makes a incorrect prediction after
incorporating external knowledge
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