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Abstract

Longitudinal experiential data offers rich in-
sights into dynamic human states, yet building
models that generalize across diverse contexts
remains challenging. We propose ConText-LE,
a framework that systematically investigates
text representation strategies and output formu-
lations to maximize large language model cross-
distribution generalization for behavioral fore-
casting. Our novel Meta-Narrative represen-
tation synthesizes complex temporal patterns
into semantically rich narratives, while Prospec-
tive Narrative Generation reframes prediction
as a generative task aligned with LLMs’ contex-
tual understanding capabilities. Through com-
prehensive experiments on three diverse longi-
tudinal datasets addressing the underexplored
challenge of cross-distribution generalization
in mental health and educational forecasting,
we show that combining Meta-Narrative input
with Prospective Narrative Generation signif-
icantly outperforms existing approaches. Our
method achieves up to 12.28% improvement in
out-of-distribution accuracy and up to 11.99%
improvement in F1 scores over binary classifi-
cation methods. Bidirectional evaluation and ar-
chitectural ablation studies confirm the robust-
ness of our approach, establishing ConText-LE
as an effective framework for reliable behav-
ioral forecasting across temporal and contex-
tual shifts.

1 Introduction

Longitudinal experiential (LE) data, col-
lected through Experience Sampling Methods
(ESM) (Larson and Csikszentmihalyi, 1983), Eco-
logical Momentary Assessment (EMA) (Stone and
Shiffman, 1994; Shiffman et al., 2008), and passive
sensing (Mohr et al., 2017; Kumar et al., 2015),
offers unprecedented opportunities to understand
and predict dynamic human states in real-world
contexts. By capturing both subjective reports (e.g.,
mood, stress) and objective measurements (e.g.,

activity, sleep patterns), LE data holds immense
promise for personalized interventions in mental
health (Xu et al., 2021a; Mohr et al., 2021) and
education (Wang et al., 2014).

However, despite this potential, a fundamen-
tal challenge remains largely unaddressed: cross-
distribution generalization. Models trained on LE
data from one cohort, time period, or context often
exhibit dramatic performance degradation when
applied to different populations or temporal peri-
ods (Xu et al., 2023a,b). This generalization failure
represents a critical barrier to real-world deploy-
ment, as evidenced by the limited success of exist-
ing approaches when evaluated across distribution
shifts. For instance, traditional machine learning
approaches on the GLOBEM dataset achieve only
52.80% = 0.024 out-of-distribution accuracy (Xu
et al., 2023b), barely exceeding random chance.

We hypothesize that this generalization chal-
lenge stems from the inherently contextual and
situated nature of LE data. Unlike traditional time
series (Zhong et al., 2025), LE data carries im-
plicit contextual meaning where the significance
of behavioral patterns depends heavily on individ-
ual circumstances and broader social contexts. For
instance, a university student showing decreased
activity and increased sleep during final exams ex-
emplifies this complexity, as these patterns might
indicate depression in other contexts but represent
adaptive responses to academic stress in this spe-
cific situation.

Traditional machine learning approaches treat
behavioral features as context-independent vari-
ables with fixed meanings (Xu et al., 2019; Saeb
et al., 2015; Wang et al., 2018). This limitation
parallels early word embedding models that treated
words as static vectors, before contextualized repre-
sentations revolutionized NLP (Devlin et al., 2019;
Peters et al., 2018). We propose that large lan-
guage models (LLMs), with their pre-trained under-
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standing of human behavior and contextual reason-
ing (Brown et al., 2020; Bommasani et al., 2022),
offer unique capabilities for interpreting LE data
within appropriate contexts.

However, existing LLM applications to LE
data (Kim et al., 2024; Hayat et al., 2024a; Thach
et al., 2025) have not systematically investigated
cross-distribution generalization. They primar-
ily employ simple text encodings (e.g., structured
value lists, statistical summaries) paired with bi-
nary classification, overlooking how representation
strategies and output formulations impact gener-
alization performance. In our cross-distribution
evaluation, these approaches show substantial per-
formance drops, highlighting critical gaps in lever-
aging LLMs for robust behavioral modeling.

ConText-LE Framework: We introduce
ConText-LE, a novel framework for generalizable
LLM-based LE data modeling that systematically
investigates the impact of textual representations
and output formulations on cross-distribution per-
formance. ConText-LE explores four distinct input
representations:

* Three existing approaches: Complete Se-
quence (Hayat et al., 2024a), Statistical Sum-
mary (Thach et al., 2025), and Natural Language
String (Kim et al., 2024)

* Our novel Meta-Narrative: High-level interpre-
tative narratives that synthesize complex tempo-
ral patterns into semantically rich, contextually
grounded summaries emphasizing feature rela-
tionships and potential real-world interpretations

We also compare two output formulations: tradi-
tional Binary Classification versus our proposed
Prospective Narrative Generation, which re-
frames prediction as generating descriptive narra-
tives about future states. This generative approach
better aligns with LLMs’ inherent capabilities and
allows for more nuanced expression of contextual
predictions.

Through comprehensive experiments on three
diverse datasets (GLOBEM (Xu et al., 2023a),
LifeSnaps (Yfantidou et al., 2022), and MFAFY
(Hayat et al., 2024a,b; Thach et al., 2025)) focus-
ing specifically on cross-distribution generalization,
an underexplored but critical challenge, we show
that combining Meta-Narrative input with Prospec-
tive Narrative Generation achieves superior perfor-
mance. Our approach improves out-of-distribution
accuracy by up to 12.28% and F1 scores by up

to 11.99% compared to binary classification, es-
tablishing new benchmarks for robust behavioral
forecasting across temporal and contextual shifts.

Our main contributions include:

* The ConText-LE framework for systematic in-
vestigation of textual representations and out-
put formulations in LLM-based LE data mod-
eling, addressing the critical challenge of cross-
distribution generalization.

¢ Meta-Narrative representation, a novel two-
stage technique that synthesizes complex tem-
poral patterns into semantically rich narratives,
and Prospective Narrative Generation, which
reframes prediction as a generative task aligned
with LLMs’ contextual reasoning capabilities.

* Comprehensive empirical evaluation demonstrat-
ing substantial improvements (up to 12.28% ac-
curacy, 11.99% F1) over existing approaches
across three diverse datasets, establishing the first
systematic benchmarks for cross-distribution be-
havioral forecasting.

* Architectural ablation studies establishing the
critical importance of instruction tuning and con-
text length for behavioral pattern interpretation,
providing practical guidance for LLM selection
in sensitive applications.

2 Related Work

Modeling LE Data: Longitudinal experiential data
has been modeled using various traditional ML
and deep learning approaches for healthcare (Wang
et al., 2018; Xu et al., 2021a; Nemati et al., 2022)
and education (Wang et al., 2016; Li et al., 2020).
These methods often struggle with generalizability
across domain shifts (Xu et al., 2023b) and inad-
equately handle missing data (Xu et al., 2021a;
Arnold and Pistilli, 2012). Recent work has be-
gun exploring LLMs for LE data forecasting (Kim
et al., 2024; Hayat et al., 2024a; Thach et al., 2025),
but primarily focuses on within-dataset evaluation
rather than cross-distribution generalization.

NLP Foundations: The evolution from static
word embeddings (Mikolov et al., 2013) to con-
textualized representations (Devlin et al., 2019)
has revolutionized NLP by capturing how meaning
changes with context. Recent advances in prompt-
ing strategies (Wei et al., 2023; Kojima et al., 2023)
have enhanced LLMs’ reasoning capabilities. Our
work builds on these developments by treating
multi-dimensional LE data as complex semantic
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structures requiring contextual interpretation, while
leveraging findings that generative formulations of-
ten enable more effective reasoning than discrimi-
native approaches.

Cross-Modal Applications: Recent work has
explored adapting structured data for LLM pro-
cessing through serialization or textual descriptions
(Sun et al., 2023; Jin et al., 2023), with applications
to human-centric data (Kim et al., 2024). Most
approaches use simple encoding strategies, while
our work investigates semantically rich narrative
representations that better align with findings on
how LLMs process contextual relationships (Wang
et al., 2022a; Shwartz et al., 2020). A detailed
review of related work is given in Appendix A.10.

3 The ConText-LE Framework

ConText-LE is a systematic framework for lever-
aging LLMs’ contextual understanding capabilities
to achieve robust cross-distribution generalization
in LE data. Figure 1 illustrates the overall archi-
tecture, highlighting the interplay between textual
representation strategies and output formulations.

3.1 Problem Formulation

Given LE data collected from NV individuals over
K weeks, we define feature vectors x;; € R?
for individual ¢ at time step j, where d represents
the dimensionality of multi-modal features (e.g.,
activity, sleep, mood, social interactions). Using
a sliding window approach, we segment data into
overlapping k-week sequences.

For cross-distribution generalization, we parti-
tion data into training period 7' and testing period
T’, where T’ represents a different temporal pe-
riod, cohort, or contextual setting. The model re-
ceives textual representation X;%' ., | of each
k-week sequence and predicts either a binary label
yzn;lir,z € {0, 1} or narrative forecast yairfgve for
week s + k.

The core challenge lies in achieving robust per-
formance when P(X,Y|T') # P(X,Y|T’), where
distribution shifts may involve temporal changes
(e.g., different academic semesters), demographic
variations (e.g., different student cohorts), or con-
textual differences (e.g., pre/post-pandemic peri-
ods). Formal details are in Appendix A.1.

3.2 Textual Representation Strategies

ConText-LE investigates four distinct approaches
for transforming raw LE data into textual inputs,

each designed to capture different aspects of tem-
poral and contextual information.

Baseline Representations We implement three
existing approaches from prior work:

Complete Sequence (Hayat et al., 2024a):
Direct verbalization of detailed temporal se-
quences. Example: “Monday Jan 5: steps=8,245,
heart_rate=72bpm, sleep=7.2hrs, mood=3/5.
Tuesday Jan 6: steps=6,891, heart_rate=68bpm...”

Statistical Summary (Thach et al., 2025): Ag-
gregate statistics for each feature over the k-week
period. Example: “Steps: mean=7,834, std=2,451,
min=1,023, max=15,672. Sleep: mean=7.1hrs,
std=1.2hrs...”

Natural Language String (Kim et al., 2024):
Structured listing of feature values over time. Ex-
ample: “Steps: [8245, 6891, NaN, 9156, ...]; Sleep:
[7.2, 6.8, NaN, 8.1, ...]; Mood: [3, 4, NaN, 2, ...]”

Meta-Narrative Representation (Novel) Our
proposed Meta-Narrative approach generates high-
level interpretative narratives that synthesize com-
plex temporal patterns into semantically rich, con-
textually grounded summaries. This representation
is motivated by frame semantics theory (Fillmore,
2006), which suggests that meaning emerges from
situating experiences within appropriate interpre-
tive frameworks.

The Meta-Narrative is generated through a novel
two-stage prompting process using GPT-40 (Ope-
nAl, 2024):

Stage 1 - Feature Pattern Analysis: Identifies
significant patterns in each behavioral dimension
using statistical analysis and trend detection.

Stage 2 - Contextual Narrative Synthesis: Inte-
grates individual patterns into a coherent narrative
emphasizing inter-feature relationships, potential
contextual interpretations, and global behavioral
themes.

Example Meta-Narrative: “This university stu-
dent demonstrated consistent baseline activity pat-
terns during the first three weeks, averaging 8,000
daily steps with regular 7-hour sleep cycles. How-
ever, week 4 marked a significant behavioral shift
coinciding with the final examination period: ac-
tivity decreased by 43% while sleep duration in-
creased to over 9 hours nightly. Social interac-
tions declined substantially from 8 to 2 weekly
events. Despite these changes, self-reported mood
remained stable at ’tired but OK,” suggesting adap-
tive rather than pathological responses to aca-
demic stress.”
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Figure 1: ConText-LE Framework Overview. The framework transforms multi-modal LE data through four
representation strategies, processes them with fine-tuned LLMs using two output formulations, and evaluates

cross-distribution generalization performance.

This approach transforms multi-dimensional
time series into contextually rich narratives that
better leverage LLLMs’ pre-trained understanding
of human behavior patterns and situational inter-
pretations. Prompt details are in Appendix A.4.

3.3 Output Formulations

ConText-LE compares two distinct approaches to
formulating the prediction task, hypothesizing that
generative formulations better align with LLMs’
capabilities for contextual reasoning. A detailed
description of these two formulations is provided
in Appendix A.3.

Binary Classification The standard approach
fine-tunes the LLM with a classification head to
directly predict binary labels (e.g., low/high de-
pression risk, academic engagement levels). This
formulation treats prediction as a discriminative
task requiring the model to compress complex be-
havioral patterns into a single binary decision.

Prospective Narrative Generation (Novel) Our
proposed approach reframes prediction as a gener-
ative task where the LLM produces descriptive nar-
ratives about anticipated future states. This formu-
lation is inspired by cognitive research on episodic
future thinking (Schacter et al., 2008), where hu-
mans naturally predict future states through narra-
tive construction rather than binary classification.
During training, target narratives yi?f,?ve are
generated using GPT-4o to create coherent descrip-
tions of future states that align with ground truth
labels. During inference, the fine-tuned model gen-
erates prospective narratives from which binary

predictions can be extracted if needed for evalua-
tion.

Example target narrative: “Based on the ob-
served patterns, this student will likely experience
continued academic stress in the upcoming week.
Sleep patterns may remain elevated as exam prepa-
ration intensifies, while physical activity could de-
crease further. Social interactions will remain min-
imal, focused on study groups. Mood stability sug-
gests effective coping mechanisms, indicating low
risk for mental health concerns despite temporary
behavioral changes.”

3.4 Model Architecture and Training

Base Model Selection We utilize Llama 3.1 8B
Instruct (Grattafiori et al., 2024) as our foundation
model, selected for its strong performance on lan-
guage understanding tasks while maintaining com-
putational efficiency suitable for extensive cross-
distribution experiments.

Parameter-Efficient Fine-tuning Both output
formulations employ Low-Rank Adaptation
(LoRA) (Hu et al., 2021) for parameter-efficient
fine-tuning. This approach adapts the model to LE
data while preserving the pre-trained contextual
knowledge crucial for generalization. LoRA
enables efficient adaptation while maintaining
most parameters frozen, reducing computational
requirements and overfitting risks.

Training Strategy Models are trained separately
for each textual representation and output formula-
tion combination. For Prospective Narrative Gen-
eration, we employ teacher forcing during train-
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ing with cross-entropy loss on generated tokens.
Binary Classification uses standard cross-entropy
loss on predicted labels. This systematic approach
enables fair comparison across all framework com-
ponents.

3.5 Evaluation Framework

Cross-Distribution Protocol Design Our evalua-
tion protocol specifically targets cross-distribution
generalization scenarios. We partition data into dis-
tinct temporal periods 7 (training) and T” (testing),
ensuring no individual appears in both periods to
prevent data leakage. This temporal splitting simu-
lates realistic deployment scenarios where models
must generalize to future time periods or different
populations.

Evaluation Metrics We report standard binary
classification metrics: accuracy, precision, re-
call, and F1-score, with primary focus on out-of-
distribution performance. For narrative outputs,
binary forecasts are extracted using GPT-40 with
carefully designed prompts that maintain consis-
tency across evaluations.

Baseline Establishment Strategy Given limited
prior work on cross-distribution LE data generaliza-
tion, we establish comprehensive baselines by re-
implementing existing LLM approaches and adapt-
ing them for cross-distribution evaluation. Com-
plete implementation details are provided in the
experimental section.

4 Experiments and Results

4.1 Experimental Design

Datasets and Distribution Shifts We evaluate
on three diverse LE datasets representing different
types of distribution shifts:

GLOBEM (Xu et al., 2023a): Mental health pre-
diction across 661 participants over 4 years. Cross-
temporal shift: Years 1-2 (n=344, 2226 LE se-
quences) — Years 3-4 (n=317, 2023 LE sequences).
Features include activity, sleep, communication pat-
terns, and mood assessments. Target: depression
risk prediction.

LifeSnaps (Yfantidou et al., 2022): Anxiety
prediction across 39 participants over 4 months.
Cross-temporal shift: First 2 months (n=26, 112
LE sequences) — Last 2 months (n=13, 64 LE se-
quences). Features include physiological signals,
activity patterns, and self-reports. Target: anxiety
episode prediction.

MFAFY (Hayat et al., 2024a): Academic en-
gagement prediction across 96 participants over 2
years. Cross-temporal shift: Year 1 (2 semesters)
(n=61, 610 LE sequences) — Year 2 (1 semester)
(n=35, 350 LE sequences). Features are qualitative
self-reports of study behaviors and emotional states.
Target: academic engagement level.

These datasets provide diverse modalities (struc-
tured sensors, physiological signals, unstructured
text), scales (39-661 participants), and shift types
(cohort changes, temporal dynamics, academic con-
texts), enabling robust evaluation of generalization
capabilities. Detailed dataset information is in Ap-
pendix A.9.

4.2 Implementation and Evaluation Protocol

Implementation Details All experiments use
Llama 3.1 8B Instruct (Grattafiori et al., 2024) with
LoRA fine-tuning. Models are trained separately
for each textual representation and output formu-
lation combination. Textual representations and
extractions use GPT-40 (OpenAl, 2024). Complete
implementation details are in Appendix A.8.

Evaluation Metrics and Protocol We report ac-
curacy, precision, recall, and F1-score, with pri-
mary focus on out-of-distribution (OOD) perfor-
mance. Data is partitioned into distinct temporal
periods T (training: 85% train, 15% validation) and
T (testing: 100% OOD test), ensuring no individ-
ual appears in both periods. For narrative outputs,
binary forecasts are extracted using GPT-40 with
structured prompts.

Baseline Establishment We establish compre-
hensive baselines across two categories to thor-
oughly evaluate our approach. First, within
the LLM framework, we re-implement three es-
tablished textualization methods: Complete Se-
quence (Hayat et al., 2024a), Statistical Summary
Encoding (Thach et al., 2025), and Natural Lan-
guage String Encoding (Kim et al., 2024). Second,
to contextualize the effectiveness of LLM-based
approaches, we compare against established non-
LLM time series models: PatchTST (Nie et al.,
2022) and iTransformer (Liu et al., 2024b), which
represent state-of-the-art methods for temporal pat-
tern modeling. For GLOBEM, we also compare
against the published cross-distribution baseline of
52.80% accuracy (Xu et al., 2023b).
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4.3 Main Results: Cross-Distribution
Performance

We present results in two phases: first comparing
our approach against LLM-based baselines to iso-
late the contributions of our representational inno-
vations, then contextualizing these results against
non-LLM methods to establish the broader eftec-
tiveness of the ConText-LE framework.

4.3.1 LLM-Based Comparison

Table 1 presents comprehensive results across all
datasets and configurations, showing consistent pat-
terns supporting ConText-LE’s effectiveness within
the LLM framework.

Key Performance Patterns Consistent Meta-
Narrative Superiority: Across all datasets and
output formulations, Meta-Narrative achieves the
highest OOD performance. Improvements over
best baselines: GLOBEM (+12.28% accuracy),
LifeSnaps (+7.81% accuracy), MFAFY (+4.00%
accuracy).

Narrative Generation Advantages: Prospec-
tive Narrative Generation consistently outperforms
Binary Classification across all input represen-
tations. The largest improvement occurs on
GLOBEM (69.40% vs 57.53% F1), demonstrating
that generative formulations better leverage LLMs’
contextual reasoning capabilities.

Published Benchmark Comparison: Our best
GLOBEM configuration (67.40% OOD accuracy)
substantially outperforms the published baseline
(58.50% accuracy), representing a meaningful ad-
vancement in cross-distribution generalization for
behavioral forecasting.

Analysis

Input Representation Impact.  Within the
Prospective Narrative Generation formulation,
Meta-Narrative consistently outperforms alterna-
tives. Improvements over the next-best input rep-
resentation: GLOBEM (+0.90% F1), LifeSnaps
(+8.66% F1), MFAFY (+3.53% F1). The particu-
larly strong improvement on LifeSnaps suggests
contextual narratives are especially beneficial for
physiological and psychological data requiring so-
phisticated temporal pattern interpretation.
Output Formulation Analysis. The advantage
of narrative generation is most pronounced with
Meta-Narrative inputs. While other representations
show 2-8% F1 improvements with narrative gener-
ation, Meta-Narrative shows 8-12% improvements,

suggesting synergistic alignment with LLM capa-
bilities.

Generalization Robustness. To assess general-
ization stability, we analyze ID-OOD performance
gaps. Meta-Narrative with Narrative Generation
maintains small gaps in F1 scores across datasets
(GLOBEM: 4.47%, LifeSnaps: 1.34%, MFAFY:
-1.64%), while some baselines show large drops
(e.g., Statistical Summary on LifeSnaps binary clas-
sification: 54.70% gap), indicating superior robust-
ness against distribution shifts.

Bidirectional Validation

To rigorously validate the robustness of our ap-
proach, we perform comprehensive bidirectional
evaluation, training models in both directions (1" —
T" and T' — T') across all datasets. While the pri-
mary results for the forward direction (7" — T")
are detailed in Section 4.3, Table 2 offers a concise
summary of performance statistics across both di-
rections for Meta-Narrative input with both output
formulations. The complete results for the reverse
direction (77 — T') are in Appendix A.11.

The bidirectional analysis illustrates remarkable
consistency patterns that strengthen our conclu-
sions. GLOBEM exhibits exceptional stability,
with Binary Classification showing virtually identi-
cal performance across directions (55.10 £ 0.02%
accuracy), though F1 scores exhibit higher vari-
ance (53.91 4 3.62%). For Prospective Narrative
Generation, both accuracy and F1 remain highly
consistent (68.08 4+ 0.67% and 67.92 + 1.48%,
respectively), indicating robust bidirectional gener-
alization.

LifeSnaps exhibits the strongest overall per-
formance with Prospective Narrative Generation,
achieving 69.31 + 2.12% accuracy and remark-
ably stable F1 scores (68.94 & 0.29%). The low F1
variance suggests excellent precision-recall balance
across different temporal contexts. Interestingly,
Binary Classification shows moderate directional
sensitivity (57.87 £ 1.51% accuracy), indicating
that the choice of training direction matters more
for discriminative than generative formulations.

MFAFY presents the most complex bidirec-
tional behavior, with Binary Classification show-
ing significant directional asymmetry (64.53 £
3.67% accuracy) but highly consistent F1 scores
(65.28 £ 0.32%). This pattern reflects the tem-
poral structure differences between one-semester
(Year 2) and two-semester (Year 1) periods. Mod-
els trained on the more constrained Year 2 data
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Table 1: Cross-distribution generalization results (7" — T"”) across all datasets. Bold indicates best performance for

each dataset, output formulation, and metric category.

Dataset  Shift Input Strategy In-Distribution (ID) Test Out-of-Distribution (OOD) Test
Acc (%) P(%) R(%) Fl1(%) Acc(%) P(%) R(%) Fl(%)
< Output Formulation: Binary Classification
3 Complete Sequence 66.82 68.52 6491 66.67 51.16 53.09 5540 54.22
= é Statistical Summary 63.68 64.81 6195 6335 51.11 53.08 54.73  53.89
E = Natural Language String 67.26 70.00  65.81 67.84 52.64 53.54 5695  55.19
S I‘ Meta-Narrative (ours) 69.51 73.33 6581  69.37 55.12 5581 59.36 57.53
<3
O P Output Formulation: Prospective Narrative Generation
8 Complete Sequence 69.96 71.56  68.42  69.96 65.94 67.95 6852  68.23
Statistical Summary 69.51 7222 6724  69.65 62.43 6597 63.57 64.75
Natural Language String 70.05 7130  69.37  70.32 66.44 67.92  69.09  68.50
Meta-Narrative (ours) 73.99 7593 7193  73.87 67.40 68.81 70.00 69.40
£ Output Formulation: Binary Classification
g Complete Sequence 58.82 62.50 55.56  58.82 51.56 44.12 5556  49.18
2, o Statistical Summary 82.35 83.33 9091  86.96 34.38 2941 3571 32.26
g ki Natural Language String 64.71 66.67 80.00 72.73 4531 37.14  50.00 42.62
E T Meta-Narrative (ours) 82.35 90.00 81.82 85.71 59.38 53.12 60.71  56.67
= 2 Output Formulation: Prospective Narrative Generation
s Complete Sequence 58.82 77.78 58.33  66.67 54.84 50.00 57.14 5333
< Statistical Summary 47.06 40.00 57.14  47.06 46.88 36.67 4231  39.29
3 Natural Language String 70.59 80.00 72.72  76.19 62.50 5294 6923  60.00
Meta-Narrative (ours) 64.71 77.78  63.64  70.00 67.19 63.89 7419 68.66
Output Formulation: Binary Classification
“ Complete Sequence 57.38 60.00 63.64 61.76 54.86 56.08 58.56  57.30
S g Statistical Summary 45.90 3448 41.67 37.74 48.86 49.18 51.14  50.14
: ? Natural Language String 57.38 58.33  65.62 61.76 59.83 47.52  50.00 48.73
E - Meta-Narrative (ours) 65.57 62.86 7333  67.69 60.86 64.47 6546  64.96
>"§ Output Formulation: Prospective Narrative Generation
Complete Sequence 60.66 56.67  60.71 58.62 57.14 50.55 60.53  55.09
Statistical Summary 57.38 48.28 56.00 51.85 53.43 52.02 5294 5248
Natural Language String 63.93 62.96 58.62 60.71 62.86 5747 64.10 60.61
Meta-Narrative (ours) 70.49 65.22 60.00 62.50 64.86 61.11 6748 64.14

Table 2: Average (1) and standard deviation (o) of OOD generalization performance across bidirectional experiments

(T — T" and T" — T') for Meta-Narrative input.

GLOBEM LifeSnaps MFAFY
Output Formulation Acc (£ o) Fl (u£ o) Acc (u £ o) Fl (u £+ o) Acc (u £ o) Fl (u £ 0)
Binary Classification 55.10 £0.02 53.914+3.62 57.87+1.51 58.66+1.99 64.53+£3.67 65.28£0.32
Prospective Narrative Gen.  68.08 +£ 0.67 67.92+1.48 69.31+2.12 68.94+0.29 67.67+2.81 64.07+0.07

achieve better generalization to Year 1 than vice
versa, suggesting that training on focused, short-
term data may lead to more transferable patterns.
Despite this asymmetry, Prospective Narrative Gen-
eration maintains strong bidirectional performance
(67.67 £ 2.81% accuracy) with exceptional F1 con-
sistency (64.07 &= 0.07%).

These bidirectional results provide compelling
evidence that ConText-LE’s improvements stem
from capturing fundamental data relationships
rather than exploiting direction-specific biases.
The systematic advantages of narrative generation
across all datasets and directions, combined with
Meta-Narrative’s consistent superiority, demon-
strate robust generalization capabilities essential
for real-world deployment where models must per-
form reliably across diverse temporal contexts.

4.3.2 Contextualization Against Non-LLM
Methods

To validate that our improvements stem from
methodological innovations rather than simply us-
ing LLMs, we compare against traditional time se-
ries models. Table 3 presents performance metrics
for PatchTST and iTransformer across all datasets.

Table 3: Performance comparison of non-LLM models
(PatchTST and iTransformer) across In-Distribution and
Out-of-Distribution settings on GLOBEM, LifeSnap,
and MFAFY datasets.

Dataset Model In-Distribution Out-of-Distribution
Acc (%) F1 (%) Acc (%) F1 (%)
GLOBEM  PatchTST 53.58 53.01 49.88 49.16
iTransformer 54.61 54.61 51.06 51.07
LifeSnap PatchTST 47.83 47.83 43.75 40.47
iTransformer 52.17 48.83 48.44 47.99
MFAFY PatchTST 67.39 64.34 50.57 44.31
iTransformer 53.26 52.47 44.29 42.42

Our LLM-based approaches substantially out-
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Table 4: LLM architecture impact on GLOBEM cross-distribution generalization.

In-Distribution Out-of-Distribution ID-OOD Gap
LLM Architecture Acc (%) F1 (%) Acc (%) F1 (%) F1 Gap (%)
Llama 3.1 8B Instruct 73.99 73.87 67.40 69.40 447
Mistral-7B-Instruct-v0.3 68.61 70.59 64.26 66.88 3.71
Falcon-7B 62.78 64.68 56.15 59.66 5.02
Llama 3.1 8B Base 63.68 63.35 60.99 59.91 3.44

perform non-LLM methods across all datasets. For
instance, on GLOBEM, our best configuration
(Meta-Narrative + Prospective Narrative Genera-
tion) achieves 69.40% out-of-distribution F1 score
compared to PatchTST (49.16%) and iTransformer
(51.07%). Similar patterns emerge across LifeS-
naps and MFAFY, where non-LLM models yield
significantly lower performance, particularly in out-
of-distribution settings. This underscores the supe-
rior capability of LLMs in capturing complex be-
havioral patterns and generalizing across temporal
distributions, while also validating that our specific
representational innovations contribute meaning-
fully beyond simply adopting LLM architectures.

4.4 LLM Architecture Ablation Study

To understand factors contributing to ConText-LE’s
success, we conduct systematic ablation studies ex-
amining different LLM architectures’ impact on
cross-distribution generalization. Our study iso-
lates two critical factors: (1) instruction tuning ver-
sus base language modeling, and (2) architectural
differences across model families.

We evaluate four strategically selected LLMs
on GLOBEM using our optimal configuration
(Meta-Narrative + Prospective Narrative Genera-
tion). To isolate instruction tuning effects, we com-
pare Llama 3.1 8B Instruct against its base counter-
part Llama 3.1 8B (Grattafiori et al., 2024), hold-
ing architecture constant while varying only the
fine-tuning approach. To assess cross-architecture
generalization, we include Mistral-7B-Instruct-
v0.3 (Mistral Al, 2024) (instruction-tuned with
different architectural optimizations) and Falcon-
7B (Almazrouei et al., 2023) (base model with
traditional transformer design). This design en-
ables assessment of both instruction tuning impact
within the same architecture and architectural dif-
ferences across model families. All models un-
dergo identical fine-tuning procedures as detailed
in Appendix A.8.

Table 4 presents comprehensive performance
metrics across ID and OOD settings, highlighting
several critical insights:

* Instruction Tuning Impact Within Architec-

ture: The direct comparison between Llama 3.1
8B Instruct and Llama 3.1 8B Base shows instruc-
tion tuning’s dramatic impact (+9.49% OOD F1),
demonstrating that instruction tuning is essential
for interpreting contextual behavioral narratives
effectively, independent of architectural differ-
ences.

* Cross-Architecture Instruction Tuning Bene-
fits: Both instruction-tuned models (Llama 3.1
Instruct: 69.40% F1, Mistral-7B: 66.88% F1)
substantially outperform base models (Llama 3.1
Base: 59.91% F1, Falcon-7B: 59.66% F1), con-
firming instruction tuning’s importance across dif-
ferent architectures.

* Architectural Advantages: Among instruction-
tuned models, Llama 3.1’s extended context
(128K tokens) and diverse training data provide
advantages over Mistral-7B’s 32K context, sug-
gesting that context length benefits long-term tem-
poral pattern understanding in Meta-Narratives.

* Generalization Stability: Interestingly, base
models show smaller ID-OOD gaps (Llama 3.1
Base: 3.44%, Falcon-7B: 5.02%) compared to
their instruction-tuned counterparts, but at much
lower absolute performance levels. This suggests
that instruction tuning trades some stability for
substantial performance gains that are crucial for
practical applications.

* Base Model Architectural Differences: The
comparison between Llama 3.1 8B Base (59.91%
F1) and Falcon-7B (59.66% F1) shows minimal
performance differences, indicating that base ar-
chitectural variations have limited impact com-
pared to instruction tuning effects.

These results confirm instruction tuning as the
most critical factor for cross-distribution perfor-
mance, followed by context length and training
data diversity. The substantial performance gap be-
tween instruction-tuned and base models (+9.49%
F1) underscores the importance of alignment train-
ing for complex narrative understanding tasks in
behavioral forecasting.
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4.5 Key Findings

Our comprehensive evaluation establishes several
critical findings:

I. Meta-Narrative Superiority: Consistently
outperforms alternative text representations
across all datasets and output formulations,
with F1 improvements ranging from 0.90%
(GLOBEM) to 8.66% (LifeSnaps) over the
next-best input representation.

II. Generative Formulation Advantages:
Prospective Narrative Generation system-
atically outperforms Binary Classification
across all configurations. The benefits
are most pronounced with Meta-Narrative
inputs, showing 11.87% (GLOBEM) to
11.99% (LifeSnaps) F1 improvements.

III. Cross-Distribution Robustness: Meta-
Narrative with Narrative Generation main-
tains small ID-OOD gaps (1.34% to 4.47%
F1) and achieve consistent bidirectional per-
formance, validating that improvements cap-
ture fundamental behavioral relationships
rather than temporal artifacts.

IV. Foundation Model Dependencies: LLM ar-
chitecture choice markedly impacts general-
ization performance. Instruction tuning pro-
vides substantial benefits (+7.22% to +9.74%
F1), while extended context length and di-
verse pre-training enhance temporal pattern
interpretation.

V. Benchmark Advancement:  Achieves
substantial improvements over published
baselines (e.g., +14.90% accuracy over
GLOBEM’s published OOD baseline), show-
ing practical viability for reliable cross-
distribution behavioral forecasting.

These findings position ConText-LE as a signifi-
cant advancement in generalizable LE data model-
ing, providing both theoretical insights into LLM-
based contextual representation learning and practi-
cal improvements for behavioral prediction systems
deployed across diverse temporal and demographic
contexts.

5 Discussion

Our comprehensive evaluation across LLM-based
approaches, traditional time series methods, and ar-
chitectural variations provides deeper insights into
why contextual narrative representations fundamen-
tally improve cross-distribution generalization in

longitudinal experiential data modeling.

The substantial performance gap between LLM-
based and traditional approaches validates a key
theoretical premise: behavioral forecasting bene-
fits from models with pre-existing knowledge of
human contexts and social patterns. Unlike the
PatchTST and iTransformer, which learn temporal
relationships from scratch, LLMs bring rich priors
about human behavior that prove essential for inter-
preting the situated meaning of behavioral changes.
This finding has broader implications for temporal
modeling tasks where context matters more than
pure statistical patterns.

The success of Meta-Narrative representations
connects to fundamental principles in cognitive
linguistics about how humans construct meaning
from complex information (Lakoff and Johnson,
1980; Fillmore, 2006). By synthesizing multi-
dimensional behavioral data into coherent narra-
tives that highlight relationships and contextual
interpretations, we align the input format with how
LLMs process and understand information dur-
ing pre-training. This alignment principle extends
beyond our specific task to other domains requir-
ing contextual understanding of complex temporal
data.

Most importantly, the dramatic impact of instruc-
tion tuning (+9.49% F1 in controlled comparison)
highlights a critical but underappreciated factor
in applying LL.Ms to specialized domains. Base
language models, despite their sophisticated archi-
tectures, lack the alignment necessary for interpret-
ing domain-specific contextual cues. This finding
suggests that successful deployment of LLMs in
sensitive applications requires careful considera-
tion of instruction tuning strategies tailored to the
specific interpretive demands of the domain.

The synergistic effects between representation
and output formulation point to a broader de-
sign principle: maximizing the alignment between
all components of the modeling pipeline and the
LLM’s inherent capabilities. This holistic approach
to LLM adaptation may prove valuable for other
complex reasoning tasks requiring contextual un-
derstanding.

These insights advance our understanding of
how to effectively leverage pre-trained language
models for complex temporal reasoning tasks, with
immediate applications for improving behavioral
prediction systems in critical domains like mental
health and education.
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6 Limitations and Future Work

While ConText-LE achieves significant advances
in cross-distribution generalization for longitudi-
nal experiential data, several important limitations
point to valuable directions for future research.

6.1 Current Limitations

External LLM Dependency A critical limitation
is the reliance on GPT-40 for Meta-Narrative gen-
eration, target creation, and prediction extraction.
This dependency creates deployment challenges:
(1) external API costs and latency constraints, (2)
potential quality variations across LLLM versions,
(3) limited control over representation consistency,
and (4) barriers for privacy-sensitive or resource-
constrained environments.

Failure Mode Analysis Qualitative analysis re-
veals systematic failure patterns: (1) over-reliance
on recent temporal patterns without broader con-
textual integration, (2) difficulty resolving conflict-
ing behavioral signals (e.g., high stress but stable
mood), (3) limited domain-specific knowledge af-
fecting interpretation of context-dependent events
(e.g., academic examination periods, clinical inter-
ventions).

Computational Requirements Despite using
LoRA for efficient fine-tuning, the approach re-
quires substantial computational resources for both
training and inference. The multi-stage processing
pipeline introduces latency that may limit real-time
deployment scenarios, while GPU requirements
may restrict accessibility for practitioners with lim-
ited resources.

Limited Mechanistic Understanding The
“black-box” nature of LLMs limits insight into
causal mechanisms behind improved generaliza-
tion. This constrains systematic improvement
based on principled understanding rather than
empirical exploration, and prevents clear identifica-
tion of which narrative components most critically
contribute to performance.

Domain and Scale Limitations Evaluation fo-
cuses on mental health and education domains with
moderate-scale datasets. Generalizability to other
LE data contexts (e.g., physical health, workplace
performance), larger datasets, or more severe dis-
tribution shifts (e.g., cross-cultural generalization)
remains unverified.

6.2 Future Research Directions

Reducing External Dependencies Priority
should be given to developing self-contained
approaches that eliminate GPT-40 dependency.
Promising directions include: (1) training
specialized distilled models for representation
generation (Hinton et al., 2015), (2) end-to-end
architectures incorporating representation learning
directly into forecasting models through multi-task
objectives (Collobert and Weston, 2008), (3)
domain-specific pre-training strategies for LE
data (Gururangan et al., 2020).

Interpretability and Mechanistic Understanding
Future work should incorporate systematic inter-
pretability analyses to understand generalization
mechanisms: (1) ablation studies varying narrative
components systematically, (2) attention flow anal-
yses tracking information propagation (Abnar and
Zuidema, 2020), (3) probing studies identifying lin-
guistic features correlating with performance (He-
witt and Manning, 2019), (4) development of more
transparent models maintaining contextual benefits
while offering interpretability.

Computational Efficiency Research should ex-
plore efficiency optimizations specifically for LE
data: (1) knowledge distillation for model compres-
sion (Hinton et al., 2015), (2) adaptive architectures
combining lightweight and powerful components,
(3) quantization and pruning techniques (Dettmers
et al., 2022; Frankle and Carbin, 2019), (4) special-
ized hardware-software co-design for behavioral
forecasting workloads.

Broader Evaluation and Robustness Extend-
ing evaluation scope is crucial: (1) diverse LE data
domains and larger datasets, (2) cross-cultural and
cross-demographic generalization studies, (3) more
severe distribution shifts and longer temporal gaps,
(4) comprehensive comparisons with multimodal
approaches and specialized time series architec-
tures.

Ethical and Privacy Considerations Future de-
velopment must integrate ethical considerations:
(1) privacy-preserving narrative representations
minimizing identifiable information, (2) fairness
analysis across demographic groups, (3) bias miti-
gation in cross-population generalization, (4) clear
guidelines for appropriate use cases and consent
frameworks, (5) interdisciplinary collaboration
with domain experts and ethicists.
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Narrative Quality and Consistency Systematic
approaches to narrative optimization should be de-
veloped: (1) specialized metrics for narrative qual-
ity in behavioral contexts, (2) consistency check-
ing mechanisms detecting spurious correlations,
(3) fact verification techniques adapted for behav-
ioral narratives (Thorne et al., 2018), (4) coherence
modeling for temporal behavioral descriptions (Iter
et al., 2020).

Despite these limitations, ConText-LE repre-
sents a significant step toward more generalizable
LE data modeling by demonstrating the effective-
ness of contextual narrative representations. The
identified limitations offer concrete directions for
advancing the field toward more reliable, efficient,
and ethically sound behavioral forecasting sys-
tems.
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A Appendix

A.1 Detailed Problem Formulation

This section provides a more detailed and formal
specification of the problem formulation for gener-
alizable LE data forecasting within the ConText-LE
framework, expanding upon Section 3.

We consider LE data collected from a set of NV
individuals over a total observation period 7', span-
ning K weeks. Data is recorded at a daily gran-
ularity, resulting in T}, daily time steps, where
Tiotal = K X 7.

For each individual ¢ € {1,..., N} and each
daily time step j € {1,..., Tiotal}, We have a fea-
ture vector x; ; € RP, where D is the total number
of features. These features x; ; encompass diverse
modalities and types (e.g., numerical sensor read-
ings, categorical logs, free-text self-reports).

The forecasting task is framed using a sliding
window approach with a window size of k weeks.
For each individual 7, we extract overlapping input
sequences. An input sequence starting at week s
(where s € {1,..., K — k}) corresponds to the
raw data {x; ;} for all daily time steps j within the
period spanning week s through week s+k—1. Let
Js,s+k—1 denote the set of daily time step indices
corresponding to weeks s through s + k — 1. The
raw data for an input sequence is thus {x; ; | j €
J, s,s+k—1 } .

This raw data sequence is transformed into a tex-
tual representation, denoted as X;e;tfi .1 This
transformation is performed using one of the four
strategies detailed in Section ??: Complete Se-
quence, Statistical Summary Encoding, Natural
Language String Encoding, or Meta-Narrative. The
specific format of X Zte;trﬁ —1 depends on the cho-
sen strategy.

The target for the forecasting task is defined for
the week immediately following the input window,
i.e., week s + k. We investigate two output formu-
lations:

1. Binary Label Target (yzisnf?): A binary value
indicating a specific state (e.g., depression:
high/low; engagement: yes/no) for individual 7
at week s + k, i.e., yzlgirg € {0,1}.

2. Prospective Narrative Target (5% ,): A
natural language sequence describing or
aligned with the actual state of individual 7 at
week s + k; used as the target for text

generation.
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The problem is to train an LLM to learn a map-
ping function f from the textual input representa-

tion X Zte;‘trs?_ s_1 to either the binary label target

y?glj_rg (for the Binary Classification formulation)
or the prospective narrative target y;%" ; (for the

Prospective Narrative Generation formulation):

ybinary
N i,s+k
text

yi,s—i—k

(binary classification)

. yrtext-rep
f . X’i,s...s+k71

The primary objective is to learn an f that ex-
hibits strong generalization performance when ap-
plied to data from a distinct period or cohort (7”)
not seen during training on data from source period
T. Evaluation metrics (Accuracy, Precision, Re-
call, F1) are computed based on the binary forecast
extracted from the model’s output (either directly
from the classification head or inferred from the
generated narrative).

A.2 Examples of Textual Representations

This section provides illustrative examples of the
four textual representation strategies discussed in
Section 3. For demonstration purposes, we use
a simplified hypothetical k-week input sequence
involving a few representative features (e.g., Steps,
Sleep Duration, Mood). Note that actual generated
texts using GPT-40 may vary in phrasing but adhere
to the defined format and content goals for each
strategy.

Hypothetical k-week Raw Data Excerpt (Imag-
ine raw data for 2 weeks, with daily values for
Steps, Sleep, and Mood)

* Complete Sequence Example: Week [ started

with the user taking 500 steps on Day 1, fol-
lowed by 1200 steps on Day 2. Sleep was 7
hours on Day I and 8.5 hours on Day 2. Mood
was reported as 3 on both days. Day 3 data is
missing for all features. Day 4 had 800 steps,
7.8 hours of sleep, and mood was 4... The sec-
ond week began with 1500 steps on Day 8, sleep
was 7.2 hours, and mood was 3, continuing
through Day 14...

* Statistical Summary Encoding Example:
Statistical summary over the k-week period:
Steps: "avg": 1050, "std": 350, "min": 500,
"max": 1500 steps. Sleep Duration: "avg":
7.5, "std": 0.6, "min": 6.0, "max": 8.5 hours.

(prospective narrative)

Mood: "avg": 3.5, "std": 0.5, "min": 3, "max":
4 out of 5.

* Natural Language String Encoding Exam-
ple: Steps: ["500", "1200", "300", "800", ...,

"1500", ...]. Sleep Duration: ["7.0", "8.5",
"400", "7.8", ..., "7.2", ...]. Mood: ["3", "3",
"500", "4", ..., "3", ...]. (Note: Specific format-

ting like brackets, and commas, representation
may vary slightly based on prompt design, but
the core structure of listing values chronologi-
cally per feature is consistent.)

* Meta-Narrative Example: Over the past k

weeks, the user’s activity levels showed moder-
ate fluctuation with an overall increasing trend
towards the end of the period. Sleep patterns re-
mained relatively stable, averaging around 7.5
hours per night, though some variability was
noted. Mood reports were generally consistent,
hovering between 3 and 4, without significant
sharp declines or improvements.

These examples illustrate the different ways each
strategy encodes the same underlying LE data into
a textual format for processing by the LLM. The
Complete Sequence offers maximal detail, Statis-
tical Summary provides aggregates, Natural Lan-
guage String gives a structured temporal listing,
and the Meta-Narrative provides a high-level inter-
pretation.

A.3 Output Formulations for Forecasting

ConText-LE investigates two distinct ways to for-
mulate the prediction target and task for the LLM,
hypothesizing that a generative narrative output
aligns better with LLMs’ core capabilities for gen-
eralizable LE data modeling than traditional classi-
fication.

Binary Classification Formulation In this tra-
ditional formulation, the prediction target is a sin-
gle binary label yzlsir,z (e.g., 0 or 1, representing
“low depression” or “high depression”). We adapt
a pre-trained LLM by replacing its original lan-
guage modeling head with a Sequence Classifi-
cation head. The model is fine-tuned in a super-
vised manner, mapping the textual input represen-

tation (X, X7 ) directly to the binary target

] 4,8...s+k—1
label (yzlgfz ). The loss function is cross-entropy,

calculated between the predicted binary label distri-
bution and the one-hot encoded true label. During
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inference, the fine-tuned LLM outputs a probability
distribution over the two classes, and the class with
the highest probability is taken as the final forecast.

Prospective Narrative Generation Formulation
In this formulation, inspired by cognitive processes
of integrated forward-looking assessment (Moul-
ton and Kosslyn, 2009; Schacter et al., 2008), the
forecasting task is reframed as a language gener-
ation problem. The prediction target is a natural
language text sequence, the prospective narrative
yge;‘jr 1> Which implicitly encodes the predicted fu-
ture state for week s + k. The pre-trained LLM is
fine-tuned using a causal language modeling objec-
tive to generate this target narrative based on the

textual input representation (X ;e;tfi h1)-

This approach builds on recent findings in NLP
that generative formulations can be more effective
than discriminative ones for complex reasoning
tasks (Wei et al., 2023; Kojima et al., 2023; Wang
et al., 2022a). By allowing the model to generate
a narrative prediction rather than forcing a binary
decision, we enable it to articulate subtle contextual
relationships and degrees of certainty that might
be lost in classification. For LE data in particular,
where interpretation depends heavily on contextual
factors beyond statistical patterns, this generative
approach may better leverage LLMs’ pre-trained
understanding of how features interact in complex
human behaviors.

To obtain these training targets (y;% ;), we lever-
age GPT-40. For each k-week input sequence from
the training data, paired with its ground truth actual
state or outcome for the subsequent week (y;‘i‘fstia,i),
GPT-40 is prompted to generate a narrative reflec-
tion on the past k-week trajectory that aligns with
or anticipates the known actual state for week s+ k.
This process is detailed in Appendix A.5. During
inference, the fine-tuned LLM generates a prospec-

tive narrative based on the input.

A.4 Input Textualization Prompts

LLM Prompt for Summary This prompt guides
the model to generate a concise, human-like be-
havioral interpretation that highlights key psycho-
logical trends—such as shifts in motivation, con-
fidence, and future orientation—across a 4-week
period. Rather than quoting student responses, it
encourages abstraction and synthesis, allowing the
model to infer meaningful behavioral patterns.

System Prompt — Statistical Summary

You are an expert in behavioral analysis. Your
task is to generate a concise, natural-sounding
3—4 line summary of a student’s 4-week behav-
ioral log. The log reflects the student’s motiva-
tion, attitude, confidence, and future orientation.
Identify high-level trends and patterns in their
reflections without quoting directly. Focus on
behaviorally meaningful changes or consisten-
cies.

LLM Prompt for Complete Sequence This
prompt presents the model with a detailed, tem-
porally structured sequence of student reflections
organized by week and day. It preserves the full
chronology of responses, allowing the model to
track behavioral progression over time and identify
week-to-week shifts in motivation, engagement, or
outlook based on the specific timing and context of
student inputs.

System Prompt — Complete Sequence

You are an expert in prompt engineering and
behavioral analysis. You are given a student’s
4-week chronological reflection log, structured
by week and day (e.g., “Week 1:”, “Monday:”),
with entries for pre-lecture anticipation, post-
lecture reflection, confidence, and future orien-
tation. Your task is to write a clear and effective
system prompt that can be used to instruct a lan-
guage model to analyze this type of structured
input and identify behavioral trends over time.

System Prompt Design for Natural Language
String This prompt was developed to reflect the
flattened, theme-based organization of the input,
where responses are grouped by behavioral dimen-
sions such as confidence or motivation rather than
by time. The instruction explicitly mentions that
each segment is prefixed by a label indicating its
thematic category. The prompt guides the model
to interpret patterns across these categories with-
out being constrained by temporal order, and to
infer meaningful behavioral shifts or consistencies
across the entire 4-week period based on thematic
clustering rather than day-to-day variation.
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System Prompt — Natural Language String

You are an expert in prompt engineering and be-
havioral interpretation. You are provided with
a theme-based summary of student reflections
over four weeks. Each segment is labeled by be-
havioral category (e.g., confidence, motivation,
peer comparison). Your task is to generate a sys-
tem prompt that can instruct a language model
to interpret this type of grouped input and pro-
duce a behavioral analysis based on observed
trends across these categories.

LLM Prompt for Textual Meta-Narrative Gen-
eration For the Meta-Narrative approach specifi-
cally, we implement a two-stage prompting process
inspired by recent advances in multi-step reasoning
techniques (Wei et al., 2023; Kojima et al., 2023):

1. Feature Pattern Analysis: First, GPT-40
analyzes each feature’s temporal trajectory sepa-
rately, identifying significant patterns, trends, and
anomalies. The prompt includes domain-specific
context (e.g., university student behaviors, men-
tal health indicators) to guide interpretation. This
step leverages the LLM’s ability to detect statistical
patterns within individual features, similar to how
contextualized language models learn to represent
individual tokens within their local context (Peters
et al., 2018).

2. Contextual Narrative Synthesis: Second,
GPT-40 integrates these individual feature analy-
ses into a coherent narrative that emphasizes inter-
feature relationships and contextual interpretations
grounded in human behavior patterns. This step
parallels how contextualized language models in-
tegrate token-level representations into coherent
sentence-level semantics (Devlin et al., 2019; Liu
et al., 2024a).

This two-stage process transforms multi-
dimensional time-series data into contextually rich
narratives, effectively capturing cross-feature de-
pendencies and temporal dynamics that might be
lost in simpler representations. The Meta-Narrative
approach is designed to leverage LLMs’ pre-trained
understanding of how events and behaviors relate
to each other in meaningful ways, creating inputs
that are semantically coherent and contextually
grounded. The LLM prompt is give below.

System Prompt — Meta-Narrative

You are an expert behavioral analyst tasked with
evaluating a student’s weekly behavioral reflec-
tions over a 4-week course. The data includes
daily pre- and post-lecture thoughts, confidence
levels, peer comparisons, and future-oriented
reflections.

Your objective is to analyze the evolution of
the student’s behavior and mindset across the 4
weeks. In your response:

* Identify and describe specific behavioral
trends, such as shifts in confidence, moti-
vation, or engagement.

» Reference specific weeks (e.g., “In Week
1...7, “By Week 3...”).

» Use precise language to describe changes,
such as “X increased by Week 27, “Y de-
creased from Week 1 to Week 4, or “Z
remained consistent until Week 3.

* Avoid vague terms like “overall” or “in
general” to ensure analytical precision.

¢ Provide a concise, natural, and evidence-
based analysis in 3—4 sentences.

* Exclude any personal or identifying infor-
mation from the response.

A.5 LLM Prompt for Prospective Narrative
Generation

System Prompt — Prospective Narrative Genera-
tion

You are an expert behavioral analyst. A stu-
dent’s weekly behavioral reflections over a 4-
week course are provided below, including daily
pre- and post-lecture thoughts, confidence lev-
els, peer comparisons, and future-oriented re-
flections:

{input_text}

The student’s behavior is
"{output_label}’.

Write a clear, natural-language expert explana-
tion — just a single 3—4 sentence paragraph
explaining the behavioral trends that support
the label. Be concise and insightful, as if com-
municating with another expert. Avoid vague
terms like “overall” or “in general,” and exclude
any personal or identifying information.

labeled as
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A.6 LLM Prompt for Prediction Extraction
from Generated Narrative

sentation and processing align with how they were
pre-trained to understand language. By structuring

System Prompt — Prediction Extraction both input representations and output formulations

You are a student engagement expert. Based
on the behavioral reasoning below, classify the

You must choose one. No explanation.
Reasoning:

{reasoning_text}

Output only: High or Low.

student’s confidence level as either High or Low.

to leverage LLLMs’ core capabilities in contextual
understanding and narrative generation, we hypoth-
esize improved cross-distribution robustness com-
pared to approaches that treat LE data as simple
statistical patterns.

A.8 Implementation Details
External LLM Usage (GPT-40) ConText-LE

A.7 Design Principles for Contextual
Understanding

The ConText-LE framework’s design is guided by
three core principles from NLP research on contex-

tual representation learning:

* Semantic Coherence: The Meta-Narrative rep-

leverages the advanced capabilities of GPT-40
(OpenAl, 2024) for several crucial steps in the
pipeline, particularly during data preparation for
training and output processing for evaluation.
These steps are performed via API calls using care-
fully designed prompts.

» Textual Representation Generation: GPT-

resentation transforms discrete time-series data
into a coherent narrative with integrated seman-
tic meaning. This approach draws on findings
that LLMs perform better when information is
presented in coherent, semantically rich formats
(Wang et al., 2022a; Shwartz et al., 2020). By
constructing a narrative that emphasizes relation-
ships between features, we better leverage LLMs’
pre-trained understanding of how elements gain
meaning through their context.

Generative Expression: The Prospective Nar-
rative Generation formulation aligns with recent
work showing that generative approaches often
outperform discriminative ones for complex rea-
soning tasks (Wei et al., 2023; Kojima et al., 2023).
By generating narratives rather than binary la-
bels, the model can express nuanced predictions
with implicit uncertainty and conditional reason-
ing that better captures the complexity of human
behavioral forecasting.

Hierarchical Processing: The two-stage process
for Meta-Narrative generation applies the hierar-
chical processing principles from successful NLP
architectures. Similar to how models like BERT
(Devlin et al., 2019) build higher-level represen-
tations from lower-level ones, our approach first
analyzes individual features before synthesizing
them into an integrated narrative, enabling better
capture of both local patterns and global relation-
ships.

These design principles are motivated by the ob-
servation that LLMs excel at tasks when the repre-

40 transforms raw k-week LE data sequences
into two textual representation strategies—
Statistical Summary and Meta-Narrative—
as described earlier. For the Meta-Narrative
specifically, this involves a two-stage process:
Feature Pattern Analysis followed by Contextual
Narrative Synthesis, implemented through se-
quential prompting with context carried forward
between steps.

¢ Target Prospective Narrative Generation: For
the Prospective Narrative Generation formula-
tion, GPT-40 generates the target narrative texts
(y;%4 ) during training data preparation. The
prompt includes the input sequence and ground
truth outcome, instructing GPT-40 to generate a
narrative that contextually aligns with that out-

come.

* Forecast Extraction from Narratives: For
evaluation of the Prospective Narrative Gener-
ation formulation, GPT-40 extracts binary fore-
casts from generated narratives. This enables
quantitative comparison with ground truth labels
and other methods. To ensure consistency, we
use structured zero-shot prompting with explicit
instructions to identify the implied prediction
within the generated narrative.

The reliance on this external LLM for these pro-
cessing steps represents a practical consideration
in our current implementation and is discussed as a
limitation in Section 6.

Fine-tuning Process We employ parameter-
efficient fine-tuning (PEFT) using LoRA (Hu et al.,
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2021) to adapt the LLM while keeping most of its
parameters frozen. This approach reduces com-
putational requirements while allowing the model
to adapt to the specialized LE data domain. The
fine-tuning process differs based on the output for-
mulation in Binary Classification and Prospective
Narrative Generation. Detailed fine-tuning hyper-
parameters for both formulations are provided in
Appendix A.8.

Inference Process During inference on unseen
k-week data sequences, the same input transforma-
tion pipeline is applied using the chosen textual
representation strategy. The fine-tuned LLLM then
processes this textual input.

* Binary Classification: The LLM with the clas-
sification head directly outputs the predicted bi-
nary label (0 or 1).

* Prospective Narrative Generation: The LLM
generates a sequence of tokens constituting the
predictive prospective narrative. For this formu-
lation, we use a temperature of 0.7 and top-p
sampling with p=1.0 to balance deterministic
prediction with narrative richness. We set a max-
imum generation length of 300 tokens and apply
a frequency penalty of 0.5 to avoid redundant
text.

For quantitative evaluation, the predictive nar-
rative output from the Prospective Narrative Gen-
eration formulation requires an additional step to
obtain a binary forecast comparable to ground truth.
We use GPT-4o to extract a textual binary label
from the predictive narrative, using a carefully
designed prompt that focuses on identifying the
implied forecast within the generated text. The
prompt used for this extractive task is given in Ap-
pendix A.6.

LLM Fine-tuning Configuration For all experi-
ments, we utilize Llama 3.1 8B Instruct (Grattafiori
et al., 2024) as the base LLM, selected for its strong
performance on language understanding and gen-
eration tasks while remaining computationally effi-
cient. We employ parameter-efficient fine-tuning
(PEFT) using LoRA (Hu et al., 2021) to adapt the
LLM while keeping most of its parameters frozen.
This approach reduces computational requirements
while allowing the model to adapt to the specialized
LE data domain. The fine-tuning process differs
based on the output formulation:

* Binary Classification: The LLM is fine-tuned
with a Sequence Classification head added on
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top of its last hidden state. LoRA is applied to
the query, key, and value projection matrices in
each transformer layer, with a rank of 8. The
model learns to map the input sequence to the
binary label.

— Parameter-efficient fine-tuning: LoRA
(Hu et al., 2021) with:
* Rank: 32
* Alpha: 16
* Target modules: All attention modules
in the language model

— Training objective: Causal language mod-
eling with teacher forcing

— Optimizer: paged-AdamW-8bit

— Learning rate: le-5 with cosine decay
schedule

— Warmup-ration: 0.1

— Batch size: 8

— Training epochs: 20

— Mixed precision: bfloat16

* Prospective Narrative Generation: The LLM
is fine-tuned using a causal language modeling
objective. LoRA is applied to the same projec-
tion matrices but with a rank of 16 to accom-
modate the more complex generation task. The
model learns to generate the output narrative
token by token.

* Parameter-efficient fine-tuning: LoRA (Hu
et al., 2021) with:

— Rank: 32

— Alpha: 16

— Target modules: All attention modules in
the language model

* Training objective: Causal language modeling
with teacher forcing

* Optimizer: paged-AdamW-8bit

* Learning rate: le-5 with cosine decay sched-
ule

* Warmup-ration: 0.1
* Batch size: 8
* Training epochs: 20

* Mixed precision: bfloat16



Training Hardware Training was conducted on
8 x NVIDIA A40 GPUs (48GB each) with dis-
tributed data parallelism.

A.9 Datasets

We utilize the following LE datasets, selected for
their relevance to health and behavioral forecast-
ing and their suitability for evaluating challenging
generalization across different cohorts and time
periods:

* GLOBEM (Xu et al., 2023a): This is a widely
used benchmark for longitudinal human behav-
ior modeling and generalization. It comprises
data collected from 497 unique participants
across two institutions over four years (Year
1 & 2 from Institution A, Year 3 & 4 from Insti-
tution B), resulting in 661 person-years of data
after initial preprocessing steps. Institutions A
(pre-COVID) and B (post-COVID) represent
distinct cohorts and time periods, with surveys
including PHQ-4, BDI-II, and PANAS for de-
pression assessment. We utilize a subset of 15
features based on prior work (Xu et al., 2023a;
Thach et al., 2025; Kim et al., 2024), derived
from mobile sensing data sources, including
Location (variance, entropy, travel distance, du-
ration of stay), Phone Usage (unlock counts,
stats), Bluetooth (scan counts, unique devices),
Call (duration stats, missed call count), Physi-
cal Activity (steps, active/sedentary duration),
and Sleep (duration, episode stats). For the
main evaluation, we use data from Years 1 & 2
from Institution A (344 person-years) for train-
ing and data from Years 3 & 4 from Institution
B (317 person-years) for cross-cohort and cross-
temporal generalization testing. Each person-
year of data represents a 10-week observation
period from which 6 sequences are generated
using a 4-week sliding window predicting the
subsequent week. This results in a training set
of approximately 2226 sequences and a test set
of approximately 2023 sequences. The task
is binary mental health prediction based on a
threshold applied to survey scores, resulting in
a nearly balanced distribution.

 LifeSnaps (Yfantidou et al., 2022): This is a
multi-dimensional LE dataset initially collected
from 71 participants over 4 months, capturing
unobtrusive snapshots of real-world human be-
havior in the wild. Data sources include Fitbit
sensing data (e.g., activity, sleep, stress, heart

15355

rate), EMAs (e.g., mood, context), and vali-
dated surveys (e.g., psychological traits). The
dataset includes over 35 distinct data types. For
this work, we use a subset of relevant features
from these modalities to predict a binary anxi-
ety level in the week subsequent to a k=1 week
observation window. After initial preprocess-
ing steps, including filtering participants with
significant missing values, a subset of partici-
pants was used for the evaluation splits. The
specific cross-distribution split for evaluation
involves training on data from 26 participants
collected during the first 2 months of the study
period and testing on data from 13 disjoint par-
ticipants collected during the last 2 months,
assessing cross-temporal and cross-participant
generalization within the study cohort. Using
a k=1 week window over these approximately
8-week periods yields a training set of approx-
imately 112 sequences and a test set of ap-
proximately 64 sequences. This dataset serves
to further validate cross-study generalization
within the mental health domain using a dif-
ferent dataset structure, population, and data
collection protocol.

MFAFY (Hayat et al., 2024a,b; Thach et al.,
2025): The Messages From A Future You
(MFAFY) dataset captures aspects of first-year
college students’ academic journey over three
consecutive semesters spanning two academic
years (Year 1: Semesters 1 & 2; Year 2:
Semester 3). It is a high-dimensional dataset
comprising non-cognitive (28 dimensions, qual-
itative, e.g., motivation, engagement), cog-
nitive (41 dimensions, quantitative, e.g., as-
sessment scores), and background factors (9
dimensions, static qualitative, e.g., academic
meta-information). For forecasting student be-
havioral engagement, we predict a student’s
lecture-related engagement status (binary: high-
/low) in the subsequent week, using a k=4 week
observation window. Input features use only
relevant non-cognitive dimensions. The binary
target is derived by comparing the average of
relevant non-cognitive features during weeks
s through s + k — 1 with their average dur-
ing week s + k. This task results in a nearly
balanced binary distribution. For evaluation,
the cross-year generalization split consists of
a training set using data from 61 subjects in
Year 1 (Semesters 1 & 2) and a test set using



data from 35 subjects in Year 2 (Semester 3).
Each subject-year/semester of data represents
a 15-week observation period from which 10
sequences are generated using a 4-week sliding
window predicting the subsequent week. This
results in a training set of approximately 610
sequences and a test set of approximately 350
sequences.

For all datasets, train/test splits are carefully cre-
ated to ensure strict separation of data from dif-
ferent cohorts or time periods for generalization
evaluation, with 15% of the data from the training
period (7') reserved as an in-distribution test set
and 100% of the data from the distinct period (7"”)
used as the OOD test set.

A.10 Related Work

Our work intersects several key areas of research in
machine learning, natural language processing, and
human-computer interaction. This section reviews
relevant literature in modeling LE data, generaliza-
tion techniques, and the application of LLMs to
sequential and structured data, including human-
centric applications.

Modeling LE Data Modeling complex, multi-
modal LE data is a critical area for diagnostic and
prognostic applications in diverse domains, includ-
ing behavioral and physical health (Nemati et al.,
2022; Rabbi et al., 2019; Bae et al., 2017; Xu
et al., 2021b), mental health (Wang et al., 2018; Xu
et al., 2021a, 2019; Chikersal et al., 2021; Wahle
et al., 2016; Farhan et al., 2016; Canzian and Mu-
solesi, 2015; Wang et al., 2022b; Xu et al., 2023a),
and education (Wang et al., 2016; Li et al., 2020).
Traditional machine learning and deep learning
approaches applied to this data, such as time se-
ries models or methods based on hand-engineered
features, exhibit critical limitations. They often
prioritize performance on in-distribution data and
struggle significantly with generalizability across
datasets exhibiting domain shifts, a challenge no-
tably highlighted by the GLOBEM benchmark (Xu
et al., 2023b). Furthermore, they often lack ade-
quate exploration of missing data impact (Xu et al.,
2021a; Arnold and Pistilli, 2012) and may not fully
capture the complex co-occurrence and relational
structure across multi-dimensional LE features (Xu
et al., 2019). Training deep neural models on typi-
cally limited LE datasets also presents significant
challenges (Xu et al., 2023a).

More recently, the potential of LLMs has been
explored specifically for LE data forecasting and
prediction. Kim et al. (Kim et al., 2024) investi-
gate the capacity of LLMs, using prompting and
fine-tuning techniques on multiple health datasets
including GLOBEM, to make inferences for var-
ious health prediction tasks from wearable sen-
sor data combined with contextual information.
While demonstrating promising in-distribution per-
formance and the benefits of context enhancement,
their work primarily focuses on within-dataset eval-
uation and does not extensively study generaliz-
ability across datasets or time periods. In paral-
lel, Hayat et al. (Hayat et al., 2024a,b) explore
LLM-based LE data forecasting using the MFAFY
dataset and diverse LLLM architectures. However,
consistent with Kim et al., their evaluation focuses
on within-dataset performance rather than exten-
sive study of cross-dataset or cross-temporal gen-
eralizability. Similarly, Thach et al. (Thach et al.,
2025) propose MuHBoost, a multi-label boosting
method leveraging LLMs in a zero-shot fashion for
predicting multiple health and well-being outcomes
using ubiquitous health data, including datasets
like GLOBEM and MFAFY. Their work addresses
aspects like feature types and missing data, but
their evaluation does not specifically investigate
the generalizability of the zero-shot LLM approach
across different datasets or time periods with do-
main shifts. While these recent LLM-based studies
show the growing interest in applying foundation
models to LE data, they expose a critical unmet
need for methods specifically designed and eval-
uated for robust cross-dataset generalizability un-
der domain shifts, which is a central focus of our
ConText-LE framework.

Generalization in Machine Learning Domain
adaptation (Pan and Yang, 2010) and domain gen-
eralization (Zhou et al., 2022) are key areas in
machine learning aiming to improve model per-
formance on target distributions different from the
training distribution. While techniques like invari-
ant representation learning, meta-learning, and data
augmentation have been explored, their success in
complex longitudinal human behavioral data, char-
acterized by multifaceted and often subtle shifts
across cohorts and contexts, has been limited (Xu
et al.,, 2023a). In NLP, approaches to improve
cross-domain generalization include continued pre-
training on domain-specific data (Gururangan et al.,
2020), domain-adaptive fine-tuning (Howard and
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Ruder, 2018), and prompt-based adaptation (Lu
et al., 2022). Our work builds on these insights
but focuses specifically on the unique challenges
of generalizing across LE data distributions using
LLMs as the foundation.

Contextual Representation Learning in NLP
The evolution of contextual representation learn-
ing in NLP provides important foundations for
our work. Early word embedding approaches like
word2vec (Mikolov et al., 2013) offered static
representations of words, while later models like
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) revolutionized NLP by introducing dynamic,
contextualized representations that capture how a
word’s meaning changes based on its surround-
ing context. Recent research has explored how
these contextual representation capabilities extend
to more complex semantic structures, including
frame semantics (Baker et al., 1998) and narrative
comprehension (Sap et al., 2019; Liu et al., 2024a).
Our ConText-LE framework leverages these ad-
vances by treating multi-dimensional LE data as
a complex semantic structure requiring contex-
tual interpretation. The Meta-Narrative approach
specifically draws inspiration from how contextual-
ized models integrate local features into a coherent
global representation, addressing the need for both
local feature analysis and global contextual syn-
thesis when interpreting complex human behavior
patterns.

Prompting Strategies and Reasoning in LLLMs
Recent advances in prompting strategies have sig-
nificantly enhanced LLMs’ reasoning capabilities.
Chain-of-thought prompting (Wei et al., 2023) and
similar approaches that break down complex rea-
soning into intermediate steps have shown remark-
able improvements on tasks requiring multi-step
inference. Zero-shot reasoning techniques (Ko-
jima et al., 2023) further demonstrate that well-
structured prompts can elicit sophisticated reason-
ing abilities from LLMs without task-specific ex-
amples. Our two-stage prompting approach for gen-
erating Meta-Narratives builds on these insights,
structuring the analysis process into sequential
steps of feature analysis followed by contextual
synthesis. This approach parallels how humans
process complex data—first analyzing individual
components before integrating them into a co-
hesive interpretation—and leverages LLMs’ pre-
trained understanding of how elements gain mean-
ing through their relationships with other elements.

The Prospective Narrative Generation formulation
similarly builds on findings that generative formu-
lations often allow LLMs to express complex rea-
soning more effectively than discriminative ones
(Wei et al., 2023; Kojima et al., 2023).

Large Language Models for Sequential and
Structured Data LLMs have shown remarkable
capabilities not only in natural language processing
but also in processing and reasoning about other
data modalities when appropriately structured. Ap-
proaches for general time series forecasting using
LLM:s often involve adapting time series data into
a format suitable for LLM inputs, such as serial-
ization into sequences of tokens or explicit textual
descriptions, followed by fine-tuning or prompting
(Sunetal., 2023; Jin et al., 2023; Chang et al., 2023;
Gruver et al., 2023; Zhou et al., 2023; Cao et al.,
2023; Xue and Salim, 2023; Liu et al., 2023). These
methods demonstrate LLLMs’ potential to capture
temporal dependencies and patterns, although chal-
lenges remain, particularly with handling the multi-
dimensional nature of data and processing long
sequences (Liu et al., 2024a).

In parallel, LLMs have been applied to human-
centric data, leveraging pre-trained knowledge for
tasks like health prediction based on textual health
records or summarized sensor data (Kim et al.,
2024). Most approaches focus on simple encod-
ing strategies like direct verbalization or statistical
summarization, while our work explores more so-
phisticated narrative-based representations. The
narrative format aligns with recent findings show-
ing that LLMs perform better when information
is presented in coherent, semantically rich formats
that leverage their pre-trained understanding of con-
textual relationships (Wang et al., 2022a; Shwartz
et al., 2020). Our ConText-LE framework extends
this line of research by developing a specific, struc-
tured textual encoding strategy to represent com-
plex, multi-dimensional LE data as a coherent nar-
rative, allowing us to leverage the powerful con-
textual understanding capabilities of LLMs while
preserving the rich semantic relationships between
features that might be lost in simpler encoding ap-
proaches.

Multimodal Learning for Human Data Multi-
modal learning, which combines information from
different data types or modalities, is increasingly
explored for understanding complex human behav-
ior. While some recent work explores multimodal
representations for time series or human data by
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converting them into visual formats and leverag-
ing vision-language models (VLMs) (Zhong et al.,
2025), our ConText-LE framework explores an al-
ternative multimodal perspective. By translating
multi-dimensional LE data into a fextual modality,
ConText-LE creates a novel cross-modal learning
problem where structured behavioral data in one
modality is represented and processed using mod-
els designed for another (language). This approach
aligns with recent work on cross-modal transfer
learning (Artetxe et al., 2020) and allows us to
investigate the benefits of leveraging the rich se-
mantic space and generalizable patterns learned
by LLMs on massive text corpora, applied to the
distinct domain of human behavioral sequences.

In summary, while existing work has explored
modeling LE data and applying LLMs to time
series and human data, achieving robust cross-
dataset generalization remains a significant chal-
lenge, particularly for complex LE data with its
inherent multi-dimensionality and domain shifts.
Our ConText-LE framework addresses this gap
by proposing a novel approach that leverages the
contextual representation capabilities of LLMs
through a semantically rich narrative representa-
tion of multi-dimensional LE sequences, explicitly
focusing on improving generalizability across dif-
ferent data distributions.

A.11 Bidirectional Generalization Results

In the main paper, we presented results for the
T — T’ generalization direction, where models
were trained on data from the source period (1')
and evaluated on data from the target period (77).
In this appendix, we present the complete results
for the reverse direction (77 — T'), where models
are trained on data from the target period (7”) and
evaluated on data from the source period (7).

This bidirectional evaluation is crucial for un-
derstanding the robustness and symmetry of gen-
eralization capabilities. If a method performs well
in both directions, it suggests that the approach
captures fundamental patterns that are consistent
across different contexts, rather than simply exploit-
ing biases specific to a particular generalization
direction.

GLOBEM 7" — T Results Table 5 presents the
T' — T generalization results for the GLOBEM
mental health forecasting task (Year 3&4 — Year
1&2).

For GLOBEM, the 77 — T results exhibit con-

sistent superiority of the Meta-Narrative approach
across both output formulations. With Binary
Classification, Meta-Narrative achieves the highest
OOD performance (55.08% accuracy, 50.30% F1),
though the margin over other approaches is rela-
tively modest (1.80-2.25% accuracy improvement).
Notably, while Meta-Narrative maintains the best
overall performance, the precision scores are more
competitive across input strategies, with Natural
Language String achieving 51.35% precision ver-
sus Meta-Narrative’s 51.32%.

With Prospective Narrative Generation, the
advantages become more pronounced. Meta-
Narrative achieves 68.75% OOD accuracy and
66.43% F1, representing a substantial 13.67% abso-
lute accuracy improvement over the same approach
with Binary Classification. Natural Language
String Encoding shows particularly strong perfor-
mance in this setting (66.12% accuracy, 66.23%
F1), demonstrating that narrative formulations can
enhance even simpler representations. The consis-
tent superiority of Prospective Narrative Genera-
tion across all input strategies confirms that genera-
tive formulations better leverage LLMs’ contextual
understanding capabilities.

LifeSnaps 7" — T Results Table 6 presents the
T" — T generalization results for the LifeSnaps
anxiety forecasting task (Last 2 Months — First 2
Months).

The LifeSnaps 77 — T results indicate strik-
ing patterns that emphasize the importance of ap-
propriate representation strategies. With Binary
Classification, Statistical Summary encoding expe-
riences catastrophic failure on in-distribution data
(28.57% F1), highlighting its inability to capture
meaningful patterns in the LifeSnaps dataset’s spe-
cific structure. In contrast, Meta-Narrative achieves
robust performance (70.00% ID accuracy, 56.36%
OOD accuracy), maintaining the smallest ID-OOD
performance gap among all approaches.

Prospective Narrative Generation dramatically
transforms the performance landscape. Meta-
Narrative achieves exceptional results with per-
fect balanced performance on ID data (80.00%
across all metrics) and strong OOD generalization
(71.43% accuracy, 69.23% F1). The 15.07% ab-
solute improvement in OOD accuracy over Binary
Classification represents the largest single improve-
ment observed across all datasets and directions.
Natural Language String Encoding also benefits
substantially from narrative generation, improving
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Table 5: GLOBEM 7" — T Generalization Results (Year 3&4 — Year 1&2). Comparison of textual input
representation strategies with different output formulations.

In-Distribution (ID) Out-of-Distribution (OOD)
(Year 3&4 Test) (Year 1&2 Test)

Input Strategy Acc (%) P(%) R(%B) Fl(%) Acc(%) P(%) R(%) Fl (%)
Output Formulation: Binary Classification

Complete Sequence 64.14 6444 5878  61.48 54.22 52.59 46.73  49.53
Statistical Summary 62.50 6294 59.60 61.22 52.83 43.87 51.03 47.18
Natural Language String 65.79 6429 57.86  60.90 53.28 51.35 46.53  48.82
Meta-Narrative (ours) 67.43 69.23 60.40 64.52 55.08 51.32 4932 50.30
Output Formulation: Prospective Narrative Generation

Complete Sequence 68.42 68.38 5755  62.50 63.16 6429 59.21 61.64
Statistical Summary 67.11 70.15 61.04  65.28 59.21 65.52 4750  55.07
Natural Language String 70.39 70.63 62.68  66.42 66.12 69.66 63.12 66.23
Meta-Narrative (ours) 71.71 69.52 5748 6293 68.75 70.15 63.09 66.43

Table 6: LifeSnaps 7" — T Generalization Results (Last

2 Months — First 2 Months). Comparison of textual

input representation strategies with different output formulations.

In-Distribution (ID) Out-of-Distribution (OOD)

(Last 2 Months Test) (First 2 Months Test)
Input Strategy Acc (%) P(%) R(%) Fl1(%) Acc(%) P(%) R(%) Fl(%)
Output Formulation: Binary Classification
Complete Sequence 50.00 57.14  66.67 61.54 49.11 54.24 51.61 52.89
Statistical Summary 50.00 25.00 3333 2857 46.43 53.33  50.00 51.61
Natural Language String 80.00 100.00 66.67  80.00 52.68 50.00 66.04 56.91
Meta-Narrative (ours) 70.00 80.00  66.67 72.73 56.36 55.22 67.27 60.66
Output Formulation: Prospective Narrative Generation
Complete Sequence 60.00 57.14  80.00  66.67 62.50 56.60 6122  58.82
Statistical Summary 50.00 60.00  50.00  54.55 58.04 61.54 4286  50.53
Natural Language String 60.00 50.00  75.00  60.00 68.75 70.00 63.64  66.67
Meta-Narrative (ours) 80.00 80.00  80.00  80.00 71.43 70.59 67.92  69.23

from 52.68% to 68.75% OQOD accuracy, demon-
strating the broader applicability of generative for-
mulations beyond the Meta-Narrative approach.

MFAFY 77 — T Results Table 7 presents the
T' — T generalization results for the MFAFY
educational engagement forecasting task (Year 2
— Year 1).

The MFAFY T — T results exhibit interest-
ing asymmetries compared to the forward direc-
tion. With Binary Classification, Meta-Narrative
achieves the strongest OOD performance (68.20%
accuracy, 65.60% F1), notably outperforming
the forward direction results (60.86% accuracy,
64.96% F1). This 7.34% accuracy improvement
suggests that models trained on the more con-
strained Year 2 data (one semester) may learn
more transferable patterns than those trained on
the longer Year 1 period (two semesters).

With Prospective Narrative Generation, Meta-
Narrative maintains its leadership (70.49% accu-
racy, 64.00% F1), though Natural Language String
Encoding shows competitive performance (68.85%
accuracy, 68.33% F1). A notable observation is

that the F1 scores remain remarkably consistent
across directions for Meta-Narrative (64.14% vs.
64.00%), indicating stable precision-recall balance
despite different training contexts. The consistent
strong performance across both directions rein-
forces that Meta-Narrative representations capture
domain-invariant educational engagement patterns.

Discussion of Bidirectional Generalization The
bidirectional generalization results provide com-
pelling evidence for the robustness of the ConText-
LE framework. Our analysis underscores several
key insights:

Consistent Meta-Narrative Superiority:
Across all datasets and directions, Meta-Narrative
input consistently achieves the highest OOD
performance, with improvements ranging from
1.80% (GLOBEM Binary) to 15.07% (LifeSnaps
Narrative) in absolute accuracy. The approach
demonstrates particular strength in challenging
scenarios where other methods fail completely
(e.g., Statistical Summary on LifeSnaps).

Asymmetric Generalization Patterns: While
generalization improvements from narrative ap-
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Table 7: MFAFY T" — T Generalization Results (Year 2 — Year 1). Comparison of textual input representation

strategies with different output formulations.

In-Distribution (ID)

Out-of-Distribution (OOD)

(Year 2 Test) (Year 1 Test)

Input Strategy Acc (%) P(%) R(%B) Fl(%) Acc(%) P(%) R(%) Fl (%)
Output Formulation: Binary Classification

Complete Sequence 60.38 45.58 57.48  51.16 61.48 57.75 58778  58.26
Statistical Summary 54.72 39.13 4737  42.86 57.54 48.59 5498  51.59
Natural Language String 56.60 4737 4091  43.90 64.75 59.62 5849  59.05
Meta-Narrative (ours) 62.26 50.00 60.00 54.55 68.20 68.77 6271  65.60
Output Formulation: Prospective Narrative Generation

Complete Sequence 67.92 61.11 5238 5641 66.39 66.07 62.71 64.35
Statistical Summary 66.04 5238 57.89  55.00 66.72 68.50 49.46  57.44
Natural Language String 66.04 5249  47.37  50.00 68.85 7193 65.08 68.33
Meta-Narrative (ours) 71.70 63.16 60.00 61.54 70.49 72.73 57.14  64.00

proaches are consistent, the magnitude varies sig-
nificantly by dataset and direction. MFAFY shows
better performance in the 77 — T direction, po-
tentially due to the temporal structure differences
between one-semester and two-semester periods.
This asymmetry suggests that training data char-
acteristics significantly influence cross-temporal
generalization capabilities.

Robust Narrative Generation Benefits:
Prospective Narrative Generation consistently out-
performs Binary Classification across all datasets
and directions, with improvements ranging from
13.67% (GLOBEM) to 15.07% (LifeSnaps). This
systematic advantage validates our hypothesis that
generative formulations better align with LLMs’
inherent capabilities for contextual understanding
and reasoning.

Context-Dependent Strategy Effectiveness:
The relative performance of different input strate-
gies varies significantly by dataset context. For
instance, Natural Language String Encoding per-
forms competitively with narrative generation on
MFAFY (qualitative data) but struggles on LifeS-
naps (mixed modal data), suggesting that optimal
representation strategies may depend on the under-
lying data characteristics.

The remarkable consistency of these patterns
across bidirectional evaluations suggests that
ConText-LE improvements stem from capturing
fundamental data relationships rather than exploit-
ing direction-specific biases. This bidirectional ro-
bustness is crucial for practical deployment, where
models must perform reliably across diverse tem-
poral contexts and application scenarios.

A.12 Pairwise T-Test Analysis of
Meta-Narrative Performance

To rigorously evaluate the performance of the Meta-
Narrative representation against baseline input rep-
resentations, we conducted pairwise t-tests compar-
ing Meta-Narrative to Complete Sequence, Statisti-
cal Summary, and Natural Language String across
the GLOBEM, LifeSnaps, and MFAFY datasets.
The null hypothesis posits that ConText-LE with
Meta-Narrative does not significantly outperform
these baselines.

We performed paired t-tests on per-instance bi-
nary correctness (1 for correct, O for incorrect) us-
ing the full test sets for each dataset (sample sizes:
GLOBEM ID=334, OOD=2023; LifeSnaps ID=17,
0O0D=64; MFAFY ID=92, OOD=350). The vari-
ance is computed over the differences in binary cor-
rectness values, forming the basis for the t-statistic
and reported significance levels.

Table 8 presents the results, with significance
indicated by * (p < 0.05) and ** (p < 0.001). Non-
significant results (p > 0.05) are indicated by “—
”. Note that these represent uncorrected p-values
across multiple comparisons.

Table 8: Pairwise t-test results comparing Meta-
Narrative with Complete Sequence, Statistical Sum-
mary, and Natural Language String (* indicates p <
0.05; ** indicates p < 0.001).

Model Compared To

Dataset In-Distribution  Out-of-Distribution

GLOBEM  Complete Sequence ** Hx
Statistical Summary * i
Natural Language String * Hox
LifeSnaps ~ Complete Sequence * #k
Statistical Summary - *
Natural Language String - ok
MFAFY Complete Sequence * *

Statistical Summary
Natural Language String
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