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Abstract

Time series Forecasting with large language
models (LLMs) requires bridging numerical
patterns and natural language. Effective fore-
casting on LLM often relies on extensive pre-
processing and fine-tuning. Recent studies
show that a frozen LLM can rival specialized
forecasters when supplied with a carefully en-
gineered natural-language prompt, but crafting
such a prompt for each task is itself onerous and
ad-hoc. We introduce FLAIRR-TS, a test-time
prompt optimization framework that utilizes an
agentic system: a Forecaster-agent generates
forecasts using an initial prompt, which is then
refined by a refiner agent, informed by past
outputs and retrieved analogs. This adaptive
prompting generalizes across domains using
creative prompt templates and generates high-
quality forecasts without intermediate code gen-
eration. Experiments on benchmark datasets
show improved accuracy over static prompting
and retrieval-augmented baselines, approach-
ing the performance of specialized prompts.
FLAIRR-TS provides a practical alternative to
tuning, achieving strong performance via its
agentic approach to adaptive prompt refinement
and retrieval.

1 Introduction

Recent studies demonstrate that LLMs can leverage
their vast pre-trained knowledge to achieve compet-
itive zero-shot and few-shot time-series forecast-
ing (TSF) performance, often rivaling specialized
models through direct prompting alone (Xue and
Salim, 2024). The efficacy of LLMs in TSF is
often stymied by the prompt engineering bottle-
neck. The performance of a frozen, pre-trained
LLM is critically dependent on the precise natu-
ral language prompt it receives. Crafting optimal
prompts is currently a laborious, ad-hoc process
requiring significant domain expertise and iterative
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manual tuning for each new dataset or scenario,
limiting scalability and robust generalization (Niu
et al., 2024). This challenge has spurred research
into more sophisticated prompting strategies (Liu
et al., 2024; Tang et al., 2024) and test-time meth-
ods without altering weights (Jin et al., 2024).

Given that LLMs can iteratively refine their out-
puts through feedback (as in Madaan et al. (2023)
and Chen and others (2025)), we explore their ca-
pability to autonomously refining their prompts
at test time to enhance TSF capabilities. We intro-
duce FLAIRR-TS - Forecasting LLM-Agents with
Iterative Refinement and Retrieval, a framework
designed to enhance TSF capabilities of LLMs
without any training. This approach aims to miti-
gate the manual prompt engineering burden while
simultaneously improving prediction accuracy by
grounding forecasts in relevant historical context.
FLAIRR-TS integrates a Forecaster agent (F) for
initial predictions, a Refiner Agent for Iterative
Refinement Tuning (IRT), and a Retrieval agent
(R) that sources semantically similar historical time
series segments, akin to Retrieval Augmented Gen-
eration (RAG) adapted for TSF (Han et al., 2023).
This entire cycle of prompt adaptation and fore-
cast refinement occurs without any weight updates,
offering a compelling alternative to costly tuning.
Beyond the capabilities of FLAIRR-TS for gen-
eral applicability, we also investigate the upper
bounds for performance with judiciously-designed
prompts. Inspired by (Sahoo et al., 2025), we intro-
duce Architected Strategy Prompts (ASPs), a set
of specialized prompts, which include directives for
specific analytical procedures or induce particular
cognitive approaches. While FLAIRR-TS excels
at automated, test-time prompt refinement without
prior domain-specific tuning, ASPs allow explor-
ing the performance when, manual strategy-driven
design is employed for prompt improvement.

Our main contributions are summarized as:

• We propose FLAIRR-TS, a novel prompting
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Figure 1: Flowchart of the the proposed method framework, consisting Retrieval, Forecaster and Refiner agents.

and test-time optimization framework for TSF
with iterative refinement and retrieval.

• We utilize retrieval augmentation for TSF with
LLMs with the introduced ASPs, developed
via systematic prompt design, to reveal the
significant impact of specialized instructions
and to serve as high-performance benchmarks.

• We demonstrate that FLAIRR-TS consistently
improves forecasting accuracy across diverse
datasets without model fine-tuning, outper-
forming static domain agnostic prompting and
a non-iterative retrieval-augmented baseline

2 Methodology

2.1 Overall Agentic Architecture

We propose FLAIRR-TS, a framework combin-
ing test-time optimization for iterative refinement
via prompting by an agentic system, and retrieval-
augmented context to enhance TSF with pre-
trained LLMs. As illustrated in Figure 1 and for-
mally detailed in Algorithm 1, it operates as a multi-
agent system. The Forecaster Agent generates
predictions using a prompt that is dynamically im-
proved by the Refiner Agent during an Iterative
Tuning phase. This process is enriched by the Re-
trieval Agent that provides the relevant historical
context and augments it to the input provided to the
forecaster. The core iterative cycle (Alg. 1, lines
7-20) involves forecasting, evaluating the forecast
against recent ground truth (e.g., via a metric like
MAE), and refining the prompt. The Refiner agent
can signal early termination if the forecast improve-
ment falls below a defined threshold, τstop (e.g., a
5% reduction in MAE). Otherwise, if maximum
iterations (Niter) are reached, the system defaults

to the prompt that yielded the best observed MAE.
This adaptive optimization occurs at test-time with-
out any model training.

2.2 Core Agent Descriptions

Retrieval Agent. Inspired by RAFT (Han et al.,
2023), this agent (Alg. 1, line 8) enhances the
Forecaster Agent’s inputs by retrieving M histor-
ical time series segments (Sretr) from a historical
database. This database is constructed by apply-
ing a sliding window of length L across the entire
training split of the dataset. Similarity between
the current context window (XCtx) and the histor-
ical segments is measured using Pearson’s cor-
relation, with the top-M most similar segments
being retrieved. These segments, along with their
actual outcomes, provide illustrative examples of
past pattern evolutions, directly augmenting the
context (Caug) given to the Forecaster-agent (see
Appendix D for data formatting details).

Refiner-agent (R). Functioning as a meta-
optimizer (Alg. 1, line 12), the Refiner Agent is
stateful and analyzes the entire history of the cur-
rent refinement session. As shown in the algo-
rithm, this history, {(P (i),mae(i))}k−1

i=0 , includes
all previously attempted prompts and their result-
ing errors. By observing this full trajectory, the
agent can make non-myopic, informed decisions
about the next prompt modification (Pnext). It pro-
vides a done_signal if the forecast quality meets
the pre-defined termination criterion (i.e., MAE
improvement is less than τstop). Its detailed rea-
soning, guided by a specific prompt structure (see
Appendix B), might yield feedback such as, Pay
closer attention to sudden changes in the
last 10% of the input sequence.
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Algorithm 1 FLAIRR-TS Algorithm

Require: Training data X , Historical series X1:t−1, Horizon H , Initial prompt P0, Context length L,
#Segments M , Max iterations Niter, Recent ground truth Xt:t+H , Stopping threshold τstop

Ensure: Selected prompt Pout
1: Pcurr ← P0; Pbest ← P0; maemin ←∞; X̂best ← nil; early_stop← false
2: XHistDB ← X1:t−L−1; XCtx ← Xt−L:t ▷ Setup context and historical DB
3: for k ← 1 to Niter do
4: Sretr ← RETRIEVESEGMENTS(XHistDB, XCtx,M)
5: Caug ← AUGMENTCONTEXT(XCtx, Sretr)

6: X̂cand ← FORECASTERLLM(Pcurr, Caug, H)

7: maecurr ← CALCULATEMAE(X̂cand, Xt:t+H)
8: if maecurr < maemin then
9: maemin ← maecurr; Pbest ← Pcurr; X̂best ← X̂cand

10: end if
11: (Pnext, done_signal)← REFINERLLM({(P (i),mae(i))}k−1

i=0 , Pcurr, τstop) ▷ Refiner sees history
of prompts and errors

12: if done_signal then
13: Pout ← Pcurr; early_stop← true; break
14: end if
15: Pcurr ← Pnext
16: end for
17: if not early_stop then ▷ Fallback to best MAE if max iterations reached
18: Pout ← Pbest
19: end if
20: return Pout

Forecaster-agent (F). This agent (Algorithm 1,
line 10) is responsible for generating the time se-
ries forecast (X̂cand). It uses the current prompt
(Pcurr)—either the initial prompt P0 or the one re-
fined by the Refiner Agent—along with the aug-
mented context (Caug) provided by the Retriever
Agent. FLAIRR-TS allows for the utilization of
a potentially more compact LLM as this agent,
with its behavior shaped by dynamically optimized
prompts. The structure of the prompts is detailed
in Appendix C.

2.3 Architected Strategy Prompts (ASP)

We present some judiciously-designed prompts in-
spired by the results of FLAIRR. Instead of merely
asking an LLM to predict future values, we aim to
induce more complex, imaginative reasoning. If
manual prompt engineering is permitted, we aim to
improve accuracy further by carefully editing the
best prompts from FLAIRR. ASPs are developed
by building upon the results achieved by FLAIRR.
Some examples include:
Analytical

Deep STL analysis: (inspired by (Zhou et al.,
2024)) perform an STL decomposition, forecast
each component, then recombine them via STL
addition.

Thinking–Inductive

Monte-Hall Prompting: frame forecasting as
a decision game so the model evaluates several
scenarios before committing.

Imaginative

(a) Many-Worlds Reasoning: simulate multiple
plausible futures and aggregate them.
(b) D&D Dungeon-Master: forecast a charac-
ter’s hit-point trajectory over upcoming turns.

More details about ASP prompts are in Ap-
pendix E.

3 Experiments

Our experiments utilize the Informer (Zhou et al.,
2021) benchmark datasets1: ETT (ETTh1, ETTh2,

1Full experimental parameters and any dataset-specific
preprocessing are in the Appendix.
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Dataset Horizon
Supervised PTMs Prompt

Informer DLinear FEDformer PatchTST TTM Time-LLM LSTP FLAIRR (Ours) ASP(G2.5P) (Ours) ASP(G2.0F) (Ours)

ETTh1
96 0.76 0.39 0.58 0.41 0.36 0.46 0.15 0.101 0.078 0.118

192 0.78 0.41 0.64 0.49 0.39 0.54 0.22 0.246 0.208 0.223

traffic
96 0.69 0.28 0.56 0.25 0.46 0.25 0.32 0.145 0.143 0.184

192 0.58 0.28 0.58 0.26 0.49 0.25 0.31 0.326 0.324 0.296

Table 1: Performance comparison (MAE) of supervised models and zero-shot methods on benchmark datasets. FLAIRR (Ours), ASP(G2.5P) (Ours), and ASP(G2.0F)
(Ours) are our proposed/evaluated methods.

Dataset Horizon Supervised Prompt
Informer AutoFormer FedFormer PatchTST LSTP FLAIRR (Ours) ASP(G2.5P) (Ours) ASP(G2.0F) (Ours)

ILI

4 1.54 1.24 2.54 0.43 0.38 0.271 0.264 0.189
12 2.33 1.82 2.67 0.43 0.39 0.249 0.183 0.197
20 2.12 1.90 1.75 1.26 0.73 0.589 0.564 0.867
24 3.99 1.79 1.50 1.72 1.55 0.724 0.722 1.004

Weather

24 1.45 1.38 1.95 1.55 0.17 0.110 0.084 0.125
48 1.57 1.43 1.67 1.56 0.24 0.160 0.142 0.238
96 1.48 1.67 1.96 1.12 0.39 0.290 0.257 0.243
120 1.90 1.74 2.02 1.31 0.51 0.383 0.309 0.369

Table 2: Performance comparison (MAE) on datasets whose test periods post-date the Gemini 2.5 Pro knowledge cut-off. FLAIRR and both ASP variants are ours;
Informer-PatchTST are supervised baselines; LSTP is a prior prompt-based method.

ETTm1, ETTm2), Electricity, and Traffic. We also
benchmark on several newer datasets, including
Weather and ILINet, and we test on 2025 data to
ensure the test period is after the knowledge cutoff
date of Gemini. More details are in Appendix F.
The characteristics of all datasets (domains, fre-
quencies, evaluated horizons H) and our approach
to data integrity are provided in Section F.
LLM Backbone: We implement FLAIRR using
Gemini 2.5 Pro and ASP using both Gemini 2.5
Pro and Gemini 2 Flash. For our ablation study, we
replicate these experiments with DeepSeek-V3.
Data & Execution: To ensure robust results, we
normalize inputs using standard scaling, control
for numerical precision in prompts, and report the
median performance over five independent runs for
each experiment.
Results: Results are presented in Table 1 for long-
horizon datasets and Table 2 for short-horizon
datasets. We use the Mean Absolute Error (MAE)
metric. We compare our work with the most re-
cent prompt-based method, LSTPrompt (Liu et al.,
2024) (using a frozen Gemini as its backbone), and
two of the best-performing PTMs—TTM (Ekam-
baram et al., 2024) and Time-LLM (Jin et al.,
2024). We also compare against non-LLM super-
vised methods like DLinear (Zeng et al., 2022).
Analysis: Across 20 distinct scenarios, LAIRR and
ASP, outperform all competing models in 14 cases,
including every smaller horizon task, and consis-
tently surpass the LSTP baseline on all datasets.

3.1 Ablations

We disentangle the impact of Retrieval and Iter-
ative Refinement (IR) by successively activating
them on top of a Simple Prompt. Figure 2 shows
the MAE on ETTM2 for Gemini 2.5 Pro, Gemini

0.0

0.1

0.2

0.3

0.4

0.5

Gemini 2.5 Pro DeepSeek-V3 Gemini 2 Flash

BaseLine(BL) BL + Retrieval BL + Iterative Refinement FLAIRR (Both)

Figure 2: Ablation results, average MAE. Lower MAE is better.

2 Flash, and the open-source DeepSeek-V3.

Observations: Retrieval lowers error by grounding
forecasts in analogous history, while IR refines out-
puts through on-the-fly prompt correction. Their
combination (FLAIRR-TS) delivers the lowest
MAE across all three backbones. Crucially, the
same trend holds for DeepSeek-V3, demonstrating
that our gains are architecture-agnostic.

4 Conclusion

FLAIRR-TS advances the approach to prompting
for time-series forecasting. Its core contribution is
not to surpass every hand-tuned prompt, but to sig-
nificantly reduce the burden of manual tuning. The
framework provides a systematic and automated
process for refining prompts, ensuring consistently
high performance from even simple starting instruc-
tions. Through its agentic, feedback-driven inter-
actions, FLAIRR-TS offers a scalable pathway to
unlocking the full potential of LLMs for forecast-
ing across any dataset or horizon.

15430



5 Limitations and Future Work

• Evaluation coverage. It’d be important to extend
empirical validation to cover robustness to irreg-
ular sampling, regime shifts, or domain drifts.

• Analogue-retrieval assumption. FLAIRR-TS
assumes the presence of semantically similar his-
torical segments. When they do not exist (e.g. for
novel events or cold-start prediction scenarios),
the refinement loop would come with more risks
for compounding errors.

• Numerical fidelity of LLMs. LLMs exhibit lim-
ited precision on long or out-of-range sequences,
and might hallucinate trends under noise or scale
shifts, constraining their reliability. Our method
is expected to take advantage of future improve-
ments in LLMs for long input-output modeling
and numerical understanding.

• Inference cost. Iterative prompting adds mul-
tiple LLM calls per forecast. Latency and en-
ergy consumption might be prohibitive for real-
time, high-frequency settings, motivating for ap-
proaches like LLM distillation.
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A Related Work

Time Series Forecasting with LLMs: Tradi-
tional time series forecasting has relied on models
explicitly trained for the task, from statistical meth-
ods to deep architectures like RNN variants and
temporal CNNs, up through recent Transformer-
based models (e.g. FEDformer (Zhou et al., 2022)
and PatchTST ((Nie et al., 2023))) tailored for long-
range sequences. These approaches require sub-
stantial training on each target dataset. In con-
trast, emerging research explores using pre-trained
LLMs as general-purpose forecasters via prompt-
ing at inference time only, without gradient-based
fine-tuning. Xue and Salim (2024) pioneered this
direction with PromptCast, formulating forecast-
ing as a prompt–completion task: historical val-
ues are encoded into a textual prompt (possibly
with instructions) and the LLM’s next-token pre-
dictions are decoded as forecasts. Gruver et al.
(2023) similarly represent numerical time series
as token sequences and treat extrapolation as lan-
guage modeling, finding that GPT-3 and LLaMA-2
can zero-shot extrapolate time series with accu-
racy comparable to or exceeding specialized trained
models. TNotably, these LLM-based approaches
leverage the models’ strong sequence modeling and
few-shot generalization for competitive benchmark
results, without requiringabilities to achieve com-
petitive results on standard benchmarks without
any task-specific training data. Nevertheless, naive
prompt formulations might overlook important tem-
poral dynamics and patterns. Recent works there-
fore propose more advanced test-time prompting
strategies. Liu et al. (2024) introduce LSTPrompt,
which splits the prediction into short- and long-
term sub-tasks and guides the LLM through a chain-
of-thought reasoning process; this method outper-
forms earlier prompt baselines and even approaches
the accuracy of dedicated TS models. Tang et al.
(2024) report that enriching prompts with external
knowledge (e.g. known seasonal periods or contex-
tual clues) and using natural language rephrasings
of the input can significantly improve an LLM’s
forecasting accuracy. Another technique, Time-
LLM (Jin et al., 2024), reprograms a frozen LLM
by mapping time-series data into textual “patches”
and prepending learned prompt tokens, allowing
the model to output forecasts that outperform state-
of-the-art specialized forecasters without any fine-
tuning of the LLM’s weights. On the other hand,
Zeng et al. (2022) offer a cautionary perspective:

through extensive ablations, they found that remov-
ing the LLM or replacing it with a simple attention-
based network in these pipelines often does not
hurt performance (and sometimes improves it), call-
ing into question how much current LLM-for-TS
methods truly benefit from the pre-trained language
model. To push LLM-based forecasting further,
researchers are drawing on insights from prompt
optimization and test-time reasoning. For example,
Wan et al. (2024) show that intelligently selecting
and reusing in-context exemplars can yield larger
gains than optimizing instructions alone, suggest-
ing that careful few-shot prompt design is crucial.
Chen and others (2025) propose a self-verification
and self-correction framework (SETS) that lets the
model iteratively refine its outputs at inference,
achieving better accuracy scaling on complex rea-
soning tasks. Incorporating such techniques into
zero-shot forecasting prompts is an exciting direc-
tion. In summary, the literature demonstrates a
nascent but growing paradigm of using pre-trained
LLMs directly for time series forecasting, with mul-
tiple studies showing that, given the right prompts,
foundation models can attain forecast accuracy ri-
valing traditional specialized models. While these
methods demonstrate progress in leveraging LLMs
for forecasting, the dynamic and optimal design
of prompts—especially those needing to integrate
complex reasoning, external knowledge, and itera-
tive feedback—remains a key challenge. Our work,
FLAIRR-TS, aims to address this by structuring
the forecasting process around specialized agents
for dynamic prompt adaptation and refinement.

Agentic Frameworks with Iterative Refinement
The concept of employing multiple interacting
agents or distinct processing roles for complex
problem-solving has gained traction in AI. Such
agentic systems can distribute tasks, specialize
functionalities, and enable more sophisticated rea-
soning or generation processes. Iterative refine-
ment, where an output is progressively improved
through feedback loops, is a common characteristic
of these systems and is also seen in self-correction
mechanisms within single LLMs (e.g., Self-Refine
by Madaan et al. (2023)). For instance, systems
might involve a generator agent and a critic agent,
or distinct agents for planning, execution, and veri-
fication. FLAIRR-TS draws inspiration from these
paradigms by structuring its operation around spe-
cialized agents: a Forecaster-agent for initial pre-
diction, a retriever agent for sourcing relevant con-
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text, and a refiner agent for iterative prompt refine-
ment. This agentic decomposition facilitates more
targeted and adaptable modifications to distinct as-
pects of the forecasting prompt through these spe-
cialized roles. Crucially, unlike traditional multi-
agent systems where agents might be independently
trained or involve complex coordination protocols,
FLAIRR-TS implements these roles using LLMs
at test time to dynamically adapt the prompting
strategy itself. The "refinement" occurs in the tex-
tual instructions and contextual information fed
to the LLM, rather than through updates to model
weights, distinguishing it from model distillation or
training paradigms. This focus on inference-time
prompt adaptation through an agentic perspective
is a key aspect of our approach. This structured
approach also aims to ensure that the LLM’s rea-
soning and generative capabilities are a core com-
ponent of the forecasting process, addressing con-
cerns about their actual contribution in some prior
LLM-for-TS pipelines.

Retrieval Augmented Generation: Retrieval
Augmented Generation (RAG) (Lewis et al., 2020)
has become a standard technique for enhancing
LLMs in knowledge-intensive NLP tasks. RAG
systems retrieve relevant documents or passages
from an external corpus and provide them as ad-
ditional context to the LLM, improving factual
grounding and reducing hallucination. Recently,
Han et al. (2023) adapted this concept to time se-
ries forecasting with their Retrieval Augmented
Time Series Forecasting (RAFT) approach. RAFT
retrieves historical time series segments similar to
the current input window and uses them to augment
the context provided to a forecasting model (in their
case, an LLM). Our work directly builds upon and
integrates the RAFT principle within the Retrieval
agent component of FLAIRR-TS. We hypothesize
that the effectiveness of RAFT can be further en-
hanced by optimizing the prompt that instructs the
LLM on how to utilize the retrieved historical con-
text, which is precisely what the agentic interaction
within FLAIRR-TS aims to achieve.

B Refiner Agent

You are an expert Time-Series-Forecasting Prompt En-
gineer acting as a Refiner Agent. Your goal is to
analyze a set of forecasting attempts made by a Fore-
caster Agent and provide specific, actionable Learn-
ings on how to improve the initial forecasting prompt
used by the Forecaster. The Forecaster Agent uses a

base prompt and adds new forecasting instructions to it
based on your learnings.

Key Information for Your Analysis for this Iteration
{it + 1}:

1. Current Forecasting Instructions Under Review:
{current_instructions_under_review}

2. Overall Mean Absolute Error (MAE) for this batch
of samples: {mae_to_report_to_teacher}

You will also be given a batch of individual samples,
where each sample includes:

1. The full Prompt the Forecaster Agent used (includes
the instructions above).

2. The Forecaster Agent’s Predictions for the OT
variable.

3. The Ground-Truth OT values.

Your Analysis Task:

1. Identify error patterns. Compare Predictions
with Ground Truths. Look for systematic errors
(e.g., over/under-prediction, lagging, volatility mis-
handling).

2. Correlate errors with prompts and instructions.
Check whether the current instructions are ambigu-
ous, misleading, too complex, or otherwise harmful.

3. Formulate "Learnings". Give concrete, generaliz-
able improvements (e.g., adjust look-back horizon,
drop STL decomposition, add weekday feature).

4. Determine "Done" status.
• If the percentage reduction in MAE is less than

the pre-defined stopping threshold (τstop), output
Done: True.

• Otherwise output Done: False.

Output Format—exactly this template
Learnings: <your concise, actionable
suggestions here>
Done: <True or False>
Confidence in output: <High | Medium | Low> –
one-line rationale.

C Forecaster Agent

Prompt-Synthesis Instructions
Example: Forecasting-Instruction Refinement

You are an intelligent agent that synthesizes forecast-
ing prompts based on expert feedback. You will receive
Learnings from a Refiner Agent that suggest improve-
ments to an initial time-series forecasting prompt. Your
task is to turn these learnings into concise and effec-
tive prompt-forecasting instructions. These instructions
will be appended to a base forecasting prompt.

The forecasting instructions should:

15434



• Be a short set of guiding principles (maximum 3
actionable items).

• Directly address the issues and suggestions in the
Learnings.

• Be clearly phrased for another LLM to follow.

• **Do not include placeholders such as
{previous_data} or {prediction_data}.

• **Do not change the output format or the forecasting
task itself.

• If no actionable learnings exist, output a safe generic
set—or state:

No specific new instructions generated due to lack of
actionable learnings.

Example (Refiner Agent said “focus on recent
volatility”):

Learnings: The model often misses sudden spikes; the
prompt should ask the forecaster to pay more attention
to recent volatility and its effect on the next step.

Your Output (forecasting instructions): “Critically
assess the volatility in the most recent data points. Your
forecast for the next step should reflect whether this
volatility is expected to continue, increase, or decrease.
Explain this assumption in your reasoning.”

Learnings you received:
{current_learnings}

Based on these learnings, generate only the refined
prompt-forecasting instructions below (no extra com-
mentary).

Refined Prompt Forecasting Instructions:
<model prediction here>

D Prompt template

Objective
Provide a well-reasoned forecast for the
{target_variable} value in the next row of
the dataset, given the historical data.

Dataset Instructions

• Dataset: data_name, data_description

• Variable to Predict: {target_variable}.

• Task: Predict the {target_variable} values for
the next {prediction_length} steps using the his-
torical data.

• Constraints:

– Adhere strictly to the specified output format.

If instructions:
Forecasting Instructions: {instructions}

If raft_context: The {raft_context} contains the
M retrieved historical segments. Each segment and its

corresponding ground-truth outcome are formatted as
comma-separated text strings.

Input Data

• Historical Data:
{previous_sequence_length_data}

Output Format — exactly this
Predicted Values: [predicted_value_1, ...]
Reasoning: [Your detailed reasoning ]
Certainty Estimate: [Percentage certainty]
Certainty Reasoning: [reasoning]

E Prompt Library

The following library of prompts was designed to
test different cognitive pathways of the LLM. The
strategies are grouped into categories: Analytical
prompts that enforce a structured decomposition
of the problem; Thinking-Inductive prompts that
encourage probabilistic or scenario-based reason-
ing; and Imaginative prompts that use metaphor
and creative framing to elicit novel patterns.

teacher-student-loop

ACT I — REFINER AGENT Propose a first-pass
forecast for the next {sequence_length}
steps.
ACT II — FORECASTER AGENT Evaluate the
Refiner’s forecast against the most recent
known data and suggest corrections.
ACT III — REFINER AGENT Incorporate feedback
and provide the refined forecast.

self-verification-sets

Step 1 – Generate candidate forecast A for
{sequence_length} steps. Step 2 – Generate
independent candidate forecast B. Step 3
– For each horizon h, if the two differ
beyond an acceptable tolerance, reconcile
them (e.g., by averaging). Provide only the
reconciled forecast.

meta-prompt-conf-bands

Forecast {sequence_length} steps and include
68 % and 95 % confidence bands. Briefly
explain the uncertainty assumptions before
the numbers.

imaginary-python-repl

You are ForecastPy, a mental Python
REPL. Think then “run code in your head”
that derives the forecast for the next
{sequence_length} steps.
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synesthetic-soundtrack

Interpret the past sequence as MIDI
velocity (0–127) and compose the next
{sequence_length} beats that extend the
melody. Provide both the MIDI integers and
the values rescaled to original units.

color-gradient-canvas

Map each value to an RGB triplet on
a blue-to-red gradient. Produce a grid
of HEX colours that encodes the next
{sequence_length} points.

dungeon-master

You are a D&D Dungeon Master. The party’s HP
over the last turns is shown. Forecast HP for
the next {sequence_length} turns, assuming
no boss fights and only mild potion use.

micro-essay-poisson

Write a ≤60-word micro-abstract describing
the generative mechanism, then list
{sequence_length} λ parameters for a Poisson
baseline.

reverse-sudoku

Think of the next {sequence_length} points
as filling a 9 × 11 Sudoku-like grid whose
row sums match the recent history. Provide
the grid and a flattened list.

many-worlds-ensemble

Create forecasts for four parallel universes
(A–D) shifted by −2σ, −1σ, +1σ, +2σ, each
{sequence_length} steps long, then provide a
consensus median forecast.

haiku-seeded

Compose a three-line haiku that
metaphorically describes the upcoming
pattern, then list the {sequence_length}
numeric forecasts, one per line.

F Datasets

Experiments were performed on a diverse set of
widely-used time-series-forecasting (TSF) bench-
mark datasets spanning multiple domains, sam-
pling frequencies, and statistical characteristics
(e.g., seasonality, trend, noise levels). All datasets
are normalized with StandardScaling from sklearn
package. The datasets are:

• ETT (ETTh1, ETTh2, ETTm1, ETTm2) – Electricity
Transformer Temperature data recorded at hourly
(h) or 15-minute (m) intervals; widely used for
long-sequence forecasting with OT as target vari-
able (ETTh: 17,420 total data points, ETTm:
69,680 total data points)

• Electricity – Hourly household electricity data of
customers with electricity consumption as target
variable (26,304 total data points)

• Traffic – Hourly occupancy rates from California
road-traffic sensors (2021-2025 March) with traf-
fic volume as target variable (17,544 data points)

• ILINet – Weekly Influenza-Like-Illness counts
from the CDC (2002-2025 April) with total
ILI patients as target variable (1,441 total data
points)2

• Weather - Hourly weather data from Chicago
with temperature as target variable (35,052 total
data points)3

F.1 Data Integrity
A significant consideration when utilizing Large
Language Models (LLMs) for time series forecast-
ing is the potential for the model’s pre-training data
to inadvertently include samples from the test set,
which could lead to an overestimation of predictive
performance. To rigorously uphold data integrity
in this study, we employed ILINet and weather
datasets as benchmarks, with a specific focus on
temporal data separation. Our experimental design
ensures that all data samples within the test set orig-
inate from dates strictly subsequent to the known
training data cut-off date of the LLM employed
for inference. This chronological separation miti-
gates the risk of test data contamination, providing
a robust and fair evaluation of the LLM’s ability
to generalize and forecast genuinely unseen future
values.

F.2 Evaluation Metrics
Forecasting performance was assessed with two
standard error metrics:

MAE =
1

H

H∑

i=1

∣∣∣X̂t+i −Xt+i

∣∣∣ , (1)

2https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
3https://www.kaggle.com/datasets/curiel/chicago-

weather-database
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Where H is the prediction horizon, X̂t+i is the
predicted value, and Xt+i is the ground-truth value.
Lower values indicate better performance for both
metrics. These metrics were computed directly
from the experimental results.

F.3 Hyperparameter Settings
Here we detail the key hyperparameters used for
the FLAIRR-TS framework in our experiments.

ts_max_iter Value: 5. The maximum number of
refinement iterations allowed in the iterative
refinement loop.

ts_stopping_criteria Value: 5%. The refine-
ment process is stopped early if the percentage
reduction in Mean Absolute Error (MAE) be-
tween iterations falls below this threshold.

ts_sample_size Value: 3. The number of vali-
dation samples used within each refinement
iteration to evaluate the quality of a candidate
prompt.

raft_m_retrieval Value: 2. The number of sim-
ilar historical segments retrieved by the Re-
trieval Agent to be used as context.

G Future directions

There are several avenues for future work. One
direction is to incorporate quantitative validation
in the loop: currently, the Refiner-agent’s feedback
quality is not directly measured. If we had a small
hold-out set or could use the model’s own likeli-
hood of the data, we might select or weight feed-
back. This leans towards techniques in automatic
prompt optimization where a reward is defined. Ad-
ditionally, while FLAIRR-TS currently uses natu-
ral language for feedback from the Refiner-agent,
one could imagine hybrid approaches where the
Refiner-agent suggests pseudo-code or formulaic
adjustments (if the LLM agents are equipped with
a calculator tool). That could improve handling of
scale and magnitude issues. On the retrieval side,
exploring more advanced analog search (perhaps
using learned embeddings or matching not just on
raw values but pattern descriptors) might yield even
more relevant cases to show the Refiner-agent, es-
pecially for complex multivariate data.

From an application perspective, deploying
FLAIRR-TS in an interactive forecasting system
would be very interesting. Because FLAIRR-
TS’s intermediate steps (the prompts, the retrieved

analogs, the feedback) are human-readable, a hu-
man analyst could intervene in the loop – agreeing
or disagreeing with the Refiner-agent’s critique, or
adding their own feedback. This could turn fore-
casting into a collaborative dialog between human,
Forecaster-agent, and Refiner-agent. In settings
like supply chain or epidemiology forecasting, such
a system could help build trust as well, since each
refinement step can be scrutinized.
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