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Abstract

The frequency distribution of words in human-
written texts roughly follows a simple math-
ematical form known as Zipf’s law. Some-
what less well known is the related Heaps’ law,
which describes a sublinear power-law growth
of vocabulary size with document size. We
study the applicability of Zipf’s and Heaps’
laws to texts generated by Large Language
Models (LLMs). We empirically show that
Heaps’ and Zipf’s laws only hold for LLM-
generated texts in a narrow model-dependent
temperature range. These temperatures have
an optimal value close to t = 1 for all the
base models except the large Llama models,
are higher for instruction-finetuned models and
do not depend on the model size or prompting.
This independently confirms the recent discov-
ery of sampling temperature dependent phase
transitions in LLM-generated texts.

1 Introduction

Zipf’s law is a simple and long-known dependency
between the frequency rank r of a word and its
frequency in a natural corpus f(r) (Estoup, 1916;
Zipf, 1936; Piantadosi, 2014):

f(r) ∝ r−α, (1)

where α ≈ 1.0. Somewhat less known Heaps’
law (Herdan, 1964; Heaps, 1978; Baayen, 2001;
Serrano et al., 2009; Font-Clos et al., 2013) de-
scribes the growth of vocabulary size (number of
unique words) w as a function of the size of a doc-
ument (number of words) n:

w(n) ∝ nβ, (2)

and has a language-dependent exponent β <
1.0 (Baeza-Yates and Ribeiro-Neto, 1999; Serrano
et al., 2009).

Similar power laws occur in many other areas of
science, often quite distant from language (for an

overview, see Mitzenmacher (2003) and Newman
(2005)). The more intriguing is, as we show in
this work, that Zipf’s and Heaps’ laws rarely hold
for the texts generated by LLMs. Specifically, we
study the applicability of Zipf’s and Heaps’ laws
to LLM-generated texts and make the following
contributions:

1. We empirically confirm that Zipf’s and Heaps’
laws hold for tokens in human-written texts.

2. We propose a simple statistical metric of the
generated texts related to Heaps’ law and find
that many LLMs have an optimum with re-
spect to this metric at temperatures between 1
and 2.

3. We empirically show that Heaps’ and Zipf’s
laws only hold for LLM-generated texts in a
narrow, model-dependent temperature range.
These temperatures are higher for instruction-
finetuned models than the base ones and do
not depend on the model size or prompting.

4. By using the wide selection of LLMs we show
that the pretraining corpus, training algorithm,
and model architecture (within transformer ar-
chitectural paradigm) influence zipfian prop-
erties of the LLM-generated texts much less
than the temperature.

5. We tie these extrema of power-law fitness with
the phase transition of LLM-generated texts
through a critical state adhering to power laws.

In this section, we go on to introduce the key
concepts. In Section 2 we briefly review the pre-
vious research. In Section 3 we confirm that the
statistics for tokens in natural texts closely follow
the statistics for words. In Section 4, we study the
applicability of Zipf’s and Heaps’ laws to LLM-
generated texts.
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1.1 Autoregressive Probabilistic Language
Models

Probabilistic language models consider sequences

t1:m = {t1, t2, . . . , tm} (3)

of tokens from the lexicon L. An autoregressive
language model estimates the probability of such a
sequence

P (t1:m) = P (t1)P (t2|t1). . . P (tm|t1:m−1)

=
m∏

k=1

P (tk|t1:k−1)
(4)

using the chain rule.

1.2 Text Generation with a Language Model
Given an input text as a context, the goal of open-
ended generation is to produce a coherent contin-
uation of the text (Holtzman et al., 2020). More
formally, given a sequence of m tokens t1 . . . tm
as context, the objective is to generate the next n
continuation tokens, resulting in the completed se-
quence t1 . . . tm+n. This is achieved through the
use of the left-to-right text probability decompo-
sition (4), which is used to generate the sequence
one token at a time, using a particular decoding
strategy.

A common approach to text generation is to
shape a probability distribution through tempera-
ture (Ackley et al., 1985). Given the logits u1:|L| =
log p(t = Ll|t1:i−1) and temperature T , the soft-
max is re-estimated as

p(t = Ll|t1:i−1) =
exp(ul/T )∑
l′ exp(ul′/T )

(5)

Setting T ∈ [0, 1) skews the distribution towards
high-probability events, and, similarly, T ∈ (1,∞)
skews the distribution towards low-probability
events.

1.3 Phase Transitions
A physical phase of a system refers to a state (typi-
cally equilibrium) with unique macroscopic proper-
ties. These phases possess certain stability regions
within the parameter space. The properties of the
state change at the boundaries of these regions,
where phase transition occurs.

Ehrenfest (1933) defined a phase transition as
a discontinuity in the n-th order derivative of the
free energy with respect to any argument of the
free energy. Modern physics extends the notion

of phases and applies it to various situations and
beyond the notion of free energy. In particular, a
first-order phase transition exhibits a discontinuity
in the first-order derivative, whereas a second-order
phase transition is continuous in its first derivative
but shows a discontinuous or divergent behavior in
its second derivatives (Papon et al., 2007).

The phase transition point that separates phases
is defined by singular, divergent statistical quanti-
ties in the limit where the system size is infinitely
large. This point does not depend on subjective fac-
tors, such as metrics and thresholds (Nakaishi et al.,
2024). Specifically, autocorrelations in a critical
state decay according to a power law, and thus their
range becomes infinite. On the other hand, often
varied properties exhibit power-law behavior at the
critical point. In general, wherever one can see a
quantity that obeys a power law, one can suspect
the existence of a critical state.

2 Prior Research

Studies of the zipfian properties of texts generated
by language models are not entirely new. In par-
ticular, Takahashi and Tanaka-Ishii (2017, 2019)
and Lippi et al. (2019) have studied the zipfian
properties of texts generated by ngram- and LSTM-
based models. Holtzman et al. (2020) studied the
dependence of the zipfian coefficient on the GPT-2
decoding strategy, and this dependence was rather
weak. These works studied language models that
are now obsolete, mostly have architectures dif-
ferent from the now dominant transformers, and
with no relation to the sampling temperature. The
related phenomena of power-law autocorrelations
decay in texts generated by language models have
been studied by Takahashi and Tanaka-Ishii (2017);
Shen (2019); Takahashi and Tanaka-Ishii (2019);
Lippi et al. (2019); Mikhaylovskiy and Churilov
(2023).

Nakaishi et al. (2024) and Bahamondes
(2023) independently pioneered the application
of the correlation-based phase transition appa-
ratus to LLM-generated texts and discovered
phase transitions dependent on sampling tempera-
ture. Mikhaylovskiy (2025) have studied the phe-
nomenon in mure detail following the approach
of Mikhaylovskiy and Churilov (2023). Our work
merges these two lines of research, discovering
sampling temperature-dependent phase transitions
in zipfian properties of LLM-generated texts.
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Figure 1: Cumulative histogram for the Critique of Pure
Reason in German

3 Zipf’s and Heaps’ Laws for Tokens in
Natural Texts

LLMs are used to generate diverse sequences in
natural and programming languages. At higher tem-
peratures, they generate gibberish that cannot be
reasonably interpreted as words. Thus, if we want
to study statistical properties of LLM-generated
texts at higher temperatures, we can hardly use
words as base units. Tokens are a natural choice.

Zipf’s and Heaps’ laws have been studied pri-
marily for words, and tokenizing text into different
units can potentially yield different statistical rela-
tionships. Thus, we need to verify that Zipf’s and
Heaps’ laws hold for LLM tokenizations of human-
written texts: while splitting texts into ’words’ on
arbitrary symbols (for example, ’e’) does recover a
near-Zipfian distribution on these artificial ’words’,
the exponent α = 0.77 deviates significantly from
the usual values (Piantadosi, 2014).

We verify Zipf’s and Heaps’ laws for tokens in
natural texts with a dataset from Mikhaylovskiy
and Churilov (2023). It consists of six long liter-
ary and philosophical works in 5 languages each.
We tokenize each text using naïve splitting into
words by separators such as spaces and punctua-
tion, and using Mistral AI v3 (tekken) / Ministral-
8b tokenizer (MistralAI, 2024) that uses Byte-Pair
Encoding (Gage, 1994) with Tiktoken (OpenAI,
2024).

To verify Zipf’s law for tokens, we calculate a
cumulative histogram for each text and fit it with
a power law using least squares in log-log coor-
dinates (we agree with Newman (2005) that the

Language Average
α for
words

Average
α for
tokens

stdev
words

stdev
to-
kens

en 0.952 0.985 0.072 0.054
de 0.959 1.024 0.054 0.042
ru 1.043 1.009 0.077 0.067
es 0.962 1.016 0.030 0.035
fr 0.963 0.989 0.033 0.042

Table 1: Zipf’s law exponents averages for words and
tokens in different languages

Language Average
α for
words

Average
α for
tokens

stdev
words

stdev
to-
kens

en 0.809 0.802 0.027 0.024
de 0.846 0.793 0.031 0.028
ru 0.916 0.805 0.049 0.025
es 0.842 0.798 0.025 0.028
fr 0.843 0.801 0.020 0.018

Table 2: Heaps’ law exponents averages for words and
tokens in different languages

classical Zipf rank representation is worse for ap-
proximation, but find that the maximum likelihood
estimates of the exponents are unstable with re-
spect to changes in the initial value). An example
of a cumulative diagram is presented in Figure 1.
Lines for both tokens and words can reasonably
be considered to be straight in log-log coordinates,
implying the power law relationship. One can de-
cide that the probability distributions for tokens
and words adhere to Zipf’s law about as closely
and the exponents of the power laws for words and
tokens are similar and close to 1.

Indeed, the exponent for words averaged over
texts and languages is 0.981 with a standard devia-
tion of 0.063, and the similar exponent for tokens
is 1.006 with a standard deviation of 0.05. As a
side observation, while Table 1 confirms the con-
clusion of Gelbukh and Sidorov (2001) that Zipf’s
law exponent for words for Russian differs from
that for Western-European languages, Zipf’s law
exponents for tokens do not exhibit any statistical
difference between languages. A more detailed
study and explanation of this phenomenon may be
a topic of future research. The detailed tables of the
exponents and deviations computed are presented
in Appendix A.

Similarly, we build graphs of the number of
unique words as a function of position in the text in
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Figure 2: Unique items vs. position for The Iliad in
French.

log-log coordinates to verify Heaps’ law. A typical
example can be seen in Figure 2. Although visually
we can tell that the lines are not as straight as for
Zipf’s law, they (especially for words) can be well
approximated by straight lines, implying decent
adherence to the power law.

Saturation comes earlier for tokens and can be
explained by both fundamentally limited number of
tokenizer tokens for any language and tokens being
shorter than words, so that new lexical items come
later in the text if the text is measured in tokens.
Still, we can say that up to the length of 104 the
power law behavior of tokens and words is similar.
We can conjecture that the relationship between
the number of unique words and the text length
for large n is best described by w(n) ∝ n/log n
rather than w(n) ∝ nβ , but this is a topic of future
research.

In any case, the Heaps’ law exponent for words
averaged over texts and languages is 0.855 with a
standard deviation of 0.047, and the similar expo-
nent for tokens is 0.801 with a standard deviation
of 0.02. We can infer that the statistical behavior
of tokens in human-written texts with respect to
Heaps’ law is also similar to the statistical behavior
of words. Similarly to Zipf’s law, from Table 2 we
can observe that while the languages fall into three
distinct groups with relation to word-level Heaps’
law exponents: Russian, English, and the rest of
the languages, token-level Heaps’ law exponents
do not differ statistically significantly among the
languages. The detailed tables of the exponents and
deviations computed are presented in Appendix B.

Model Params,
B

Active
params,
B

Context,
K tokens

Qwen2.5-0.5B 0.49 0.49 32
Llama-3.2-1B 1.23 1.23 128
Qwen2.5-1.5B 1.54 1.54 32
Llama-3.2-3B 3.21 3.21 128
Llama-3.1-8B 8 8 128
Qwen2.5-14B 14.7 14.7 128
Qwen2.5-32B 32.5 32.5 128
Llama-3.1-70B 70 70 128
granite-3.1-1b-
a400m

1.3 0.4 128

granite-3.1-3b-
a800m

3.3 0.8 128

Mixtral-8x7B-
v0.1

47 13 32

Table 3: Models used to generate texts

4 Zipf’s and Heaps’ Laws for Tokens in
LLM-generated Texts

4.1 Data Generation

We generate texts at least 24K tokens long with an
assortment of autoregressive open-weight language
models with traditional GPT-like (Radford et al.,
2018) and MoE (Jacobs et al., 1991) architectures
at different sizes: Alibaba Qwen 2.5 (Qwen et al.,
2025), Meta Llama 3.x (LLama Team, 2024), IBM
Granite 3.1 (Granite Team, 2024) and Mistral AI
Mixtral (Jiang et al., 2024).

The complete list of models is presented in Ta-
ble 3. We used 4-bit BitsAndBytes NF4 quan-
tized base and original instruction-finetuned mod-
els through the HuggingFace Transformers library
(Wolf et al., 2020). We generate all the texts in a
single run to fit the text generated into the context
window. All the texts are generated from a single
random, seed-controlled token. We use batch infer-
ence with a batch size selected to fit the model and
context into the GPU memory.

We generate 40-50 texts for a range of temper-
atures from 0.4 to 1.5 or 2.5 (depending on the
model, see below) with step 0.1. We do not use
top-k, top-p or any other decoding parameters such
as no-repeat to keep the things clean. The influence
of these parameters on the statistical properties of
the generated texts is a topic for future research.
We have spent about 12 days of the 8*NVIDIA
A100 80GB cluster to generate all the texts.
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Figure 3: Unique items vs. position histograms for
LLM-generated texts

4.2 Heaps’ Law Applicability to Texts
Generated by Base Models

Similarly to natural texts, we build graphs of the
number of unique words as a function of position
in the text in log-log coordinates. Some typical
examples are collected in Figure 3. At low temper-
atures, the generated text degenerates quickly and
soon, new tokens stop to appear. At higher tem-
peratures, the process can restart after the initial
degeneration to generate some new tokens before
degenerating again. At even higher temperatures,
the unique items vs. position histogram can fol-
low the same pattern as for natural texts. Smaller
models produce gibberish at higher temperatures;
statistical properties of this gibberish are, though,
indiscernible from natural texts. We should also
note that there are boundary tokenization effects
because the tokenizer of the generation model is
different from the tokenizer we use to analyze texts;
this can result in a few extra new tokens at the end
of the text.

The above means that most models at most tem-
peratures produce texts that do not obey Heaps’
law even approximately. Thus, it does not make
sense to fit the dependency of the number of unique
words as a function of position in the text with a
power law. Instead, we propose a simple statistical
descriptor of the generated texts: the ratio of the
number of tokens first appearing in the first and
the second half of the text. We denote this quan-
tity R. We have calculated R on the dataset from
Mikhaylovskiy and Churilov (2023) and its mean
value is 0.17 with a standard deviation of 0.05.

Figure 4: Relationship between R and t for LLM-
generated texts

Figure 5: Relationship between R and t for texts gener-
ated by large LLama models

If we plot the average R for a certain model as
a function of temperature t, and analyze the plots,
we can see that the models fall into three distinct
groups. One group, including all Qwen and Granite
models, as well as LLama 1B, has a pronounced
maximum at t = 1 (see Figure 4) with a value
comparable to natural texts (horizontal line). This
group generates degenerate texts at low tempera-
tures, human-like texts at temperatures around 1,
and gibberish they generate at higher temperatures
mostly includes tokens already used. Neither the
location of the maximum nor its value depends on
the LLM size. The other group consists of the large
Llama models (see Figure 5). They have a simi-
lar behavior, but with a less pronounced maximum
around t = 2 and the value of the maximum is
less than typical values for natural texts. Finally,
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Figure 6: Examples of cumulative histograms for texts
generated by Qwen 2.5 32B at different temperatures

Mixtral 8*7B constitutes a group of its own (see
Figure 4) – it has an unpronounced maximum at
t = 1 with a value significantly larger than that for
natural texts.

Following Nakaishi et al. (2024) we can conjec-
ture that models undergo phase transitions from
ordered to critical and then to disordered states.
The first group of models does this at temperatures
close to unity and large LLamas at a temperature
close to 2, and we can observe these transitions
through the descriptor R.

4.3 Zipf’s Law Applicability to Texts
Generated by Base LLMs

Similarly to natural texts, we calculate a cumula-
tive histogram for each text and plot it in log-log
coordinates. Some typical examples are collected
in Figure 6. Although for temperatures close to 1 a
large part of the histogram can be thought to adhere
to a power law, for most cases one can hardly say
that a large part of the histogram can be considered
a straight line in log-log coordinates.

To quantify this, we fit each cumulative his-
togram with a power law using least squares and
compute Mean Average Percentage Error (MAPE)
on this fit. For reference, on the natural text dataset
from Mikhaylovskiy and Churilov (2023) its mean
value is 0.156 with a standard deviation of 0.077.
Then we plot the average MAPE for a certain model
as a function of temperature t. The plots for all
models except for the larger Llamas have a pro-
nounced minimum between t = 1.0 and t = 1.2
(cf. Figure 7) with a value close to that for natural
texts. Llama 3B, 8B and 70B have a minimum

Figure 7: Relationship between power law MAPE and t
for LLM-generated texts

Figure 8: Relationship between power law MAPE and t
for LLama-generated texts

MAPE between t = 1.3 and t = 1.5 (cf. Figure 8),
and its value is higher than normal for natural texts.

We could not find a significant relationship be-
tween the location of this minimum and the size
of the LLM. We can conclude that at the tempera-
ture where MAPE reaches its minimum value, the
texts generated by LLMs can be considered to ad-
here to Zipf’s law reasonably well. This further
supports the idea that the models undergo phase
transitions from ordered to critical and then to dis-
ordered states as the temperature increases. We
should, though, note that the phase transition tem-
perature for large LLama models differs signifi-
cantly when determined from Heaps’ and Zipf’s
laws perspectives.
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Figure 9: Relationship between R and t for the base and
instruct MoE-generated texts

Figure 10: Relationship between R and t for the base
and instruct Llama-generated texts

4.4 Influence of Instruction Fine-tuning

In real scenarios, only models fine-tuned with in-
structions (Ouyang et al., 2022; Wei et al., 2022)
are used. Thus, it is important to study these mod-
els as well. Similarly to Subsection 4.2, we plot the
average R for a certain model as a function of tem-
perature t, and see that the models studied behave
differently after finetuning. Namely, the instruction
finetuning shifts the maximum of R−t plot of most
models to higher temperatures, but for MoE mod-
els this shift is rather small (cf. Figure 9) and its
value changes are also small. LLama models after
finetuning also exhibit less pronounced maximum
(cf. Figure 10), and LLama-3B is the only model
for which the maximum of R− t plot moves to a
lower temperature and its value grows. However,

Figure 11: Relationship between R and t for the base
and instruct Qwen-generated texts

Figure 12: Relationship between power law MAPE and
t for the base and instruct MoE-generated texts

the maximum of R− t plot of Qwen models after
finetuning shifts to significantly higher tempera-
tures (cf. Figure 11) and the maximum becomes
smaller and less pronounced.

Similarly to Subsection 4.3, we fit cumulative
histograms for each text generated with a power
law using least squares in log-log coordinates and
compute MAPE on this fit. Then we plot the av-
erage MAPE for a certain model as a function of
temperature t. For all the models, the instruction
finetuning shifts the minimum of MAPE − t plot
to higher temperatures. For both MoE and LLama
models this shift is rather small (cf. Figure 13,
Figure 12). On the other hand, the minimum of
MAPE − t plot of the Qwen models after fine-
tuning shifts to significantly higher temperatures
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Figure 13: Relationship between power law MAPE and
t for the base and instruct Llama-generated texts

Figure 14: Relationship between power law MAPE and
t for the base and instruct Qwen-generated texts

(cf. Figure 14), and we can conjecture that this
shift grows with the model size. The minimum
becomes much less pronounced as well. We can
attribute the relationship between the size of the
Qwen model and the shift in MAPE − t plot min-
imum to the scaling laws followed by the Qwen
finetuning procedures.

Overall, the shift of the critical state to higher
temperatures can be attributed to narrowed down
probability distributions after the instruction fine-
tuning. It is interesting that finetuning affects the
generated text adherence to Heaps’ and Zipf’s laws
differently. This is an exciting topic for future re-
search.

Figure 15: Relationship between power law MAPE and
t for the instruct models with long and short prompts

Figure 16: Relationship between R and t for the instruct
models with long and short prompts

4.5 Influence of Prompting

In practice, LLMs are used with long-form prompts
of some sort. Given that some of the models stud-
ied are base models, it makes sense to use a piece
of natural text as a prompt and analyze the gener-
ated text in comparison with texts generated from
a single token. Specifically, we randomly source
a 2000 token long continuous piece from the Ad-
ventures of Tom Sawyer in English, and use it as
a prompt to generate the further text following the
setup described in Subsection 4.1 with LLMs with
under 3B parameters. The only difference is that
we generate 20 texts with each model.

Similarly to Subsection 4.3, we fit cumulative
histograms for each text generated with a power
law using least squares, compute the MAPE on this
fit and plot the average MAPE for a certain model
as a function of temperature t. We can see from
the Figure 15 that the difference in the qualitative
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behavior of the plots for long- and short- prompted
texts is insignificant. However, one can note that
the average MAPEs for texts generated with long
prompts are typically smaller, especially in the low-
temperature range. Based on the above, we can say
that prompting does not influence the adherence of
LLM-gernerated texts to Zipf’s law. Similar plots
for the base models are presented in Appendix C.

On the other hand, the lexical diversity of the
long prompt dominates the relatively small vocab-
ulary of the generated texts (cf. Figure 16). This
leads some models to generate no new tokens at all
at low temperatures and generally shifts the max-
ima of R − t plots to the high-temperature area.
More high-resolution methods are likely needed to
study these phenomena; this is an exciting topic for
future research.

5 Conclusion and Discussion

We have shown empirically that Zipf’s and Heaps’
laws hold for tokens in natural (i.e., human-written)
texts, but this is rarely the case for tokens of LLM-
generated texts. More specifically, for each model,
there is the best temperature at which the texts
generated have statistical resemblance to human-
written texts. We tie these extrema of power-law
fitness with the phase transition of LLM-generated
texts from ordered to disordered phase through a
critical state that adheres to power laws. Thus,
we believe to have been the first to discover phase
transitions in Zipf’s and Heaps’ laws for LLM-
generated texts.

Statistics for different model families behave dif-
ferently with respect to the instruction-finetuning.
For large LLama models these extrema come at
different temperatures for Heaps’ and Zipf’s laws.
Instruction-finetuned models typically generate
human-like texts at higher temperatures than the
base models. This shift is more pronounced for the
Qwen model family. We can conjecture that the
finetuning approach followed by the Qwen team
honors narrower distributions after finetuning. This
may also explain a long-standing puzzle in the
community: high temperatures enhance the writing
quality of LLaMA and Mistral, they do not have
the same positive effect on Qwen.

The wide selection of LLMs used had an explicit
goal of showing that pretraining corpus, training
algorithm, and model architecture (within trans-
former architectural paradigm) influence zipfian
properties of the LLM-generated texts much less

than the temperature. We also did not find a sig-
nificant influence of prompting on the statistical
properties studied.

Limitations

Although the tekken tokenizer works well with a
variety of languages, the dataset we used in Section
2 is limited to European languages using Latin and
Cyrillic scripts. This may limit the applicability of
the results of this work to other language groups
and families, as well as different scripts such as
Chinese or Arabic.

In practice, LLMs are used to generate texts us-
ing top-k, top-p and advanced decoding parameters
such as no-repeat. We did not study the influence
of these parameters on the metrics of interest. This
can limit the applicability of this work to practical
cases.
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Work average
α for
words

average
α for
to-
kens

stdev
words

stdev
to-
kens

The Ad-
ventures
of Tom
Sawyer

1.018 1.067 0.040 0.045

The Re-
public

0.945 0.993 0.056 0.054

Don Qui-
jote de la
Mancha

0.944 0.966 0.041 0.024

The Iliad 1.050 1.036 0.069 0.029
Critique
of Pure
Reason

0.908 0.956 0.013 0.033

Moby-
Dick
or, The
Whale

1.002 1.025 0.053 0.016

War and
Peace

0.970 0.990 0.045 0.019

Table 4: Zipf’s law exponents averages for words and
tokens in natural texts
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A Zipf’s law exponents for words and
tokens in natural texts

Zipf’s law exponents computed for words and to-
kens in natural texts are presented in Table 5. The
averages and standard deviations for each text in
various languages are presented in Table 4.

Work Language α for
words

α for
to-
kens

The
Adventures
of Tom
Sawyer

En 0.995 1.012
De 1.035 1.104
Ru 1.080 1.120
Es 0.979 1.058
Fr 1.000 1.039

The
Republic

Es 0.933 0.999
De 0.906 1.005
Fr 0.948 0.969
En 0.898 0.924
Ru 1.038 1.071

Don Quijote
de la
Mancha

Fr 0.952 0.959
De 0.936 1.005
Ru 1.005 0.964
En 0.890 0.937
Es 0.939 0.964

The Iliad

Es 1.002 1.049
En 1.091 1.078
De 1.019 1.037
Fr 0.986 1.005
Ru 1.151 1.012

Critique of
Pure Reason

Ru 1.044 0.975
De 0.938 1.006
En 0.899 0.956
Es 0.922 0.988
Fr 0.902 0.923

Moby-Dick
or. The
Whale

Es 0.980 1.041
Fr 0.984 1.036
En 0.965 1.019
Ru 1.081 1.005

War and
Peace

Es 0.979 1.013
De 0.936 1.003
Fr 0.966 0.992
En 0.928 0.971
Ru 1.041 0.970

Table 5: Zipf’s law exponents for words and tokens in
natural texts

B Heaps’ law exponents for words and
tokens in natural texts

Heaps’ law exponents computed for words and
tokens in natural texts are presented in Table 6.
The averages and standard deviations for each text
in various languages are presented in Table 7.
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Work Language α for
words

α for
to-
kens

The
Adventures
of Tom
Sawyer

En 0.841 0.837
De 0.877 0.841
Ru 0.935 0.847
Es 0.882 0.850
fr 0.859 0.828

The
Republic

Es 0.825 0.792
De 0.822 0.794
Fr 0.820 0.786
En 0.795 0.785
ru 0.897 0.814

Don Quijote
de la
Mancha

Fr 0.861 0.785
De 0.862 0.778
Ru 0.961 0.785
En 0.793 0.776
Es 0.829 0.756

The Iliad

Es 0.857 0.796
En 0.829 0.807
De 0.878 0.798
Fr 0.843 0.814
Ru 0.947 0.811

Critique of
Pure Reason

Ru 0.914 0.828
De 0.816 0.786
En 0.774 0.795
Es 0.805 0.792
Fr 0,816 0,792

Moby-Dick
or, The
Whale

Es 0,853 0,807
Fr 0,866 0,814
En 0,842 0,831
Ru 0,943 0,813

War and
Peace

Es 0,842 0,790
De 0,831 0,757
Fr 0,834 0,786
En 0,792 0,784
Ru 0,912 0,770

Table 6: Heaps’ law exponents for words and tokens in
natural texts

C Plots comparing prompted and
unprompted models

The relationship between power law MAPE and t
for the base models with long and short prompts is
presented in Figure 17. The relationship between
R and t for the base models with long and short
prompts is presented in Figure 18.

Figure 17: Relationship between power law MAPE and
t for the base models with long and short prompts

Figure 18: Relationship between R and t for the base
models with long and short prompts
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Work average
α for
words

average
α for
to-
kens

stdev
words

stdev
to-
kens

The Ad-
ventures
of Tom
Sawyer

0.879 0.841 0.035 0.009

The Re-
public

0.832 0.794 0.038 0.012

Don Qui-
jote de la
Mancha

0.861 0.776 0.063 0.012

The Iliad 0.871 0.805 0.046 0.008
Critique
of Pure
Reason

0.798 0.793 0.022 0.002

Moby-
Dick
or, The
Whale

0.876 0.816 0.046 0.010

War and
Peace

0.842 0.777 0.043 0.014

Table 7: Heaps’ law exponents averages for words and
tokens in natural texts
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