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Abstract

Pretrained language models have transformed
text classification, yet their computational
demands often render them impractical for
resource-constrained settings. We propose a
linguistically-grounded framework for context
minimization that leverages theme-rheme struc-
ture to preserve critical classification signals
while reducing input complexity. Our approach
integrates positional, syntactic, semantic, and
statistical features, guided by functional linguis-
tics, to identify optimal low-context configura-
tions. We present a methodical iterative feature
exploration protocol across 6 benchmarks, in-
cluding our novel CMLA11 dataset. Results
demonstrate substantial efficiency gains: 69-
75% reduction in GPU memory, 81-87% de-
crease in training time, and 82-88% faster in-
ference. Despite these resource savings, our
configurations maintain near-parity with full-
length inputs, with F1 (macro) reductions av-
eraging just 1.39-3.10%. Statistical signifi-
cance testing confirms minimal practical im-
pact, with some configurations outperforming
the baseline. SHAP analysis reveals specific
feature subsets contribute most significantly
across datasets, and these recurring configu-
rations offer transferable insights, reducing
the need for exhaustive feature exploration.
Our method also yields remarkable data com-
pression (72.57% average reduction, reaching
92.63% for longer documents). Ablation stud-
ies confirm synergistic feature contributions,
establishing our context minimization as an ef-
fective solution for resource-efficient text clas-
sification with minimal performance trade-offs.

1 Introduction

Pretrained language models have achieved remark-
able results across various downstream natural lan-
guage understanding (NLU) tasks such as text clas-
sification. However, attaining high accuracy of-
ten requires training these models on large-scale
datasets, which demands significant computational

resources and entails considerable training and in-
ference times (Brown et al., 2020). As modern
PLMs continue to grow in size, fine-tuning them
with extensive datasets and long contexts becomes
impractical for many regular computing environ-
ments.

The parameter sizes of prominent NLU mod-
els, such as BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), XLM-R (Conneau and Lample,
2019), XLNet (Yang et al., 2019), and ELECTRA
(Clark et al., 2020), range from millions to billions,
depending on the variant. As training datasets ex-
pand, computational power, storage, and time re-
quirements increase exponentially in the pursuit of
higher accuracy (Kaplan et al., 2020). Fine-tuning
these models for downstream tasks often improves
accuracy but also amplifies resource demands. Sim-
ilarly, generative large language models (LLMs),
such as the largest variants of LLaMA (Touvron
et al., 2023) and GPT (OpenAI et al., 2024), are
several gigabytes in size, making them infeasible
for fine-tuning on everyday computers, unusable in
many real-world scenarios, and resulting in a large
carbon footprint (Strubell et al., 2020).

Driven by the challenges of high computational
demands, large datasets, and extended training
times, we explored methods to reduce context
while maintaining competitive accuracy. Our ini-
tial experiments revealed that the first sentence of-
ten strongly predicts the class. Fine-tuning mod-
els using only the first sentence achieved competi-
tive performance with significantly lower compu-
tational costs, motivating further exploration of
key linguistic and statistical features. Our exper-
iments include a combination of three positional
elements: first sentence (ϕ1), second sentence (ϕ2),
and last sentence (ϕn); four syntactic components:
nouns (n), verbs (v), adverbs (av), and adjectives
(ad); two semantic attributes: named entities (ne)
and proper nouns (pn); and two statistical mea-
sures: TF-IDF scores (tf ) (Salton et al., 1975) and
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RAKE keywords (rk) (Rose et al., 2010). Each
feature uniquely contributes to text representation,
enabling the reduction of contextual requirements
while maintaining task performance. For certain
combinations, we selected subsets in four different
amounts (top 5, 10, 15, and 20) from each article
to ensure focused and efficient representation.

Our extensive experiments on 7 NLU models and
5 popular text classification benchmark datasets,
AGNews (Zhang et al., 2015), Enron (Klimt and
Yang, 2004), IMDB (Maas et al., 2011), BBC
(Greene and Cunningham, 2006), and 20 News-
Groups (Lang, 1995), as well as our custom dataset,
CMLA11 (Clean Mixed Long Articles - 11 cate-
gories), confirm our hypothesis: models can be
fine-tuned with minimal context, requiring fewer
computational resources, enabling faster training
and inference speeds, while still achieving compa-
rable accuracy.
Our contributions are as follows:

• We propose a linguistically-grounded frame-
work for context minimization in text classifi-
cation using theme-rheme structure (Halliday
and Matthiessen, 2014) to preserve essential
signals while reducing input complexity.

• We present a methodical feature exploration
protocol evaluating linguistically-motivated
feature combinations across 6 benchmarks,
restraining our evaluation to 35 linguistically-
motivated feature combinations per dataset
due to practical feasibility from a larger possi-
ble space.

• We introduce CMLA111, a curated dataset
from 26 diverse sources across 11 balanced
classes, addressing limitations in existing
benchmarks for robust evaluation of context
minimization.

• We demonstrate through ablations and inter-
pretability analysis that our approach achieves
69-75% GPU memory reduction and 81-88%
faster training/inference with minimal perfor-
mance loss (1.39-3.10%), establishing effi-
cacy for resource-constrained scenarios.

2 Related Works

While no prior work directly addresses the specific
problem investigated in this paper, several studies
offer relevant insights that inform our approach. Re-
cent research has focused on optimizing language
model performance and efficiency across various
dimensions. Regarding context utilization, Liu et al.

1https://huggingface.co/datasets/nahid-hub/CMLA11

(2024) demonstrate that increasing context length
doesn’t necessarily improve performance, as mod-
els struggle with information positioned in the mid-
dle of contexts. An et al. (2025) observed that a
long context does not always lead to better results
in language models.

On the efficiency front, Schick and Schütze
(2021) show that smaller models like ALBERT
can rival larger models through Pattern-Exploiting
Training, achieving superior performance on bench-
marks like SuperGLUE with fewer parameters.
Similarly, Dacrema et al. (2019) found that sim-
ple heuristic methods often outperform complex
neural approaches in recommendation systems, re-
inforcing our premise that computational efficiency
need not compromise performance. In text clas-
sification, Cunha et al. (2021) demonstrated that
properly-tuned non-neural methods achieve com-
petitive results while requiring significantly less
computational resources than neural alternatives,
further validating our context minimization strat-
egy. For hardware optimization, Ren et al. (2021)
introduce ZeRO-Offload to efficiently train large
models by offloading model states from GPU to
CPU memory, complementing our software-based
efficiency improvements through context minimiza-
tion.

3 Methodology

Finding appropriate context reduction methods for
accurate classification was crucial to our work. The
first sentence often captures significant information
in various classification tasks (news, sentiment,
topic, email), as shown in Appendix A Table 6.
While our findings indicate that the first sentence
yields surprisingly accurate results, it alone is insuf-
ficient for comprehensive classification. Therefore,
we incorporated linguistic, semantic, positional,
and statistical features to reduce input context, se-
lectively capturing essential information without
processing entire articles.
Positional Features: Positional features analyze
sentence placement within the text, leveraging con-
text provided by the First Sentence (ϕ1), Second
Sentence (ϕ2), or Last Sentence (ϕn).
Syntactic Features: Syntactic features, such as
nouns (n), verbs (v), adverbs (av), and adjectives
(ad), capture the grammatical structure, sentiment,
and tone of the text. These features enhance clas-
sification by identifying emotional and contextual
cues.
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Semantic Features: Semantic features, including
Named Entities (ne) and Proper Nouns (pn), facili-
tate domain-specific understanding by identifying
specialized terms and context. This ensures precise
categorization by leveraging contextual richness.
Statistical Features: Statistical features, such as
TF-IDF scores (tf ) and RAKE keywords (rk), cap-
ture key terms based on their significance and co-
occurrence patterns. These features optimize text
analysis while remaining computationally efficient.

3.1 Context Minimization

To condense large articles into meaningful
contexts, we systematically combined lin-
guistic features informed by theme-rheme
structure analysis and conducted exper-
iments on six benchmark datasets: D ∈
{AGNews,Enron, IMDB,BBC, 20 NewsGroups,
CMLA11}. The features were grouped into 4
categories based on their functional linguistic roles:
Positional Elements: P = {ϕ1, ϕ2, ϕn} (capturing
thematic orientation and resolution), Syntactic
Components: S = {n, v, av, ad} (representing
thematic actors and rhematic processes), Semantic
Attributes: E = {ne, pn} (anchoring domain-
specific thematic content), Statistical Measures:
T = {tf , rk} (complementing linguistic features
with distributional significance). Together, these
subsets form the complete feature set F , defined
as: F = P ∪ S ∪ E ∪ T .

Our feature selection process is informed by theme-
rheme progression patterns from functional linguis-
tics, as detailed in Section 3.2, ensuring a theoreti-
cally grounded approach to constructing meaning-
ful feature combinations.
For a given dataset Dk ∈ D, we iteratively con-
struct new datasets by systematically selecting
features from the feature set F . Initially, a new
dataset Dk,new1 is built by extracting a single fea-
ture f1 ∈ F , prioritizing thematically prominent
elements:

Dk,new1 = {f1}, f1 ∈ F .

The newly constructed dataset Dk,new1 is then
trained and evaluated with model MBERT to es-
tablish an initial performance metric νBERT

k,new1
. Since

no prior results were available, this served as the
starting point for comparison for the rest of the
features in the feature set F . Subsequently, addi-
tional features fi ∈ F are introduced to Dk,new1

to construct new low-context dataset Dk,new2 , fol-
lowing thematic-rhematic progression principles.

Similarly, for each new feature combination, the
model is trained and evaluated:
Dk,newj

= Dk,newj−1
∪{fi}, where j = 2, 3, . . .

νBERT
k,newj

= Ψ(MBERT,Dk,newj
)

Here, Ψ(·, ·) represents the evaluation function that
computes the performance of model MBERT on
dataset Dk,newj

. If the evaluation metric νBERT
k,newj

improved compared to νBERT
k,newj−1

, the number of to-
kens associated with the newly added feature was
incrementally increased by ∆n = 5 to enhance
thematic coverage. This increment was determined
through our theme-rheme analysis, which showed
that expanding high-prevalence thematic features
(e.g., ne, pn, n) by 5 additional tokens typically
increased thematic coverage by 8–12% while main-
taining minimal context. The number of tokens
in linguistic features are taken based on the most
frequent occurrences in the context, aligning with
thematic prominence patterns identified in our lin-
guistic analysis.
If no improvement was observed, the feature
combination was adjusted by introducing fea-
tures from other subsets (P,S, E , T ) within
F , following the theme-rheme progression
principles where we balance thematic elements
with complementary rhematic components. This
iterative process ensured systematic exploration
of feature combinations to identify those yielding
optimal performance while maintaining thematic
coherence. The iteration continued until no further
improvement was observed or a predefined limit
(35 evaluated combinations) was reached for each
dataset Dk ∈ D, as this limit was chosen to balance
computational efficiency and resource constraints
while ensuring sufficient exploration of the feature
space for meaningful insights. The final set of eval-
uated combinations is represented as: CkBERT ⊆ F .
From these combinations, the top 5 performing
reduced context datasets Dktop-5 are identified
based on CkBERT , with all top configurations
demonstrating high thematic coverage (79–85%)
despite minimal token usage. Finally, 6 prominent
NLU models are used to trained and evaluated to
establish the understanding affectivness of reduced
contexts trained on Dktop-5 where Mmodel ∈
{DistilBERT, RoBERTa,ALBERT,XLNet,XLM-R,
ELECTRA}. We evaluate these models
Mm ∈ Mmodel on these reduced datasets.
The performance metric νMm

k,j is computed as
follows:

νMm
k,j = Ψ(Mm,Dk,j),

∀Dk,j∈Dktop-5
∀Mm∈Mmodel
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This formulation ensures that our performance eval-
uation is both structured and consistent across dif-
ferent models and data, while maintaining the lin-
guistic integrity of our theoretically-motivated fea-
ture selection approach.

3.2 Information Structure Grounding
Our feature selection methodology is grounded in
theme-rheme structure from functional linguistics
(Halliday and Matthiessen, 2014). Using spaCy’s
dependency parser with custom theme-rheme anno-
tation, we analyzed a 10% stratified sample of each
dataset Dk ∈ D, identifying clause constituents
and their thematic prominence. Themes (ϕ1) es-
tablish discourse topics, while rhemes (pn, ϕn)
provide complementary information. Configura-
tions combining ϕ1 with pn or ϕn outperformed
others by capturing the full thematic arc. Analy-
sis showed ϕ1 with 82–90% thematic prevalence,
followed by ϕn (61–77%) and ϕ2 (41–58%). Se-
mantic features like proper nouns (pn) had 65–78%
thematic association, named entities (ne) 55–70%,
and nouns (n) 60–74%, while verbs (v), adjec-
tives (ad), and adverbs (av) dominated rhematic
space (71–86%). TF-IDF (tf ) and RAKE key-
words (rk) showed weak thematic alignment (32–
45%), limiting their SHAP analysis contribution
(Lundberg and Lee, 2017). Our 35 feature com-
binations, designed to maximize thematic cover-
age (83.7% across datasets) while minimizing to-
ken count, were guided by this linguistic analysis.
Theme-rheme prevalence correlated strongly with
SHAP values, validating our approach and explain-
ing performance patterns in Section 4.7.

3.3 Training Setup
We utilized MBERT and Mmodel, implemented in
PyTorch2 via Hugging Face Transformers3 for re-
producibility and scalability. Default tokenizers
were used, with stratified sampling splitting data
into training (80%), validation (10%), and test
(10%) sets to ensure balanced class representation.
Text preprocessing employed Python’s parallel ex-
ecution across CPU cores, with sequence lengths
of 512 tokens for full-context and 64 tokens for
low-context experiments, the latter empirically de-
termined through 5 configurations on AGNews test-
ing 32, 64, and 128 tokens with BERT’s tokenizer
and validated with ALBERT’s tokenizer as the
smallest model in the baseline. Future researchers

2https://pytorch.org/
3https://huggingface.co/

with high CPU scores can utilize all available CPU
cores for faster data preprocessing. Training used
cross-entropy loss, AdamW optimizer (learning
rate 2 × 10−5), linear decay scheduler, 5 epochs,
and batch size of 32, selecting the model with low-
est validation loss and reporting median results
from 5 runs with different random seeds per model-
dataset-context combination.

4 Experiments and Results

In this section, we first describe our datasets and
experimental setup, followed by the results of our
experiments and an analysis of their implications.

Dataset #Train #Dev #Test #Label Avg Len
AGNEWS 102,080 12,760 12,760 4 37.84
BBC 1,780 222 223 5 390.3
ENRON 26,676 3,334 3,335 2 306.77
IMDB 40,000 5,000 5,000 2 231.16
20NEWS 15,077 1,884 1,885 20 181.67
CMLA11 88,000 11,000 11,000 11 716.64

Table 1: Statistical Summary of Datasets Used in Our
Experiments: Sample Distribution, Label Counts, and
Average Word Count.

4.1 Datasets

We evaluated five public text classification bench-
mark datasets and CMLA11, with statistics in Table
1, varying in article length and nature to test context
minimization across diverse challenges. Instead
of default splits, we merged data and created 80-
10-10 train-validation-test splits. AGNews (Zhang
et al., 2015) (127,600 samples, 4 categories, 37.84-
word average) offers a compact news classification
testbed. BBC (Greene and Cunningham, 2006)
(2,225 samples, 5 categories, 390.3-word average)
provides structured news articles. ENRON (Klimt
and Yang, 2004) (33,345 samples, binary, 306.77-
word average) tests spam email classification with
noisy data. IMDB (Maas et al., 2011) (50,000
reviews, binary, 231.16-word average) evaluates
sentiment analysis on variable-length reviews. 20
NewsGroups (Lang, 1995) (18,846 samples, 20 top-
ics, 181.67-word average) presents diverse topical
classification.

CMLA11, our custom dataset, includes 110,000
curated long articles from 26 diverse sources (news-
papers, blogs, magazines) across 11 categories,
averaging 716.64 tokens, designed to test models
on varied American and British English texts and
provide a balanced text classification benchmark.
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Dataset Context Macro F1 ∆ F1 GPU (MB) ∆ GPU Train (s) ∆ Train Infer (s) ∆ Infer

AGNews

Full Length 0.9421 ±0.0005 - 9099.69 ±0.77 - 7458.14 ±0.30 - 58.53 ±0.95 -
ϕ1+ϕn 0.9414 ±0.0006 -0.0007 2806.52±0.63 -69.158% 1359.76 ±0.46 -81.77% 10.35 ±0.005 -82.32%
ϕ1+ϕn+10pn+5n 0.9408 ±0.0029 -0.0013 2851.25 ±1.32 -68.666% 1340.97 ±0.36 -82.02% 10.17 ±0.012 -82.63%
ϕ1+ϕn+10rk 0.9407 ±0.0004 -0.0014 2896.72 ±2.70 -68.167% 1343.95 ±0.03 -81.98% 10.17 ±0.000 -82.62%
ϕ1+ϕn+10tf 0.9402 ±0.0004 -0.0019 2896.43 ±1.18 -68.170% 1341.75 ±0.17 -82.01% 10.17 ±0.005 -82.62%
ϕ1+ϕn+10pn+5v 0.9399 ±0.0010 -0.0022 2896.49 ±1.53 -68.169% 1340.70 ±0.07 -82.02% 10.18 ±0.014 -82.61%

BBC

Full Length 0.9888 ±0.0067 - 11588.46 ±1.02 - 186.59 ±0.61 - 1.47 ±0.001 -
20rk 0.9888 ±0.0022 0 2875.49 ±1.88 -75.187% 25.42 ±0.09 -86.38% 0.18 ±0.001 -87.67%
ϕ1+15n 0.9865 ±0.0045 -0.0023 2910.14 ±1.48 -74.888% 25.26 ±0.00 -86.46% 0.18 ±0.003 -87.6%
15rk 0.9865 ±0.0032 -0.0023 2875.60 ±2.89 -75.186% 25.17 ±0.01 -86.51% 0.18 ±0.000 -87.75%
ϕ1+10rk 0.9865 ±0.0090 -0.0023 2910.49 ±1.16 -74.885% 25.29 ±0.01 -86.45% 0.18 ±0.001 -87.67%
ϕ1+ϕn+10pn+5v 0.9843 ±0.0022 -0.0045 2920.37 ±2.85 -74.799% 23.69 ±0.01 -87.30% 0.19 ±0.004 -87.20%

ENRON

Full Length 0.9957 ±0.0008 - 11441.45 ±1.78 - 2808.19 ±1.88 - 22.64 ±0.005 -
ϕ1+ϕn+10tf 0.9921 ±0.0002 -0.0036 2920.37 ±2.28 -74.476% 375.68 ±0.29 -86.62% 2.68 ±0.003 -88.14%
ϕ1+15pn+5n 0.9918 ±0.0008 -0.0039 2875.13 ±1.06 -74.871% 353.76 ±0.03 -87.4% 2.72 ±0.001 -87.98%
ϕ1+10pn+10n 0.9916 ±0.0006 -0.0041 2920.49 ±1.65 -74.475% 350.30 ±0.04 -87.53% 2.67 ±0.001 -88.2%
ϕ1+10rk 0.9912 ±0.0006 -0.0045 2860.69 ±0.68 -74.997% 355.98 ±0.17 -87.32% 2.72 ±0.001 -87.99%
ϕ1+ϕn+10pn+5n 0.9911 ±0.0012 -0.0046 2920.24 ±1.04 -74.477% 377.22 ±0.63 -86.57% 2.74 ±0.029 -87.91%

IMDB

Full Length 0.9358 ±0.0020 - 11409.26 ±1.45 - 4171.13 ±1.69 - 33.46 ±0.009 -
ϕ1+ϕn+10ad+5av 0.8938 ±0.0028 -0.042 2920.73 ±0.63 -74.400% 531.1 ±0.28 -87.27% 4.05 ±0.003 -87.89%
ϕ1+ϕn+15ad+10av 0.8936 ±0.0032 -0.0422 2934.43 ±2.21 -74.280% 525.79 ±0.01 -87.39% 3.99 ±0.002 -88.08%
ϕ1+ϕn+10ad 0.8932 ±0.0044 -0.0426 2920.37 ±2.38 -74.404% 530.78 ±0.21 -87.27% 4.03 ±0.001 -87.94%
ϕ1+ϕn+10ad+5n 0.8931 ±0.0057 -0.0427 2920.58 ±1.02 -74.402% 530.47 ±0.15 -87.28% 4.07 ±0.046 -87.84%
ϕ1+ϕn+15ad 0.8929 ±0.0023 -0.0429 2924.69 ±1.13 -74.366% 524.87 ±0.13 -87.42% 3.99 ±0.000 -88.07%

20News

Full Length 0.7731 ±0.0025 - 11441.92 ±0.58 - 2124.75 ±0.41 - 12.26 ±0.002 -
ϕ1+10pn+10n 0.7559 ±0.0044 -0.0172 2928.46 ±1.63 -74.406% 268.98 ±0.03 -87.34% 1.48 ±0.001 -87.97%
20tf 0.7472 ±0.0027 -0.0259 2896.95 ±0.51 -74.681% 270.65 ±0.03 -87.26% 1.54 ±0.043 -87.46%
ϕ1+10tf 0.7472 ±0.0031 -0.0259 2925.58 ±0.75 -74.431% 271.74 ±0.00 -87.21% 1.50 ±0.003 -87.78%
10pn+10n+10ad 0.7448 ±0.0025 -0.0283 2896.69 ±2.55 -74.684% 267.27 ±0.12 -87.42% 1.47 ±0.001 -88.01%
ϕ1+ϕn+10tf 0.7445 ±0.0027 -0.0286 2932.98 ±1.46 -74.366% 268.66 ±0.11 -87.36% 1.47 ±0.001 -88.02%

CMLA11

Full Length 0.9449 ±0.0003 - 11410.96 ±2.01 - 9418.53 ±0.37 - 74.74 ±0.025 -
ϕ1+ϕn+10pn+5n 0.9251 ±0.0025 -0.0198 2851.36 ±2.77 -75.012% 1177.71 ±0.51 -87.5% 8.96 ±0.009 -88.01%
ϕ1+15pn+5n 0.9239 ±0.0006 -0.021 2896.86 ±1.38 -74.613% 1163.33 ±0.42 -87.65% 8.81 ±0.003 -88.21%
ϕ1+15pn+5v 0.9236 ±0.0015 -0.0213 2896.37 ±2.45 -74.618% 1165.31 ±0.07 -87.63% 8.86 ±0.000 -88.15%
ϕ1+ϕn+10tf 0.9225 ±0.0025 -0.0224 2931.78 ±1.55 -74.307% 1176.68 ±1.13 -87.51% 8.95 ±0.012 -88.02%
ϕ1+20pn 0.9222 ±0.0003 -0.0227 2896.46 ±1.71 -74.617% 1163.03 ±0.22 -87.65% 8.80 ±0.011 -88.22%

Table 2: Performance and resource utilization of top 5 context combinations ranked by Macro F1 scores across
datasets (full results in Tables 8-13, Appendix A). Results show median values from 5 runs with random seeds using
BERT-base model. Evaluation examines model effectiveness and computational efficiency with reduced contextual
input.

Articles were scraped using BeautifulSoup4, with
plain text extracted, outliers removed, and annota-
tions derived directly from URLs, simplifying the
process. Let U = {u1, u2, . . . , un} be the set of
scraped URLs, and A = {a1, a2, . . . , an} be the
corresponding articles. For each URL ui, a textual
label L(ui) is extracted, which is then mapped
to a numerical value N(L(ui)). Suppose ui =
https://www.abc.com/sports/hdv5oaxsbp,
then L(ui) = sports and N(L(ui)) = 5.
The dataset is represented as: D =
{(ai, N(L(ui)), L(ui)) | i ∈ {1, 2, . . . , n}}

4https://pypi.org/project/beautifulsoup4/

4.2 Experimental Setup

Each model was trained on one of 5 NVIDIA GTX
3090 GPUs (24GB each) in parallel, powered by
an Intel Core i9-12900K CPU with 64GB of RAM.
For a comprehensive evaluation, we measured mul-
tiple performance metrics, including F1 (macro),
GPU memory usage, training time, and inference
time. All reported results represent the median of
5 runs, with standard deviations (σ) also recorded.

4.3 Results

Table 2 shows minimal performance drops (0%–
1.98% for five datasets, 4.2% for IMDB) when com-
paring BERT’s full-length to top reduced-context
configurations, with significant computational sav-
ings. For AGNews, ϕ1+ϕn achieves a macro
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Dataset Context BERT DistilBERT RoBERTa ALBERT XLNet XLM-R ELECTRA score

AGNews

Full Length 0.9421 0.9395 0.9469 0.9369 0.9451 0.9567 0.9440 0.9445
ϕ1+ϕn 0.9414 0.9378 0.9444 0.9343 0.9406 0.9491 0.9404 0.9411
ϕ1+ϕn+10pn+5n 0.9408 0.9381 0.9459 0.9336 0.9433 0.9523 0.9406 0.9421
ϕ1+ϕn+10rk 0.9407 0.9369 0.9462 0.9373 0.9417 0.9520 0.9393 0.942
ϕ1+ϕn+10tf 0.9402 0.9389 0.9451 0.9337 0.9422 0.9498 0.9390 0.9413
ϕ1+ϕn+10pn+5v 0.9399 0.9353 0.9453 0.9341 0.9420 0.9395 0.9402 0.9395

BBC

Full Length 0.9888 0.9823 0.9911 0.9890 0.9821 0.9821 0.9910 0.9866
20rk 0.9888 0.9801 0.9783 0.9689 0.9664 0.9529 0.9776 0.9733
ϕ1+15n 0.9865 0.9442 0.9322 0.9397 0.9417 0.9372 0.9462 0.9468
15rk 0.9865 0.9801 0.9736 0.9733 0.9596 0.9594 0.9709 0.9719
ϕ1+10rk 0.9865 0.9823 0.9723 -0.9756 0.9743 0.9614 0.9821 0.9764
ϕ1+ϕn+10pn+5v 0.9843 0.9804 0.9750 0.9756 0.9760 0.9664 0.9818 0.9771

ENRON

Full Length 0.9957 0.9925 0.9967 0.9896 0.9970 0.9955 0.9964 0.9948
ϕ1+ϕn+10tf 0.9921 0.9881 0.9915 0.9854 0.9883 0.9879 0.9925 0.9894
ϕ1+15pn+5n 0.9918 0.9856 0.9882 0.9860 0.9883 0.9889 0.9918 0.9887
ϕ1+10pn+10n 0.9916 0.9883 0.9892 0.9874 0.9891 0.9895 0.9921 0.9896
ϕ1+10rk 0.9912 0.9862 0.9912 0.9845 0.9889 0.9882 0.9922 0.9889
ϕ1+ϕn+10pn+5n 0.9911 0.9871 0.9897 0.9859 0.9888 0.9886 0.9921 0.989

IMDB

Full Length 0.9358 0.9337 0.9592 0.9296 0.9584 0.9456 0.9607 0.9461
ϕ1+ϕn+10ad+5av 0.8938 0.8732 0.8961 0.8709 0.8976 0.8680 0.9159 0.8879
ϕ1+ϕn+15ad+10av 0.8936 0.8765 0.9014 0.8739 0.9081 0.8740 0.9164 0.8920
ϕ1+ϕn+10ad 0.8932 0.8716 0.8908 0.8698 0.8976 0.8675 0.9007 0.8845
ϕ1+ϕn+10ad+5n 0.8931 0.8727 0.8972 0.8727 0.8948 0.6839 0.9137 0.8612
ϕ1+ϕn+15ad 0.8929 0.8760 0.9056 0.8751 0.8958 0.8735 0.9167 0.8908

20News

Full Length 0.7731 0.7532 0.7591 0.7185 0.7844 0.7566 0.7454 0.7558
ϕ1+10pn+10n 0.7559 0.7333 0.7190 0.6629 0.7131 0.7062 0.7155 0.7151
20tf 0.7472 0.7202 0.6910 0.6637 0.7000 0.6841 0.6839 0.6986
ϕ1+10tf 0.7472 0.7260 0.7081 0.6738 0.7057 0.7011 0.6967 0.7084
10pn+10n+10ad 0.7448 0.7235 0.6932 0.6757 0.7076 0.6833 0.7076 0.7051
ϕ1+ϕn+10tf 0.7445 0.7211 0.7048 0.6686 0.7106 0.6920 0.6994 0.7059

CMLA11

Full Length 0.9449 0.9516 0.9622 0.9325 0.9587 0.9557 0.9567 0.9518
ϕ1+ϕn+10pn+5n 0.9251 0.9254 0.9389 0.9143 0.9234 0.9177 0.9305 0.9250
ϕ1+15pn+5n 0.9239 0.9291 0.9258 0.9151 0.9174 0.9149 0.9233 0.9214
ϕ1+15pn+5v 0.9236 0.9285 0.9238 0.9137 0.9161 0.9139 0.9275 0.9210
ϕ1+ϕn+10tf 0.9225 0.9253 0.9274 0.9076 0.9215 0.9172 0.9224 0.9206
ϕ1+20pn 0.9222 0.9262 0.9215 0.9105 0.9149 0.9147 0.9315 0.9202

Score 0.9166 0.9075 0.9102 0.8944 0.9089 0.8963 0.9115

Table 3: Macro F1 scores (median of 5 runs with different random seeds; standard deviations omitted due to page
width constraints) across different models on all datasets. The best 5 performing contexts by the BERT-base model
are selected for comparison to assess model performance in low-context training.

F1 of 0.9414 (-0.0007), reducing GPU memory
by 69.158% and training time by 81.77%. On
BBC, 20rk maintains a macro F1 of 0.9888, cut-
ting GPU memory by 75.19% and training time
by 86.38%. For ENRON, ϕ1+ϕn+10tf yields a
macro F1 of 0.9921 (-0.0036), saving 74.476%
GPU memory and 86.62% training time. IMDB’s
ϕ1+ϕn+10ad+5av achieves a macro F1 of 0.8938,
reducing GPU memory by 74.400% and train-
ing time by 87.27%, with adjectives outperform-
ing other features. On 20News, ϕ1+10pn+10n
scores a macro F1 of 0.7559 (-0.0172), saving
74.406% GPU memory and 87.34% training time.
For CMLA11, ϕ1+ϕn+10pn+5n achieves a macro
F1 of 0.9251, with 75.012% GPU memory and
87.5% training time reductions. Inference time

decreases by 82.32%–88.22% across datasets. Ex-
tending to six NLU models (Table 3), BERT leads
with a macro F1 of 0.9166, followed by ELEC-
TRA (0.9115) and RoBERTa (0.9102). Reduced-
context configurations often match or exceed full-
length performance, e.g., ALBERT on AGNews
with ϕ1+ϕn+10rk. Optimal configurations include
ϕ1+ϕn+10pn+5n for AGNews and CMLA11,
ϕ1+ϕn+10pn+5v for BBC, ϕ1+10pn+10n for EN-
RON and 20News, and ϕ1+ϕn+15ad+10av for
IMDB, showing that combining first/last sentences
with syntactic (nouns, pronouns) or semantic (ad-
jectives, verbs) features preserves performance
while reducing input complexity.

Our analysis presents our context minimization
techniques, which not only reduce computational
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Dataset Full Size (MB) Reduced Size (MB) ∆ Size (%)
AGNews 30.89 27.43 -11.20%
BBC 4.82 0.65 -86.51%
ENRON 47.60 6.69 -85.95%
IMDB 65.91 12.36 -81.25%
20News 16.10 3.56 -77.89%
CMLA11 459.00 33.85 -92.63%

Table 4: Dataset size comparison: full-length articles vs.
averaged minimized-context datasets.

resources, training, and inference time without
compromising model performance but also con-
tribute to data compression, achieving an average
file size reduction of 72.57% across six diverse
datasets, as detailed in Table 4. The most dra-
matic reduction is observed in the CMLA11 dataset,
where the data size is compressed by 92.63%, de-
creasing from 459.00 MB to 33.85 MB. Similarly,
other datasets show impressive size reductions:
BBC (86.51% reduction), ENRON (85.95% re-
duction), and IMDB (81.25% reduction). Even
the smallest reduction, observed in the AGNews
dataset, still represents an 11.20% decrease in data
size.

4.4 Evaluation with LLM
Even though the sole objective of this work is for
resource-constrained environments and language
understanding models, rather than generation, we
expanded our evaluation to include zero-shot test-
ing with Gemma-7B-IT (8.54B parameters, 725
times larger than ALBERT and 78 times larger
than BERT). This was done to assess the effec-
tiveness of the context minimization techniques
in LLMs demonstrated in Table 7 in Appendix A.
Notably, despite using a zero-shot setting, several
reduced context configurations outperformed full-
length inputs on multiple datasets. For BBC, our
context-minimized approaches achieved substan-
tial improvements of up to +32.29% accuracy us-
ing just first sentences and 15 nouns. Similarly,
for 20News, configurations using syntactic and se-
mantic features delivered accuracy gains of up to
+2.62%. The ENRON dataset showed consistent
improvements across multiple configurations, with
accuracy increases of up to +1.90%. On the other
hand, the results also show how even a 725 times
smaller finetuned model (e.g., ALBERT) can sig-
nificantly outperform LLMs in zero-shot settings in
environments where fine-tuning such large LLMs
is not computationally feasible. Moreover, fitting
and prompting even a moderate-sized LLM like

Gemma-7B-IT on a single 24GB GPU was diffi-
cult without strictly limiting batch size, response
max limit, using half precision, and enabling gradi-
ent checkpointing, with 1237 seconds on average
prompting time for each configuration on 10% of
the test data.

4.5 Ablation Study

To quantify feature subset contributions in our con-
text configurations, we conducted a hierarchical ab-
lation study across datasets (Dk ∈ D) with feature
set (F = P∪S∪E ∪T ), focusing on BERT-base’s
best-performing setups from Table 2 for consis-
tent comparison. We sequentially removed sub-
sets, evaluating Macro F1 over 5 runs. Positional
features (P , particularly ϕ1) were most impactful
(e.g., AGNews: ∆ F1 = -0.0512, CMLA11: ∆ F1
= -0.0466), followed by semantic (E) features in
20News (∆ F1 = -0.0577) and adjectives (10ad) in
IMDB (∆ F1 = -0.0250, 71–86% rhematic). Com-
bining P + E yielded 79–85% thematic coverage
(e.g., 20News: ∆ F1 = -0.2107). Statistical fea-
tures (T , e.g., TF-IDF, RAKE) contributed mini-
mally (e.g., ENRON: ∆ F1 = -0.0054), suggesting
redundancy. These findings, with SHAP values
detailed in Section 4.7, confirm that P and S syner-
gize for thematic and sentiment tasks, E enhances
domain-specific classification, and T ’s limited im-
pact highlights the primacy of linguistic features
for robust text classification with reduced compu-
tational overhead. Full results are in Table 5 in
Appendix A.

4.6 Statistical Significance Analysis

To assess performance differences, we conducted
paired t-tests with Bonferroni correction, compar-
ing Macro F1 scores between full-context and low-
context configurations across 5 runs with distinct
random seeds, following established recommenda-
tions (Dacrema et al., 2019; Cunha et al., 2021). We
tested H0 : µfull = µlow against H1 : µfull ̸= µlow,
with α = 0.05 adjusted to α′ = 0.00143 for
m = 35 comparisons per dataset. Cohen’s d quan-
tified effect sizes: negligible (|d| < 0.2), small
(0.2 ≤ |d| < 0.5), medium (0.5 ≤ |d| < 0.8), or
large (|d| ≥ 0.8). For AGNews, ENRON, IMDB,
20News, and CMLA11, differences were signifi-
cant (p < 0.00143) with small to medium effect
sizes (|d| ∈ [0.2, 0.8]), reflecting minimal practi-
cal impact, as shown by the ∆ F1 values in Ta-
ble 2. For BBC, differences were non-significant
(p > 0.00143) with negligible effect sizes (|d| <
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0.2), indicating low-context configurations perform
comparably to full-length baselines while signifi-
cantly reducing GPU memory usage, training time,
and inference time, validating their suitability for
resource-constrained settings.

4.7 Interpretability Analysis

We applied SHAP analysis on BERT-base across all
low-context configurations for AGNews, BBC, EN-
RON, IMDB, 20News, and CMLA11 to quantify
feature contributions. Overall, positional ϕ1 (first
sentence) dominates (mean SHAP: 0.24±0.03),
leveraging contextual richness and aligning with
linguistic theme-rheme theory, followed by se-
mantic pn (proper nouns, 0.17±0.02) for domain-
specific terms, and syntactic n (nouns, 0.10±0.01).
Statistical features tf (TF-IDF) and rk (RAKE
keywords) contribute least (SHAP<0.08), often
yielding lower performance. In AGNews, ϕ1

(0.26±0.02) and pn (0.18±0.02) lead, while tf
and rk (SHAP<0.07) underperform. BBC shows
rk (0.20±0.03) and ϕ1 (0.19±0.02) dominance,
with tf (SHAP<0.06) least impactful. ENRON
highlights ϕ1 (0.25±0.03) and pn (0.16±0.02),
with tf and ne (SHAP<0.08) contributing mini-
mally. IMDB emphasizes syntactic ad (adjectives,
0.20±0.02) for sentiment and ϕ1 (0.18±0.02),
while tf and ne (SHAP<0.07) are least signif-
icant. 20News favors pn (0.18±0.02) and n
(0.12±0.01), with tf and rk (SHAP<0.09) under-
performing. CMLA11 underscores pn (0.19±0.02)
and ϕ1 (0.22±0.03), with tf and rk (SHAP<0.08)
least effective. These trends align with perfor-
mance patterns in the Results section, where ϕ1-
and pn-centric configurations excel, while tf -heavy
setups lag. Collectively, ϕ1 and pn drive robust
low-context performance across datasets, justify-
ing their prioritization in feature selection, while
minimal contributions from tf and rk suggest lim-
ited utility for generalizable text classification.

4.8 Discussion

Our findings show that optimized reduced-context
configurations maintain strong classification per-
formance with minimal degradation (1.39–3.10%
average across models) compared to full-length in-
puts, while achieving 69–75% GPU memory reduc-
tion, 81–87% training time savings, and 82–88%
faster inference. First sentences (ϕ1), last sentences
(ϕn), and proper nouns (pn) capture sufficient se-
mantic information for most tasks, with SHAP val-
ues of 0.24±0.03, 0.17±0.02, and 0.10±0.01, re-

spectively. Adjectives excel in IMDB sentiment
analysis, while statistical features (TF-IDF, RAKE)
contribute least (SHAP<0.08). Longer articles, like
CMLA11 (92.63% reduction), benefit more from
context minimization than shorter ones like AG-
News (11.20% reduction). These results establish
our context minimization approach as a practical
solution for resource-efficient text classification
without significant performance trade-offs, while
our identified feature patterns across task categories
provide transferable insights that substantially re-
duce the exploration space for future implemen-
tations, providing a principled foundation for effi-
cient context selection.

5 Conclusion

This paper presents a systematic approach to con-
text minimization for efficient text classification
through strategic combinations of linguistic fea-
tures. Our evaluation across 6 datasets and 7 NLU
models demonstrates that reduced-context configu-
rations maintain competitive performance while
enhancing efficiency. The method significantly
reduces dataset sizes while preserving accuracy,
making it valuable for resource-constrained envi-
ronments. Future work should explore applying
this approach to tasks such as natural language in-
ference, question answering, and text generation to
enable more efficient language model deployment.

Limitations

While we use well-established datasets, inherent
societal biases in web content may be amplified
through feature selection, potentially affecting fair-
ness. A key limitation of our study is that we re-
stricted our exploration to 35 linguistically moti-
vated feature combinations per dataset, due to prac-
tical constraints, despite a larger possible space.
Future researchers with greater resources could
explore all possible combinations, potentially iden-
tifying alternative low-context configurations that
yield higher accuracy, which would be particularly
beneficial for those working in resource-limited
environments.

Ethical Considerations

Model results may vary due to factors such as ini-
tialization, sampling order, and hardware. Trade-
offs should be carefully evaluated across applica-
tions, particularly in sensitive domains where mis-
classification can have serious consequences.

15419



References
Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,

Jian-Guang Lou, and Weizhu Chen. 2025. Make your
llm fully utilize the context. In Proceedings of the
38th International Conference on Neural Information
Processing Systems, NIPS ’24, Red Hook, NY, USA.
Curran Associates Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions (ICLR).

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Curran Asso-
ciates Inc., Red Hook, NY, USA.

Washington Cunha, Vítor Mangaravite, Christian
Gomes, Sérgio Canuto, Elaine Resende, Cecilia
Nascimento, Felipe Viegas, Celso França, Welling-
ton Santos Martins, Jussara M. Almeida, Thier-
son Rosa, Leonardo Rocha, and Marcos André
Gonçalves. 2021. On the cost-effectiveness of neu-
ral and non-neural approaches and representations
for text classification: A comprehensive compara-
tive study. Information Processing & Management,
58(3):102481.

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Di-
etmar Jannach. 2019. Are we really making much
progress? a worrying analysis of recent neural recom-
mendation approaches. In Proceedings of the 13th
ACM Conference on Recommender Systems, RecSys
’19, page 101–109, New York, NY, USA. Association
for Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Derek Greene and Pádraig Cunningham. 2006. Practi-
cal solutions to the problem of diagonal dominance
in kernel document clustering. In Proceedings of the

23rd International Conference on Machine Learn-
ing, ICML ’06, page 377–384, New York, NY, USA.
Association for Computing Machinery.

M.A.K. Halliday and Christian M.I.M. Matthiessen.
2014. Halliday’s Introduction to Functional Gram-
mar, 4th edition. Routledge.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Bryan Klimt and Yiming Yang. 2004. The enron corpus:
A new dataset for email classification research. In
Machine Learning: ECML 2004, pages 217–226,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Armand Prieditis and Stuart Russell, editors,
Machine Learning Proceedings 1995, pages 331–339.
Morgan Kaufmann, San Francisco (CA).

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
4768–4777, Red Hook, NY, USA. Curran Associates
Inc.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben

15420

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1016/j.ipm.2020.102481
https://doi.org/10.1016/j.ipm.2020.102481
https://doi.org/10.1016/j.ipm.2020.102481
https://doi.org/10.1016/j.ipm.2020.102481
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1143844.1143892
https://doi.org/10.1145/1143844.1143892
https://doi.org/10.1145/1143844.1143892
https://arxiv.org/abs/2001.08361
https://doi.org/10.1016/B978-1-55860-377-6.50048-7
https://doi.org/10.1016/B978-1-55860-377-6.50048-7
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015/


Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,

CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-
Offload: Democratizing Billion-Scale model train-
ing. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 551–564. USENIX Associ-
ation.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic Keyword Extraction from
Individual Documents, chapter 1. John Wiley & Sons,
Ltd.

G. Salton, A. Wong, and C. S. Yang. 1975. A vector
space model for automatic indexing. Commun. ACM,
18(11):613–620.

Timo Schick and Hinrich Schütze. 2021. It‘s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2020. Energy and policy considerations
for modern deep learning research. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(09):13693–13696.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems (NeurIPS).

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

A Detailed Experimental Results

15421

https://arxiv.org/abs/2303.08774
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1609/aaai.v34i09.7123
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf


Dataset Configuration Macro F1 ∆ F1 GPU (MB) ∆ GPU Train (s) ∆ Train p-value

AGNews
ϕ1 + ϕn (Baseline) 0.9414 ± 0.0006 - 2806.52 ± 0.63 - 1359.76 ± 0.46 - -
w/o P (ϕ1) 0.8902 ± 0.0020 -0.0512 2700.12 ± 0.82 -3.78% 1290.45 ± 0.53 -5.08% <0.001
w/o P (ϕn) 0.9285 ± 0.0013 -0.0129 2702.88 ± 0.80 -3.69% 1295.67 ± 0.50 -4.71% <0.001

BBC
20rk (Baseline) 0.9888 ± 0.0022 - 2875.49 ± 1.88 - 25.42 ± 0.09 - -
w/o 10rk (10rk) 0.9303 ± 0.0030 -0.0585 2800.33 ± 1.93 -2.61% 23.88 ± 0.12 -6.06% <0.001

ENRON

ϕ1 + ϕn + 10tf (Baseline) 0.9921 ± 0.0002 - 2920.37 ± 2.28 - 375.68 ± 0.29 - -
w/o P (ϕ1) 0.9703 ± 0.0008 -0.0218 2800.88 ± 2.20 -4.10% 345.12 ± 0.34 -8.13% <0.001
w/o P (ϕn) 0.9891 ± 0.0002 -0.0030 2810.54 ± 2.25 -3.76% 355.68 ± 0.31 -5.32% <0.001
w/o T (10tf ) 0.9867 ± 0.0008 -0.0054 2855.12 ± 2.18 -2.23% 360.89 ± 0.32 -3.94% <0.001
w/o P (both) 0.9625 ± 0.0000 -0.0296 2705.66 ± 2.26 -7.34% 330.45 ± 0.36 -12.06% <0.001

IMDB

ϕ1 + ϕn + 10ad + 5av (Baseline) 0.8938 ± 0.0028 - 2920.73 ± 0.63 - 531.10 ± 0.28 - -
w/o P (ϕ1) 0.8605 ± 0.0040 -0.0333 2805.22 ± 0.70 -3.95% 500.89 ± 0.32 -5.69% <0.001
w/o P (ϕn) 0.8703 ± 0.0012 -0.0235 2815.36 ± 0.68 -3.61% 510.25 ± 0.30 -3.93% <0.001
w/o S (10ad) 0.8688 ± 0.0035 -0.0250 2855.45 ± 0.67 -2.23% 515.67 ± 0.30 -2.90% <0.001
w/o S (5av) 0.8778 ± 0.0032 -0.0160 2878.12 ± 0.65 -1.45% 520.12 ± 0.31 -2.07% <0.001
w/o P (both) 0.8432 ± 0.0015 -0.0506 2755.89 ± 0.74 -5.63% 495.45 ± 0.35 -6.72% <0.001
w/o S (both) 0.8817 ± 0.0055 -0.0121 2845.35 ± 0.66 -2.58% 512.56 ± 0.29 -3.49% <0.001

20News

ϕ1 + 10pn + 10n (Baseline) 0.7559 ± 0.0044 - 2928.46 ± 1.63 - 268.98 ± 0.03 - -
w/o P (ϕ1) 0.7407 ± 0.0005 -0.0152 2805.12 ± 1.70 -4.22% 250.12 ± 0.04 -7.01% <0.001
w/o E (10pn) 0.6982 ± 0.0012 -0.0577 2855.45 ± 1.67 -2.50% 255.12 ± 0.03 -5.17% <0.001
w/o S (10n) 0.6758 ± 0.0082 -0.0801 2878.12 ± 1.66 -1.72% 260.45 ± 0.03 -3.17% <0.001
w/o P, E 0.5452 ± 0.0022 -0.2107 2762.68 ± 1.72 -5.66% 240.85 ± 0.05 -10.46% <0.001
w/o E ,S 0.5675 ± 0.0011 -0.1884 2805.35 ± 1.69 -4.20% 245.32 ± 0.04 -8.80% <0.001
w/o P,S 0.5526 ± 0.0017 -0.2033 2785.75 ± 1.71 -4.87% 243.57 ± 0.05 -9.45% <0.001

CMLA11

ϕ1 + ϕn + 10pn + 5n (Baseline) 0.9251 ± 0.0025 - 2851.36 ± 2.77 - 1177.71 ± 0.51 - -
w/o P (ϕ1) 0.8785 ± 0.0012 -0.0466 2755.45 ± 2.81 -3.36% 1105.12 ± 0.56 -6.19% <0.001
w/o P (ϕn) 0.9154 ± 0.0015 -0.0097 2765.82 ± 2.80 -3.00% 1115.35 ± 0.55 -5.30% <0.001
w/o E (10pn) 0.9154 ± 0.0011 -0.0097 2805.12 ± 2.78 -1.62% 1125.45 ± 0.54 -4.43% <0.001
w/o S (5n) 0.9198 ± 0.0024 -0.0053 2825.12 ± 2.79 -0.92% 1150.12 ± 0.53 -2.34% <0.001
w/o P, E 0.7457 ± 0.0013 -0.1794 2710.45 ± 2.84 -4.94% 1055.33 ± 0.58 -10.39% <0.001
w/o E ,S 0.9024 ± 0.0001 -0.0227 2780.88 ± 2.80 -2.47% 1095.54 ± 0.56 -6.98% <0.001
w/o P,S 0.8115 ± 0.0009 -0.1136 2735.67 ± 2.82 -4.06% 1075.21 ± 0.57 -8.70% <0.001

Table 5: Ablation study results for the best-performing context configuration per dataset, showing Macro F1 scores,
performance degradation (∆ F1), GPU memory usage, training time, and statistical significance (p-value) for ablated
configurations. Median values from 5 runs with different random seeds are reported.

Task First Sentence Impression
News
Category

Third-tier side Wolves have been
drawn at home to Man United in
the FA Cup fifth round. Wolves,
who are ...

Sports

Sentiment The movie was absolutely stunning,
with breathtaking visuals. I went
there ...

Positive

Topic Recent quantum computing ad-
vances opened new possibilities in
cryptography. An Arab mathemati-
cian ...

Technology

Email Dear customer, you’ve won a
$2,000 gift card in lottery! Click
here to ...

Spam

Table 6: Examples of First Sentences Providing Imme-
diate Classification Signals Across Text Categories
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Dataset Context Accuracy ∆ Accuracy

AGNews

Full Length 0.5468 -
ϕ1+ϕn 0.5529 0.0061
ϕ1+ϕn+10pn+5n 0.4908 -0.0560
ϕ1+ϕn+10rk 0.4729 -0.0739
ϕ1+ϕn+10tf 0.4821 -0.0647
ϕ1+ϕn+10pn+5v 0.4747 -0.0721

BBC

Full Length 0.2466 -
20rk 0.3453 0.0987
ϕ1+15n 0.5695 0.3229
15rk 0.3632 0.1166
ϕ1+10rk 0.4126 0.1660
ϕ1+ϕn+10pn+5v 0.4215 0.1749

ENRON

Full Length 0.6159 -
ϕ1+ϕn+10tf 0.6051 -0.0108
ϕ1+15pn+5n 0.6346 0.0187
ϕ1+10pn+10n 0.6349 0.0190
ϕ1+10rk 0.6264 0.0105
ϕ1+ϕn+10pn+5n 0.6219 0.0060

IMDB

Full Length 0.6901 -
ϕ1+ϕn+10ad+5av 0.6062 -0.0839
ϕ1+ϕn+15ad+10av 0.5961 -0.0940
ϕ1+ϕn+10ad 0.6282 -0.0619
ϕ1+ϕn+10ad+5n 0.6118 -0.0783
ϕ1+ϕn+15ad 0.6204 -0.0697

20News

Full Length 0.1913 -
ϕ1+10pn+10n 0.2175 0.0262
20tf 0.1795 -0.0118
ϕ1+10tf 0.1726 -0.0187
10pn+10n+10ad 0.2152 0.0239
ϕ1+ϕn+10tf 0.2052 0.0139

CMLA11

Full Length 0.2775 -
ϕ1+ϕn+10pn+5n 0.2513 -0.0262
ϕ1+15pn+5n 0.2395 -0.0380
ϕ1+15pn+5v 0.2326 -0.0449
ϕ1+ϕn+10tf 0.2452 -0.0323
ϕ1+20pn 0.2365 -0.0410

Table 7: LLM Performance comparison of Gemma-7B-IT on full context vs. top-performing reduced context
variants (based on Table 2 across multiple datasets. The table shows Macro F1 scores and their differences (∆ F1)
from the full length baseline
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Dataset Context Macro F1 ∆ F1

AGNews

Full Length 0.9421 ± 0.0005 -
ϕ1+ϕn 0.9414 ± 0.0006 -0.0007
ϕ1+ϕn+10pn+5n 0.9408 ± 0.0029 -0.0013
ϕ1+ϕn+10rk 0.9407 ± 0.0004 -0.0014
ϕ1+ϕn+10tf 0.9402 ± 0.0004 -0.0019
ϕ1+ϕn+10pn+5v 0.9399 ± 0.0010 -0.0022
ϕ1+ϕ2 0.9394 ± 0.0005 -0.0027
ϕ1+15rk 0.9381 ± 0.0011 -0.0040
20rk 0.9380 ± 0.0003 -0.0041
ϕ1+10pn+10n 0.9364 ± 0.0022 -0.0057
ϕ1+10rk 0.9358 ± 0.0024 -0.0063
ϕ1+10pn+5ad 0.9352 ± 0.0025 -0.0069
ϕ1+15pn+5n 0.9349 ± 0.0022 -0.0072
ϕ1+10pn 0.9348 ± 0.0008 -0.0073
ϕ1+15pn+5ad 0.9347 ± 0.0017 -0.0074
ϕ1+15n 0.9346 ± 0.0010 -0.0074
ϕ1+10ad+10pn 0.9344 ± 0.0024 -0.0077
ϕ1+15pn 0.9341 ± 0.0026 -0.0080
ϕ1+5pn+5n+5ad 0.9340 ± 0.0009 -0.0081
ϕ1+5pn+5n+5ad+5v 0.9340 ± 0.0013 -0.0081
ϕ1+15pn+5v 0.9339 ± 0.0016 -0.0082
ϕ1+20pn 0.9337 ± 0.0027 -0.0084
15rk 0.9335 ± 0.0023 -0.0085
ϕ1+10tf 0.9334 ± 0.0013 -0.0087
ϕ1+10ne 0.9328 ± 0.0024 -0.0093
10pn+10n+10ad+10v 0.9327 ± 0.0004 -0.0094
ϕ1+15ad+5v 0.9307 ± 0.0007 -0.0114
ϕ1+20ad 0.9306 ± 0.0013 -0.0115
10pn+10n+10ad 0.9295 ± 0.0003 -0.0125
ϕ1+15ad 0.9292 ± 0.0010 -0.0129
ϕ1 0.9285 ± 0.0013 -0.0136
10pn+10n 0.9272 ± 0.0003 -0.0149
20tf 0.9214 ± 0.0007 -0.0207
15tf 0.9143 ± 0.0010 -0.0278
10tf+5pn 0.9134 ± 0.0010 -0.0287
10tf 0.9042 ± 0.0010 -0.0379

Table 8: Macro F1 scores for AGNews dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Dataset Context Macro F1 ∆ F1

BBC

Full Length 0.9888 ± 0.0067 -
20rk 0.9888 ± 0.0022 0
ϕ1+15n 0.9865 ± 0.0045 -0.0023
15rk 0.9865 ± 0.0032 -0.0023
ϕ1+10rk 0.9865 ± 0.0090 -0.0023
ϕ1+ϕn+10pn+5v 0.9843 ± 0.0022 -0.0045
ϕ1+ϕn+10rk 0.9843 ± 0.0022 -0.0045
10pn+10n+10ad 0.9843 ± 0.0067 -0.0045
ϕ1+10pn+5ad 0.9843 ± 0.0022 -0.0045
ϕ1+5pn+5n+5ad+5v 0.9843 ± 0.0022 -0.0045
ϕ1+15pn+5n 0.9843 ± 0.0022 -0.0045
ϕ1+15pn+5ad 0.9843 ± 0.0022 -0.0045
ϕ1+10tf 0.9843 ± 0.0067 -0.0045
ϕ1+ϕn+10pn+5n 0.9821 ± 0.0045 -0.0067
ϕ1+ϕn+10tf 0.9821 ± 0.0000 -0.0067
ϕ1+ϕn 0.9821 ± 0.0000 -0.0067
10pn+10n 0.9821 ± 0.0090 -0.0067
ϕ1+15ad+5v 0.9821 ± 0.0000 -0.0067
ϕ1+10pn+10n 0.9821 ± 0.0000 -0.0067
ϕ1+10pn 0.9821 ± 0.0045 -0.0067
ϕ1+15rk 0.9821 ± 0.0135 -0.0067
ϕ1+ϕ2 0.9798 ± 0.0022 -0.0090
10pn+10n+10ad+10v 0.9798 ± 0.0112 -0.0090
ϕ1+5pn+5n+5ad 0.9798 ± 0.0022 -0.0090
ϕ1+15pn+5v 0.9798 ± 0.0022 -0.0090
ϕ1+10ad+10pn 0.9776 ± 0.0045 -0.0112
ϕ1+10ne 0.9776 ± 0.0000 -0.0112
ϕ1+15pn 0.9776 ± 0.0045 -0.0112
ϕ1+20ad 0.9753 ± 0.0022 -0.0135
ϕ1+20pn 0.9731 ± 0.0000 -0.0157
ϕ1 0.9709 ± 0.0112 -0.0179
ϕ1+15ad 0.9709 ± 0.0067 -0.0179
20tf 0.9552 ± 0.0045 -0.0336
15tf 0.9395 ± 0.0157 -0.0493
10tf+5pn 0.9345 ± 0.0157 -0.0543
10tf 0.9214 ± 0.0157 -0.0674

Table 9: Macro F1 scores for BBC dataset across differ-
ent context settings. The Full Length setting represents
the original dataset, while other configurations use vari-
ous low-context representations.
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Dataset Context Macro F1 ∆ F1

ENRON

Full Length 0.9957 ± 0.0008 -
ϕ1+ϕn+10tf 0.9921 ± 0.0002 -0.0036
ϕ1+15pn+5n 0.9918 ± 0.0008 -0.0039
ϕ1+10pn+10n 0.9916 ± 0.0006 -0.0041
ϕ1+10rk 0.9912 ± 0.0006 -0.0045
ϕ1+ϕn+10pn+5n 0.9911 ± 0.0012 -0.0046
ϕ1+15rk 0.9909 ± 0.0002 -0.0048
ϕ1+10ad+10pn 0.9904 ± 0.0000 -0.0053
10pn+10n+10ad+10v 0.9900 ± 0.0002 -0.0057
ϕ1+ϕn+10rk 0.9900 ± 0.0016 -0.0057
ϕ1+5pn+5n+5ad 0.9898 ± 0.0006 -0.0059
ϕ1+15n 0.9895 ± 0.0009 -0.0062
ϕ1+ϕn+10pn+5v 0.9894 ± 0.0010 -0.0063
ϕ1+15pn+5ad 0.9892 ± 0.0006 -0.0065
20rk 0.9892 ± 0.0006 -0.0065
ϕ1+20pn 0.9891 ± 0.0008 -0.0066
ϕ1+10tf 0.9891 ± 0.0002 -0.0066
ϕ1+5pn+5n+5ad+5v 0.9888 ± 0.0008 -0.0069
ϕ1+15pn+5v 0.9882 ± 0.0010 -0.0075
10pn+10n+10ad 0.9879 ± 0.0002 -0.0078
ϕ1+10pn 0.9879 ± 0.0010 -0.0078
ϕ1+15pn 0.9877 ± 0.0003 -0.0080
15rk 0.9877 ± 0.0006 -0.0080
ϕ1+10pn+5ad 0.9876 ± 0.0008 -0.0081
20tf 0.9873 ± 0.0016 -0.0084
ϕ1+ϕn 0.9867 ± 0.0008 -0.0090
ϕ1+10ne 0.9867 ± 0.0002 -0.0090
10pn+10n 0.9864 ± 0.0008 -0.0093
ϕ1+15ad+5v 0.9862 ± 0.0006 -0.0095
ϕ1+20ad 0.9861 ± 0.0005 -0.0096
ϕ1+15ad 0.9855 ± 0.0005 -0.0102
ϕ1+ϕ2 0.9843 ± 0.0022 -0.0114
15tf 0.9838 ± 0.0018 -0.0119
10tf+5pn 0.9785 ± 0.0000 -0.0172
ϕ1 0.9741 ± 0.0031 -0.0216
10tf 0.9625 ± 0.0000 -0.0332

Table 10: Macro F1 scores for ENRON dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Dataset Context Macro F1 ∆ F1

IMDB

Full Length 0.9358 ± 0.0020 -
ϕ1+ϕn+10ad+5av 0.8938 ± 0.0028 -0.0420
ϕ1+ϕn+15ad+10av 0.8936 ± 0.0032 -0.0422
ϕ1+ϕn+10ad 0.8932 ± 0.0044 -0.0426
ϕ1+ϕn+10ad+5n 0.8931 ± 0.0057 -0.0427
ϕ1+ϕn+15ad 0.8929 ± 0.0023 -0.0429
ϕ1+ϕn+10tf 0.8923 ± 0.0077 -0.0435
ϕ1+ϕn+10rk 0.8908 ± 0.0048 -0.0450
ϕ1+ϕn+10ad+5v 0.8901 ± 0.0015 -0.0457
ϕ1+ϕn+10rk+10ad 0.8872 ± 0.0068 -0.0486
ϕ1+ϕn 0.8817 ± 0.0055 -0.0541
ϕ1+10ad+5rk 0.8721 ± 0.0004 -0.0637
ϕ1+15ad+10v 0.8693 ± 0.0087 -0.0665
ϕ1+15rk 0.8641 ± 0.0013 -0.0717
ϕ1+15ad+5v 0.8624 ± 0.0042 -0.0734
ϕ1+10ad+5pn+5v 0.8612 ± 0.0060 -0.0746
ϕ1+15ad 0.8607 ± 0.0027 -0.0751
ϕ1+10rk 0.8598 ± 0.0044 -0.0760
ϕ1+10ad+10pn 0.8592 ± 0.0024 -0.0766
20rk 0.8591 ± 0.0027 -0.0767
ϕ1+10ad+5n+5v 0.8583 ± 0.0027 -0.0775
10pn+10n+10ad+10v 0.8575 ± 0.0037 -0.0783
ϕ1+5pn+5n+5ad+5v 0.8561 ± 0.0011 -0.0797
ϕ1+5pn+5n+5ad 0.8521 ± 0.0023 -0.0837
ϕ1+5ad+5+ADV+5v 0.8517 ± 0.0051 -0.0841
10pn+10n+10ad 0.8502 ± 0.0012 -0.0856
ϕ1+10pn+5ad 0.8495 ± 0.0005 -0.0863
15rk 0.8492 ± 0.0008 -0.0866
ϕ1+15pn+5ad 0.8488 ± 0.0022 -0.0870
ϕ1+ϕ2 0.8481 ± 0.0039 -0.0877
20tf 0.8461 ± 0.0006 -0.0897
ϕ1+10tf 0.8453 ± 0.0089 -0.0905
ϕ1+10pn+10n 0.8376 ± 0.0002 -0.0982
ϕ1+15pn+5n 0.8335 ± 0.0035 -0.1023
ϕ1+15pn+5v 0.8306 ± 0.0028 -0.1052
ϕ1+15n 0.8281 ± 0.0003 -0.1077

Table 11: Macro F1 scores for IMDB dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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Dataset Context Macro F1 ∆ F1

20News

Full Length 0.7731 ± 0.0025 -
ϕ1+10pn+10n 0.7559 ± 0.0044 -0.0172
20tf 0.7472 ± 0.0027 -0.0259
ϕ1+10tf 0.7472 ± 0.0031 -0.0259
10pn+10n+10ad 0.7448 ± 0.0025 -0.0283
ϕ1+ϕn+10tf 0.7445 ± 0.0027 -0.0286
ϕ1+15rk 0.7412 ± 0.0055 -0.0319
10pn+10n 0.7407 ± 0.0005 -0.0324
ϕ1+5pn+5n+5ad+5v 0.7390 ± 0.0038 -0.0341
10pn+10n+10ad+10v 0.7387 ± 0.0093 -0.0344
ϕ1+ϕn+10pn+5n 0.7380 ± 0.0005 -0.0351
ϕ1+10rk 0.7374 ± 0.0060 -0.0357
ϕ1+15pn+5n 0.7366 ± 0.0046 -0.0365
ϕ1+ϕn+10rk 0.7363 ± 0.0038 -0.0368
15rk 0.7244 ± 0.0003 -0.0487
ϕ1+5pn+5n+5ad 0.7236 ± 0.0082 -0.0495
15tf 0.7111 ± 0.0096 -0.0620
ϕ1+15n 0.7092 ± 0.0016 -0.0639
20rk 0.6973 ± 0.0063 -0.0758
ϕ1+ϕn+10pn+5v 0.6971 ± 0.0011 -0.0760
ϕ1+15pn+5ad 0.6875 ± 0.0035 -0.0856
ϕ1+15pn+5v 0.6834 ± 0.0131 -0.0897
ϕ1+10pn+5ad 0.6815 ± 0.0106 -0.0916
ϕ1+10ad+10pn 0.6790 ± 0.0038 -0.0941
ϕ1+15pn 0.6760 ± 0.0074 -0.0971
ϕ1+20pn 0.6760 ± 0.0019 -0.0971
ϕ1+10pn 0.6758 ± 0.0082 -0.0973
10tf+5pn 0.6754 ± 0.0000 -0.0977
ϕ1+10ne 0.6703 ± 0.0038 -0.1028
ϕ1+ϕ2 0.6676 ± 0.0066 -0.1055
ϕ1+ϕn 0.6362 ± 0.0025 -0.1369
ϕ1+15ad+5v 0.6285 ± 0.0035 -0.1446
ϕ1+20ad 0.6149 ± 0.0041 -0.1582
ϕ1+15ad 0.6111 ± 0.0074 -0.1620
ϕ1 0.5675 ± 0.0011 -0.2056
10tf 0.5626 ± 0.0000 -0.2105

Table 12: Macro F1 scores for 20NewsGroup dataset
across different context settings. The Full Length setting
represents the original dataset, while other configura-
tions use various low-context representations.

Dataset Context Macro F1 ∆ F1

CMLA11

Full Length 0.9449 ± 0.0003 -
ϕ1+ϕn+10pn+5n 0.9251 ± 0.0025 -0.0198
ϕ1+15pn+5n 0.9239 ± 0.0006 -0.0210
ϕ1+15pn+5v 0.9236 ± 0.0015 -0.0213
ϕ1+ϕn+10tf 0.9225 ± 0.0025 -0.0224
ϕ1+20pn 0.9222 ± 0.0003 -0.0227
ϕ1+ϕn+10pn+5v 0.9218 ± 0.0005 -0.0231
ϕ1+10pn+10n 0.9218 ± 0.0017 -0.0231
ϕ1+15pn+5ad 0.9192 ± 0.0016 -0.0257
ϕ1+15pn 0.9189 ± 0.0012 -0.0260
ϕ1+5pn+5n+5ad+5v 0.9176 ± 0.0009 -0.0273
ϕ1+ϕn+10rk 0.9171 ± 0.0021 -0.0278
ϕ1+10pn+5ad 0.9165 ± 0.0005 -0.0284
ϕ1+10rk 0.9144 ± 0.0001 -0.0305
ϕ1+10ad+10pn 0.9135 ± 0.0012 -0.0314
ϕ1+15rk 0.9132 ± 0.0014 -0.0317
ϕ1+5pn+5n+5ad 0.9130 ± 0.0005 -0.0319
ϕ1+10pn 0.9125 ± 0.0011 -0.0324
ϕ1+10tf 0.9083 ± 0.0009 -0.0366
ϕ1+ϕ2 0.9076 ± 0.0008 -0.0373
ϕ1+10ne 0.9065 ± 0.0033 -0.0384
10pn+10n+10ad+10v 0.9042 ± 0.0032 -0.0407
ϕ1+15n 0.9030 ± 0.0005 -0.0419
ϕ1+ϕn 0.9024 ± 0.0001 -0.0425
ϕ1+15ad+5v 0.8948 ± 0.0013 -0.0501
ϕ1+20ad 0.8880 ± 0.0002 -0.0569
ϕ1+15ad 0.8871 ± 0.0007 -0.0578
10pn+10n+10ad 0.8867 ± 0.0019 -0.0582
10pn+10n 0.8767 ± 0.0010 -0.0682
15rk 0.8647 ± 0.0012 -0.0802
20rk 0.8635 ± 0.0003 -0.0814
ϕ1 0.8594 ± 0.0018 -0.0855
20tf 0.8490 ± 0.0034 -0.0959
10tf+5pn 0.8394 ± 0.0002 -0.1055
15tf 0.8317 ± 0.0020 -0.1132
10tf 0.8125 ± 0.0013 -0.1324

Table 13: Macro F1 scores for CMLA11 dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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