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Abstract

Multi-modal intent recognition (MIR) requires
integrating non-verbal cues from real-world
contexts to enhance human intention under-
standing, which has attracted substantial re-
search attention in recent years. Despite
promising advancements, a comprehensive sur-
vey summarizing recent advances and new fron-
tiers remains absent. To this end, we present
a thorough and unified review of MIR, cover-
ing different aspects including (1) Extensive
survey: we take the first step to present a thor-
ough survey of this research field covering tex-
tual, visual (image/video), and acoustic signals.
(2) Unified taxonomy: we provide a unified
framework including evaluation protocol and
advanced methods to summarize the current
progress in MIR. (3) Emerging frontiers: We
discuss some future directions such as multi-
task, multi-domain, and multi-lingual MIR, and
give our thoughts respectively. (4) Abundant
resources: we collect abundant open-source
resources, including relevant papers, data cor-
pora, and leaderboards. We hope this survey
can shed light on future research in MIR.

1 Introduction

Intent recognition (IR)1 has achieved remarkable
success in unimodal settings, particularly in tex-
tual (Chong et al., 2023; Zou et al., 2022) and visual
domains (Jia et al., 2021; Ye et al., 2023). However,
traditional unimodal approaches are inherently lim-
ited in capturing the complexity of real-world com-
munication, where intent is often conveyed through
a combination of verbal and non-verbal signals.
This limitation arises because human communica-
tion is inherently multi-modal, relying not only on
explicit textual content but also on prosodic varia-
tions, facial expressions, and body gestures.

*Corresponding author.
1It is also referred to as intent detection or classification;

in this paper, we consistently use the term intent recognition.
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Figure 1: An example of multi-modal intent recognition
(MIR), where intent cannot be easily inferred from text
alone. By combining a man’s smirking expression with
an exaggerated tone, it can be classified as ‘Joke’.

To this end, multi-modal intent recognition
(MIR) has emerged as a key research direction for
enhancing intent understanding by systematically
integrating diverse modalities, as illustrated in Fig-
ure 1. Leveraging textual semantics, acoustic fea-
tures (e.g., tone and prosody), and visual cues (e.g.,
gestures and facial expressions), MIR facilitates a
more holistic interpretation of human intent (Zhou
et al., 2024; Zhu et al., 2024b; Zhang et al., 2024b),
with broad implications for applications such as
human-computer interaction (Zhang et al., 2024b).

Despite rapid advancements, there is still a lack
of a comprehensive survey that summarizes recent
advances and new frontiers. To bridge this gap, we
present the first survey on MIR, reviewing over 60
cutting-edge studies published between 2019 and
2024. In a nutshell, our contributions can be sum-
marized as follows: ❶ Extensive survey: we catego-
rize existing studies based on their modality com-
binations, encompassing Textual-Visual, Textual-
Acoustic, and Textual-Visual-Acoustic intent recog-
nition. ❷ Unified taxonomy: we provide a system-
atic review of existing progress from evaluation
protocol and advanced methods perspectives, es-
tablishing three leaderboards under unified metrics.
❸ Emerging frontiers: we highlight key challenges
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Textual-Visual
IR (§3)

Evaluation Protocol
(§3.1)

Benchmark Datasets e.g., MDID (Kruk et al., 2019), Behance Intent Discovery (Maharana et al., 2022), MultiMET (Zhang et al., 2021),
MSAIRS (Shi et al., 2024), MCIC (Yuan et al., 2022), IntentQA (Li et al., 2023a)

Evaluation Metrics e.g., Accuracy, Area Under Curve, Precision, Recall, (weighted) F-score

Advanced Methods
(§3.2)

PLM-based Methods e.g., Kruk et al. (2019), Zhang et al. (2021), Maharana et al. (2022), OCRBERT (Yuan et al., 2022),
VGT (Xiao et al., 2022b), MMSAIR (Shi et al., 2024), HQGA (Xiao et al., 2022a)

LLM-based Methods e.g., BlindGPT (Ouyang et al., 2022), CaVIR (Li et al., 2023a), SeViLA (Yu et al., 2024),
LLoVi (Zhang et al., 2024a), GCG (Wang et al., 2024a), Vamos (Wang et al., 2024b)

Textual-Acoustic
IR (§4)

Evaluation Protocol
(§4.1)

Benchmark Datasets e.g., Fluent Speech Commands (FSC) (Lugosch et al., 2019), SLURP (Bastianelli et al., 2020),
MInDS-14 (Gerz et al., 2021)

Evaluation Metrics e.g., Accuracy, SLU-F1

Advanced Methods
(§4.2)

Pipeline Methods e.g., Phoneme-BERT (Sundararaman et al., 2021), SpokenCSE (Chang and Chen, 2022),
ML-LMCL (Cheng et al., 2023), MCLF (Huang et al., 2023), PCAD (Zhuang et al., 2024)

End-to-end Methods e.g., MTL-SLT (Huang et al., 2022), Speech-Brain (Ravanelli et al., 2021), ESPnet-SLU (Arora et al., 2022)
MATL (Zhu et al., 2022), HuBERT SLU (Wang et al., 2021), CIF-PT (Dong et al., 2023), CTI (Seo et al., 2022)

LLM-based Methods e.g., ChatGPT, SpeechGPT (Zhang et al., 2023a)

Textual-Visual
-Acoustic IR (§5)

Evaluation Protocol
(§5.1)

Benchmark Datasets e.g., MIntRec (Zhang et al., 2022), MELD-DA (Saha et al., 2020),
EmoInt-MD (Singh et al., 2022), MIntRec2.0 (Zhang et al., 2024b), MC-EIU (Liu et al., 2024b)

Evaluation Metrics e.g., Accuracy, (weighted) Precision, Recall, (weighted) (Average) F1-score

Advanced Methods
(§5.2)

MSA-inspired Fusion e.g., MulT (Tsai et al., 2019), MAG-BERT (Rahman et al., 2020), MISA (Hazarika et al., 2020)

Knowledge-driven Modeling e.g., CAGC (Sun et al., 2024), TECO (Nguyen et al., 2024), MIntOOD (Zhang et al., 2024c)

Information-disentangled Strategy e.g., LVAMoE (Li et al., 2024a), DuoDN (Chen et al., 2024b), InMu-Net (Zhu et al., 2024a)

Semantic-enhanced Alignment e.g., TCL-MAP (Zhou et al., 2024), SDIF-DA (Huang et al., 2024)

Figure 2: Recent advances of Multi-modal Intent Recognition (MIR). Extended discussions on emerging modality
combinations (e.g., Visual-Acoustic IR) are systematically analyzed in Appendix A.

in MIR, including multi-task, multi-domain, and
multi-lingual MIR, outlining potential research di-
rections to advance this research field. ❹ Abundant
resources2: we attempt to organize open-source
resources, including open-source software, diverse
corpora, and a curated list of relevant publications.

2 Background and Preliminary

This section first outlines the background of MIR,
and then provides an overview of MIR.

Background. MIR enhances intent understand-
ing by integrating multiple modalities, distinguish-
ing it from unimodal IR. However, research on
MIR remains in its early stages due to:
❶ Dataset: While numerous multi-modal language
datasets have been introduced for tasks such as
sentiment analysis and emotion recognition, high-
quality datasets specifically annotated for MIR re-
main scarce (Zhang et al., 2024b).
❷ Methodology: IR is inherently more abstract than
tasks involving explicit emotional expression (Zhu
et al., 2024a), making effective multi-modal fusion
considerably more complex.

Preliminary. Given a multi-modal input that may
comprise any combination of textual (t), visual (v),

2https://github.com/Zhihong-Zhu/MIR-Survey

and acoustic (a) modalities, MIR aims to determine
the most appropriate intent label(s) of the input as:

y = f({Xm}m∈M ), (1)

where f(·) denotes the MIR model; M ⊆ {t, v, a}
represents the available set of modalities; Xm cor-
responds to the input features from modality m;
and y ∈ Y = {y1, y2, . . . , yK} is the predicted
intent label(s) among K predefined classes.

We next summarize recent advances in MIR
across three major modality combinations as shown
in Figure 2. We also discuss emerging combina-
tions in Appendix A. Each combination poses dis-
tinct data characteristics and modeling challenges,
reflecting varying levels of methodological matu-
rity. Accordingly, we adopt tailored categorization
strategies for each, inspired by similar practices in
sentiment analysis (Das and Singh, 2023).

3 Textual-Visual Intent Recognition

Text on social media or e-commerce platforms is
often accompanied by visual signals (i.e., images
or videos), which are common ways for users to
express their intentions. In the following, we detail
the collected Textual-Visual IR benchmarks and
their corresponding metrics (§3.1), as shown in Ta-
ble 1. Additionally, we summarize some advanced
methods tailored for Textual-Visual IR (§3.2).
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Modality Evaluation
Dataset Name Source #Intent

v t a Metric
Additional Remarks

MDID
Instagram 7 ✓ ✓ ✗

ACC,
Annotated manually via consensus

(Kruk et al., 2019) EMNLP AUC

MultiMET Twitter, Facebook
(Zhang et al., 2021) ACL and (Ye et al., 2019)

4 ✓ ✓ ✗ ACC Annotates metaphor authorial intent

Behance Intent Discovery
Behance Livestreams 2 ✓ ✓ ✗ P, R, F

Manually annotated via crowdsourcing;
(Maharana et al., 2022) NAACL each sample contains a transcribed phrase

MCIC 30,716 multi-modal dialogues with
(Yuan et al., 2022) NLPCC

JD.com 212 ✓ ✓ ✗ ACC
images and OCR texts (85% images contain text)

MSAIRS
WeChat, TikTok and QQ 20 ✓ ✓ ✗

ACC,
Human annotation combined with GPT-4V review

(Shi et al., 2024) arXiv wF1

IntentQA NExT-QA Annotated via Amazon Mechanical Turk (AMT)
(Li et al., 2023a) ICCV (Xiao et al., 2021)

- ✓ ✓ ✗ ACC
with contrastive samples (same action, different intents)

SLURP
Home Assistant 18×46 ✗ ✓ ✓

ACC,
Contains 72k audio recordings (58 hours);

(Bastianelli et al., 2020) EMNLP SLU-F1
supports both pipeline (ASR+NLU)

and end-to-end SLU approaches

Fluent Speech Commands (FSC) Contains 30,043 audio utterances (19 hours);
(Lugosch et al., 2019) INTERSPEECH

Crowdsourcing 31 ✗ ✓ ✓ ACC
designed for end-to-end SLU

MInDS-14
Crowdsourcing 14 ✗ ✓ ✓ ACC

For the e-banking domain across 14 languages;
(Gerz et al., 2021) EMNLP includes spoken data and ASR transcriptions

MIntRec ACC, First tri-modal intent dataset;
(Zhang et al., 2022) MM

TV series Superstore 20 ✓ ✓ ✓
P, R, F1 includes automatic speaker annotation

EMOTyDA MELD (Poria et al., 2019)
11 ✓ ✓ ✓

ACC, emotion-aware multi-modal dialogue act (DA)
(Saha et al., 2020) ACL IEMOCAP (Busso et al., 2008) P, R, F1 classification dataset; joint learning of DAs and emotions

EmoInt-MD Movies ACC,
(Singh et al., 2022) TASLP (drama, action, fantasy, etc.)

15 ✓ ✓ ✓
F1

32k dialogues annotated with 15 empathetic intents

MIntRec2.0
TV series Superstore,

30 ✓ ✓ ✓
ACC, P, R

tri-modal dataset with 15,040 samples

(Zhang et al., 2024b) ICLR
The Big Bang Theory,

F1, wP, wF1
(9,304 in-scope, 5,736 out-of-scope);

and Friends supports multi-turn, multi-party conversations

MC-EIU Weighted Emotion and intent joint understanding dataset;
(Liu et al., 2024b) arXiv

TV series 9 ✓ ✓ ✓
Average F covers two languages (English and Mandarin)

Table 1: Major datasets for multi-modal intent recognition (MIR) over the past six years (2019 - 2024), covering
visual (v), textual (t), and acoustic (a) modalities. ‘-’ denotes information not reported in the original publication.

3.1 Evaluation Protocol

Benchmark Datasets. Recent textual–visual IR
datasets are largely derived from social media, high-
lighting the importance of modeling non-literal
cross-modal complementarity. For instance, MDID
(Kruk et al., 2019) compiles 1,299 Instagram posts
with annotations spanning three taxonomies: au-
thorial intent, contextual relations, and semiotic
relations. MultiMET (Zhang et al., 2021) fur-
ther explores metaphor understanding with 10,437
text–image pairs, introducing intent labels such as
descriptive, persuasive, and expressive.

Beyond social media, domain-specific appli-
cations have expanded dataset design. MCIC
(Yuan et al., 2022) provides a large-scale Chi-
nese e-commerce corpus of 30,000+ multi-modal
dialogues, where 80% of images contain OCR-

recognizable text. Similarly, the Behance Intent
Discovery dataset (Maharana et al., 2022) focuses
on instructional videos, offering 20,011 annotated
clips for procedural intent identification.

More recently, novel modalities and interaction
paradigms have been introduced. MSAIRS (Shi
et al., 2024) investigates sticker-centric retrieval;
IntentQA (Li et al., 2023a) extends intent reasoning
to video narratives, comprising 16,297 QA pairs
across 4,303 videos and requiring fine-grained tem-
poral alignment between actions and goals.

Evaluation Metrics. In Textual-Visual IR, accu-
racy (ACC) emerges as the predominant evaluation
metric, adopted by five of the six collected bench-
marks. Besides, the MDID dataset further intro-
duces macro-averaged AUC as a complementary
metric to address potential class skew.
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Method Dataset ACC P R F

PLM-based Methods
Kruk et al. (2019) EMNLP MDID 56.7 - - -
Zhang et al. (2021) ACL MultiMET 72.45 - - -
Maharana et al. (2022) NAACL BID - 62/30 61/31 62/30
OCRBERT (Yuan et al., 2022) NLPCC MCIC 87.41 - - -
MMSAIR (Shi et al., 2024) arXiv MSAIRS 69.82 - - 69.82
HQGA (Xiao et al., 2022a) AAAI IntentQA 47.7 - - -
VGT (Xiao et al., 2022b) ECCV IntentQA 51.3 - - -

LLM-based Methods
BlindGPT (Ouyang et al., 2022) NeurIPS IntentQA 51.6 - - -
CaVIR (Li et al., 2023a) ICCV IntentQA 57.6 - - -
SeViLA (Yu et al., 2024) NeurIPS IntentQA 60.9 - - -
LLoVi (Zhang et al., 2024a) EMNLP IntentQA 67.1 - - -
Vamos (Wang et al., 2024b) ECCV IntentQA 71.7 - - -
GCG (Wang et al., 2024a) MM IntentQA 73.1 - - -

Table 2: Leaderboard in Textual-Visual IR. Note that Be-
hance Intent Discovery (BID) reports the results based
on the defined two intents.

A distinct evaluation paradigm is introduced in
the Behance Intent Discovery dataset, which em-
ploys a 75% partial match-based F-score metric for
span prediction tasks, alleviating ASR transcription
errors and imperfect modality alignment. Mean-
while, MSAIRS incorporates weighted F1 scores
alongside accuracy, potentially addressing multi-
class imbalance through class-aware weighting.

3.2 Advanced Methods

With the evolution of benchmarks, Textual-Visual
IR has also witnessed the emergence of methods,
which can generally be classified into: ❶ pre-
trained language model (PLM)-based and ❷ large
language model (LLM)-based methods.

❶ PLM-based Methods. Early methods such as
Kruk et al. (2019) and Zhang et al. (2021) used
modality-specific encoders (e.g., ResNet for im-
ages, BERT for text) with handcrafted fusion strate-
gies. While effective as a starting point, these meth-
ods were limited in handling complex intent scenar-
ios that require fine-grained cross-modal alignment.
Later work incorporated auxiliary signals; for ex-
ample, Yuan et al. (2022) used OCR-extracted text
to resolve ambiguities in user utterances.

Video data further raises modeling challenges.
Xiao et al. (2022a,b) introduced graph-based hierar-
chies and dynamic spatio-temporal graphs to align
objects and actions with textual queries.

This line of work reflects a shift toward contex-
tualized intent modeling, emphasizing hierarchical
structure and intra-modal relations.

❷ LLM-based Methods. LLMs have recently
been adapted for MIR. Yu et al. (2024) and Zhang
et al. (2024a) illustrate this trend, employing BLIP-
2 (Li et al., 2023b) and GPT variants (Ouyang et al.,
2022) for self-chained localization–answering and
long-range video reasoning. A common approach
is to decompose tasks into localized captioning
followed by LLM-based aggregation, reducing re-
liance on costly temporal annotations and enabling
weakly supervised training (Wang et al., 2024a,b).

Leaderboard. We summarize the collected
Textual-Visual IR methods in Table 2. Note that
the first five methods are not directly comparable,
as their benchmark datasets are inconsistent.

Highlight. Current visual–textual IR methods
have shifted from end-to-end fusion toward seman-
tic distillation to support LLM-based reasoning.
This direction remains constrained by two issues:
❶ dependence on weak supervision, which may
amplify errors, and ❷ limited interpretability stem-
ming from LLM black-box characteristics.

4 Textual-Acoustic Intent Recognition

Acoustic signals in voice-based platforms (e.g.,
voice assistants or spoken dialogue systems) of-
ten serve as the primary modality for intent ex-
pression, with textual content derived through auto-
matic speech recognition (ASR) to complement par-
alinguistic information. Below, we introduce the
curated Textual-Acoustic IR benchmark datasets
and their associated evaluation metrics (§4.1), as
summarized in Table 1. We also discuss state-of-
the-art methods specifically designed to address the
unique challenges of Textual-Acoustic IR (§4.2).

4.1 Evaluation Protocol

Benchmark Datasets. Unlike Textual-Visual IR,
textual-acoustic IR has to deal directly with noisy
signals and speaker variation, which makes robust-
ness a central concern. Early benchmarks such as
ATIS (Hemphill et al., 1990) and SNIPS (Coucke
et al., 2018) provided useful testbeds, but they were
restricted to narrow domains: airline travel (21 in-
tents, 5k utterances) and virtual assistants (7 intents,
14k utterances). Their distributions are also highly
skewed; over 70% of ATIS queries are about flights,
which limits transferability to other domains.

More recent datasets began to push toward re-
alistic usage scenarios. SLURP (Bastianelli et al.,
2020) contains around 72k utterances across 18
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domains and 46 action types, collected in every-
day home and office settings with natural acous-
tic variability such as background noise, speaker
movement, and mismatched microphones. Fluent
Speech Commands (FSC) (Lugosch et al., 2019),
though smaller (30k commands, about 19 hours),
targets smart-home interactions with similar em-
phasis on recording diversity. In parallel, multi-
lingual datasets have been introduced to broaden
linguistic coverage. MInDS-14 (Gerz et al., 2021)
spans 14 banking intents across 14 languages
(roughly 50 examples per intent), capturing both
dialectal differences (e.g., British vs. Australian
English) and typologically distant languages (e.g.,
Slavic vs. Asian). By contrast, classic resources
like TREC (Li and Roth, 2002) remain confined to
coarse-grained English-only classification.

Evaluation Metrics. Like Textual-Visual IR,
Textual-Acoustic IR also predominantly adopts ac-
curacy as its primary evaluation metric, where se-
mantic correctness depends on exact matches be-
tween predicted and gold-standard intents.

4.2 Advanced Methods

Based on different model architectures, existing
Textual-Acoustic IR methods can be categorized
into three main types as follows:

❶ Pipeline Methods. These methods aim to
reduce cascading errors from ASR transcripts
by improving representation learning. Phoneme-
BERT (Sundararaman et al., 2021) jointly modeled
phoneme sequences and transcripts with BERT-
style pre-training. SpokenCSE (Chang and Chen,
2022) applied contrastive pre-training to improve
robustness to ASR noise. ML-LMCL (Cheng et al.,
2023) used mutual learning between clean and
noisy transcripts to reduce intra-class variation.
PCAD (Zhuang et al., 2024) introduced prototype-
calibrated decoupling, which uses label priors to
separate error-prone semantics. MCLF (Huang
et al., 2023) advanced multi-grained contrastive
learning with localized error-aware augmentation,
aligning features from phoneme to utterance level.

Overall, pipeline methods focus on disentangling
ASR-induced noise from semantic content through
contrastive and representation-based strategies.

❷ End-to-End Methods. These methods focus
on direct speech-to-intent mapping by jointly
modeling textual and acoustic signals. MTL-
SLT (Huang et al., 2022) integrates pre-trained

Method SLURP ATIS TREC

Pipeline Methods
Phoneme-BERT (Sundararaman et al., 2021) arXiv 83.78 94.83 85.96
SpokenCSE (Chang and Chen, 2022) INTERSPEECH 85.26 95.10 86.36
ML-LMCL (Cheng et al., 2023) ACL 88.52 96.52 89.24
MCLF (Huang et al., 2023) EMNLP 85.39 95.22 87.00
PCAD (Zhuang et al., 2024) ACL 90.58 97.64 91.25

End-to-End Methods
MATL (Zhu et al., 2022) INTERSPEECH 78.72 - -
MTL-SLT (Huang et al., 2022) ACL 83.10 97.13 -
Speech-Brain (Ravanelli et al., 2021) arXiv 85.34 - -
ESPnet-SLU (Arora et al., 2022) 86.3 - -
CTI (Seo et al., 2022) ICASSP 86.92 - -
HuBERT SLU (Wang et al., 2021) arXiv 89.38 - -
CIF-PT (Dong et al., 2023) ACL 91.32 - -

LLM-based Methods
ChatGPT (gpt-3.5-turbo-0125) 73.96 84.13 73.68
SpeechGPT (Zhang et al., 2023a) EMNLP 72.84 83.21 71.34

Table 3: Leaderboard for SLURP, ATIS and TREC
datasets in Textual-Acoustic IR. Results are reported
in terms of accuracy.

ASR and language models under a multi-task learn-
ing framework to support cross-task knowledge
transfer. CTI (Seo et al., 2022) connects ASR and
NLU networks with vocabulary-aligned representa-
tions and trains them jointly for noise-robust intent
recognition. With the availability of large speech
models, HuBERT SLU (Wang et al., 2021) ex-
plored partial fine-tuning of transformer layers for
intent decoding, while CIF-PT (Dong et al., 2023)
introduced a continuous integrate-and-fire mecha-
nism to achieve frame-to-token alignment during
pre-training. MATL (Zhu et al., 2022) extended
this line by applying token-frame cross-attention
and sentence-level contrastive regularization for
multi-grained alignment. In addition, toolkits like
SpeechBrain (Ravanelli et al., 2021) and ESPnet-
SLU (Arora et al., 2022) provide modular imple-
mentations that support rapid development.

Overall, end-to-end methods advance Textual-
Acoustic IR by improving cross-modal pre-training,
refining temporal alignment, and simplifying
model design through unified architectures.

❸ LLM-based Methods. LLMs extend beyond
architectural integration by leveraging large-scale
pre-trained knowledge for zero-shot generalization,
especially when combined with cross-modal in-
struction tuning. SpeechGPT (Zhang et al., 2023a)
illustrates this direction with a three-phase pipeline:
modality adaptation aligns speech tokens with tex-
tual semantics through continuation tasks, instruc-
tion tuning introduces multi-modal task awareness
using synthesized speech-text command data, and
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parameter-efficient methods such as LoRA (Hu
et al., 2022) enhance cross-modal reasoning. These
developments reflect a broader trend of positioning
LLMs as universal semantic interfaces.

Leaderboard. As shown in Table 3, we report
the performance of advanced methods on three pop-
ular datasets (SLURP, ATIS and TREC).

Highlight. Overall, Pipeline methods prioritize
hierarchical noise disentanglement through con-
trastive learning and error-aware augmentation, yet
face scalability bottlenecks; whereas, end-to-end
methods streamline cross-modal integration via
structural synergy but remain data-hungry. The
rise of LLM-based methods shifts focus toward
semantic distillation for zero-shot generalization,
although performance gaps still exist.

5 Textual-Visual-Acoustic Intent
Recognition

5.1 Evaluation Protocol
Benchmark Datasets. Benchmarks across
Textual-Visual-Acoustic modalities are bringing
IR closer to real-world scenarios. MIntRec (Zhang
et al., 2022) introduced a tri-modal dataset with
2,224 text-video-audio samples annotated across
20 fine-grained intents. MIntRec 2.0 (Zhang
et al., 2024b) expands to 15,040 samples (9,304
in-scope and 5,736 out-of-scope) covering 30
intents. EMOTyDA (Saha et al., 2020) provides the
first multi-modal dialogue act dataset, repurposing
13,000 utterances from Friends episodes with
dialogue act labels, which can be treated as
coarse-grained intents (Firdaus et al., 2021).

More recent datasets incorporate affective dimen-
sions alongside intent. MC-EIU (Liu et al., 2024b)
combines 9 intent classes with 7 emotion categories
across 45,009 English and 11,003 Mandarin utter-
ances, offering bilingual coverage and affective
diversity. EmoInt-MD (Singh et al., 2022) links
15 intents with 32 emotions over 32,000 dialogues
from movies. Despite these advances, multilingual
support remains limited, with only MC-EIU and
EmoInt-MD extending beyond English.

Evaluation Metrics. Accuracy (ACC) and
macro-averaged F1 are widely adopted, addressing
class imbalance in multi-class settings. MIntRec
2.0 (Zhang et al., 2024b) added weighted metrics
such as wF1 and wP, and MC-EIU (Liu et al.,
2024b) employed a Weighted Average F-score to
better reflect skewed distributions.

Textual-Visual IR has applied span prediction
metrics, while Textual-Acoustic IR often reports
SLU-F1 to account for ASR errors. Textual-
Visual-Acoustic IR, however, remains centered on
utterance-level metrics. The adoption of weighted
variants across datasets highlights cross-domain
recognition of class imbalance as a persistent issue.

5.2 Advanced Methods

Based on the different objectives pursued by the
model design, we categorize existing methods in
Textual-Visual-Acoustic IR into four types:

❶ MSA-inspired Fusion. Given the recent emer-
gence of Textual-Visual-Acoustic IR, it draws in-
spiration from advanced cross-modal interaction
mechanisms in multi-modal sentiment analysis
(MSA) as competitive baselines. For example,
MulT (Tsai et al., 2019) introduces six bidirectional
cross-modal Transformers to explicitly model pair-
wise interactions between modalities. Building
upon Transformer architectures, MAG-BERT (Rah-
man et al., 2020) addresses the integration chal-
lenge in PLMs through its multi-modal adaptation
gate, which dynamically adjusts textual representa-
tions through weighted displacements derived from
acoustic and visual features. To address the ten-
sion between cross-modal alignment and modality
fidelity, MISA (Hazarika et al., 2020) advances
modality representation learning by explicitly sep-
arating shared and unique characteristics,

❷ Knowledge-driven Modeling. Rather than re-
lying solely on isolated data or intrinsic model
features, recent Textual-Visual-Acoustic IR ap-
proaches address intent ambiguity by integrating
external or contextual knowledge. For example,
CAGC (Sun et al., 2024) shifts from isolated
video modeling to cross-video contextual reasoning
through intra- and cross-video contrastive learning.

TECO (Nguyen et al., 2024) tackles seman-
tic sparsity by infusing commonsense knowledge
through a hybrid retrieval-generation mechanism.
By extracting relational features from external
knowledge and fusing them with multi-modal in-
puts via dual-perspective learning, TECO bridges
the gap between implicit multi-modal cues and ex-
plicit world knowledge. MIntOOD (Zhang et al.,
2024c) synthesizes pseudo-OOD data through con-
vex combinations of ID samples, enabling joint
optimization of coarse-grained OOD detection and
fine-grained ID classification.
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MIntRec EMOTyDA
Method

ACC F1 wF1 P wP R ACC F1 wF1 P wP R

MSA-inspired Fusion
MulT (Tsai et al., 2019) ACL 72.31 68.97 72.07 69.73 72.24 68.83 63.35 54.20 62.28 58.45 62.96 53.57
MAG-BERT (Rahman et al., 2020) ACL 72.00 68.36 71.78 69.01 72.45 68.92 64.50 54.30 63.16 58.81 63.14 53.51
MISA (Hazarika et al., 2020) MM 72.29 69.32 72.38 70.85 73.48 69.24 59.98 - 58.52 - 59.28 48.75

Knowledge-driven Modeling
CAGC (Sun et al., 2024) CVPR 73.39 70.09 - 71.21 - 70.39 - - - - - -
TECO (Nguyen et al., 2024) PACLIC 72.36 69.96 - 70.49 - 69.92 - - - - - -
MIntOOD (Zhang et al., 2024c) arXiv 74.34 70.94 74.15 72.24 74.51 70.46 65.00 56.20 63.53 65.09 64.62 54.20

Information-disentangled Strategy
LVAMoE (Li et al., 2024a) ICME 73.13 70.26 - 71.47 - 69.89 - - - - - -
DuoDN (Chen et al., 2024b) EMNLP 75.28 - 75.09 - 75.80 71.77 62.86 - 60.90 - 62.13 51.63
INMU-NET (Zhu et al., 2024a) MM 76.05 - 75.96 - 76.18 73.93 63.78 - 61.64 - 63.40 52.31

Semantic-enhanced Alignment
TCL-MAP (Zhou et al., 2024) AAAI 73.21 69.02 72.73 69.39 73.02 69.88 64.23 53.98 62.94 57.10 62.73 53.22
SDIF-DA (Huang et al., 2024) ICASSP 71.42 68.53 71.24 72.24 74.51 70.46 64.33 55.56 63.19 62.11 63.75 54.00

Table 4: Leaderboard for MIntRec and EMOTyDA datasets in Textual-Visual-Acoustic IR. Missing values indicate
unreported or unreproducible metrics. For EMOTyDA, underlined results indicate evaluations conducted using
different test splits.

❸ Information-disentangled Strategy. As multi-
modal systems still grapple with entangled rep-
resentations, disentanglement emerges as a criti-
cal strategy for balancing semantic coherence and
modality fidelity. LVAMoE (Li et al., 2024a)
adopts a dual-encoder architecture, decoupling
modality-invariant and modality-specific features
through dense-sparse encoding. DuoDN (Chen
et al., 2024b) explicitly disentangles semantics-
oriented and modality-oriented representations us-
ing counterfactual intervention. By introducing
confounders to simulate causal effects, it isolates
the impact of modality-specific noise on predic-
tions. Besides, InMu-Net (Zhu et al., 2024a) adopts
a similar fashion, which addresses redundancy and
long-tailed distributions through an information
bottleneck strategy, filtering out intent-irrelevant
features via denoising modules while preserving
saliency through kurtosis regularization.

❹ Semantic-enhanced Alignment. Aligning se-
mantics among triple modalities remains pivotal
yet challenging. As such, TCL-MAP (Zhou et al.,
2024) establishes bidirectional modality-text syn-
ergy, whose modality-aware prompting generates
context-rich textual embeddings, which then guide
video/audio feature refinement through token-level
contrastive learning. SDIF-DA (Huang et al.,
2024) adopts a progressive alignment strategy,
where shallow interactions initially harmonize low-
level features before deep fusion captures higher-
order correlations. Complemented by ChatGPT-
generated synthetic data, it enhances model robust-

ness against modality-specific perturbations.
Overall, both frameworks mitigate semantic

asymmetry through adaptive interaction mecha-
nisms. Concretely, TCL-MAP operates with token-
level precision, whereas SDIF-DA hierarchically
integrates cross-modal signals.

Leaderboard. To unify this tri-modal research
direction, we also present a comprehensive leader-
board for two widely used MIR datasets (i.e.,
MIntRec and EMOTyDA), as shown in Table 4.

Highlight. Textual-Visual-Acoustic IR methods
emphasize interaction granularity, external knowl-
edge grounding, representation purity, or alignment
precision and have achieved promising results.

However, multi-modal large language models
(MLLMs) remain in the early stages of develop-
ment within Textual-Visual-Acoustic IR domain.

6 New Frontiers

§3, §4, and §5 introduced prominent achievements
in intent recognition under different modality com-
binations. This section discusses some new fron-
tiers of MIR below, aiming to inspire researchers
and promote the advancement of this research field.

Multi-task MIR. A promising direction for MIR
is integrating multi-task learning. Liu et al. (2024b)
proposed emotion and intent joint understanding
in multi-modal conversation. Zhang et al. (2023b)
highlighted the close relationship between sarcasm,
semantics, and emotion, constructing three tasks to
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perform sarcasm detection, semantic classification,
and emotion classification, respectively.

Future research could explore strategies such as
adaptive task weighting (Chen et al., 2024a) and
shared-private architectures (Wu et al., 2025) to
enhance the effect of multitask learning for MIR.

Multi-lingual MIR. Although there is a signifi-
cant amount of research on MIR, most of these
models primarily support the English language,
and there is limited research on multilingual MIR
benchmarks (Gerz et al., 2021; Zhao et al., 2022;
Liu et al., 2024b), which hinders their application
in non-English-speaking countries and regions.

In natural language processing (NLP), multilin-
gual research is relatively mature, and some works
have demonstrated excellent performance on mul-
tilingual tasks (Qin et al., 2022; Mullick, 2023;
Fan et al., 2021). Therefore, researchers can ex-
tend these approaches to MIR, which would help
reduce the disparity between high-resource and
low-resource languages, enabling the creation of
more extensive MIR systems in the future.

Multi-domain MIR. Though existing MIR mod-
els have achieved strong results in single-domain
settings, they remain heavily dependent on large
amounts of annotated data, which limits their adapt-
ability to new domains. In practice, collecting suf-
ficiently rich labeled datasets for every domain is
infeasible (Wu et al., 2024). Since out-of-scope ut-
terances frequently arise, extending MIR to multi-
domain scenarios is a promising direction and a
key step toward improving model robustness.

In MIR, only MIntRec (Zhang et al., 2024b)
and MIntOOD (Zhang et al., 2024c) have made
progress toward this goal. It is non-trivial to di-
rectly extend previous IR methods to the multi-
domain setting (Li et al., 2024b), as it requires ef-
fectively fusing and aligning heterogeneous multi-
modal data streams while preserving domain-
relevant information. As such, multi-domain MIR
is an area that warrants further exploration.

Multi-modal Large Language Models. Empow-
ered by large language models (LLMs), the under-
standing and reasoning capabilities of multi-modal
large language models (MLLMs) have reached un-
precedented levels, demonstrating impressive capa-
bilities in various tasks (Yin et al., 2023; Caffagni
et al., 2024; Liang et al., 2024; Zhu et al., 2025).

However, MLLMs in MIR currently serve only
as components for data augmentation or perform

Discussion Modality
Survey Year

Visual Textual Acoustic

Brenes et al. (2009) 2009 ✗ ✓ ✗

Kofler et al. (2016) 2016 ✓ ✗ ✗

Hamroun and Gouider (2020) 2020 ✓ ✗ ✗

Louvan and Magnini (2020) 2020 ✗ ✓ ✗

Weld et al. (2022) 2022 ✗ ✓ ✗

Qin et al. (2021) 2021 ✗ ✓ ✗

Zailan et al. (2023) 2023 ✗ ✓ ✗

Ours 2025 ✓ ✓ ✓

Table 5: Comparison with existing intent related surveys
including year and discussion modality.

zero-shot generalization. Rather than relying on
advanced encoders with extensive training (Liu
et al., 2024a), a possible alternative is to lever-
age MLLMs in combination with emerging multi-
modal reasoning techniques such as Visual-CoT
(Shao et al., 2024; Zhao et al., 2025) and Audio-
CoT (Ma et al., 2025) to achieve accurate outputs.

7 Related Work

Intent Recognition (IR) is one of the foundational
tasks in natural language understanding (NLU),
with early surveys dating back to Brenes et al.
(2009), which reviewed automatic query intent de-
tection. Recently, Kofler et al. (2016) focused on
user intent in multimedia search, primarily involv-
ing visual intent in images and videos. On the other
hand, Hamroun and Gouider (2020) summarized
the methods and applications of textual intent de-
tection. More recently, IR is typically surveyed in
conjunction with slot filling (Louvan and Magnini,
2020; Weld et al., 2022; Zailan et al., 2023; Xia
et al., 2025; Xing et al., 2025), as they are highly
relevant in dialogue systems (Zhu et al., 2023).

However, there has yet to be a comprehensive
survey on IR covering multiple modalities, which
motivates this first work. As shown in Table 5,
our survey covers three modalities: textual, visual
(image/video), and acoustic, while ensuring the
timeliness of the literature (from 2019 to 2024).

8 Conclusion

In this paper, we present the first comprehensive
survey on the MIR task, which begins by sys-
tematically summarizing existing works that cover
various modality combinations. Additionally, we
compile and review currently available datasets
and metrics while organizing three leaderboards to
benchmark performance. Furthermore, we high-
light emerging trends in this research field, provid-

15230



ing insights into future directions. We hope this
first survey with a website serves as a valuable
resource to advance research in MIR.

Limitations

Although we strive to conduct a rigorous and com-
prehensive analysis of the existing literature on
MIR, several limitations remain: (1) Some works
may have been inadvertently omitted due to vari-
ations in search keywords. (2) Due to space
constraints, our survey primarily focuses on the
high-level aspects of the approaches, omitting fine-
grained experimental comparisons. (3) Some rep-
resentative MIR direction such as Textual-Visual
IR are reported on distinct datasets (e.g., Inten-
tQA, MDID, MultiMET) using varying evaluation
metrics. This fragmentation substantially hinders
direct performance comparison across models. We
note that this reflects the current landscape of the
field rather than a design flaw of our survey. This
situation underscores the urgent need for standard-
ized benchmarks and unified evaluation protocols.

We will continuously track the latest MIR litera-
ture to promote the development of the field.
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A Discussion of IR with Other Modality
Combinations

While this work comprehensively reviews intent
recognition (IR) systems involving Text-Visual,
Text-Acoustic, and Text-Visual-Acoustic modal-
ities, the omission of Visual-Acoustic modality
combinations warrants discussion. This exclusion
stems from the following two factors:

(1) Data Scarcity. Visual-Acoustic IR lacks es-
tablished benchmarks due to the absence of large-
scale, intent-annotated datasets that exclude textual
signals. (2) Utility Gaps. The practical relevance
of Visual-Acoustic IR remains niche compared to
text-inclusive multi-modal systems.

Overall, Visual-Acoustic IR presents an un-
tapped potential for scenarios where textual signals
are absent or unreliable. Addressing above issues
could establish Visual-Acoustic IR as a viable sub-
field, complementing text-centric multi-modal IR.

B Application and Availability

The applications of MIR range from individual use
to organizations. As the majority of these appli-
cations are similar to those in IR, this is not the
focus of our survey. Nevertheless, we summarize
the applications and data availability in Table 6.
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Dataset Name Potential Application or Task Setting Data Link

MDID Social media event detection
https://ksikka.com/document_intent.html

(Kruk et al., 2019) EMNLP and user engagement prediction

MultiMET Multi-modal metaphors understanding
-

(Zhang et al., 2021) ACL in communicative environments

Behance Intent Discovery
Instructional video understanding https://github.com/adymaharana/VideoIntentDiscovery

(Maharana et al., 2022) NAACL

MCIC
E-commerce customer service -

(Yuan et al., 2022) NLPCC

MSAIRS Chatting applications, social platforms,
-

(Shi et al., 2024) arXiv and media comment sections

IntentQA
Inference video question answering https://github.com/JoseponLee/IntentQA

(Li et al., 2023a) ICCV

SLURP Spoken language understanding,
https://github.com/pswietojanski/slurp

(Bastianelli et al., 2020) EMNLP task-oriented dialogue systems

Fluent Speech Commands (FSC) Spoken language understanding,
fluent.ai/research/fluent-speech-commands/

(Lugosch et al., 2019) INTERSPEECH task-oriented dialogue systems

MInDS-14 Multilingual
https://huggingface.co/datasets/PolyAI/minds14

(Gerz et al., 2021) EMNLP task-oriented dialogue systems

MIntRec
Conversational interactions https://github.com/thuiar/MIntRec

(Zhang et al., 2022) MM

EMOTyDA Intelligent dialogue systems,
https://github.com/thuiar/MIntRec

(Saha et al., 2020) ACL conversational speech transcription

EmoInt-MD
Social Conversations -

(Singh et al., 2022) TASLP

MIntRec2.0
Human-computer interaction https://github.com/thuiar/MIntRec2.0

(Zhang et al., 2024b) ICLR

MC-EIU
Multi-modal conversation https://github.com/MC-EIU/MC-EIU

(Liu et al., 2024b) arXiv

Table 6: Existing MIR benchmarks in terms of applications and availability. ‘-’ denotes not released.
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