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Abstract

Pretrained language models have transformed
text classification, yet their computational
demands often render them impractical for
resource-constrained settings. We propose a
linguistically-grounded framework for context
minimization that leverages theme-rheme struc-
ture to preserve critical classification signals
while reducing input complexity. Our approach
integrates positional, syntactic, semantic, and
statistical features, guided by functional linguis-
tics, to identify optimal low-context configura-
tions. We present a methodical iterative feature
exploration protocol across 6 benchmarks, in-
cluding our novel CMLA11 dataset. Results
demonstrate substantial efficiency gains: 69-
75% reduction in GPU memory, 81-87% de-
crease in training time, and 82-88% faster in-
ference. Despite these resource savings, our
configurations maintain near-parity with full-
length inputs, with F1 (macro) reductions av-
eraging just 1.39-3.10%. Statistical signifi-
cance testing confirms minimal practical im-
pact, with some configurations outperforming
the baseline. SHAP analysis reveals specific
feature subsets contribute most significantly
across datasets, and these recurring configu-
rations offer transferable insights, reducing
the need for exhaustive feature exploration.
Our method also yields remarkable data com-
pression (72.57% average reduction, reaching
92.63% for longer documents). Ablation stud-
ies confirm synergistic feature contributions,
establishing our context minimization as an ef-
fective solution for resource-efficient text clas-
sification with minimal performance trade-offs.

1 Introduction

Pretrained language models have achieved remark-
able results across various downstream natural lan-
guage understanding (NLU) tasks such as text clas-
sification. However, attaining high accuracy of-
ten requires training these models on large-scale
datasets, which demands significant computational
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resources and entails considerable training and in-
ference times (Brown et al., 2020). As modern
PLMs continue to grow in size, fine-tuning them
with extensive datasets and long contexts becomes
impractical for many regular computing environ-
ments.

The parameter sizes of prominent NLU mod-
els, such as BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), XLM-R (Conneau and Lample,
2019), XLNet (Yang et al., 2019), and ELECTRA
(Clark et al., 2020), range from millions to billions,
depending on the variant. As training datasets ex-
pand, computational power, storage, and time re-
quirements increase exponentially in the pursuit of
higher accuracy (Kaplan et al., 2020). Fine-tuning
these models for downstream tasks often improves
accuracy but also amplifies resource demands. Sim-
ilarly, generative large language models (LLMs),
such as the largest variants of LLaMA (Touvron
et al., 2023) and GPT (OpenAl et al., 2024), are
several gigabytes in size, making them infeasible
for fine-tuning on everyday computers, unusable in
many real-world scenarios, and resulting in a large
carbon footprint (Strubell et al., 2020).

Driven by the challenges of high computational
demands, large datasets, and extended training
times, we explored methods to reduce context
while maintaining competitive accuracy. Our ini-
tial experiments revealed that the first sentence of-
ten strongly predicts the class. Fine-tuning mod-
els using only the first sentence achieved competi-
tive performance with significantly lower compu-
tational costs, motivating further exploration of
key linguistic and statistical features. Our exper-
iments include a combination of three positional
elements: first sentence (¢1), second sentence (¢2),
and last sentence (¢,,); four syntactic components:
nouns (n), verbs (v), adverbs (a,), and adjectives
(aq); two semantic attributes: named entities (n.)
and proper nouns (py); and two statistical mea-
sures: TF-IDF scores () (Salton et al., 1975) and
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RAKE keywords (r;) (Rose et al., 2010). Each
feature uniquely contributes to text representation,
enabling the reduction of contextual requirements
while maintaining task performance. For certain
combinations, we selected subsets in four different
amounts (top 5, 10, 15, and 20) from each article
to ensure focused and efficient representation.

Our extensive experiments on 7 NLU models and

5 popular text classification benchmark datasets,
AGNews (Zhang et al., 2015), Enron (Klimt and
Yang, 2004), IMDB (Maas et al., 2011), BBC
(Greene and Cunningham, 2006), and 20 News-
Groups (Lang, 1995), as well as our custom dataset,
CMLAI11 (Clean Mixed Long Articles - 11 cate-
gories), confirm our hypothesis: models can be
fine-tuned with minimal context, requiring fewer
computational resources, enabling faster training
and inference speeds, while still achieving compa-
rable accuracy.

Our contributions are as follows:

* We propose a linguistically-grounded frame-
work for context minimization in text classifi-
cation using theme-rheme structure (Halliday
and Matthiessen, 2014) to preserve essential

signals while reducing input complexity.
* We present a methodical feature exploration

protocol evaluating linguistically-motivated
feature combinations across 6 benchmarks,
restraining our evaluation to 35 linguistically-
motivated feature combinations per dataset
due to practical feasibility from a larger possi-

ble space.
e We introduce CMLA11!, a curated dataset

from 26 diverse sources across 11 balanced
classes, addressing limitations in existing
benchmarks for robust evaluation of context
minimization.

* We demonstrate through ablations and inter-
pretability analysis that our approach achieves
69-75% GPU memory reduction and 81-88%
faster training/inference with minimal perfor-
mance loss (1.39-3.10%), establishing effi-
cacy for resource-constrained scenarios.

2 Related Works

While no prior work directly addresses the specific
problem investigated in this paper, several studies
offer relevant insights that inform our approach. Re-
cent research has focused on optimizing language
model performance and efficiency across various
dimensions. Regarding context utilization, Liu et al.

"https://huggingface.co/datasets/nahid-hub/CMLA1 1

(2024) demonstrate that increasing context length
doesn’t necessarily improve performance, as mod-
els struggle with information positioned in the mid-
dle of contexts. An et al. (2025) observed that a
long context does not always lead to better results
in language models.

On the efficiency front, Schick and Schiitze
(2021) show that smaller models like ALBERT
can rival larger models through Pattern-Exploiting
Training, achieving superior performance on bench-
marks like SuperGLUE with fewer parameters.
Similarly, Dacrema et al. (2019) found that sim-
ple heuristic methods often outperform complex
neural approaches in recommendation systems, re-
inforcing our premise that computational efficiency
need not compromise performance. In text clas-
sification, Cunha et al. (2021) demonstrated that
properly-tuned non-neural methods achieve com-
petitive results while requiring significantly less
computational resources than neural alternatives,
further validating our context minimization strat-
egy. For hardware optimization, Ren et al. (2021)
introduce ZeRO-Offload to efficiently train large
models by offloading model states from GPU to
CPU memory, complementing our software-based
efficiency improvements through context minimiza-
tion.

3 Methodology

Finding appropriate context reduction methods for
accurate classification was crucial to our work. The
first sentence often captures significant information
in various classification tasks (news, sentiment,
topic, email), as shown in Appendix A Table 6.
While our findings indicate that the first sentence
yields surprisingly accurate results, it alone is insuf-
ficient for comprehensive classification. Therefore,
we incorporated linguistic, semantic, positional,
and statistical features to reduce input context, se-
lectively capturing essential information without
processing entire articles.

Positional Features: Positional features analyze
sentence placement within the text, leveraging con-
text provided by the First Sentence (¢1), Second
Sentence (¢2), or Last Sentence (¢,).

Syntactic Features: Syntactic features, such as
nouns (n), verbs (v), adverbs (a,), and adjectives
(ag), capture the grammatical structure, sentiment,
and tone of the text. These features enhance clas-
sification by identifying emotional and contextual
cues.
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Semantic Features: Semantic features, including
Named Entities (n.) and Proper Nouns (p,,), facili-
tate domain-specific understanding by identifying
specialized terms and context. This ensures precise
categorization by leveraging contextual richness.

Statistical Features: Statistical features, such as
TF-IDF scores (¢ r) and RAKE keywords (7,), cap-
ture key terms based on their significance and co-
occurrence patterns. These features optimize text
analysis while remaining computationally efficient.

3.1 Context Minimization

To condense large articles into meaningful
contexts, we systematically combined lin-
guistic features informed by theme-rheme
structure  analysis and conducted exper-
iments on six benchmark datasets: D &
{AGNews, Enron, IMDB, BBC, 20 NewsGroups,
CMLAI1}. The features were grouped into 4
categories based on their functional linguistic roles:
Positional Elements: P = {¢1, ¢2, ¢, } (capturing
thematic orientation and resolution), Syntactic
Components: S = {n,v,a,,aq} (representing
thematic actors and rhematic processes), Semantic
Attributes: & {ne,pn} (anchoring domain-
specific thematic content), Statistical Measures:
T = {t¢,rr} (complementing linguistic features
with distributional significance). Together, these
subsets form the complete feature set F, defined
as: F=PUSUEUT.

Our feature selection process is informed by theme-
rheme progression patterns from functional linguis-
tics, as detailed in Section 3.2, ensuring a theoreti-
cally grounded approach to constructing meaning-
ful feature combinations.

For a given dataset D € D, we iteratively con-
struct new datasets by systematically selecting
features from the feature set /. Initially, a new
dataset Dy, ey, is built by extracting a single fea-
ture f; € F, prioritizing thematically prominent
elements:

Dk,new1 = {fl}7 f1 e F.

The newly constructed dataset Dy, peq, is then
trained and evaluated with model MpgggrT to es-
tablish an initial performance metric V,EECR‘E Since
no prior results were available, this served as the
starting point for comparison for the rest of the
features in the feature set /. Subsequently, addi-
tional features f; € F are introduced to Dy, pew,
to construct new low-context dataset Dy, peq,, fOl-

lowing thematic-rhematic progression principles.

Similarly, for each new feature combination, the
model is trained and evaluated:

Dk,new]— = /Dk:,newj,l U {fz}a Wherej = 27 3,...
BERT
Vk:,newj = \II(MBERTv Dk,newj)
Here, ¥(-, -) represents the evaluation function that

computes the performance of model Mpggrt on
dataset D;, new; - If the evaluation metric vBERT

k,new ;

improved compared to Z/EEeRg __, the number of to-
kens associated with the newly added feature was
incrementally increased by An = 5 to enhance
thematic coverage. This increment was determined
through our theme-rheme analysis, which showed
that expanding high-prevalence thematic features
(e.g., ne, Pn, n) by 5 additional tokens typically
increased thematic coverage by 8—12% while main-
taining minimal context. The number of tokens
in linguistic features are taken based on the most
frequent occurrences in the context, aligning with
thematic prominence patterns identified in our lin-
guistic analysis.

If no improvement was observed, the feature
combination was adjusted by introducing fea-
tures from other subsets (P,S,E,7) within
F, following the theme-rheme progression
principles where we balance thematic elements
with complementary rhematic components. This
iterative process ensured systematic exploration
of feature combinations to identify those yielding
optimal performance while maintaining thematic
coherence. The iteration continued until no further
improvement was observed or a predefined limit
(35 evaluated combinations) was reached for each
dataset D;. € D, as this limit was chosen to balance
computational efficiency and resource constraints
while ensuring sufficient exploration of the feature
space for meaningful insights. The final set of eval-
uated combinations is represented as: Cypper € F.
From these combinations, the top 5 performing
reduced context datasets Dy, are identified
based on Cyyg,, With all top configurations
demonstrating high thematic coverage (79-85%)
despite minimal token usage. Finally, 6 prominent
NLU models are used to trained and evaluated to
establish the understanding affectivness of reduced
contexts trained on kapfs where Model €
{DistiBERT, RoBERTa, ALBERT, XLNet, XLM-R,
ELECTRA}. We evaluate these models
My, € Mmode on these reduced datasets.
The performance metric Vi i" is computed as

follows/\/l

VDk,:G'Dk .
Vi = Y ( Mo, D j), 9% op-s

YM m€E Mmodel
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This formulation ensures that our performance eval-
uation is both structured and consistent across dif-
ferent models and data, while maintaining the lin-
guistic integrity of our theoretically-motivated fea-
ture selection approach.

3.2 Information Structure Grounding

Our feature selection methodology is grounded in
theme-rheme structure from functional linguistics
(Halliday and Matthiessen, 2014). Using spaCy’s
dependency parser with custom theme-rheme anno-
tation, we analyzed a 10% stratified sample of each
dataset D;, € D, identifying clause constituents
and their thematic prominence. Themes (¢1) es-
tablish discourse topics, while rhemes (p,, ®,)
provide complementary information. Configura-
tions combining ¢; with p,, or ¢,, outperformed
others by capturing the full thematic arc. Analy-
sis showed ¢; with 82-90% thematic prevalence,
followed by ¢, (61-77%) and ¢ (41-58%). Se-
mantic features like proper nouns (p,,) had 65-78%
thematic association, named entities (n.) 55-70%,
and nouns (n) 60-74%, while verbs (v), adjec-
tives (aq), and adverbs (a,) dominated rhematic
space (71-86%). TF-IDF (t;) and RAKE key-
words () showed weak thematic alignment (32—
45%), limiting their SHAP analysis contribution
(Lundberg and Lee, 2017). Our 35 feature com-
binations, designed to maximize thematic cover-
age (83.7% across datasets) while minimizing to-
ken count, were guided by this linguistic analysis.
Theme-rheme prevalence correlated strongly with
SHAP values, validating our approach and explain-
ing performance patterns in Section 4.7.

3.3 Training Setup

We utilized Mggrr and M yodel, implemented in
PyTorch? via Hugging Face Transformers? for re-
producibility and scalability. Default tokenizers
were used, with stratified sampling splitting data
into training (80%), validation (10%), and test
(10%) sets to ensure balanced class representation.
Text preprocessing employed Python’s parallel ex-
ecution across CPU cores, with sequence lengths
of 512 tokens for full-context and 64 tokens for
low-context experiments, the latter empirically de-
termined through 5 configurations on AGNews test-
ing 32, 64, and 128 tokens with BERT’s tokenizer
and validated with ALBERT’s tokenizer as the
smallest model in the baseline. Future researchers

2https://py’corch.org/
Shttps://huggingface.co/

with high CPU scores can utilize all available CPU
cores for faster data preprocessing. Training used
cross-entropy loss, AdamW optimizer (learning
rate 2 x 107?), linear decay scheduler, 5 epochs,
and batch size of 32, selecting the model with low-
est validation loss and reporting median results
from 5 runs with different random seeds per model-
dataset-context combination.

4 Experiments and Results

In this section, we first describe our datasets and
experimental setup, followed by the results of our
experiments and an analysis of their implications.

Dataset  #Train #Dev #Test #Label Avg Len
AGNEWS 102,080 12,760 12,760 4 37.84

BBC 1,780 222 223 5 390.3

ENRON 26,676 3,334 3,335 2 306.77
IMDB 40,000 5,000 5,000 2 231.16
20NEWS 15,077 1,884 1,885 20 181.67
CMLA11 88,000 11,000 11,000 11 716.64

Table 1: Statistical Summary of Datasets Used in Our
Experiments: Sample Distribution, Label Counts, and
Average Word Count.

4.1 Datasets

We evaluated five public text classification bench-
mark datasets and CMLA 11, with statistics in Table
1, varying in article length and nature to test context
minimization across diverse challenges. Instead
of default splits, we merged data and created 80-
10-10 train-validation-test splits. AGNews (Zhang
et al., 2015) (127,600 samples, 4 categories, 37.84-
word average) offers a compact news classification
testbed. BBC (Greene and Cunningham, 2006)
(2,225 samples, 5 categories, 390.3-word average)
provides structured news articles. ENRON (Klimt
and Yang, 2004) (33,345 samples, binary, 306.77-
word average) tests spam email classification with
noisy data. IMDB (Maas et al., 2011) (50,000
reviews, binary, 231.16-word average) evaluates
sentiment analysis on variable-length reviews. 20
NewsGroups (Lang, 1995) (18,846 samples, 20 top-
ics, 181.67-word average) presents diverse topical
classification.

CMLAI11, our custom dataset, includes 110,000
curated long articles from 26 diverse sources (news-
papers, blogs, magazines) across 11 categories,
averaging 716.64 tokens, designed to test models
on varied American and British English texts and
provide a balanced text classification benchmark.
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Dataset Context MacroF1 AF1

GPU (MB)

A GPU Train(s) A Train Infer(s) A Infer

Full Length 0.9421 £0.0005 -

9099.69 +0.77 -

7458.14 +0.30 - 58.53 +0.95 -

b1+Pn 0.9414 +0.0006 -0.0007 2806.52+0.63 -69.158% 1359.76 +0.46 -81.77% 10.35 +0.005 -82.32%
AGNews G1+0n+10p,+5n  0.9408 +0.0029 -0.0013 2851.25 +1.32 -68.666% 1340.97 +0.36 -82.02% 10.17 +0.012 -82.63%
P1+Pn+107y 0.9407 +0.0004 -0.0014 2896.72 +2.70 -68.167% 1343.95 +0.03 -81.98% 10.17 +0.000 -82.62%
P1+Pn+10ts 0.9402 +0.0004 -0.0019 2896.43 +1.18 -68.170% 1341.75 +0.17 -82.01% 10.17 +0.005 -82.62%
P1+Pn+10pp+5v  0.9399 +0.0010 -0.0022 2896.49 +1.53 -68.169% 1340.70 +0.07 -82.02% 10.18 +0.014 -82.61%
Full Length 0.9888 +0.0067 - 11588.46 +1.02 - 186.59 +0.61 - 1.47 20.001 -
207y 0.9888 +0.0022 0 2875.49 +1.88 -75.187% 25.42 +0.09 -86.38% 0.18 +0.001 -87.67%
BBC ¢1+15n 0.9865 +0.0045 -0.0023 2910.14 +1.48 -74.888% 25.26 +0.00 -86.46% 0.18 £0.003 -87.6%
157 0.9865 +0.0032 -0.0023 2875.60 +2.89 -75.186% 25.17 20.01 -86.51% 0.18 +0.000 -87.75%
¢1+107 0.9865 +0.0090 -0.0023 2910.49 +1.16 -74.885% 25.29 +0.01 -86.45% 0.18 +0.001 -87.67%
G1+dn+10p,+5v  0.9843 +0.0022 -0.0045 2920.37 +2.85 -74.799% 23.69 z0.01 -87.30% 0.19 +0.004 -87.20%
Full Length 0.9957 +0.0008 - 11441.45 +1.78 - 2808.19 +1.88 - 22.64 +0.005 -
G1+pn+10tf 0.9921 +0.0002 -0.0036 2920.37 +2.28 -74.476% 375.68 £0.29 -86.62% 2.68 +0.003 -88.14%
ENRON ¢1+15p,+5n 0.9918 +0.0008 -0.0039 2875.13 +1.06 -74.871% 353.76 +0.03 -87.4% 2.72 +0.001 -87.98%
¢1+10pp+10n 0.9916 +0.0006 -0.0041 2920.49 +1.65 -74.475% 350.30 20.04 -87.53% 2.67 +0.001 -88.2%
¢1+10r; 0.9912 +0.0006 -0.0045 2860.69 +0.68 -74.997% 355.98 +0.17 -87.32% 2.72 +0.001 -87.99%
G1+Pn+10p,+5n  0.9911 20.0012 -0.0046 2920.24 +1.04 -74.477% 377.22 +0.63 -86.57% 2.74 +0.029 -87.91%
Full Length 0.9358 +0.0020 - 11409.26 +1.45 - 4171.13 £1.69 - 33.46 +0.009 -
P1+Pn+10aq+5a, 0.8938 +0.0028 -0.042 2920.73 +0.63 -74.400% 531.1 028 -87.27% 4.05 £0.003 -87.89%
IMDB P1+Pn+15a4+10a, 0.8936 +0.0032 -0.0422 2934.43 221 -74.280% 525.79 x0.01 -87.39% 3.99 +0.002 -88.08%
G1+Pn+10aq 0.8932 +0.0044 -0.0426 2920.37 +2.38 -74.404% 530.78 +0.21 -87.27% 4.03 20.001 -87.94%
P1+Pn+10aq+5n  0.8931 £0.0057 -0.0427 2920.58 +1.02 -74.402% 530.47 +0.15 -87.28% 4.07 +0.046 -87.84%
P1+dn+15a4 0.8929 £0.0023 -0.0429 2924.69 +1.13 -74.366% 524.87 +0.13 -87.42% 3.99 +0.000 -88.07%
Full Length 0.7731 £0.0025 - 11441.92 +0.58 - 2124.75 0.41 - 12.26 +0.002 -
¢1+10pn+10n 0.7559 £0.0044 -0.0172 2928.46 +1.63 -74.406% 268.98 £0.03 -87.34% 1.48 +0.001 -87.97%
20News 20t 0.7472 +0.0027 -0.0259 2896.95 +0.51 -74.681% 270.65 +0.03 -87.26% 1.54 +0.043 -87.46%
¢1+10t 5 0.7472 20.0031 -0.0259 2925.58 +0.75 -74.431% 271.74 +0.00 -87.21% 1.50 £0.003 -87.78%
10p,+10n+10ay  0.7448 +0.0025 -0.0283 2896.69 +2.55 -74.684% 267.27 +0.12 -87.42% 1.47 20.001 -88.01%
P1+pn+10t ¢ 0.7445 +0.0027 -0.0286 2932.98 +1.46 -74.366% 268.66 +0.11 -87.36% 1.47 +0.001 -88.02%
Full Length 0.9449 +0.0003 - 11410.96 2.01 - 9418.53 +0.37 - 74.74 +0.025 -
G14+Pn+10pp+5n  0.9251 +0.0025 -0.0198 2851.36 +2.77 -75.012% 1177.71 +0.51 -87.5% 8.96 +0.009 -88.01%
CMLA11 G1+15pn+5n 0.9239 +0.0006 -0.021 2896.86 +1.38 -74.613% 1163.33 +0.42 -87.65% 8.81 £0.003 -88.21%
¢1+15pn+5v 0.9236 +0.0015 -0.0213 2896.37 +2.45 -74.618% 1165.31 +0.07 -87.63% 8.86 +0.000 -88.15%
G1+pn+10t ¢ 0.9225 +0.0025 -0.0224 2931.78 +1.55 -74.307% 1176.68 £1.13 -87.51% 8.95 z0.012 -88.02%
¢14+20pn, 0.9222 +0.0003 -0.0227 2896.46 +1.71 -74.617% 1163.03 +0.22 -87.65% 8.80 +0.011 -88.22%

Table 2: Performance and resource utilization of top 5 context combinations ranked by Macro F1 scores across
datasets (full results in Tables 8-13, Appendix A). Results show median values from 5 runs with random seeds using
BERT-base model. Evaluation examines model effectiveness and computational efficiency with reduced contextual

input.

Articles were scraped using BeautifulSoup®*, with
plain text extracted, outliers removed, and annota-
tions derived directly from URLSs, simplifying the
process. Let Y = {uy,us,...,u,} be the set of
scraped URLs, and A = {aj,aq,...,a,} be the
corresponding articles. For each URL wu;, a textual
label L(u;) is extracted, which is then mapped
to a numerical value N(L(u;)). Suppose u; =
https://www.abc.com/sports/hdv5oaxsbp,
then L(u;) = sports and N(L(u;)) = 5.
The dataset is represented as: D =
{(ai, N(L(u;)), L(u;)) | i € {1,2,...,n}}

*https://pypi.org/project/beautifulsoup4/

4.2 Experimental Setup

Each model was trained on one of 5 NVIDIA GTX
3090 GPUs (24GB each) in parallel, powered by
an Intel Core 19-12900K CPU with 64GB of RAM.
For a comprehensive evaluation, we measured mul-
tiple performance metrics, including F1 (macro),
GPU memory usage, training time, and inference
time. All reported results represent the median of
5 runs, with standard deviations (o) also recorded.

4.3 Results

Table 2 shows minimal performance drops (0%—
1.98% for five datasets, 4.2% for IMDB) when com-
paring BERT’s full-length to top reduced-context
configurations, with significant computational sav-
ings. For AGNews, ¢1+¢, achieves a macro
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Dataset Context BERT DistilBERT RoBERTa ALBERT XLNet XLM-R ELECTRA score
Full Length 0.9421 0.9395 0.9469 0.9369 0.9451 0.9567 0.9440  0.9445
P1+¢n 0.9414 09378 0.9444 0.9343  0.9406 0.9491 0.9404  0.9411
AGNews G1+Pn+10p,+5n  0.9408 0.9381 0.9459 0.9336 0.9433 0.9523 0.9406 0.9421
G1+Pn+10r, 0.9407  0.9369 0.9462 0.9373 0.9417 0.9520 0.9393 0.942
P1+Pn+10t5 0.9402  0.9389 0.9451 0.9337 0.9422 0.9498 0.9390 0.9413
P1+Pn+10p,+5v 09399  0.9353 0.9453 0.9341 0.9420 0.9395 0.9402  0.9395
Full Length 0.9888 0.9823 0.9911 0.9890 0.9821 0.9821 0.9910  0.9866
207 0.9888  0.9801 0.9783 0.9689 0.9664 0.9529 0.9776  0.9733
BBC ¢1+15n 0.9865 0.9442 0.9322 0.9397 0.9417 0.9372 0.9462  0.9468
157y 0.9865 0.9801 0.9736 0.9733  0.9596 0.9594 0.9709 09719
¢1+10r 0.9865 0.9823 0.9723 -0.9756 0.9743 0.9614 0.9821 0.9764
G1+Pn+10p,+5v  0.9843 0.9804 0.9750 0.9756 0.9760 0.9664 0.9818 0.9771
Full Length 0.9957  0.9925 0.9967 0.9896 0.9970 0.9955 0.9964  0.9948
D1+pn+10ty 0.9921 0.9881 0.9915 0.9854 0.9883 0.9879 0.9925 0.9894
ENRON ¢1+15pn+5n 0.9918 0.9856 0.9882 0.9860 0.9883 0.9889 0.9918  0.9887
¢1+10p,+10n 0.9916  0.9883 0.9892 0.9874 0.9891 0.9895 0.9921  0.9896
¢1+107% 0.9912  0.9862 0.9912 0.9845 0.9889 0.9882 0.9922  0.9889
¢1+0n+10p,+5n  0.9911 0.9871 0.9897 0.9859 0.9888 0.9886 0.9921 0.989
Full Length 0.9358 0.9337 0.9592 0.9296 0.9584 0.9456 0.9607  0.9461
¢1+dn+10ag+5a, 0.8938  0.8732 0.8961 0.8709 0.8976 0.8680 0.9159  0.8879
IMDB ¢1+dn+15a4+10a,, 0.8936  0.8765 0.9014 0.8739 0.9081 0.8740 0.9164  0.8920
d1+Pn+10aq 0.8932  0.8716 0.8908 0.8698 0.8976 0.8675 0.9007  0.8845
P1+Ppn+10aq+5n  0.8931 0.8727 0.8972 0.8727 0.8948 0.6839 0.9137  0.8612
P1+Pn+15a4 0.8929  0.8760 0.9056 0.8751 0.8958 0.8735 0.9167 0.8908
Full Length 0.7731 0.7532 0.7591 0.7185 0.7844 0.7566 0.7454  0.7558
¢1+10p,+10n 0.7559  0.7333 0.7190 0.6629 0.7131 0.7062 0.7155  0.7151
20News 20t s 0.7472  0.7202 0.6910 0.6637 0.7000 0.6841 0.6839  0.6986
¢1+10t ¢ 0.7472  0.7260 0.7081 0.6738 0.7057 0.7011 0.6967  0.7084
10p,+10n+10a4 0.7448 0.7235 0.6932 0.6757 0.7076 0.6833 0.7076  0.7051
P1+pn+10t5 0.7445 0.7211 0.7048 0.6686 0.7106 0.6920 0.6994  0.7059
Full Length 0.9449 09516 0.9622 0.9325 0.9587 0.9557 0.9567  0.9518
G1+On+10p,+5n 09251 0.9254 0.9389 0.9143 0.9234 0.9177 0.9305  0.9250
CMLA11 d1+15p,+5n 0.9239  0.9291 0.9258 0.9151 09174 0.9149 0.9233  0.9214
¢1+15p,+5v 0.9236  0.9285 0.9238 0.9137 09161 0.9139 0.9275  0.9210
P1+pn+10t5 0.9225 0.9253 0.9274 0.9076 0.9215 0.9172 0.9224  0.9206
¢1+20pn, 0.9222  0.9262 0.9215 0.9105 0.9149 0.9147 0.9315 0.9202
Score 0.9166 0.9075 0.9102 0.8944  0.9089 0.8963 0.9115

Table 3: Macro F1 scores (median of 5 runs with different random seeds; standard deviations omitted due to page
width constraints) across different models on all datasets. The best 5 performing contexts by the BERT-base model
are selected for comparison to assess model performance in low-context training.

F1 of 0.9414 (-0.0007), reducing GPU memory
by 69.158% and training time by 81.77%. On
BBC, 20r; maintains a macro F1 of 0.9888, cut-
ting GPU memory by 75.19% and training time
by 86.38%. For ENRON, ¢1+¢,+10t; yields a
macro F1 of 0.9921 (-0.0036), saving 74.476%
GPU memory and 86.62% training time. IMDB’s
¢1+¢Pn+10a4+5a, achieves a macro F1 of 0.8938,
reducing GPU memory by 74.400% and train-
ing time by 87.27%, with adjectives outperform-
ing other features. On 20News, ¢1+10p,+10n
scores a macro F1 of 0.7559 (-0.0172), saving
74.406% GPU memory and 87.34% training time.
For CMLA11, ¢1+¢,+10p,+5n achieves a macro
F1 of 0.9251, with 75.012% GPU memory and
87.5% training time reductions. Inference time

decreases by 82.32%—-88.22% across datasets. Ex-
tending to six NLU models (Table 3), BERT leads
with a macro F1 of 0.9166, followed by ELEC-
TRA (0.9115) and RoBERTa (0.9102). Reduced-
context configurations often match or exceed full-
length performance, e.g., ALBERT on AGNews
with ¢1+¢,+107r;. Optimal configurations include
O1+Pn+10p,+5n for AGNews and CMLAII,
P14+ ¢n+10p,+5v for BBC, ¢1+10p,+10n for EN-
RON and 20News, and ¢1+¢,+15a4+10a, for
IMDB, showing that combining first/last sentences
with syntactic (nouns, pronouns) or semantic (ad-
jectives, verbs) features preserves performance
while reducing input complexity.

Our analysis presents our context minimization
techniques, which not only reduce computational
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Dataset Full Size (MB) Reduced Size (MB) A Size (%)
AGNews 30.89 27.43 -11.20%
BBC 4.82 0.65 -86.51%
ENRON 47.60 6.69 -85.95%
IMDB 65.91 12.36 -81.25%
20News 16.10 3.56 -77.89%
CMLALI1 459.00 33.85 -92.63%

Table 4: Dataset size comparison: full-length articles vs.
averaged minimized-context datasets.

resources, training, and inference time without
compromising model performance but also con-
tribute to data compression, achieving an average
file size reduction of 72.57% across six diverse
datasets, as detailed in Table 4. The most dra-
matic reduction is observed in the CMLA11 dataset,
where the data size is compressed by 92.63%, de-
creasing from 459.00 MB to 33.85 MB. Similarly,
other datasets show impressive size reductions:
BBC (86.51% reduction), ENRON (85.95% re-
duction), and IMDB (81.25% reduction). Even
the smallest reduction, observed in the AGNews
dataset, still represents an 11.20% decrease in data
size.

4.4 Evaluation with LLM

Even though the sole objective of this work is for
resource-constrained environments and language
understanding models, rather than generation, we
expanded our evaluation to include zero-shot test-
ing with Gemma-7B-IT (8.54B parameters, 725
times larger than ALBERT and 78 times larger
than BERT). This was done to assess the effec-
tiveness of the context minimization techniques
in LLLMs demonstrated in Table 7 in Appendix A.
Notably, despite using a zero-shot setting, several
reduced context configurations outperformed full-
length inputs on multiple datasets. For BBC, our
context-minimized approaches achieved substan-
tial improvements of up to +32.29% accuracy us-
ing just first sentences and 15 nouns. Similarly,
for 20News, configurations using syntactic and se-
mantic features delivered accuracy gains of up to
+2.62%. The ENRON dataset showed consistent
improvements across multiple configurations, with
accuracy increases of up to +1.90%. On the other
hand, the results also show how even a 725 times
smaller finetuned model (e.g., ALBERT) can sig-
nificantly outperform LLMs in zero-shot settings in
environments where fine-tuning such large LLMs
is not computationally feasible. Moreover, fitting
and prompting even a moderate-sized LLM like

Gemma-7B-IT on a single 24GB GPU was diffi-
cult without strictly limiting batch size, response
max limit, using half precision, and enabling gradi-
ent checkpointing, with 1237 seconds on average
prompting time for each configuration on 10% of
the test data.

4.5 Ablation Study

To quantify feature subset contributions in our con-
text configurations, we conducted a hierarchical ab-
lation study across datasets (D € D) with feature
set (F = PUSUEUT), focusing on BERT-base’s
best-performing setups from Table 2 for consis-
tent comparison. We sequentially removed sub-
sets, evaluating Macro F1 over 5 runs. Positional
features (P, particularly ¢;) were most impactful
(e.g., AGNews: A F1 =-0.0512, CMLA11: A Fl1
= -0.0466), followed by semantic (£) features in
20News (A F1 =-0.0577) and adjectives (10ay4) in
IMDB (A F1 =-0.0250, 71-86% rhematic). Com-
bining P + £ yielded 79—85% thematic coverage
(e.g., 20News: A F1 =-0.2107). Statistical fea-
tures (7, e.g., TE-IDF, RAKE) contributed mini-
mally (e.g., ENRON: A F1 =-0.0054), suggesting
redundancy. These findings, with SHAP values
detailed in Section 4.7, confirm that P and S syner-
gize for thematic and sentiment tasks, £ enhances
domain-specific classification, and 7’s limited im-
pact highlights the primacy of linguistic features
for robust text classification with reduced compu-
tational overhead. Full results are in Table 5 in
Appendix A.

4.6 Statistical Significance Analysis

To assess performance differences, we conducted
paired t-tests with Bonferroni correction, compar-
ing Macro F1 scores between full-context and low-
context configurations across 5 runs with distinct
random seeds, following established recommenda-
tions (Dacrema et al., 2019; Cunha et al., 2021). We
tested Ho : pran = fuow against Hy @ pran # fliows
with a = 0.05 adjusted to o’ = 0.00143 for
m = 35 comparisons per dataset. Cohen’s d quan-
tified effect sizes: negligible (|d| < 0.2), small
(0.2 < |d| < 0.5), medium (0.5 < |d] < 0.8), or
large (|d| > 0.8). For AGNews, ENRON, IMDB,
20News, and CMLAI11, differences were signifi-
cant (p < 0.00143) with small to medium effect
sizes (|d| € [0.2,0.8]), reflecting minimal practi-
cal impact, as shown by the A F1 values in Ta-
ble 2. For BBC, differences were non-significant
(p > 0.00143) with negligible effect sizes (|d| <

15418



0.2), indicating low-context configurations perform
comparably to full-length baselines while signifi-
cantly reducing GPU memory usage, training time,
and inference time, validating their suitability for
resource-constrained settings.

4.7 Interpretability Analysis

We applied SHAP analysis on BERT-base across all
low-context configurations for AGNews, BBC, EN-
RON, IMDB, 20News, and CMLA11 to quantify
feature contributions. Overall, positional ¢; (first
sentence) dominates (mean SHAP: 0.2440.03),
leveraging contextual richness and aligning with
linguistic theme-rheme theory, followed by se-
mantic p,, (proper nouns, 0.17+0.02) for domain-
specific terms, and syntactic n (nouns, 0.10£0.01).
Statistical features t; (TF-IDF) and r;, (RAKE
keywords) contribute least (SHAP<0.08), often
yielding lower performance. In AGNews, ¢
(0.2640.02) and p,, (0.1840.02) lead, while ¢
and r; (SHAP<0.07) underperform. BBC shows
ri (0.20+0.03) and ¢; (0.1940.02) dominance,
with ¢y (SHAP<0.06) least impactful. ENRON
highlights ¢; (0.2540.03) and p, (0.16£0.02),
with ¢; and n. (SHAP<0.08) contributing mini-
mally. IMDB emphasizes syntactic a4 (adjectives,
0.201+0.02) for sentiment and ¢; (0.18+0.02),
while ¢y and n. (SHAP<0.07) are least signif-
icant. 20News favors p, (0.1840.02) and n
(0.12+£0.01), with ¢ and 71, (SHAP<0.09) under-
performing. CMLAT11 underscores p,, (0.19+0.02)
and ¢1 (0.224:0.03), with ¢ ¢ and r;, (SHAP<0.08)
least effective. These trends align with perfor-
mance patterns in the Results section, where ¢1-
and py,-centric configurations excel, while ¢ ;-heavy
setups lag. Collectively, ¢ and p,, drive robust
low-context performance across datasets, justify-
ing their prioritization in feature selection, while
minimal contributions from ¢; and rj, suggest lim-
ited utility for generalizable text classification.

4.8 Discussion

Our findings show that optimized reduced-context
configurations maintain strong classification per-
formance with minimal degradation (1.39-3.10%
average across models) compared to full-length in-
puts, while achieving 69-75% GPU memory reduc-
tion, 81-87% training time savings, and 82-88%
faster inference. First sentences (¢1), last sentences
(¢n), and proper nouns (p,,) capture sufficient se-
mantic information for most tasks, with SHAP val-
ues of 0.24+0.03, 0.17£0.02, and 0.10£0.01, re-

spectively. Adjectives excel in IMDB sentiment
analysis, while statistical features (TF-IDF, RAKE)
contribute least (SHAP<0.08). Longer articles, like
CMLA11 (92.63% reduction), benefit more from
context minimization than shorter ones like AG-
News (11.20% reduction). These results establish
our context minimization approach as a practical
solution for resource-efficient text classification
without significant performance trade-offs, while
our identified feature patterns across task categories
provide transferable insights that substantially re-
duce the exploration space for future implemen-
tations, providing a principled foundation for effi-
cient context selection.

5 Conclusion

This paper presents a systematic approach to con-
text minimization for efficient text classification
through strategic combinations of linguistic fea-
tures. Our evaluation across 6 datasets and 7 NLU
models demonstrates that reduced-context configu-
rations maintain competitive performance while
enhancing efficiency. The method significantly
reduces dataset sizes while preserving accuracy,
making it valuable for resource-constrained envi-
ronments. Future work should explore applying
this approach to tasks such as natural language in-
ference, question answering, and text generation to
enable more efficient language model deployment.

Limitations

While we use well-established datasets, inherent
societal biases in web content may be amplified
through feature selection, potentially affecting fair-
ness. A key limitation of our study is that we re-
stricted our exploration to 35 linguistically moti-
vated feature combinations per dataset, due to prac-
tical constraints, despite a larger possible space.
Future researchers with greater resources could
explore all possible combinations, potentially iden-
tifying alternative low-context configurations that
yield higher accuracy, which would be particularly
beneficial for those working in resource-limited
environments.

Ethical Considerations

Model results may vary due to factors such as ini-
tialization, sampling order, and hardware. Trade-
offs should be carefully evaluated across applica-
tions, particularly in sensitive domains where mis-
classification can have serious consequences.
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Dataset Configuration Macro F1 AF1 GPU (MB) A GPU Train (s) A Train | p-value
¢1 + ¢ (Baseline) 0.9414 + 0.0006 - 2806.52 + 0.63 - 1359.76 + 0.46 - -
AGNews | w/o P (¢1) 0.8902 + 0.0020 | -0.0512 | 2700.12 +0.82 | -3.78% | 1290.45 + 0.53 | -5.08% | <0.001
w/o P (¢n) 0.9285 +0.0013 | -0.0129 | 2702.88 + 0.80 | -3.69% | 1295.67 +0.50 | -4.71% | <0.001
BBC 20ry (Baseline) 0.9888 + 0.0022 - 2875.49 + 1.88 - 25.42 4+ 0.09 - -
w/o 107 (107) 0.9303 + 0.0030 | -0.0585 | 2800.33 +1.93 | -2.61% | 23.88 £0.12 -6.06% | <0.001
o1+ ¢n + 10ty (Baseline) 0.9921 + 0.0002 - 2920.37 +2.28 - 375.68 &+ 0.29 - -
wlo P (¢1) 0.9703 + 0.0008 | -0.0218 | 2800.88 +2.20 | -4.10% | 345.12+0.34 | -8.13% | <0.001
ENRON | w/o P (¢y,) 0.9891 + 0.0002 | -0.0030 | 2810.54 +2.25 | -3.76% | 355.68 +0.31 | -5.32% | <0.001
w/o T (10ty) 0.9867 + 0.0008 | -0.0054 | 2855.12 +2.18 | -2.23% | 360.89 +0.32 | -3.94% | <0.001
w/o P (both) 0.9625 + 0.0000 | -0.0296 | 2705.66 &+ 2.26 | -7.34% | 330.45 +0.36 | -12.06% | <0.001
¢1 + én + 10agq + Ha, (Baseline) | 0.8938 + 0.0028 - 2920.73 £+ 0.63 - 531.10 £ 0.28 - -
w/o P (¢1) 0.8605 + 0.0040 | -0.0333 | 2805.22 + 0.70 | -3.95% | 500.89 +0.32 | -5.69% | <0.001
w/o P (¢n) 0.8703 +0.0012 | -0.0235 | 2815.36 + 0.68 | -3.61% | 510.25 +0.30 | -3.93% | <0.001
IMDB w/o S (10ay) 0.8688 + 0.0035 | -0.0250 | 2855.45 £0.67 | -2.23% | 515.67 = 0.30 -2.90% <0.001
w/o S (5ay) 0.8778 + 0.0032 | -0.0160 | 2878.12 + 0.65 | -1.45% | 520.12+0.31 | -2.07% | <0.001
w/o P (both) 0.8432 +0.0015 | -0.0506 | 2755.89 +0.74 | -5.63% | 49545 +0.35 | -6.72% | <0.001
w/o S (both) 0.8817 + 0.0055 | -0.0121 | 2845.35 4+ 0.66 | -2.58% | 512.56 +0.29 | -3.49% | <0.001
¢1 + 10p,, + 10n (Baseline) 0.7559 + 0.0044 - 2928.46 + 1.63 - 268.98 + 0.03 - -
wlo P (¢1) 0.7407 + 0.0005 | -0.0152 | 2805.12 £ 1.70 | -4.22% | 250.12 £+ 0.04 -7.01% <0.001
w/o € (10py,) 0.6982 +0.0012 | -0.0577 | 2855.45 + 1.67 | -2.50% | 255.12+0.03 | -5.17% | <0.001
20News | w/o S (10,) 0.6758 +0.0082 | -0.0801 | 2878.12 + 1.66 | -1.72% | 260.45 +0.03 | -3.17% | <0.001
wlo P, E 0.5452 +0.0022 | -0.2107 | 2762.68 + 1.72 | -5.66% | 240.85 +0.05 | -10.46% | <0.001
wlo &, S 0.5675 +0.0011 | -0.1884 | 2805.35 + 1.69 | -4.20% | 245.32+0.04 | -8.80% | <0.001
w/o P, S 0.5526 + 0.0017 | -0.2033 | 2785.75 £ 1.71 | -4.87% | 243.57 &+ 0.05 -9.45% <0.001
¢1 + ¢ + 10p, + 5n (Baseline) | 0.9251 + 0.0025 - 2851.36 +2.77 - 1177.71 £ 0.51 - -
w/o P (¢1) 0.8785 +0.0012 | -0.0466 | 2755.45 +2.81 | -3.36% | 1105.12+0.56 | -6.19% | <0.001
w/o P (én) 0.9154 + 0.0015 | -0.0097 | 2765.82 +2.80 | -3.00% | 1115.35 +£0.55 | -5.30% | <0.001
CMLAL1 w/o € (10py,) 0.9154 +0.0011 | -0.0097 | 2805.12 +2.78 | -1.62% | 1125.45 £ 0.54 | -4.43% | <0.001
wlo S (5,) 0.9198 + 0.0024 | -0.0053 | 2825.12 +2.79 | -0.92% | 1150.12 £ 0.53 | -2.34% | <0.001
w/o P, E 0.7457 +0.0013 | -0.1794 | 2710.45 +2.84 | -4.94% | 1055.33 +0.58 | -10.39% | <0.001
w/o &, S 0.9024 + 0.0001 | -0.0227 | 2780.88 +2.80 | -2.47% | 1095.54 +0.56 | -6.98% | <0.001
wlo P, S 0.8115 +0.0009 | -0.1136 | 2735.67 +2.82 | -4.06% | 1075.21 +£0.57 | -8.70% | <0.001

Table 5: Ablation study results for the best-performing context configuration per dataset, showing Macro F1 scores,
performance degradation (A F1), GPU memory usage, training time, and statistical significance (p-value) for ablated
configurations. Median values from 5 runs with different random seeds are reported.

First Sentence

Third-tier side Wolves have been
drawn at home to Man United in
the FA Cup fifth round. Wolves,
who are ...

The movie was absolutely stunning,
with breathtaking visuals. I went
there ...

Recent quantum computing ad-
vances opened new possibilities in
cryptography. An Arab mathemati-
cian ...

Task

News
Category

Impression
Sports

Sentiment Positive

Topic Technology

Email Dear customer, you’ve won a
$2,000 gift card in lottery! Click

here to ...

Spam

Table 6: Examples of First Sentences Providing Imme-
diate Classification Signals Across Text Categories
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Dataset |Context Accuracy | A Accuracy

Full Length 0.5468 -
b1+0n 0.5529 0.0061
P1+Pn+10p,+5n 0.4908 -0.0560
AGNews | 1 6 +10r 04729 | -0.0739
P1+¢pn+10t ¢ 0.4821 -0.0647
1+dn+10pa+5v | 04747 | -0.0721
Full Length 0.2466 -
207, 0.3453 0.0987
P1+15n 0.5695 0.3229
BBC 157 0.3632 0.1166
d1+107 0.4126 0.1660
G1+0n+10p,+5v 0.4215 0.1749
Full Length 0.6159 -
P1+Pn+10ts 0.6051 -0.0108
P1+15pp+5n 0.6346 0.0187
ENRON ¢1+10p,+10n 0.6349 0.0190
P1+107 0.6264 0.0105
P1+Pn+10p,+5n 0.6219 0.0060
Full Length 0.6901 -

P1+¢n+10aq+5a, | 0.6062 -0.0839
P1+¢n+15a4+10a, | 0.5961 -0.0940

IMDB |+, +10aq 0.6282 | -0.0619
Pr+én+10aa+5n | 06118 | -0.0783
Pr+dn+15aq 0.6204 | -0.0697
Full Length 0.1913 -
$1+10p,+10n 02175 | 0.0262

|20t 0.1795 | -0.0118

20News |, L1ot; 0.1726 | -0.0187
10pn+10n+10aq | 02152 | 0.0239
G1+¢n+10t 02052 | 0.0139
Full Length 0.2775 -
Gr+ont10p,+5n | 02513 | -0.0262
Pr1+15p+5n 02395 | -0.0380

CMLALL G 15p, 450 02326 | -0.0449
Gr+hn+10t; 02452 | -0.0323
$1+20p,, 02365 | -0.0410

Table 7: LLM Performance comparison of Gemma-7B-IT on full context vs. top-performing reduced context
variants (based on Table 2 across multiple datasets. The table shows Macro F1 scores and their differences (A F1)
from the full length baseline
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Dataset Context MacroF1 AF1 Dataset Context MacroF1 AF1
Full Length 0.9421 +0.0005 - Full Length 0.9888 +0.0067 -
P1+dn 0.9414 +0.0006 -0.0007 207 0.9888 +0.0022 0
G1+Pn+10p,+5n 0.9408 +0.0029 -0.0013 ¢1+15n 0.9865 +0.0045 -0.0023
G1+Pn+10r 0.9407 +0.0004 -0.0014 157 0.9865 +0.0032 -0.0023
P1+pn+10t 5 0.9402 +0.0004 -0.0019 ¢1+107 0.9865 +0.0090 -0.0023
P1+Pn+10p,+5v 0.9399 +0.0010 -0.0022 G1+Pn+10pp+5v 0.9843 +0.0022 -0.0045
P1+¢p2 0.9394 +0.0005 -0.0027 P1+Pn+107y 0.9843 £0.0022 -0.0045
¢1+157r 0.9381 +0.0011 -0.0040 10p,+10n+10aq 0.9843 +0.0067 -0.0045
207 0.9380 +0.0003 -0.0041 ¢1+10pn+5aq 0.9843 +0.0022 -0.0045
¢1+10pp+10n 0.9364 +0.0022 -0.0057 P1+5pn+5n+Saq+5v  0.9843 +0.0022 -0.0045
¢1+107 0.9358 +0.0024 -0.0063 G1+15pn+5n 0.9843 +0.0022 -0.0045
¢1+10pn+5aq 0.9352 +0.0025 -0.0069 G1+15pn+5aq 0.9843 +0.0022 -0.0045
¢1+15p,+5n 0.9349 +0.0022 -0.0072 ¢1+10t ¢ 0.9843 +0.0067 -0.0045
¢1+10py, 0.9348 +0.0008 -0.0073 G1+0n+10p,+5n 0.9821 +0.0045 -0.0067
¢1+15pn+S5aq 0.9347 +0.0017 -0.0074 P1+Pn+10t ¢ 0.9821 +0.0000 -0.0067
¢1+15n 0.9346 +0.0010 -0.0074 bG1+Pn 0.9821 +0.0000 -0.0067
¢1+10aq+10py, 0.9344 +0.0024 -0.0077 10p,+10n 0.9821 +0.0090 -0.0067

AGNews ¢1+15pn, 0.9341 =0.0026 -0.0080 BBC P1+15aq+5v 0.9821 +0.0000 -0.0067
G1+5pn+5n+5a4 0.9340 +0.0009 -0.0081 ¢1+10p,+10n 0.9821 +0.0000 -0.0067
G1+5pn+5n+5a4+5v  0.9340 +0.0013 -0.0081 ¢1+10py, 0.9821 +0.0045 -0.0067
¢1+15pn+5v 0.9339 +0.0016 -0.0082 14157 0.9821 +0.0135 -0.0067
¢1+20py, 0.9337 £0.0027 -0.0084 b1+p2 0.9798 +0.0022 -0.0090
157y 0.9335 +0.0023 -0.0085 10p,+10n+10a4+10v 0.9798 +0.0112 -0.0090
¢1+10t ¢ 0.9334 +0.0013 -0.0087 G1+5pn+5n+5a4 0.9798 +0.0022 -0.0090
¢1+10n, 0.9328 +0.0024 -0.0093 G1+15pn+5v 0.9798 +0.0022 -0.0090
10pn+10n+10a4+10v 0.9327 +0.0004 -0.0094 ¢1+10a4+10py, 0.9776 +0.0045 -0.0112
¢1+15a4+5v 0.9307 +0.0007 -0.0114 ¢1+10n, 0.9776 +0.0000 -0.0112
¢1+20a4 0.9306 +0.0013 -0.0115 ¢1+15py, 0.9776 +0.0045 -0.0112
10p,+10n+10aq 0.9295 +0.0003 -0.0125 ¢1+20aq 0.9753 £0.0022 -0.0135
¢1+15aq4 0.9292 +0.0010 -0.0129 ¢1+20py, 0.9731 +0.0000 -0.0157
b1 0.9285 +0.0013 -0.0136 b1 0.9709 +o0.0112 -0.0179
10pp+10n 0.9272 +0.0003 -0.0149 ¢1+15aq4 0.9709 +0.0067 -0.0179
20t 0.9214 +0.0007 -0.0207 20t 0.9552 +0.0045 -0.0336
15t 0.9143 +0.0010 -0.0278 15t 0.9395 £0.0157 -0.0493
10t s +5pn 0.9134 +0.0010 -0.0287 10t s +5pn 0.9345 +0.0157 -0.0543
10t 0.9042 +0.0010 -0.0379 10t s 0.9214 +0.0157 -0.0674

Table 9: Macro F1 scores for BBC dataset across differ-
ent context settings. The Full Length setting represents
the original dataset, while other configurations use vari-
ous low-context representations.

Table 8: Macro F1 scores for AGNews dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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Dataset Context MacroF1 A F1 Dataset Context MacroF1 AF1
Full Length 0.9957 +0.0008 - Full Length 0.9358 +0.0020 -
P1+pn+10t ¢ 0.9921 +0.0002 -0.0036 P1+Pn+10aq+5a, 0.8938 +0.0028 -0.0420
G1+15pn+5n 0.9918 +0.0008 -0.0039 d1+dn+15a4+10a,  0.8936 +0.0032 -0.0422
¢1+10p,+10n 0.9916 +0.0006 -0.0041 G1+Pn+10aq 0.8932 +0.0044 -0.0426
¢1+107, 0.9912 +0.0006 -0.0045 P1+Pn+10aq4+5n 0.8931 +0.0057 -0.0427
G1+Pn+10pp+5n 0.9911 +0.0012 -0.0046 G1+Pn+15aq 0.8929 +0.0023 -0.0429
P1+157 0.9909 +0.0002 -0.0048 G1+pn+10t ¢ 0.8923 £0.0077 -0.0435
¢1+10a4+10p,, 0.9904 +0.0000 -0.0053 G1+dn+107 0.8908 +0.0048 -0.0450
10p,+10n+10a4+10v 0.9900 +0.0002 -0.0057 b1+dn+10aq+5v 0.8901 +0.0015 -0.0457
P1+Pn+107y 0.9900 =+ 0.0016 -0.0057 P1+Pn+10r,+10aq  0.8872 +0.0068 -0.0486
G1+5pn+5n+5a4 0.9898 +0.0006 -0.0059 b1+Pn 0.8817 +0.0055 -0.0541
¢1+15n 0.9895 +0.0009 -0.0062 ¢1+10a4+57} 0.8721 £0.0004 -0.0637
G1+0n+10p,+5v 0.9894 +0.0010 -0.0063 ¢1+15a4+10v 0.8693 +0.0087 -0.0665
G1+15pn+5a4 0.9892 +0.0006 -0.0065 G1+157r 0.8641 +0.0013 -0.0717
207 0.9892 +0.0006 -0.0065 ¢1+15a4+5v 0.8624 +0.0042 -0.0734
¢1+20py, 0.9891 +0.0008 -0.0066 ¢1+10aq+5pn+5v 0.8612 +0.0060 -0.0746
¢1+10t 0.9891 +0.0002 -0.0066 ¢1+15aq4 0.8607 +0.0027 -0.0751

ENRON P1+5pn+5n+5aq+5v  0.9888 +0.0008 -0.0069 IMDB ¢1+107, 0.8598 +0.0044 -0.0760
P1+15pp+5v 0.9882 +0.0010 -0.0075 ¢1+10aq+10py, 0.8592 +0.0024 -0.0766
10p,+10n+10aq 0.9879 +0.0002 -0.0078 207 0.8591 +0.0027 -0.0767
¢1+10pn, 0.9879 +0.0010 -0.0078 ¢1+10aq+5n+5v 0.8583 +0.0027 -0.0775
G1+15pn 0.9877 +0.0003 -0.0080 10pn+10n+10a4+10v 0.8575 +0.0037 -0.0783
157 0.9877 +0.0006 -0.0080 G1+5pn+5n+5a4+5v  0.8561 +0.0011 -0.0797
¢1+10pn+5a4 0.9876 +0.0008 -0.0081 G1+5pn+5n+5a4 0.8521 +0.0023 -0.0837
20t ¢ 0.9873 +0.0016 -0.0084 ¢1+5a4+5+ADV+5v  0.8517 +0.0051 -0.0841
b1+Pn 0.9867 +0.0008 -0.0090 10pn+10n+10aq4 0.8502 +0.0012 -0.0856
1+10n, 0.9867 +0.0002 -0.0090 ¢1+10pn+S5aq 0.8495 +0.0005 -0.0863
10pn+10n 0.9864 +0.0008 -0.0093 157 0.8492 +0.0008 -0.0866
P1+15aq+5v 0.9862 +0.0006 -0.0095 P1+15pp+5aq 0.8488 +0.0022 -0.0870
¢1+20aq 0.9861 +0.0005 -0.0096 D1+02 0.8481 +0.0039 -0.0877
¢1+15a4 0.9855 +0.0005 -0.0102 20t 0.8461 +0.0006 -0.0897
b1+¢p2 0.9843 +0.0022 -0.0114 ¢1+10t 0.8453 +0.0089 -0.0905
15t 0.9838 +0.0018 -0.0119 ¢1+10p,+10n 0.8376 +0.0002 -0.0982
10t s+5pn 0.9785 +0.0000 -0.0172 P1+15pp+5n 0.8335 £0.0035 -0.1023
b1 0.9741 +0.0031 -0.0216 ¢1+15pp+50v 0.8306 +0.0028 -0.1052
10t s 0.9625 +0.0000 -0.0332 ¢1+15n 0.8281 +0.0003 -0.1077

Table 10: Macro F1 scores for ENRON dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Table 11: Macro F1 scores for IMDB dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.
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Dataset Context Macro F1 AF1 Dataset Context Macro F1 AF1
Full Length 0.7731 £0.0025 - Full Length 0.9449 +0.0003 -
¢1+10p,+10n 0.7559 + 0.0044 -0.0172 ¢1+0n+10p,+5n 0.9251 +0.0025 -0.0198
20ty 0.7472 + 0.0027 -0.0259 ¢1+15p,+5n 0.9239 +0.0006 -0.0210
P1+10t ¢ 0.7472 £ 0.0031 -0.0259 ¢1+15pn+5v 0.9236 +0.0015 -0.0213
10p,+10n+10a4 0.7448 £ 0.0025 -0.0283 P1+Pn+10t s 0.9225 +0.0025 -0.0224
P1+Pn+10t 0.7445 + 0.0027 -0.0286 ¢1+20pn, 0.9222 +0.0003 -0.0227
P1+157 0.7412 + 0.0055 -0.0319 P1+Pn+10p,+5v 0.9218 +0.0005 -0.0231
10p,+10n 0.7407 = 0.0005 -0.0324 ¢1+10p,+10n 0.9218 +0.0017 -0.0231
G1+5pn+5n+5aqg+5v  0.7390 £ 0.0038 -0.0341 d1+15pn+5aq 0.9192 +0.0016 -0.0257
10p,+10n+10a4+10v 0.7387 £ 0.0093 -0.0344 ¢1+15pn, 0.9189 +0.0012 -0.0260
G1+Pn+10py+5n 0.7380 + 0.0005 -0.0351 G1+5pn+5n+5aq+5v 0.9176 +0.0009 -0.0273
¢1+107 0.7374 + 0.0060 -0.0357 P1+Pn+107} 0.9171 +0.0021 -0.0278
P1+15pn+5n 0.7366 + 0.0046 -0.0365 ¢1+10pp+5aq 0.9165 +0.0005 -0.0284
P1+Pn+107; 0.7363 = 0.0038 -0.0368 ¢1+107% 0.9144 +0.0001 -0.0305
157 0.7244 + 0.0003 -0.0487 ¢1+10a4+10p, 0.9135 +0.0012 -0.0314
G1+5pn+5n+5aq 0.7236 + 0.0082 -0.0495 ¢1+157% 0.9132 +0.0014 -0.0317

2ONews 15¢¢ 0.7111 £ 0.0096 -0.0620 P1+5pn+5n+5aq 0.9130 +0.0005 -0.0319
¢1+15n 0.7092 + 0.0016 -0.0639 CMLAI 1 ¢1+10py, 0.9125 +0.0011 -0.0324
207y, 0.6973 +0.0063 -0.0758 P1+10t 5 0.9083 +0.0009 -0.0366
G1+Pn+10p,+5v 0.6971 £ 0.0011 -0.0760 d1+P2 0.9076 +0.0008 -0.0373
¢1+15pn+5aq 0.6875 + 0.0035 -0.0856 ¢1+10n, 0.9065 +0.0033 -0.0384
¢1+15pn+5v 0.6834 +0.0131 -0.0897 10p,+10n+10a4+10v 0.9042 +0.0032 -0.0407
¢1+10pn+5a4 0.6815 +0.0106 -0.0916 ¢1+15n 0.9030 +0.0005 -0.0419
¢1+10a4+10p, 0.6790 = 0.0038 -0.0941 P1+Pn 0.9024 +0.0001 -0.0425
¢1+15p, 0.6760 + 0.0074 -0.0971 ¢1+15a4+5v 0.8948 +0.0013 -0.0501
@1+20pn, 0.6760 £ 0.0019 -0.0971 ¢1+20aq 0.8880 +0.0002 -0.0569
¢1+10py, 0.6758 +0.0082 -0.0973 ¢1+15aq 0.8871 +0.0007 -0.0578
10¢ #+5pn, 0.6754 + 0.0000 -0.0977 10p,+10n+10aq 0.8867 +0.0019 -0.0582
¢1+10n. 0.6703 + 0.0038 -0.1028 10p,+10n 0.8767 +0.0010 -0.0682
P1+p2 0.6676 = 0.0066 -0.1055 157y 0.8647 +0.0012 -0.0802
d1+Pn 0.6362 £ 0.0025 -0.1369 207 0.8635 +0.0003 -0.0814
¢1+15a4+5v 0.6285 +0.0035 -0.1446 01 0.8594 +0.0018 -0.0855
¢1+20aq4 0.6149 +0.0041 -0.1582 20t ¢ 0.8490 +0.0034 -0.0959
P1+15aq 0.6111 £ 0.0074 -0.1620 10t £ +5pn 0.8394 +0.0002 -0.1055
o1 0.5675 £ 0.0011 -0.2056 15t 0.8317 £0.0020 -0.1132
10t ¢ 0.5626 £ 0.0000 -0.2105 10t ¢ 0.8125 +0.0013 -0.1324

Table 13: Macro F1 scores for CMLA11 dataset across
different context settings. The Full Length setting rep-
resents the original dataset, while other configurations
use various low-context representations.

Table 12: Macro F1 scores for 20NewsGroup dataset
across different context settings. The Full Length setting
represents the original dataset, while other configura-
tions use various low-context representations.
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