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Abstract
Annotated datasets for supervised learning
tasks often contain incorrect gold annotations,
i.e. label noise. To address this issue, many
noisy label learning approaches incorporate
metrics to filter out unreliable samples, for ex-
ample using heuristics such as high loss or
low confidence. However, when these met-
rics are integrated into larger pipelines, it be-
comes difficult to compare their effectiveness,
and understand their individual contribution
to reducing label noise. This paper directly
compares popular sample metrics for detecting
incorrect annotations in named entity recogni-
tion (NER). NER is commonly approached as
token classification, so the metrics are calcu-
lated for each training token and the incorrect
ones are flagged by defining metrics thresh-
olds. We compare the metrics based on (i) their
accuracy in detecting the incorrect labels and
(ii) the test scores when retraining a model us-
ing the cleaned dataset. We show that training
dynamics metrics work the best overall. The
best metrics effectively reduce the label noise
across different noise types. The errors that
the model has not yet memorized are more fea-
sible to detect, and relabeling these tokens is
a more effective strategy than excluding them
from training.1

1 Introduction

State-of-the-art approaches for some NLP tasks
still require supervision in the form of labeled train-
ing data (Zaratiana et al., 2023). One example is
named entity recognition (NER), the task of iden-
tifying and classifying named entities in text. For
NER we need sentences in which named entities
are marked and their correct type is assigned. How-
ever, available datasets for NER are affected by
label noise, meaning that a certain percentage of
labels are incorrect (Wang et al., 2019; Reiss et al.,
2020; Rücker and Akbik, 2023).

1GitHub repository: https://github.com/elenamer/
TokenMetrics

Such erroneous annotations can deteriorate
model quality in machine learning tasks, including
NER. One promising approach involves selecting a
subset of clean samples for training (Merdjanovska
et al., 2024) and excluding the ones with an error.
This requires a robust way to detect the incorrectly
labeled training samples.

Noisy label learning approaches often incorpo-
rate measures to select reliable samples as part of
complex pipelines, for example heuristics such as
low loss or high confidence (Chen et al., 2020; Zhu
et al., 2023a). Some studies (Swayamdipta et al.,
2020; Siddiqui et al., 2022), propose new measures
to characterize dataset samples based on their learn-
ing dynamics. However, when these measures are
integrated into larger pipelines, it becomes difficult
to isolate their impact, compare their effectiveness,
and understand their individual contributions to
reducing label noise. Furthermore, many existing
approaches rely on computationally expensive tech-
niques such as consistency checks, self-training,
and ensemble methods (Wang et al., 2019; Liang
et al., 2020). While effective, their efficiency is
often a limiting factor.

In this paper, we focus on evaluating sample
metrics that can identify label errors from a single
training run. We include both static metrics, cal-
culated from a single epoch and training dynamics
metrics, which aggregate information over multi-
ple epochs. Additionally, we assess the potential
of layer-wise metrics, which have not been utilized
for annotation error detection before. Our goal is
to assess the potential of these metrics as diagnos-
tic tools for detecting mislabeled samples and to
directly compare them.

NER is commonly approached as a token classifi-
cation task, where each token is assigned a BIO tag,
as illustrated in Figure 1. The confidence metric
shown is the softmax probability of the observed
label, averaged across epochs (Swayamdipta et al.,
2020) and is calculated for each token in the train-
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Figure 1: Example sentence demonstrating a missing
mention error of type organization (ORG). The entities
are represented as token-level BIO tags. The confidence
metric is calculated for each token, and all tokens <
0.4 are flagged as errors. The flagged tokens are later
relabeled using the model’s predictions and the error in
the original sentence is corrected.

ing set. As illustrated, using confidence as an in-
dicator for noise entails defining a threshold (for
example < 0.4), and then flagging all samples be-
low that threshold as erroneous. Additionally, the
flagged tokens can be relabeled with the model’s
predicted tags. There exist other metrics besides
confidence, and we want to know which one is best.

NER covers two subtasks: mention detection
(tagging a token as either O or as belonging to
a mention) and mention classification (tagging a
token with the correct entity type). Due to this,
it is challenging to define universal sample selec-
tion rules. Instead, we propose a disaggregated ap-
proach, where we handle four different categories
of tokens independently. Figure 2 shows the sep-
aration between the correct and incorrect tokens,
both by handling all tokens at once in Figure 2a
and with our category approach in Figure 2b.

In this paper, we evaluate the use of sample met-
rics for detecting erroneous tokens in noisy NER
datasets. Following are our main contributions:

• We propose a token category approach, which
offers better separation than dealing with all
tokens at once. This approach also provides
better insights into which metrics are suitable
for detecting different types of NER errors.

• We define novel metrics based on layer-wise
transformer predictions.

• We show that training dynamics metrics are

(a)

(b)

Figure 2: Histograms of the distribution of variability,
where noisy and clean tokens are shown in different
colors. Considering different types of tokens separately
enables a better discrimination between clean and noisy
tokens, based on variability values.

the best overall, however the simpler static
ones are also suitable for some categories.

• We show that relabeling the tokens detected as
potential errors by our method successfully re-
duces the noise share by 3.3 percentage points
on average. Additionally, we show that au-
tomatically relabelling these tokens is more
effective than filtering them out from the train-
ing process.

2 Token-Level Metrics

We explore three types of token-level metrics:
static metrics, training dynamics metrics, and layer
agreement metrics. These metrics characterize
each training sample based on the model’s outputs.

2.1 Static Metrics

Static metrics are computed at a single epoch, with-
out considering earlier training steps. This con-
trasts with training dynamics metrics, which span
the full training history.
Cross-entropy: Measures the divergence between
predicted and true label distributions. It is used as
training loss for classification, with lower values
typically indicating correct predictions. Deviations
from this may signal label noise.
Maximum softmax probability (MSP): The high-
est softmax score among class predictions, com-
monly used to estimate confidence (Zou and
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Caragea, 2023; Yu et al., 2021). Higher MSP sug-
gests higher confidence; low values suggest uncer-
tainty among classes.
Prediction margin: The difference between the
top two softmax scores. A small margin indicates
similar confidence in multiple labels and suggests
uncertainty (Pleiss et al., 2020; Joshi et al., 2009).
Predictive entropy: The entropy of softmax
outputs reflects uncertainty (Song et al., 2019).
High entropy implies dispersed predictions across
classes, signaling low confidence.

2.2 Training Dynamics Metrics
These metrics use information from the full training
trajectory. Some are based on counts (e.g. correct-
ness), while others aggregate a static metric across
epochs.
Confidence: The average softmax probability
assigned to the true label over training epochs
(Swayamdipta et al., 2020). Low confidence sug-
gests the model resists learning the label, possibly
due to label error.
Variability: The standard deviation of the
true label’s softmax probability across epochs
(Swayamdipta et al., 2020). It captures how predic-
tion certainty changes over time.
Correctness: The fraction of epochs in which
the model predicts the correct label (Swayamdipta
et al., 2020). Like confidence, it reflects the
model’s trust in the label.
Iteration learned: Counts how many consecutive
epochs the model’s prediction remains unchanged
(Baldock et al., 2021; Toneva et al., 2019). Stability
in prediction is interpreted as confidence.
MILD Metric: Extends iteration learned by com-
bining the number of epochs to memorize and for-
get a sample (Hu et al., 2024). It captures both
learning and forgetting dynamics.
Prediction history entropy (entropy-history):
Entropy over predicted labels across epochs (He
et al., 2024; Chen et al., 2021). It reflects how
consistently the model predicts the same label.

2.3 Layer Agreement Metrics
sInstead of relying solely on the final layer’s out-
put, these metrics consider predictions from each
transformer block. Following Baldock et al. (2021),
who proposesprediction depth as an example dif-
ficulty measure, we also define other metrics that
probe prediction consistency and model complex-
ity. See Appendix D for the training setup of the
layer-wise classifiers.

Metric Time Space

st
at

ic

cross-entropy c 0
MSP c 0
prediction-margin c 0
predictive-entropy c 0

tr
ai

n.
dy

na
m

ic
s confidence c 1

variability c 1
correctness c 1
iteration-learned c 1
MILD c× e e
entropy-history c× e c

la
ye

ra
gr

ee
m

. prediction-depth c× L 0
first-layer c× L 0
agreement-predicted c× L 0
agreement-true c× L 0
layer-entropy c× L 0

Table 1: Computational complexity of the token met-
rics, where c is the number of classes, e is the number
of previous epochs and L is the number of transformer
layers. It should be noted that the compexity of calcu-
lating the predicted class, i.e. finding the maximum of
the softmax values, is already c.

Prediction depth: The index of the earliest layer
after which all subsequent layers give the same
prediction. Lower values mean fewer layers are
needed — suggesting a simpler or cleaner example.
Higher values implies higher model complexity is
needed, which could indicate noise.
First-layer with correct prediction (first-layer):
The first layer that outputs the correct label. In-
spired by the confidence metric, it tracks how early
the model starts predicting correctly.
Prediction agreement count (agreement-
predicted): The total number of layers that agree
with the final prediction, regardless of order.
Unlike prediction depth, layers don’t need to be
consecutive.
Correct agreement count (agreement-true):
Counts how many layers predict the correct label,
without requiring agreement with the final layer.
Layer entropy: Measures entropy over all layer
predictions, capturing disagreement among layers.

2.4 Computational Complexity
The metrics’ estimated computational complexity
for one data example is presented in Table 1, where
c is the number of classes, e the number of previ-
ous epochs and L the number of transformer layers.
The time complexity refers to the number of oper-
ations, and space complexity denotes the number
of variables that need to be saved between two
training epochs.

It is important to note that the complexity of sim-
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ply calculating the predicted class is already c. This
means that all static and training-dynamics metrics
have no added time complexity, adding only a sin-
gle operation per epoch. The static metrics also
do not add space complexity, while most training-
dynamics metrics require one variable to be saved
between epochs. This number is larger for MILD
and entropy-history, which need an array of e and c
elements respectively. In practice, the added space
complexity is negligible as most labeled datasets
easily fit into memory. Layer-agreement metrics
change the complexity more significantly, because
the prediction needs to be calculated for each layer,
resulting in c× L time complexity and zero space
complexity.

3 Approach

In this section, we present our approach for clean-
ing noisy NER data using token-level metrics. Sec-
tion 3.1 describes how we select the most effective
metrics and parameter settings. Section 3.2 intro-
duces a disaggregated method that separates tokens
into four categories to improve error detection. Fi-
nally, Section 3.3 outlines two strategies – rela-
beling and masking – for handling detected label
errors. The full pipeline is illustrated in Figure 3.

3.1 Selecting the Best Metric

To quantify the effectiveness of various metrics in
identifying mislabeled samples, we calculate the
F0.5 score on the binary classification task of dis-
criminating clean and noisy samples. The ground
truth is the true label quality, while the predicted la-
bel is determined by a threshold on the metric (e.g.,
flagging tokens with variability > 0.1 as noisy ac-
cording to Figure 2b, Learned-O category).

We use F0.5 which gives more weight to preci-
sion over recall—crucial for filtering, where mis-
takenly removing clean data must be minimized.
Details on how we compute detection scores are
provided in Appendix A.

We evaluat each metric across different thresh-
olds and training epochs. We select the best-
performing metric and configuration by maximiz-
ing the F0.5 score, calculated on the training set.
Note that this process requires access to clean la-
bels for the training set, used to determine the
ground truth label quality, so this procedure is not
applicable to datasets with only noisy annotations.
Our goal, therefore, is to derive generalizable find-
ings on which metrics perform best, rather than

ID Category Correctness of
predicted label

Observed label

1 Learned O Correct O
2 Misclassified O Incorrect O
3 Learned entity Correct B-PER, I-LOC...2

4 Misclassified entity Incorrect B-PER, I-LOC...2

Table 2: Overview of the token categories. The correct-
ness of the predicted label is in reference to the observed
label, which means the predicted label is correct if it
matches the observed label. The observed label is the
noisy training label.

repeating the metric selection for each dataset.

3.2 Token Categories
NER is typically framed as a token classification
task using BIO tags, involving two subtasks: men-
tion detection (distinguishing "O" from entity to-
kens) and mention classification (assigning entity
types to "non-O" tokens).2

Training samples are individual tokens, and our
goal is to identify incorrectly labeled ones. This dif-
fers from standard classification due to the sparsity
and class imbalance inherent in NER. We find it
helpful to divide tokens into four categories based
on (1) whether the model predicts the correct class,
and (2) whether the true label is "O" or an entity
type3. This improves detection performance by re-
ducing variability within each group and addressing
class imbalance. The categories are summarized in
Table 2, and visualized in Figure 2. We select the
best metric separately for each category.

3.3 Label Modifications
Once potentially noisy tokens are flagged, we apply
either masking or relabeling on them.

In the masking approach, we assign flagged to-
kens a special ’MASK’ label, which is excluded
from training loss computations. This effectively
removes them from training while preserving se-
quence structure — important in NER due to the
sequential labeling format.

In the relabeling approach, we assign the flagged
token a new label – the model’s prediction. This is
only applicable to the two Misclassified categories.
For Misclassified-O tokens, relabelling changes O
tokens into B- or I- tokens, which usually intro-
duces a new entity mention. In this case, in addi-
tion to the flagged token, we also modify the other

2E.g., for entity types person and organization, BIO labels
include B-person, I-person, B-organization, etc.

3The true label is the noisy one obeserved by the model.
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Figure 3: Overview of the experimental pipeline. This figure shows how the components of our approach fit together
and the setup of Experiments 1 and 2.

Example 1 Example 2

orig. B-LOC O O B-PER I-PER O
pred. B-LOC I-LOC I-LOC B-ORG I-ORG I-ORG
relab. B-LOC I-LOC I-LOC B-PER B-ORG I-ORG

Table 3: Relabelling examples with original (noisy),
predicted and relabelled token sequences. The flagged
token in each sequence is boldfaced.

tokens from the same mention that follow it. See
Example 1 in Table 3. If the relabelled sequence
is invalid, we make it valid by converting I- to B-
tags. See Example 2 in Table 3.

Because tokens in the Misclassified categories
have not been memorized yet, the model’s pre-
diction likely reflects the correct label. This is
likely due to the model’s pretraining knowledge,
making it possible to recover plausible labels early
in training, before it overfits to noisy annotations.
This makes the Misclassified noisy tokens more
amenable to correction than tokens that have al-
ready been memorized with the noisy label – the
Learned categories.

After applying label modifications, we retrain
the baseline model on the cleaned dataset to assess
downstream performance.

4 Experiment 1: Evaluating Selection
Performance

In this experiment, we determine which metrics
are most effective as noise indicators. We also
compare the ideal parameter configuration for each
noise type with a single configuration that performs
well on average. This allows us to assess both the

maximum selection potential and the generalizabil-
ity of metric performance.

4.1 Dataset(s)

We use the NoiseBench4 (Merdjanovska et al.,
2024) dataset, consisting of 4,879 training sen-
tences and 3,427 test sentences5. This dataset in-
cludes a validation set of 1006 sentences which we
do no use. This dataset is based on the English
CoNLL-03 and it covers multiple noisy-labeled
variants of the training set, with six types of real
label noise: expert, crowdsourcing, distant super-
vision, weak supervision and LLM labels. The
noise types and their respective shares are listed in
Table 5, under the Original column.

4.2 Experimental Setup

The experimental pipeline is illustrated in Figure 3.
The final step involves selecting the optimal criteria
(threshold and epoch) for each metric. The baseline
model parameters and the threshold ranges for each
metric are given in Appendix B.

We compute two types of F0.5 scores. The first
one – average score – is obtained by selecting a
single parameter setting per metric and averaging
the F0.5 across all NoiseBench variants.

The second one – optimal average score – is
calculated by selecting different optimal parame-
ter settings per noise variant, then averaging the
F0.5 scores. While the optimal average shows the
maximum possible performance of each metric,

4License: MIT
5Excluding document separators.
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Learned-O Misclassified-O Learned-entity Misclassified-entity
avg. optimal avg. avg. optimal avg. avg. optimal avg. avg. optimal avg.

cross-entropy 0.535 0.630 0.892 0.931 0.345 0.381 0.678 0.721
MSP 0.536 0.629 0.892 0.924 0.343 0.379 0.671 0.712
prediction-margin 0.534 0.629 0.892 0.927 0.349 0.381 0.670 0.711
predictive-entropy 0.532 0.633 0.869 0.902 0.347 0.415 0.673 0.715

confidence 0.591 0.730 0.908 0.940 0.464 0.490 0.681 0.727
variability 0.628 0.722 0.904 0.918 0.357 0.409 0.676 0.727
correctness 0.619 0.679 0.883 0.895 0.477 0.494 0.679 0.722
iteration-learned 0.619 0.652 0.892 0.920 0.471 0.494 0.657 0.689
MILD 0.619 0.679 0.892 0.942 0.477 0.494 0.679 0.722
entropy-history 0.608 0.640 0.806 0.823 0.436 0.465 0.669 0.700

prediction-depth 0.547 0.635 0.803 0.864 0.319 0.363 0.599 0.640
first-layer 0.442 0.482 0.799 0.898 0.261 0.271 0.590 0.629
agreement-predicted 0.559 0.640 0.821 0.903 0.310 0.332 0.604 0.643
agreement-true 0.559 0.640 0.821 0.913 0.310 0.332 0.621 0.660
layer-entropy 0.541 0.620 0.808 0.854 0.301 0.322 0.596 0.621

Table 4: Comparison of optimal and average detection F-scores. Boldfaced are the highest scores in each column,
all of which come from training dynamics-based metrics. Largest gap between optimal and average is in Learned-O.

the average score reflects how well our general
approach can approximate that potential.

4.3 Results

Table 4 shows the highest F0.5 scores for each met-
ric and category, reporting the average and optimal
scores. The parameter settings used to obtain the
average scores are provided in Appendix C.
Large gap to optimal for Learned-O. Several met-
rics, including correctness, variability, iteration-
learned, and MILD, achieve average F0.5 scores
near 0.62, indicating that missing mention errors
memorized by the model are moderately detectable
using different strategies. The gap to the optimal
scores is however large, where confidence achieves
the highest optimal average score at 0.73, followed
by variability at 0.722. Variability comes closer to
this potential with a higher average score, making
it more practical, however this gap is large at 10
percentage points.
Misclassified-O: High scores, low gap to optimal.
Most metrics from the static and training dynamics
groups perform well on this category, with average
scores around 0.9 and optimal scores near 0.94—a
much smaller gap than for Learned-O. This sup-
ports the idea that such errors are easier to detect
before memorization. Appendix C shows that the
thresholds for many metrics (e.g., MSP > 0) result
in flagging nearly all samples. This means that
simply detecting all tokens yields an F0.5 of 0.89,
close to the confidence-based maximum of 0.91.
Low scores, poor detection for Learned non-O.
Table 9 shows low average F0.5 scores for this cat-

egory, with a maximum of 0.48. At this level, fil-
tering could introduce more errors than it removes.
This confirms that once false positive mention er-
rors are memorized, token-level features fail to
identify them. Figure 2b illustrates this poor sep-
aration. The optimal scores, barely reaching 0.5,
suggest little untapped potential.
Low gap to optimal for Misclassified non-O.
Static and training dynamics metrics perform sim-
ilarly here, with average scores up to 0.68 and
optimal scores around 0.727—indicating a low gap.
Appendix C shows that naive approaches, like re-
labeling all tokens where prediction-margin > 0,
yield F0.5 scores of 0.67—nearly matching the best
average value.
Discussion on metric types and categories. Train-
ing dynamics metrics perform the best over-
all, while simpler static metrics work well for
Misclassified-O and Misclassified-entity categories,
where errors have not been memorized. In contrast,
layer-wise metrics perform poorly. The gap be-
tween average and optimal scores is the largest
for Learned-O and smaller for the other categories.
Overall, token-level metrics effectively detect er-
rors in Misclassified-O, Misclassified-entity, and
Learned-O, but not in Learned-entity.

5 Experiment 2: Evaluating Re-training
Performance

This experiment evaluates how effective the best
metrics from Experiment 1 are in cleaning noisy an-
notations and how much test scores improve when
re-training with these modified annotations, com-
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% Noise shares ↓ % correct ↑
Original Misclassified-O Misclassified-entity Misclassified-O Misclassified-entity

relabel relabel mask relabel mask relabel
N

oi
se

B
en

ch

Expert 5.5 5.7±0.0 6.3±0.1 72.2 78.9 44.2 74.3
Crowd++ 15.3 10.8±0.3 16.0±0.2 99.0 87.2 47.4 72.0
Distant 31.3 26.5±0.6 32.3±0.2 99.8 93.1 51.3 52.2
Crowd 36.6 31.7±0.3 37.0±1.2 99.8 83.0 51.4 74.1
Weak 40.4 38.0±0.3 31.1±0.7 93.0 63.2 79.5 74.0
LLM 45.6 41.7±0.2 34.6±0.3 93.4 81.6 89.8 82.1

German Expert 16.2 17.8±0.2 16.9±0.1 14.1 86.8 58.3 62.8
German LLM 54.0 51.3±0.3 49.1±0.2 56.6 88.1 87.7 78.2

N
oi

sy
N

E
R

NoisyNER 1 72.0 70.3±1.3 72.6±0.2 97.2 89.2 21.2 53.8
NoisyNER 2 61.0 59.3±0.9 61.2±0.3 91.8 94.3 20.4 45.0
NoisyNER 3 66.0 63.4±0.7 65.9±0.4 91.9 80.1 56.7 64.2
NoisyNER 4 60.0 58.0±0.6 59.7±0.1 95.2 95.7 20.9 48.1
NoisyNER 5 56.0 52.3±0.6 54.5±0.8 93.5 84.7 56.2 62.2
NoisyNER 6 54.0 50.0±0.9 52.2±0.4 93.1 80.0 47.0 50.4
NoisyNER 7 46.0 42.0±1.3 44.8±0.2 92.9 84.8 51.9 51.0

Table 5: Noise share and %correct after the modifications. The first column shows the original noise share in
terms of 100−%F1. The second and third columns show the noise shares after relabeling the flagged tokens in
Misclassified-O and Misclassified-entity respectively. Bolded are the best (lowest) noise shares in each row. The
last four columns show the accuracy of masking and relabeling. Accuracies over 80% are underlined.

pared to using the original noisy sets.

5.1 Datasets

We extend the evaluation to two additional
datasets: the German variant of NoiseBench (Merd-
janovska et al., 2024) and the Estonian NoisyNER6

(Hedderich et al., 2021), alongside the English
NoiseBench used in Experiment 1. The German
NoiseBench is based on the German CoNLL-03
dataset and consists of 10,367 training sentences
and 3,005 test sentences7. It covers two noise types:
expert and LLM labels. NoisyNER covers multiple
levels of distant supervision noise by varying the
amounts of heuristics during the automatic annota-
tion process and provides seven sets of noisy labels.
As the original dataset does not define training and
test splits, we split it 80/10/10, resulting in 11,374
training and 1,433 test sentences. NoiseBench and
NoisyNER also have noisy validation splits8, which
we do not use in our experiments. Table 5 (Origi-
nal column) shows an overview of noise types and
their shares for each dataset.

Since the German NoiseBench and NoisyNER
datasets were not part of the metric selection pro-
cess, they allow us to assess how well the selected
metrics and parameter sets generalize.

6License: CC-BY-NC for data and CC-BY-4.0 for labels.
7Excluding document separators.
8The German NoiseBench and NoisyNER validation sets

consist of 1,785 and 1,479 noisy sentences respectively.

5.2 Experimental Setup

Figure 3 shows the pipeline. For each category, we
use the best metric and parameter combination de-
termined on the English NoiseBench training data
to flag potentially noisy tokens. We then modify
their labels via masking or relabeling and retrain
the model on the modified data.

We first evaluate label modifications by compar-
ing noise shares before and after changes. Noise
is measured as 100−%F1, with F1 calculated be-
tween noisy and clean labels (Merdjanovska et al.,
2024). Since this measure applies only to rela-
beling, we also report the proportion of correctly
modified tokens for both relabeling and masking.

For the main evaluation, we measure test F1
scores after re-training on the modified datasets
and compare them to the same baseline on the orig-
inal datasets (see Appendix B). The test sets consist
of clean labels, which is the standard setting for
learning with noisy labels. We do this separately
for each category, and for masking and relabeling
where applicable. We also compare our best test
scores with those from prior work for each dataset.

In addition to evaluating categories individually,
we also test a combined modification strategy (re-
ferred to as Combined in the results table) that
merges three categories, excluding Learned-entity
due to its weak selection performance.
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Baseline Learned-O Misclassified-O Learned-entity Misclassified-entity Combined
mask mask relabel mask mask relabel

N
oi

se
B

en
ch

Expert 90.39±0.37 90.5±0.1 90.4±0.2 90.5±0.2 89.7±0.2 89.9±0.0 90.3±0.2 89.8±0.1
Crowd++ 87.13±0.78 88.3±0.3 88.0±0.3 88.4±0.2 85.7±1.0 85.8±0.3 86.4±0.2 87.4±0.2
Distant 69.66±0.45 73.0±0.8 72.7±0.7 74.4±0.4 67.2±0.2 69.1±0.3 69.2±0.7 73.3±0.4
Crowd 71.19±0.63 73.4±0.2 73.1±0.1 74.3±0.4 66.0±1.0 67.6±1.8 71.5±0.7 73.4±0.5
Weak 64.94±0.09 64.8±0.3 64.6±0.1 65.5±0.3 66.6±0.6 67.4±0.4 65.5±0.3 65.1±0.6
LLM 61.79±0.29 61.9±0.0 62.3±0.6 61.9±0.2 64.2±0.7 64.6±0.4 61.5±0.2 61.8±0.6

German Expert 79.73±0.41 79.1±0.4 79.5±0.4 79.4±0.3 79.8±0.2 79.9±0.3 79.8±0.1 78.7±0.5
German LLM 55.41±0.46 57.4±0.3 57.7±0.6 57.6±0.2 57.4±0.5 57.9±0.5 55.3±0.1 57.6±0.5

N
oi

sy
N

E
R

NoisyNER 1 32.76±0.13 36.1±0.3 33.8±0.4 34.3±0.9 30.8±0.6 31.5±1.0 32.6±0.5 35.8±0.9
NoisyNER 2 41.11±0.36 44.1±0.6 42.2±0.9 42.5±1.5 40.5±0.4 40.4±0.5 42.3±0.5 44.0±1.2
NoisyNER 3 39.95±0.56 42.4±0.5 41.4±0.5 43.1±1.3 40.0±0.7 40.3±1.0 40.5±0.5 42.8±0.4
NoisyNER 4 42.33±0.86 45.4±0.7 42.8±0.3 43.1±0.9 41.1±1.1 41.7±0.2 42.3±0.7 45.2±0.9
NoisyNER 5 50.21±0.80 52.8±0.8 50.4±0.8 53.1±0.6 49.7±0.3 50.3±1.3 50.4±0.9 51.7±0.3
NoisyNER 6 51.73±0.22 54.1±0.3 53.0±0.9 55.3±1.3 52.3±1.1 51.7±0.8 51.8±0.6 53.7±0.4
NoisyNER 7 56.57±0.18 59.5±0.7 59.8±1.2 62.5±1.9 58.2±0.5 57.0±0.9 56.4±0.1 60.3±0.2

Table 6: F1-scores on the test set, after retraining with a modified dataset using the best-performing metrics. The
columns show the categories and modifications and the rows show the dataset variants. Bolded are the highest
scores in each row.

5.3 Results - Noise Shares

Noise shares decrease after relabeling. Table 5
(left) shows that relabeling successfully reduces
noise share across all variants except the Expert
ones. These variants already have low noise levels,
making it harder to detect label errors.
Results align with noise characteristics. Rela-
beling Misclassified-O is generally more effec-
tive than relabeling Misclassified-entity, for all
dataset variants but Weak, LLM, and German LLM
(not considering the Expert variants). These three
noise variants have mostly false positive errors
(Merdjanovska et al., 2024), which fall into the
Misclassified-entity category — so fixing this cat-
egory has more impact. In contrast, Crowd++,
Crowd, and Distant have mostly missing mention
errors, falling into the Misclassified-O – so more
errors are corrected when this category is relabeled.
Challenges in comparing masking and relabel-
ing. The right half of Table 5 shows the percent-
age of correctly modified tokens with masking and
relabeling. For masking, this is the proportion of
masked tokens that were actually noisy. For relabel-
ing, it is the share of noisy tokens whose new labels
are correct. Directly comparing the two methods is
difficult. Masking removes data points, while rela-
beling may introduce new errors if the new labels
are wrong. Ideally, we want to avoid data loss, but
masking requires it. When relabeling accuracy is
low, it can do more harm than good. While this
analysis is useful, final re-training performance is
the best measure of effectiveness.

High accuracies for Misclassified-O. From the
underlined values (>80%), we see that masking has
very high accuracy, meaning a lot of the flagged
tokens are indeed noisy. This is especially true for
Misclassified-O, and much less for Misclassified-
entity (only in LLM and German LLM).

5.4 Results - Retraining
Overall. As shown in Table 6, targeted modifica-
tions improve final test scores. For most datasets
and variants, the improvement exceeds the base-
line standard deviation, indicating statistical signifi-
cance. The only exceptions are the Expert variants.
Comparing noise types, features, and categories.
Distant and NoisyNER datasets, both involving dis-
tant supervision, show the largest improvements.
Among token categories, Misclassified-O yields the
most consistent performance gains, confirming its
utility for identifying erroneous tokens. Learned-O
is most effective on the NoisyNER datasets, indicat-
ing a potential need for dataset-specific strategies.
Masking vs. relabeling. Table 6 shows that for
Misclassified-O, relabeling usually outperforms
masking, suggesting model-predicted labels are of-
ten correct. For Misclassified-entity however, both
methods perform similarly, indicating that correct-
ing or simply removing the noise yields the same
benefit – consistent with its low relabeling accuracy
in Table 5.
Combining categories. Combining the mod-
ifications for Learned-O, Misclassified-O and
Misclassified-entity performs worse than the best
single-category intervention. This is counterintu-
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Token Metrics Related Work
Score Approach Score

N
oi

se
B

en
ch

Expert 90.5±0.2 CL 90.0±0.2
Crowd++ 88.4±0.2 MSR 88.5±1.1
Distant 74.4±0.4 MSR 75.8±1.4
Crowd 74.3±0.4 BOND 74.1±0.5
Weak 67.4±0.4 MSR 69.5±0.3
LLM 64.6±0.4 L2R 65.3±4.2

Ger. Expert 79.9±0.3 CL 79.6±0.3
Ger. LLM 57.9±0.5 MSR 64.0±0.7

N
oi

sy
N

E
R

NoisyNER 1 36.1±0.3 STGN 40.0
NoisyNER 2 44.1±0.6 STGN 47.7
NoisyNER 3 43.1±1.3 STGN 44.0
NoisyNER 4 45.4±0.7 STGN 51.8
NoisyNER 5 53.1±0.6 STGN 53.1
NoisyNER 6 55.3±1.3 STGN 55.0
NoisyNER 7 62.5±1.9 STGN 60.1

Table 7: Comparison of our token metrics approach
and related work. The token metrics column shows the
best scores from Table 6, while the related work column
shows the score from the corresponding best method.
Bolded are the highest test F1 scores in each row.

itive and may be due to overlap or interference
between strategies, which could reduce overall ef-
fectiveness.
Comparison to state-of-the-art. Table 7 com-
pares our best scores with previous work. For
NoiseBench (English and German), we use re-
sults from Merdjanovska et al. (2024), and for
NoisyNER, from Wu et al. (2022). State-of-the-
art methods include MSR (Zhu et al., 2023a), CL
(Northcutt et al., 2021), BOND (Liang et al., 2020),
L2R (Ren et al., 2018), and STGN (Wu et al., 2022).
In the token metric approach we do not use vali-
dation sets, however some other approaches like
BOND and MSR require one. In these cases, for
NoiseBench the corresponding noisy validation
sets were used. For STGN on NoisyNER, they
used a 10% validation set, however it is unclear
whether its labels were clean or noisy.

Outside of English NoiseBench, which we used
for metric selection, we outperform SOTA only for
NoisyNER 6 and 7. We also improve over SOTA
on the Expert sets, but the gains are not notable.

6 Related work

Detecting and correcting label errors. The anno-
tation error detection paper (Klie et al., 2023) gives
an extensive overview of different strategies for de-
tecting label errors. They include sample metrics
(scorer methods) in the comparison (Swayamdipta
et al., 2020; Larson et al., 2020), but also methods
ensembling multiple models (Reiss et al., 2020;

Loftsson, 2009; Rodrigues et al., 2013) and other
approaches (Northcutt et al., 2021; Amiri et al.,
2018) . Their NER evaluation is quite limited and
only detection strategies are explored, without con-
sidering relabeling.
Noise-robust learning. Cleaning the dataset
(Northcutt et al., 2021; Reiss et al., 2020) by remov-
ing or relabelling the incorrect annotations is one
strategy for learning under label noise. Other op-
tions include reweighting the potentially erroneous
samples (Wang et al., 2019; Ren et al., 2018), de-
laying memorization (Zhou and Chen, 2021) and
multi-stage pipelines (Zhu et al., 2023a; Liang
et al., 2020; Yu et al., 2021; Wang et al., 2022).
Recent noise-robust learning studies have analysed
the use of validation sets (Zhu et al., 2023b; Li et al.,
2025), suggesting that the use of large or clean val-
idation data leads to overly optimistic evaluation.

7 Conclusion

This paper explores how token-level metrics can
be used to correct label annotations for NER. We
assess if each metric can be used as a separation
feature between clean and noisy samples. For this,
we look at four token categories separately.

When comparing different metrics, we see an
added benefit of using metrics training dynamics-
based, as opposed to only well-established esti-
mates like the maximum softmax probability. Also,
we found that layer agreement metrics perform
worse than the other two types.

We compare two strategies to deal with the er-
roneous samples: relabeling and masking. With
relabeling, we see good improvements in the re-
sulting noise shares. We are able to successfully
reduce the noise share across all datasets and vari-
ants by 3.3 percentage points on average by either
correcting missing mention or non-entity errors. As
a next step, we re-trained a model with the modi-
fied dataset, to evaluate the impact of this approach
on the final test scores. We see that the reduction
in noise share translates in modest improvements
with retraining for all datasets and noise types apart
from Expert noise.

The token metrics approach works for
Misclassified-O and Misclassified-entity and it
fails for Learned categories. This shows that once a
model has memorized a label error, it is much more
challenging to detect. Finally, our experiments
span three different languages and show that the
metric and threshold selection generalizes well.
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Limitations

One of the main limitations of this paper is the fact
that the metric selection process uses information
from the clean training data. As such, it can not be
used to determine the best metric and parameters
on a given noisy dataset.

Furthermore, we tried to include a diverse set
of candidate metrics, representing different ideas,
but there are many more potential sample metrics
to explore in the context of NER and token-level
selection.

The sample metrics used are designed for classi-
fication tasks in general, so it would be interesting
to see this analysis for other tasks. This could ex-
tend outside of NLP, so in that sense our study is
limited to NER, even though a wider analysis of
these methods is possible.
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{
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0 otherwise
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dei =

{
1 if sample i is detected as noisy,
0 otherwise

Detection precision is defined as the proportion
of detected noisy samples that are actually noisy:

Prec. =

∑n
i=1 dici∑n
i=1 di

Detection recall is defined as the proportion of
actually noisy samples that are correctly detected:

max_noisy =
t

max
e=1

n∑

i=1

cti

Rec. =

∑n
i=1 dici

max_noisy

Here we used a modified recall value, where in-
stead of using the number of noisy samples in a
given category at a given epoch, we use the num-
ber of noisy samples from the epoch where this
number is maximal. We do this so that the number
of samples in the category does not bias the best
parameter selection.

For β = 0.5, the F0.5 score is:

F e
0.5 =

1.25 · Prec. ·Rec.

0.25 · Prec.+Rec.

B Implementation Details

Baseline parameters. We fine-tune an
xlm-roberta-large model, for 10 epochs,
using a batch size of 8 and learning rate of 5.0e-6.
For the English and German NoiseBench datasets,
we add the document context (Schweter and Akbik,
2021), while for NoisyNER we do not, because the
data does not include document boundaries.

When using the layer-wise classifier outputs, we
use the same model and same parameters. Addi-
tionally, before the main fine-tuning, we tune the
decoders with a learning rate of 0.3 and for 10
epochs.

Metric selection. For MSP, prediction-margin,
iteration-learned, correctness and confidence the
list of thresholds we consider is [0.1, 0.2, 0.3 ...
0.9]. For variability and entropy-history it is [0.05,
0.1, 0.15 ... 0.45]. For cross-entropy, label-entropy
and predictive-entropy, we take the interval be-
tween the minimal and maximal value and divide it
by 10. For the remaining layer agreement metrics
and MILD, we use increments of 1 in the interval

score epoch threshold
metric

cross-entropy 0.54 1 > 0.3
MSP 0.54 1 < 0.7
prediction-margin 0.53 1 < 0.6
predictive-entropy 0.53 1 > 1.1

confidence 0.59 8 < 0.8
variability 0.63 9 > 0.1
correctness 0.62 9 < 0.9
iteration-learned 0.62 9 > 0.2
MILD 0.62 9 > -8
entropy-history 0.61 8 > 0.1

prediction-depth 0.55 1 > 13
first-layer 0.44 6 > 1
agreement-predicted 0.56 1 < 20
agreement-true 0.56 1 < 20
layer-entropy 0.54 1 > 0.5

Table 8: Best parameter settings for Learned-entity
tokens

between the minimal and maximal values. This
means that for these metrics we do not always have
a list of 10 threshold options, as we did for the
others.

C Best Parameter Sets

In Tables 8 - 11 we show the parameter settings
which result in the best average scores across
NoiseBench (average score in Experiment 2).
Learned-O tokens. Table 8 summarizes the results
for this type of tokens. Here, confidence estimates
and layer-based metrics consistently perform best
during earlier training epochs, suggesting that these
methods are immediately able to discriminate prob-
lematic tokens. For the layer-based metrics this
may be attributed to the initialization phase, where
the classifier heads are trained before overfitting
of the transformers begins. In contrast, training
dynamics metrics, which aggregate values over it-
erations, achieve best performance in later epochs,
as expected due to their temporal nature.
Misclassified-O tokens. As shown in Table 10, the
choice of metric and threshold has minimal impact
on detection performance. In fact, for example, for
MSP the optimal threshold is the minimum value.
This means that simply relabeling all tokens in this
category yields F0.5 scores of 0.89, which is close
to the maximum of 0.91 achieved using confidence
as a criterion.
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score epoch threshold
metric

cross-entropy 0.34 9 > 0.1
MSP 0.34 9 < 0.9
prediction-margin 0.35 9 < 0.9
predictive-entropy 0.35 9 > 0.3

confidence 0.46 9 < 0.7
variability 0.36 9 > 0.2
correctness 0.48 9 < 0.7
iteration-learned 0.47 9 > 0.4
MILD 0.48 9 > -4
entropy-history 0.44 9 > 0.2

prediction-depth 0.32 9 > 7
first-layer 0.26 9 > 3
agreement-predicted 0.31 9 < 20
agreement-true 0.31 9 < 20
layer-entropy 0.30 9 > 0.5

Table 9: Best parameter settings for Learned - entity
tokens

score epoch threshold
metric

cross-entropy 0.89 1 > 0
MSP 0.89 1 > 0
prediction-margin 0.89 1 > 0
predictive-entropy 0.87 2 < 1.9

confidence 0.91 2 < 0.4
variability 0.90 2 < 0.1
correctness 0.88 2 < 0.6
iteration-learned 0.89 1 < 0
MILD 0.89 1 > -2
entropy-history 0.81 3 < 0.3

prediction-depth 0.80 5 < 24
first-layer 0.80 5 > 0
agreement-predicted 0.82 5 > 0
agreement-true 0.82 5 < 24
layer-entropy 0.81 5 < 1.2

Table 10: Best parameter settings for Misclassified - O
tokens

score epoch threshold
metric

cross-entropy 0.68 4 > 1.5
MSP 0.67 4 > 0.3
prediction-margin 0.67 4 > 0
predictive-entropy 0.67 4 < 1.8

confidence 0.68 4 < 0.3
variability 0.68 4 < 0.1
correctness 0.68 4 < 0.3
iteration-learned 0.66 4 < 0.8
MILD 0.68 4 > 1
entropy-history 0.67 4 < 0.4

prediction-depth 0.60 4 < 21
first-layer 0.59 7 > 0
agreement-predicted 0.60 7 > 6
agreement-true 0.62 4 < 6
layer-entropy 0.60 7 < 1.5

Table 11: Best parameter settings for Misclassified -
entity tokens

For this category, optimal detection of noisy to-
kens generally occurs early in training for both
training dynamics metrics and confidence-based
estimates. This suggests that the pretrained model
already possesses sufficient generalization capabili-
ties to flag these errors without requiring extensive
fine-tuning. Interestingly, layer metrics achieve
their best performance at epoch 5, slightly later
than other metric types.
Learned-entity tokens. The best detection perfor-
mance is at epoch 9, as shown in Table 9.
Misclassified-entity Table 11 shows the results for
this category. Epoch 4 consistently yields the best
performance across all metric types, indicating a
highly localized signal in the training process. As
with Misclassified-O, even a naive strategy, such
as relabeling all tokens where BvSB > 0, achieves
an F0.5 of 0.67, which is close to the category’s best
value of 0.68.

D Training Layer-Wise Classifiers (LWC)

To calculate the layer agreement metrics, we need
the model’s predictions at the end of each trans-
former block. For this, we add a classifier layer at
the end of each block. This also requires a decoder
initialization phase, where we first fine-tune only
the linear classifier layers, while the transformers
are static. After this phase, we jointly fine-tune all
layers.
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