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Abstract

Aggregating multiple annotations into a sin-
gle ground truth label may hide valuable in-
sights into annotator disagreement, particularly
in tasks where subjectivity plays a crucial role.
In this work, we explore methods for identi-
fying subjectivity in recognizing the human
values that motivate arguments. We evaluate
two main approaches: inferring subjectivity
through value prediction vs. directly identify-
ing subjectivity. Our experiments show that
direct subjectivity identification significantly
improves the model performance of flagging
subjective arguments. Furthermore, combin-
ing contrastive loss with binary cross-entropy
loss does not improve performance but reduces
the dependency on per-label subjectivity. Our
proposed methods can help identify arguments
that individuals may interpret differently, fos-
tering a more nuanced annotation process1.

1 Introduction

Human values, spanning concepts such as benevo-
lence and self-determination, are the motivations
that guide our choice and action, and are ordered
by importance to form a system of value priorities
(Schwartz, 1994). Value-laden arguments are state-
ments grounded in our personal values, which we
use to motivate our choices (Bench-Capon, 2003).
The identification of the values that support our
arguments can reveal our deepest motivations, and
as such has been recently investigated in the NLP
community (Kiesel et al., 2023, 2024).

Supervised NLP methods have been proposed
to identify the values that support a text segment
(Kiesel et al., 2022; Liscio et al., 2022). Typically,
the ground truth labels are chosen through major-
ity aggregation of the annotations (Hoover et al.,
2020; Kiesel et al., 2023) or the annotators engage

1Our code is publicly available at https://github.com/Amir-
Homayouni/subjectivity-value

in discussions to reach an agreement on the annota-
tion (Liscio et al., 2021; Lei et al., 2024). However,
due to the subjective nature of valuing (Mackie,
1988; Stroud, 1988), disagreement in the interpre-
tation of the values that support an argument is
natural. For example, consider the following ar-
gument in favor of a multi-party political system:
“(it) would bring many new and fresh ideas into
the forefront”. Alice may associate the argument
with the value of universalism since a multi-party
system can provide all people with equal opportu-
nities. Bob, instead, may connect it to the values
of achievement and personal security, because a
multi-party system can more effectively address
issues than a single-party system and thus provide
more security to its citizens2.

Approaches relying on consensus or majority ag-
gregation might obscure the inherent subjectivity
of the identification of the values behind arguments,
leading to misinterpretation or, at worst, promotion
of biases stemming from the annotation process.
Identifying subjectivity in value-laden arguments
thus has broader implications, particularly in con-
texts that demand participatory deliberation and
collective decision-making.

The assumption that annotations should be ag-
gregated into a unique label is being questioned
within the NLP community (Röttger et al., 2021;
Weerasooriya et al., 2023; van der Meer et al.,
2024), in applications ranging from hate speech de-
tection (Kocoń et al., 2021; Mostafazadeh Davani
et al., 2022) to sentiment and emotion detection
(Deng et al., 2023). In line with these works, in this
paper we propose methods to identify subjective
value-laden arguments—that is, detect arguments
where annotators may have different interpreta-
tions of the values that support them.

We envision two primary applications of this

2The argument and the two annotations are sourced from
the ValueEval’23 Shared Task (Kiesel et al., 2023).
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work. (1) Identifying arguments that might be sub-
jective can support a more nuanced annotation pro-
cess by prompting the collection of additional an-
notations. (2) Identifying the arguments that might
lead to misinterpretation and divergent views dur-
ing participatory deliberations can prompt modera-
tors to ask additional questions that could promote
self or inter-participant reflection.

Contribution We propose two different ap-
proaches to detecting subjectivity in value iden-
tification within discourse: three methods for infer-
ring subjectivity from individual value annotations,
and three methods for directly identifying subjec-
tivity, which we further enhance with contrastive
learning strategies. We validate the approaches
on the Touché23-ValueEval dataset (Kiesel et al.,
2023). Our results show that we can identify sub-
jectivity in value-laden arguments, and that directly
identifying subjectivity—rather than inferring it
through value prediction—greatly improves perfor-
mance. Additionally, leveraging contrastive loss
does not improve subjectivity prediction perfor-
mance but brings other advantages.

2 Related works

We review related works on identifying values in
text and on subjectivity in NLP applications.

2.1 Identifying Values in Text

Identifying the value(s) that support a natural lan-
guage statement has been approached through
word count and sentence embedding similarity to
dictionaries of value-laden words (Araque et al.,
2020). More recent approaches employ super-
vised machine learning on annotated datasets (Al-
shomary et al., 2022; Huang et al., 2022; Park et al.,
2024; Liscio et al., 2025; Senthilkumar et al., 2024).
In particular, Kiesel et al. (2022) focuses on iden-
tifying and classifying the values underlying ar-
guments. They successfully fine-tuned a BERT
model (Devlin et al., 2019) on multi-cultural ar-
guments, and later extended the dataset for the
ValueEval challenge at SemEval’23 (Kiesel et al.,
2023).

In this study, unlike the previous work that uses
golden ground truths to identify values, we utilize
a dataset consisting of annotation of values to ar-
guments to explore the subjectivity of annotations
in recognizing the values behind arguments.

2.2 Identifying Subjectivity

Subjectivity is playing an increasingly central role
in various NLP tasks (Plank, 2022). Datasets that
report individual-level annotation (e.g., (Aroyo
et al., 2023)) facilitate the modeling of individ-
ual and group annotation behavior, with differ-
ent annotation paradigms shown to have a great
impact on data quality and model performance
Röttger et al. (2021). This information allows
to represent ground truth as a label distribution,
preserving diverse human judgments and minor-
ity opinions Weerasooriya et al. (2023). Differ-
ent methods account for subjectivity by combin-
ing annotator and annotation embeddings (Deng
et al., 2023), modeling multi-annotator architec-
tures (Mostafazadeh Davani et al., 2022), and cap-
turing annotators’ perspectives by combining their
demographic information and their opinions on on-
line content (Fleisig et al., 2023). Demographic
information of annotators has been employed as a
feature, however with mixed results (Goyal et al.,
2022; Wan et al., 2023; Orlikowski et al., 2023).
Subjectivity has also been explored as part of the
sampling strategy of Active Learning methods, e.g.
to select the next sample to be annotated (Baumler
et al., 2023; Wang and Plank, 2023) or the next an-
notator that should annotate it (van der Meer et al.,
2024).

These approaches primarily focus on predicting
the opinions of individuals or groups of annotators.
Instead, our methods identify whether we can ex-
pect disagreement among annotators identifying
the values that support an argument, thus not being
reliant on specific individuals or groups.

2.3 Measuring disagreement on moral
ambiguity

In morally ambiguous scenarios, disagreements
naturally arise due to the inherent diversity and
pluralism of values people hold. Grounding the-
ories like value pluralism suggest that such dis-
agreements reflect legitimate differences in moral
frameworks rather than mere errors (Kekes, 1996).
Among others, the Moral Foundations Theory il-
lustrates how different moral intuitions (care, fair-
ness, authority, loyalty, sanctity) lead to divergent
judgments among groups such as liberals and con-
servatives, making some conflicts particularly in-
tractable (Haidt and Graham, 2007; Graham et al.,
2013). Social psychologists further emphasize cog-
nitive biases, such as naïve realism, where indi-
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viduals perceive their views as objectively correct
and opposing views as biased or misinformed, in-
tensifying disagreements (Ross and Ward, 2013;
Lord et al., 1979). Empirical methods from social
sciences have operationalized these disagreements
through inter-coder reliability metrics (e.g., Co-
hen’s kappa, Krippendorff’s alpha), recognizing
that systematic variance among annotators can re-
flect meaningful differences in interpretation rather
than random error (Krippendorff, 2004). Theo-
ries of deliberative democracy, notably by Gut-
mann and Thompson (2004); Rawls (2002), pro-
vide frameworks for managing moral disagree-
ments through mutual respect and reason-giving
rather than forcing consensus.

3 Methods

We propose two approaches to identify subjective
value-laden arguments—that is, detect whether we
expect annotators to disagree on the value anno-
tation of a piece of text. In the first approach, In-
ferred Subjectivity identification (IS, Section 3.2),
we train models to predict value labels for indi-
vidual annotators and infer subjectivity from the
variations in labels predicted across annotators. In
the second approach, Direct Subjectivity identifica-
tion (DS, Section 3.3), we train models to directly
classify whether a given argument is subjective.

3.1 Task Formalization
Consider a dataset D composed of annotated
triples (xi, yij , aj), where xi is a piece of text con-
taining an argument, and yij is the annotation of
annotator aj . Annotators can assign multiple val-
ues to each text xi, chosen from a list of values
vk ∈ V . We aim to create a model f(x) ∈ (0, 1)
that predicts whether we expect disagreement (0)
or agreement (1) among the annotators when anno-
tating the value(s) that support an argument. We
consider an argument to be subjective if at least
one annotator from a group assigns a different set
of values to that text compared to others.

3.2 Inferred Subjectivity Identification (IS)
In this approach, we explore three multi-annotator
architectures to assess subjective value prediction,
as displayed in Figure 1. They all pass the input
arguments into sentence embedding and classifica-
tion heads in different ways to predict multi-label
values for each annotator. Appendix B presents the
results of each method for value prediction. We
then classify xi as subjective for each vk where

individual annotators’ predictions differ and report
the subjectivity classification results.

3.2.1 IS-each: A Dedicated Model for Each
Annotator

We train a multi-label classification model for each
annotator aj to predict value values based on the
annotations they provided. Although straightfor-
ward, this approach is computationally expensive
as it requires training a separate model for each
annotator.

3.2.2 IS-shared: a Shared Model with a
Dedicated Head for Each Annotator

We train a single model for all annotators, thus with
shared embeddings but a different multi-label clas-
sification head for each annotator. This approach
reduces computational complexity by sharing com-
mon embeddings across all annotators.

3.2.3 IS-single: One Model for All Annotators
In this approach, we train a single model for all
annotators, incorporating a unique annotator iden-
tifier as part of the input. The input to the model
is modified by concatenating the annotator ID (aj)
with the textual data. This method may address
some of the computational constraints associated
with the previous methods, however, it may not
capture annotator nuances by just using annotator
ID as input and their annotation as output.

3.3 Direct Subjectivity Identification (DS)

DS directly trains the model to assess whether we
expect annotators to disagree in the annotation of
vk in text xi, as displayed in Figure 2. We frame the
task as a binary classification problem and compare
three methods. In the first, we employ a dedicated
model for each value label to predict subjectivity.
In the next two, we insert a contrastive learning
objective in the model, in a supervised and unsu-
pervised manner, respectively.

3.3.1 DS-simple: A Model to Predict
Subjectivity for Each Value Label

Analogously to section 3.2.1, we train a model to
predict whether we expect the annotation to be
subjective, for each value (vk), thus resulting in
|V | binary prediction models.

3.3.2 Contrastive Loss Primer
Cross-entropy loss has been shown to have several
shortcomings, such as not explicitly encouraging
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Figure 1: Representation of how the method processes input text to predict values for individual annotators and
then subsequently infer subjectivity for each value label

Figure 2: Representation of how the method processes input text to identify subjectivity for each value label

discriminative learning, leading to poor generaliza-
tion performance (Liu et al., 2016; Cao et al., 2019).
Contrastive learning as an auxiliary training objec-
tive during fine-tuning has been shown to mitigate
these problems (Gunel et al., 2020), even in an un-
supervised manner (Kim et al., 2021). Contrastive
learning focuses on enhancing the representation
of sentence embeddings by bringing semantically
similar examples closer together and separating
dissimilar examples (Hadsell et al., 2006).

For the following two methods, we consider a
primary task as training a binary classifier to pre-
dict the subjectivity of the input text using Binary
Cross-Entropy (BCE) loss, and as an auxiliary task
use a Contrastive Learning (CL) loss:

L = LBCE + λLCL

where LBCE represents the binary cross-entropy
loss, LCL denotes the contrastive learning loss, and
λ controls the relative importance of the CL loss
compared to the BCE loss. The methods differ

in how LCL is calculated—in a supervised and
unsupervised fashion, respectively.

3.3.3 DS-sup: DS-simple + Supervised
Contrastive Loss

In this method, we use triplet loss (Ltriplet)
(Schroff et al., 2015), a supervised version of con-
trastive loss that exploits data labels to refine the
embedding space such that examples labeled with
the same class (subjective) are pushed closer to-
gether and examples with a different class (non-
subjective) are pushed further apart.

Every training sample is composed of a triple
(xA, xP , xN ), where xA is the anchor sample, xP
(positive sample) is a randomly selected sample
with the same label as xA, and xN (negative sam-
ple) is a randomly selected sample with a different
label from xA. Ltriplet is then defined as:

Ltriplet = max {d(zA, zP )− d(zA, zN ) +m, 0}

where zA, zP , and zN are the normalized represen-
tations in embedding space of the anchor, positive,
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and negative inputs, respectively. m > 0 is the
margin hyperparameter that enforces a minimum
separation between positive and negative pairs.

3.3.4 DS-unsup: DS-simple + Unsupervised
Contrastive Loss

In this method, we employ contrastive tension loss
(Ltension) (Carlsson et al., 2021), an unsupervised
contrastive loss. Whereas the previous method em-
ployed label information to shape the embedding
space, this method instead ensures that semanti-
cally similar samples are pushed closer together
while dissimilar examples are pushed further apart.
Ltension is then defined as:

Ltension = − 1

N

N∑

i=1

log

(
exp
(
sim
(
zi,zi+

)
τ

)

N∑

j=1

exp
(
sim
(
zi,zj

)
τ

)

)
,

where zi is the embedding of the anchor sample,
zi+ is the embedding of a positive sample , zj are
all samples in the batch (acting as negatives when
j ̸= i+), sim(·, ·) is a similarity function, τ > 0 is
a temperature hyperparameter, and N is the batch
size.

4 Experimental Setup

We describe the models, dataset, and evaluation
metrics for our experiments.

4.1 Models

We test all proposed methods with BERT-base (De-
vlin et al., 2019) as model embedding. Next, we
fine-tune the Llama-3.1-8B-Instruct model (Tou-
vron et al., 2023) for two variants of the two ap-
proaches (IS-single and DS-simple), as further
elaborated in Section 5. We compare proposed
methods against a baseline that randomly predicts
subjectivity. While our experiments are only con-
ducted with two models, we propose a model-
agnostic approach that is not limited to these mod-
els. Appendix A.3 details the used hyperparame-
ters.

4.2 Dataset

We use the Touché23-ValueEval dataset (Mirza-
khmedova et al., 2023), which, to the best of our
knowledge, is the only dataset available that in-
cludes value annotations from multiple annotators
for each instance. The dataset is composed of 9324

natural language arguments annotated with a tax-
onomy of 54 values (multi-label annotation) de-
rived from the Schwartz Value Survey (Schwartz
et al., 2012) and distributed in four hierarchical
levels. Argument datasets are almost exclusively
from a Western background on controversial top-
ics namely religious texts, political discussions,
free-text arguments, newspaper editorials, and on-
line democracy platforms. We utilize annotations
representing the crowd workers’ original annota-
tions (before being aggregated into a single ground
truth label) that have all been carried out by anno-
tators from a Western background. To effectively
demonstrate our methods while minimizing the
computational load, we selected the eight most
frequently annotated values from level 2. These
values were annotated by the four annotators who,
among the 39 annotators, had the highest anno-
tation overlap. The selected values are Achieve-
ment (Ach), Power: resources (Pow), Security: per-
sonal (Sec-p), Security: societal (Sec-s), Confor-
mity: rules (Con), Benevolence: caring (Ben-car),
Benevolence: dependability (Ben-dep), Universal-
ism: concern (Uni). Figure 3 presents the distri-
bution between the subjective and non-subjective
annotations for each of the selected values, and
Appendix A.1 provides more information on the
dataset, annotators, and selected values.
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Figure 3: Counts and ratio of subjective (S, red) and
non-subjective (NS, blue) labels per each selected value.

Furthermore, for the DS approaches, we aug-
ment the minority class to balance the dataset by
paraphrasing the minority class sentences (Alisetti,
2021) (see Appendix A.2 for additional details).
Data augmentation is not possible in the IS ap-
proach due to the multi-label nature of the task—
augmenting data for one label would also impact
the other labels annotated on the same sentence.
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4.3 Evaluation Metrics

We report precision, recall, and F1-score on the test
set (which is fixed, as detailed in Appendix A.1),
per value and averaged over the values. In addition,
we report the Spearman correlation (ρ) between
the per-value F1-scores and the subjective to non-
subjective ratios (Figure 3) to investigate the corre-
lation between subjectivity level and performance.

5 Results

Table 1 reports the performance of the differ-
ent approaches averaged over the selected values,
whereas Table 2 reports the per-value performance.

Method P R F1 ρ

IS-each (BERT) 0.34 0.40 0.36 0.88
IS-shared (BERT) 0.31 0.22 0.25 0.85
IS-single (BERT) 0.35 0.30 0.32 0.86
IS-single (Llama) 0.40 0.26 0.30 0.88

DS-simple (BERT) 0.85 0.61 0.70 -0.60
DS-sup (BERT) 0.85 0.62 0.71 -0.32
DS-unsup (BERT) 0.70 0.61 0.65 0.24
DS-simple (Llama) 0.84 0.76 0.80 -0.97

Baseline (random) 0.53 0.50 0.51 -0.12

Table 1: Average precision (P), recall (R), and F1-score
across the selected value labels, together with the corre-
lation (ρ) between F1-scores and subjectivity ratio.

5.1 Comparison across Methods

First, we compare the two primary approaches—
inferring subjectivity from value prediction (IS)
versus direct subjectivity identification (DS). We
notice that the latter demonstrates superior perfor-
mance and that even the random baseline mostly
outperforms the IS approach (except for IS-each
for recall in Ach, Pow, and Sec-s). This may indi-
cate that predicting value solely through annotation
may not be sufficient to capture individual subjec-
tive preferences and infer subjectivity. However,
the DS approach consistently outperforms the base-
line in all metrics.

Second, we compare the methods that infer sub-
jectivity from value prediction (IS). We observe
that IS-each consistently outperforms the others.
This is presumably because having a dedicated
model for each annotator better captures their an-
notation tendencies when compared to having a
shared embedding layer (IS-shared) or having a
fully shared model (IS-single). Moreover, IS-
single consistently outperforms IS-shared, which

shows that differentiating the input text with an an-
notator ID shows a better performance compared
to having a dedicated head for each annotator.

Finally, we compare the approaches that directly
infer subjectivity (DS). We notice that DS-simple
and DS-sup generally perform similarly and better
than DS-unsup. However, we observe that for more
subjective values (such as Ach) the performances
with the three methods are comparable, whereas
for less subjective values (such as Ben-dep) the
results of DS-unsup are significantly worse. This
is also supported by the correlation scores in Ta-
ble 1, which show a moderate positive correlation
between the DS-unsup results and per-value sub-
jectivity.

5.2 Comparison across Values

Next, we compare the results across values. Table 1
shows that the performances with the IS approach
are consistently correlated with the subjectivity of
the value annotations. With the DS approach, in-
stead, only the DS-unsup results are correlated with
subjectivity—that is, for the best-performing meth-
ods (DS-simple and DS-sup), lower subjectivity
leads to better performances.

We conjecture that the correlation is strongly
positive for all IS methods because a more bal-
anced class distribution leads to better value pre-
diction, which in turn leads to better subjectivity
identification. Instead, for the DS methods, which
directly identify subjectivity, we observe that pre-
cision is consistently higher than recall, exceptions
are DS-simple (Llama) for Ach and DS-unsup, DS-
simple (Llama) for Sec-p. This is likely negatively
correlated with subjectivity because the model may
overfit to simpler examples hurting performance
on more subtle (high subjective) values.

Finally, DS-simple has a stronger negative cor-
relation with per-value subjectivity than DS-sup,
suggesting it systematically achieves a higher F1-
score on values for which fewer annotators dis-
agree. On the other hand, DS-sup is more balanced
across value subjectivity. We conjecture this is due
to the fact that supervised contrastive loss pushes
the embeddings for the same label closer together,
regardless of the value’s overall subjective level.
This shapes the embedding space more consistently
across both highly subjective and less subjective
values, resulting in a mitigation of overfitting.
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Method Achievement Power: resources Security: personal Security: societal
P R F1 P R F1 P R F1 P R F1

IS-each (BERT) 0.40 0.56 0.46 0.41 0.50 0.45 0.35 0.44 0.39 0.36 0.50 0.42
IS-shared (BERT) 0.37 0.29 0.32 0.38 0.26 0.31 0.32 0.20 0.24 0.41 0.34 0.37
IS-single (BERT) 0.38 0.39 0.38 0.40 0.33 0.36 0.37 0.40 0.38 0.38 0.36 0.37
IS-single (Llama) 0.41 0.39 0.40 0.44 0.29 0.35 0.46 0.41 0.33 0.45 0.31 0.37

DS-simple (BERT) 0.81 0.57 0.67 0.82 0.61 0.69 0.83 0.66 0.73 0.89 0.58 0.70
DS-sup (BERT) 0.78 0.62 0.69 0.84 0.58 0.69 0.83 0.64 0.72 0.84 0.65 0.73
DS-unsup (BERT) 0.65 0.60 0.62 0.73 0.55 0.63 0.65 0.72 0.68 0.71 0.67 0.68
DS-simple (Llama) 0.71 0.76 0.74 0.94 0.65 0.77 0.73 0.80 0.76 0.82 0.74 0.78

Baseline (random) 0.55 0.49 0.51 0.53 0.50 0.52 0.51 0.48 0.49 0.55 0.49 0.52

Conformity: rules Benevolence: caring Benevolence: depend. Universalism: concern
P R F1 P R F1 P R F1 P R F1

IS-each (BERT) 0.30 0.35 0.33 0.33 0.42 0.37 0.20 0.24 0.22 0.36 0.2 0.24
IS-shared (BERT) 0.28 0.18 0.22 0.28 0.18 0.22 0.14 0.15 0.14 0.32 0.16 0.20
IS-single (BERT) 0.30 0.26 0.27 0.35 0.27 0.30 0.23 0.19 0.21 0.37 0.20 0.25
IS-single (Llama) 0.42 0.19 0.26 0.35 0.22 0.27 0.33 0.13 0.18 0.35 0.17 0.23

DS-simple (BERT) 0.89 0.60 0.71 0.86 0.62 0.71 0.90 0.60 0.72 0.85 0.59 0.70
DS-sup (BERT) 0.89 0.61 0.72 0.89 0.56 0.69 0.86 0.67 0.75 0.85 0.59 0.69
DS-unsup (BERT) 0.70 0.68 0.69 0.78 0.52 0.62 0.66 0.55 0.60 0.70 0.59 0.64
DS-simple (Llama) 0.88 0.75 0.81 0.88 0.78 0.83 0.88 0.86 0.87 0.91 0.71 0.80

Baseline (random) 0.50 0.50 0.50 0.52 0.50 0.51 0.52 0.52 0.52 0.53 0.50 0.52

Table 2: Precision (P), recall (R), and F1-score of the subjectivity prediction per value. In bold, highlight the
best-performing method and underline the second-best-performing method for each value and metric.

5.3 Comparison across Models

Finally, we compare the results across models. For
the IS approach, we decided to test the Llama
model with the IS-single method to investigate
whether using a more powerful model can com-
pensate for the difference between using a single
model for all annotators (IS-single) or one model
per annotator (IS-each). However, we observe no
improvement over the IS-single results with the
BERT model. We conjecture that this is due to the
structure of IS-single—that is, adding an annotator
ID to each argument to differentiate between anno-
tators. Such information is evidently not sufficient
to differentiate across annotators.

Next, given the comparable performances be-
tween DS-simple and DS-sup, we decide to train
Llama with DS-simple for simplicity. Differently
from the IS approach, in the DS approach, we ob-
serve a performance improvement over BERT, par-
ticularly in recall across all values and in precision
for values Pow, and Uni, in line with the difference
in state-of-the-art between the two models.

6 Discussion

In this work, we explored two distinct approaches
to address the challenge of identifying subjectivity
in value-laden arguments. We discuss our results

across methods and value labels.

6.1 Comparison across Methods

DS is better, but IS also has its merits. The
superior performance of the DS approach can be
likely attributed to its focused objective, which sim-
plifies the model’s learning process by concentrat-
ing on distinguishing between subjective and non-
subjective instances. This targeted focus allows
the model to capture patterns indicative of sub-
jectivity, leading to improved recall and F1-score
rates. While it is intuitive that direct subjectivity
identification might outperform inference-based
methods, we argue that inferring subjectivity from
value predictions remains valuable in scenarios
where understanding individual value preferences
provides meaningful insights. For instance, explor-
ing why an argument is subjective by looking at
each annotator’s value prediction and understand-
ing their different interpretation. However, improv-
ing subjectivity identification through value predic-
tion may require the development of methodolo-
gies that explicitly model the relationship between
value prediction and subjectivity identification. For
example, incorporating individual subjective pref-
erences derived not only from value annotations
but also from additional factors such as annotators’
backgrounds can enhance this link.
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(a) BERT-base

(b) BERT embeddings trained with DS-sup.

(c) BERT embeddings trained with DS-unsup.

Figure 4: Comparison of 2D sentence embeddings visu-
alizations obtained through t-SNE. (Top) Embeddings
from the original BERT. (Middle) Embeddings from
the BERT instance fine-tuned with DS-sup. (Bottom)
Embeddings from the BERT instance fine-tuned with
DS-unsup. Red dots correspond to subjective and blue
to non-subjective.

Moreover, the subjectivity of value-laden argu-
ments may vary across different contexts and de-
mographic groups (Liscio et al., 2021). The sec-
ond approach, which directly predicts subjectivity
irrespective of individual annotators, offers a path-
way for active learning strategies to update and
fine-tune the model for new contexts and diverse
populations.

Contrastive loss brings additional advantages.
Despite the comparable subjectivity prediction per-
formance, optimizing binary cross-entropy loss
with a contrastive learning objective makes the
resulting embeddings more suitable for calculating
similarities between samples. We confirm this by
visualizing the BERT embedding space for value
Ben-dep resulting from the three DS methods, in
Figure 4 (similar patterns were observed for all con-
sidered values). DS-sup pushes the embeddings
to have a better separation between subjective and
non-subjective classes, while DS-unsup groups se-
mantically similar samples.

Improved embeddings can be leveraged to sup-
port the annotation process during an active learn-
ing procedure. For instance, we can use the DS-sup
embeddings to present annotators with instances
that lie near the decision boundary between subjec-
tive and non-subjective classes, enabling annota-
tors to reflect on samples that highlight areas of un-
certainty. Additionally, utilizing the DS-unsup to
retrieve semantically similar samples that are iden-
tified differently in terms of subjectivity, provides
annotators with contextualized reference points.
This approach may support a more nuanced anno-
tation process by allowing reflection on samples
where human judgment is most needed. Moreover,
this strategy can be extended beyond annotation
to support participatory democracy, equipping de-
liberation moderators with useful information to
promote reflection and facilitate more thoughtful
discussions among participants.

6.2 Comparison across Values

Our findings are supported by Schwartz (1994),
who asserts that values like Achievement and
Power are more closely tied to personal interests,
whereas Universalism and Conformity are associ-
ated with broader societal concerns and the welfare
of others. Security and Conformity are boundary
values. They are primarily concerned with others’
interests, but their goals also regulate the pursuit
of their own interests. Hence, due to the indi-
vidualized nature of some values which are tied
to personal experiences and individual goals such
as Achievement tend to exhibit higher subjectiv-
ity compared to Universalism which is grounded
in broader ethical principles that are more widely
shared across different cultures and societies.
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7 Conclusion

We introduce multiple approaches to identify sub-
jectivity in value-laden arguments. Applying our
methods to the Touché23-ValueEval dataset, we
demonstrated that directly identifying subjectivity,
as opposed to inferring it through value prediction,
significantly enhances performance. Implementing
a dual-task strategy that combines contrastive loss
with BCE loss does not directly improve subjectiv-
ity identification, but leads to a model that is less
dependent on per-label subjectivity. Finally, us-
ing a state-of-the-art model improves performance
for direct subjectivity identification, but not for
inferred subjectivity identification.

We envision a combination of our proposed ap-
proaches as future work, e.g. by combining value
and subjectivity prediction to capture individual an-
notators’ perspectives in combination with their an-
notations, thereby potentially improving the iden-
tification of subjectivity in value-laden arguments.
Datasets encompassing diverse perspectives, in-
cluding varying demographics, lived experiences,
and moral values (Waseem, 2016; Patton et al.,
2019), such as the recently introduced D3CODE
dataset (Mostafazadeh Davani et al., 2024), facili-
tate the integration of these two aspects.

Finally, we acknowledge that differences in an-
notation (i.e., subjectivity) can be confounded with
noise in the annotation process. Previous work
addressed this issue by facilitating deliberation
among crowd workers (Schaekermann et al., 2018)
or by assessing the validity of the explanations
provided by annotators for their responses (Weber-
Genzel et al., 2024). Our work can be instrumental
in identifying potentially subjective annotations to
support such approaches.

8 Limitations

Our evaluation is confined to the Touché23-
ValueEval dataset (Mirzakhmedova et al., 2023),
primarily due to the scarcity of datasets within the
value community that include annotator-level anno-
tations. This limitation underscores the importance
of developing datasets that collect a diverse set
of annotators’ value annotations. Such datasets
would facilitate a more robust evaluation of meth-
ods aimed at modeling subjectivity.

The first two methods from ISV including
—ISV-each, ISV-shared, and DS-simple are com-
putationally expensive due to their reliance on ded-
icated embeddings and classifiers. Although these

methods provide insights into annotator-specific
tendencies, their practicality in large-scale appli-
cations is limited. Future research could focus on
optimizing these models for scalability or devel-
oping lightweight alternatives. One approach for
optimizing ISV is to merge annotators who share
the same perspective into similar groups and apply
an active learning strategy to find the most diverse
and useful information to infer subjectivity. The
same approach can also be applied for DS-simple
to only train the data with the most informative
information in terms of subjectivity detection, as
Ds-unsup which semantically improves embedding
can be utilized for this.

Our study focuses exclusively on classification
tasks, which limits the generalizability of our find-
ings to other NLP tasks, such as summarization
and question-answering, and to fields beyond NLP,
such as Reinforcement Learning and Inverse Rein-
forcement Learning. Investigating how subjectivity
manifests in these tasks and domains remains an
important avenue for future work

To use the best of our proposed methods to iden-
tify the sources of disagreement and promote re-
flection, our annotators must be diverse and repre-
sent different ranges of moral values, beliefs, and
backgrounds. This diversity should align with the
perspectives of individuals involved in the delib-
eration process, ensuring that annotators reflect a
broad spectrum of participants. The dataset we
use in this study has no intention to be used for a
specific deliberation setting, and we had no control
over the notion of alignment between annotators’
subjective viewpoints and participants in delibera-
tion. Hence, as values are context-specific Vargo
and Lusch (2015); Horbel et al. (2016); Chandler
and Vargo (2011); Edvardsson et al. (2010); Liscio
et al. (2021), to be able to identify subjective value-
laden arguments more meaningful with respect to
the new deliberation setting, we encourage users
of this method to either train the methods in a new
context or fine-tune the model with representative
annotators of deliberation.
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A Additional Experimental Details

A.1 Dataset details
we use The Touché23-ValueEval dataset
by(Mirzakhmedova et al., 2023), which com-
prises 5270 natural language arguments that
are annotated for consolidated taxonomy of 54
values (multi-class annotation). Value taxonomy
is categorized on the more abstract levels 2–4
which are derived mainly from the Schwartz Value
Survey (Schwartz et al., 2012). Table A1 shows the
example of the original dataset. annotations have
all been carried out by annotators from a Western
background. This dataset is distributed under CC
BY-SA 4.0. The data is split so that approximately
78% of the samples are used for training, 22%
for testing, and within the training set, a further
10% is reserved for validation. The annotation
process involved crowdsourcing on MTurk using a
custom three-part interface designed for speed and
expertise. The interface presented arguments in a
scenario and asked annotators to identify relevant
values by answering a yes/no question. Annotators
were instructed to select one to five values per
argument. The average time spent by annotators
on each argument was 2 minutes and 40 seconds.
For additional information regarding the dataset,
please refer to (Kiesel et al., 2023)

We also use the premise, and we reference it as
the argument.

Argument ID Worker ID Premise Simplified_Value_lvl2_ann

A01001 W014 if entrapment can
serve to more easily
capture...

[0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, ...]

A01001 W020 if entrapment can
serve to more easily
capture...

[0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 0, ...]

A01001 W024 if entrapment can
serve to more easily
capture...

[0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, ...]

A01002 W014 we should ban hu-
man cloning as it
will only ca...

[0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, ...]

A01002 W020 we should ban hu-
man cloning as it
will only ca...

[0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, ...]

... ... ... ...

Table A1: Data structure of argument annotation

Following Figure A1 we selected the first four
annotators who annotated the most.

Based on Figure A2 we selected top 8 Most
Annotated Value Categories, Category 14: 3613
annotations : Benevolence: caring(Value_5) ,
Category 8: 3055 annotations : Security: per-
sonal(Value_2), Category 4: 2948 annotations:
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Figure A1: Number of Unique Arguments Annotated
by Each Worker
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Figure A2: Value Category Distribution by Worker ID

Achievement(Value_0), Category 15: 2592 anno-
tations : Benevolence: dependability(Value_6),
Category 11: 2222 annotations : Conformity:
rules(Value_4), Category 6: 1960 annotations :
Power: resources(Value_1), Category 9: 1882 an-
notations : Security: societal(Value_3), Category
16: 1669 annotations : Universalism: concern
(Value_7)

A.1.1 Fleiss Kappa score

Fleiss’ kappa is a statistical metric used to eval-
uate the consistency of agreement among multi-
ple raters when they assign categorical ratings to
various items (Fleiss, 1971). As can be seen A3
Value_0, Value_7, Value_3 has fair agreement, and
Value_1, Value_2, Value_5 has a moderate agree-
ment and Value_6 has a substantial agreement.
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Figure A3: Fleiss' Kappa Scores per values

A.2 Paraphrasing
We utilize the Vamsi model, a T5-based trans-
former fine-tuned on the PAWS dataset for para-
phrase generation. This model generates diverse
paraphrased versions of input sentences A2 list the
hyperparameter used.

Hyperparameter Value
Sampling Method Top-k Sampling
Temperature 2.0
Top-k 40
Top-p (Nucleus Sampling) 0.85
Repetition Penalty 1.5

Table A2: Paraphrasing

A.3 Hyperparameters and Infrastructure
For BERT, computational experiments were run
on a machine containing RTX 2080 Ti GPU. For
Llama, computational experiment run on NVIDIA
A40 with 2 x AMD EPYC 7413 24-Core Processor.
Below are the hyperparameters used for each six
methods.

Originally, Llama-3.1-8B-Instruct is a causal
language model designed for text generation, to
adapt it for classification, we add a fully trainable
classification head on top of the base model. The
fully trainable classification head is optimized in
conjunction with low-rank adaptation (LoRA) (Hu
et al., 2021) adapters. To lower the task’s computa-
tional cost, we utilize 4-bit quantization.

B Extended Results on value prediction
and subjectivity prediction with STD

Hyperparameter Value
Batch size 16
Learning rate 1e-5
Max sequence length 128
Epochs 10
Optimizer AdamW
Pooling strategy Mean

Table A3: Hyperparameters for DBV, SBV-ind, SBV-all

Hyperparameter Value
Batch size 16
Learning rate 1e-5
Epochs 5
Optimizer AdamW
Pooling strategy Mean

Table A4: Hyperparameters for DBS

Hyperparameter Value
Batch size 16
Learning rate 1e-5
Epochs 5
Optimizer AdamW
Margin 1.0
Alpha (weight for triplet loss) 1.0
Pooling strategy Mean

Table A5: Hyperparameters for DBS-SC

Hyperparameter Value
Batch size 64
Learning rate 1e-5
Epochs 5
Optimizer AdamW
Alpha (weight for Contrastive loss) 5.0
Pooling strategy Mean

Table A6: Hyperparameters for DBS-UC

Hyperparameter Value
Batch size 8
Learning rate 2e-5
Epochs 5, 1
Optimizer AdamW
lora alpha 16
lora dropout 0.1

Table A7: Hyperparameters for IS-single (Llama), and
DS-simple (Llama) with 1 epoch
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Method Label 0 Label 1 Label 2 Label 3
P R F1 P R F1 P R F1 P R F1

DBCV-W015 0.54±0.02 0.51±0.02 0.52±0.02 0.59±0.04 0.37±0.02 0.45±0.03 0.57±0.04 0.37±0.10 0.44±0.08 0.87±0.09 0.23±0.06 0.36±0.07
DBCV-W023 0.65±0.01 0.41±0.11 0.49±0.08 0.70±0.05 0.65±0.04 0.67±0.01 0.64±0.03 0.63±0.05 0.64±0.02 0.60±0.05 0.26±0.10 0.36±0.09
DBCV-W018 0.67±0.04 0.48±0.04 0.56±0.02 0.69±0.02 0.69±0.04 0.69±0.02 0.62±0.03 0.67±0.05 0.64±0.02 0.63±0.09 0.27±0.11 0.36±0.08
DBCV-W024 0.68±0.02 0.74±0.03 0.71±0.01 0.69±0.05 0.62±0.05 0.65±0.03 0.66±0.02 0.72±0.02 0.69±0.01 0.59±0.01 0.50±0.09 0.54±0.05
SBDCV-W015 0.52±0.03 0.63±0.09 0.57±0.03 0.48±0.12 0.47±0.16 0.45±0.04 0.37±0.08 0.66±0.13 0.46±0.05 0.42±0.10 0.38±0.15 0.38±0.10
SBDCV-W023 0.59±0.05 0.57±0.11 0.57±0.04 0.66±0.05 0.66±0.04 0.66±0.02 0.60±0.08 0.81±0.05 0.69±0.05 0.47±0.03 0.42±0.06 0.44±0.03
SBDCV-W018 0.56±0.04 0.66±0.03 0.60±0.02 0.72±0.04 0.63±0.05 0.67±0.01 0.53±0.06 0.77±0.04 0.62±0.03 0.42±0.06 0.38±0.13 0.38±0.05
SBDCV-W024 0.70±0.02 0.71±0.04 0.71±0.01 0.70±0.03 0.61±0.03 0.65±0.01 0.67±0.02 0.71±0.01 0.69±0.01 0.60±0.02 0.50±0.06 0.54±0.03
SBCV-W015 0.54±0.01 0.62±0.04 0.58±0.02 0.63±0.06 0.32±0.08 0.42±0.07 0.63±0.06 0.39±0.07 0.48±0.07 0.67±0.15 0.35±0.12 0.43±0.08
SBCV-W023 0.63±0.03 0.56±0.06 0.59±0.03 0.74±0.03 0.58±0.08 0.64±0.05 0.71±0.04 0.65±0.04 0.67±0.03 0.51±0.04 0.45±0.05 0.47±0.02
SBCV-W018 0.66±0.03 0.54±0.05 0.59±0.02 0.69±0.03 0.71±0.03 0.70±0.02 0.68±0.03 0.67±0.02 0.67±0.02 0.50±0.03 0.35±0.05 0.41±0.04
SBCV-W024 0.70±0.03 0.75±0.03 0.72±0.01 0.69±0.04 0.62±0.05 0.65±0.02 0.66±0.02 0.72±0.03 0.69±0.01 0.56±0.02 0.59±0.07 0.57±0.03
SBV-all-Llama-3.1-FT-W015 0.68 0.43 0.53 0.53 0.58 0.55 0.44 0.42 0.43 0.67 0.12 0.21
SBV-all-Llama-3.1-FT-W023 0.55 0.53 0.54 0.66 0.67 0.67 0.65 0.77 0.71 0.60 0.35 0.44
SBV-all-Llama-3.1-FT-W018 0.61 0.48 0.54 0.70 0.81 0.75 0.66 0.68 0.67 0.61 0.34 0.44
SBV-all-Llama-3.1-FT-W024 0.69 0.70 0.69 0.71 0.71 0.71 0.70 0.56 0.73 0.67 0.43 0.52

Label 4 Label 5 Label 6 Label 7
P R F1 P R F1 P R F1 P R F1

DBCV-W015 0.49±0.14 0.28±0.05 0.35±0.06 0.63±0.06 0.28±0.06 0.39±0.05 0.68±0.07 0.45±0.04 0.54±0.03 0.00±0.00 0.00±0.00 0.00±0.00
DBCV-W023 0.56±0.05 0.46±0.05 0.50±0.04 0.65±0.04 0.30±0.08 0.41±0.07 0.61±0.03 0.43±0.03 0.50±0.03 0.77±0.09 0.16±0.02 0.26±0.03
DBCV-W018 0.64±0.02 0.48±0.06 0.54±0.04 0.75±0.11 0.31±0.06 0.43±0.04 0.68±0.04 0.46±0.06 0.55±0.03 0.75±0.03 0.27±0.02 0.39±0.03
DBCV-W024 0.61±0.02 0.54±0.05 0.57±0.02 0.68±0.05 0.51±0.07 0.58±0.03 0.70±0.04 0.49±0.05 0.57±0.02 0.58±0.10 0.22±0.08 0.31±0.07
SBDCV-W015 0.33±0.04 0.60±0.16 0.41±0.03 0.58±0.05 0.48±0.10 0.52±0.06 0.57±0.10 0.67±0.18 0.59±0.07 0.06±0.08 0.10±0.14 0.07±0.10
SBDCV-W023 0.50±0.06 0.56±0.05 0.52±0.02 0.51±0.05 0.48±0.08 0.49±0.02 0.52±0.05 0.54±0.07 0.53±0.03 0.56±0.19 0.32±0.13 0.37±0.03
SBDCV-W018 0.53±0.09 0.63±0.04 0.57±0.03 0.54±0.04 0.53±0.06 0.53±0.02 0.55±0.06 0.57±0.12 0.55±0.04 0.58±0.27 0.35±0.12 0.38±0.03
SBDCV-W024 0.61±0.02 0.52±0.03 0.56±0.02 0.68±0.03 0.48±0.05 0.56±0.03 0.67±0.02 0.50±0.05 0.57±0.03 0.65±0.09 0.21±0.03 0.31±0.02
SBCV-W015 0.61±0.06 0.38±0.06 0.47±0.06 0.64±0.11 0.48±0.10 0.54±0.05 0.74±0.03 0.50±0.05 0.60±0.04 0.59±0.13 0.24±0.06 0.34±0.08
SBCV-W023 0.64±0.03 0.43±0.05 0.51±0.04 0.52±0.04 0.39±0.07 0.44±0.04 0.68±0.03 0.44±0.07 0.53±0.05 0.62±0.08 0.31±0.03 0.41±0.01
SBCV-W018 0.67±0.03 0.50±0.07 0.57±0.04 0.68±0.05 0.33±0.09 0.44±0.07 0.68±0.05 0.48±0.08 0.56±0.05 0.67±0.03 0.33±0.02 0.44±0.02
SBCV-W024 0.61±0.02 0.55±0.01 0.58±0.01 0.65±0.06 0.54±0.06 0.59±0.02 0.69±0.03 0.58±0.05 0.63±0.02 0.46±0.03 0.42±0.05 0.44±0.02
SBV-all-Llama-3.1-FT-W015 0.55 0.32 0.41 0.74 0.36 0.48 0.88 0.54 0.67 0.38 0.12 0.18
SBV-all-Llama-3.1-FT-W023 0.77 0.40 0.52 0.62 0.35 0.45 0.73 0.47 0.57 0.58 0.38 0.46
SBV-all-Llama-3.1-FT-W018 0.79 0.34 0.48 0.86 0.30 0.44 0.81 0.55 0.65 0.77 0.25 0.38
SBV-all-Llama-3.1-FT-W024 0.77 0.44 0.56 0.73 0.45 0.56 0.81 0.51 0.63 0.51 0.29 0.37

Table A8: The average and standard deviation of precision, recall, and F-score of value predictions.

Method Achievement Power: resources Security: personal Security: societal
P R F1 P R F1 P R F1 P R F1

IS-each (BERT) 0.40±0.01 0.56±0.05 0.46±0.01 0.41±0.03 0.50±0.04 0.45±0.03 0.35±0.01 0.44±0.03 0.39±0.02 0.36±0.01 0.50±0.07 0.42±0.03
IS-shared (BERT) 0.37±0.02 0.29±0.05 0.32±0.04 0.38±0.02 0.26±0.06 0.31±0.04 0.32±0.08 0.20±0.08 0.24±0.08 0.41±0.03 0.34±0.05 0.37±0.04
IS-single (BERT) 0.38±0.05 0.39±0.05 0.38±0.04 0.40±0.01 0.33±0.03 0.36±0.02 0.37±0.02 0.40±0.06 0.38±0.03 0.38±0.03 0.36±0.06 0.37±0.02
IS-single (Llama) 0.41 0.39 0.40 0.44 0.29 0.35 0.46 0.41 0.33 0.45 0.31 0.37

DS-simple (BERT) 0.81±0.04 0.57±0.06 0.67±0.03 0.82±0.05 0.61±0.07 0.69±0.02 0.83±0.03 0.66±0.05 0.73±0.03 0.89±0.05 0.58±0.08 0.70±0.04
DS-sup (BERT) 0.78±0.03 0.62±0.04 0.69±0.01 0.84±0.03 0.58±0.04 0.69±0.02 0.83±0.04 0.64±0.06 0.72±0.03 0.84±0.04 0.65±0.06 0.73±0.02
DS-unsup (BERT) 0.65±0.05 0.60 ±0.03 0.62±0.03 0.73±0.05 0.55±0.04 0.63 ±0.02 0.65 ±0.06 0.72±0.05 0.68±0.04 0.71±0.06 0.67±0.06 0.68±0.02
DS-simple (Llama) 0.71 0.76 0.74 0.94 0.65 0.77 0.73 0.80 0.76 0.82 0.74 0.78

Baseline (random) 0.55±0.01 0.49 ±0.02 0.51±0.01 0.53±0.01 0.50 ±0.01 0.52±0.01 0.51 ±0.01 0.48±0.01 0.49±0.01 0.55±0.01 0.49±0.03 0.52±0.01

Conformity: rules Benevolence: caring Benevolence: dependability Universalism: concern
P R F1 P R F1 P R F1 P R F1

IS-each (BERT) 0.30±0.03 0.35±0.07 0.33±0.04 0.33±0.01 0.42±0.04 0.37±0.01 0.20±0.03 0.24±0.00 0.22±0.02 0.36±0.06 0.2±0.06 0.24±0.04
IS-shared (BERT) 0.28±0.03 0.18±0.06 0.22±0.04 0.28±0.02 0.18±0.03 0.22±0.03 0.14±0.03 0.15±0.06 0.14±0.04 0.32±0.04 0.16±0.10 0.20±0.08
IS-single (BERT) 0.30±0.05 0.26±0.04 0.27±0.04 0.35±0.03 0.27±0.06 0.30±0.04 0.23±0.02 0.19±0.02 0.21±0.02 0.37±0.02 0.20±0.05 0.25±0.04
IS-single (Llama) 0.42 0.19 0.26 0.35 0.22 0.27 0.33 0.13 0.18 0.35 0.17 0.23

DS-simple (BERT) 0.89±0.04 0.60±0.06 0.71±0.04 0.86±0.06 0.62±0.09 0.71±0.03 0.90±0.03 0.60±0.09 0.72±0.05 0.85±0.02 0.59±0.04 0.70±0.02
DS-sup (BERT) 0.89±0.01 0.61±0.03 0.72±0.02 0.89±0.04 0.56±0.08 0.69±0.04 0.86±0.03 0.67±0.06 0.75±0.03 0.85±0.04 0.59±0.07 0.69±0.04
DS-unsup (BERT) 0.70±0.07 0.68 ±0.06 0.69±0.04 0.78±0.05 0.52 ±0.05 0.62±0.04 0.66 ±0.05 0.55±0.06 0.60±0.03 0.70±0.06 0.59±0.06 0.64±0.03
DS-simple (Llama) 0.88 0.75 0.81 0.88 0.78 0.83 0.88 0.86 0.87 0.91 0.71 0.80

Baseline (random) 0.50±0.02 0.50 ±0.02 0.50±0.02 0.52±0.02 0.50 ±0.02 0.51±0.02 0.52 ±0.01 0.52±0.02 0.52±0.01 0.53±0.02 0.50±0.02 0.52±0.01

Table A9: Precision (P), recall (R), and F1-score of the subjectivity prediction per value. STD shows the 5 runs on
different train and validation sets with a fixed test set.
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