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Abstract

Sparse Mixture-of-Experts (SMoE) architec-
tures are widely used in large language models
(LLMs) due to their computational efficiency.
However, though only a few experts are acti-
vated for each token, SMoE still requires load-
ing all expert parameters, leading to high mem-
ory usage and challenges in deployment. Pre-
vious work has tried to reduce the overhead
by pruning and merging experts, but primar-
ily focused on expert-level operations, leaving
neuron-level structure underexplored. We pro-
pose DERN (Dropping Experts, Recombining
Neurons), a task-agnostic and retraining-free
framework for expert pruning and reconstruc-
tion. We observe that experts are often mis-
aligned and contain semantic conflicts at the
neuron level, which poses challenges for direct
merging. To solve this, DERN works in three
steps: it first prunes redundant experts using
router statistics; then it decomposes them into
neuron-level expert segments, assigning each
segment to its most compatible retained expert;
and finally, it merges segments within each re-
tained expert to build a compact representation.
Experiments on Mixtral, Qwen, and DeepSeek
SMoE models show that DERN achieves over
a 5% performance gains than previous methods
on commonsense reasoning and MMLU bench-
marks under 50% expert sparsity, without extra
training. It also greatly reduces the number
of experts and memory usage, making SMoE
LLMs easier to deploy in practice.

1 Introduction

Large Language Models (LLMs) have become the
foundation models of modern NLP (Brown et al.,
2020), with their application rapidly expanding
into diverse domains such as multimodal learn-
ing (Zhang et al., 2025; Li et al., 2024b,c,a), scien-
tific research (Wang et al., 2025; Hu et al., 2025),
and advanced reasoning (Dong and Fan, 2025).

*Corresponding authors.

Table 1: Comparison of our method with other expert
pruning methods. E-Merge means expert-level merge,
while N-Merge means neuron-level merge.

Method Task-Agnostic Train-Free Strategy

TSEP (Chen et al., 2022) ✗ ✗ Prune
MoE-I2 (Yang et al., 2024b) ✓ ✗ Prune
NAEE (Lu et al., 2024a) ✓ ✓ Prune
HC-SMoE (Chen et al., 2024) ✓ ✓ E-Merge
MC-SMoE (Li et al., 2023) ✓ ✗ E-Merge
DERN (Ours) ✓ ✓ N-Merge

This widespread use, however, makes their ever-
growing scale a serious challenge for efficient de-
ployment. Sparse Mixture-of-Experts (SMoE) ar-
chitectures alleviate inference cost by activating
only a subset of experts per token (Shazeer et al.,
2017; Fedus et al., 2022), matching or surpassing
dense models in performance. However, their total
parameter footprint remains massive. For instance,
DeepSeek-V3 (Liu et al., 2024a) activates only 37B
parameters per pass, yet requires storing 671B in
memory. Reducing this overhead without compro-
mising performance remains an open challenge.

Recent work has shown that MoE layers ex-
hibit significant redundancy: experts contribute
unequally to downstream predictions (Chi et al.,
2022), and many share high parameter similar-
ity (Lo et al., 2024), indicating overlapping func-
tional capacity and structural duplication. These
findings motivate expert-level sparsification as a
promising direction. Early approaches, such as
(Chen et al., 2022) prune experts progressively dur-
ing fine-tuning on a specific task, but suffer from
high training overhead. Subsequent approaches
shifted toward retraining-free and task-agnostic
pruning. For example, (Lu et al., 2024a) searches
for optimal expert subsets using the output discrep-
ancy, while (He et al., 2024) leverages routing
statistics for large-scale pruning. However, the
abrupt removal of expert parameters can signifi-
cantly impair the model’s capabilities.

To mitigate such loss, a parallel line of work
explores expert merging as a post-pruning remedy.
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Figure 1: Expert-level and neuron-level cosine similarity in layer 15 of Mixtral-8×7B-Instruct. The left plot shows
expert-to-expert similarity; the right plot depicts how strongly a neuron aligns with the most similar neuron in each
expert. Despite some global expert alignment (left), clear inconsistencies remain at the neuron level (right).

Representative methods (Li et al., 2023; Chen et al.,
2024; Liu et al., 2024b) group or cluster experts
followed by weighted averaging. However, these
approaches merge at the whole-expert level, often
overlooking that neuron arrangements across ex-
perts are inherently unaligned (Ainsworth et al.,
2022). Even with alignment mechanisms (Li et al.,
2023), similar experts may encode distinct or even
conflicting internal representations, due to diver-
gent learned semantics (Zhao et al., 2024, 2025;
Ruan et al., 2025). Such structural and semantic
mismatches limit the effectiveness of direct expert
fusion methods and can introduce nontrivial degra-
dation in merged models.

To probe this issue, we visualize the similarity
at the expert level and the neuron level for Mix-
tral (Jiang et al., 2024) in Fig. 1. The results reveal
that, while some experts exhibit global alignment
in their structural patterns, significant inconsisten-
cies remain at the neuron level. This indicates
that expert merging is feasible in principle, but
naive whole-expert averaging may fail to preserve
neuron-level consistency. Is it possible to enable
expert merge through neuron-level, structure-aware
recombination of transferable components?

In this paper, we introduce DERN (Dropping
Experts, Recombining Neurons), a new paradigm
for expert pruning and reconstruction, grounded in
segment-based modularity and recomposition. At
the core of DERN is the notion of an Expert Seg-
ment: a minimal functional triplet composed of cor-
responding rows from the gate and up-projection
matrices and a column from the down-projection
matrix, as detailed in Sec. 3.2. Then each expert is
viewed as a collection of such segments.

As illustrated in Fig. 2, DERN proceeds in three
stages: (1) It identifies and prunes redundant ex-
perts based on routing activation statistics; (2) It
decomposes pruned experts into segments, pools
them, and reassigns each segment to the most com-

patible retained expert based on local structural sim-
ilarity; (3) It applies spherical weighted k-Means
clustering (Dhillon and Modha, 2001) to merge
segments within each retained expert, using cluster
centroids to reconstruct more compact yet expres-
sive experts with significantly fewer parameters.

Unlike previous whole-expert weighted averag-
ing (Li et al., 2023; Chen et al., 2024; Liu et al.,
2024b), DERN reframes pruning as a segment-
based decomposition and recombination problem.
This modular view enables flexible, fine-grained
knowledge transfer across experts, breaking the
rigidity of fixed expert partitions, and enhancing
the overall expressiveness of pruned models. Our
main contributions are summarized as follows:

• We reformulate expert merging as a segment-
based decomposition and recombination prob-
lem, enabling structure-aware, neuron-level
operation that surpasses conventional coarse-
grained averaging.

• We propose DERN, a unified, task-agnostic,
and retraining-free pruning framework that
restructures experts through a multi-stage
pipeline of identification, segments decom-
position, adaptive recombination, and cluster-
based reconstruction.

• We conduct extensive experiments on Mixtral,
Qwen, and DeepSeek SMoE models across
multiple commonsense reasoning datasets
and the comprehensive MMLU benchmark,
demonstrating that DERN achieves over a 5%
performance gains than previous methods un-
der 50% expert sparsity.

2 Related Work

2.1 Sparse Mixture-of-Experts
Sparse Mixture-of-Experts architectures have
emerged as a key paradigm for scaling large lan-
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Figure 2: Overview of the DERN framework. (a) Redundant experts are pruned based on routing activation statistics.
(b) Dropped experts are decomposed into neuron-level segments, each represented by a triplet of gate, up, and down
projection vectors. These segments are then reassigned to retained experts based on local structural similarity. (c)
Within each retained expert, reassigned and original segments are clustered via spherical weighted k-means to form
a compact, performance-preserving expert.

guage models efficiently, offering reduced infer-
ence cost by activating only a small subset of sub-
networks (experts) per token (Shazeer et al., 2017;
Fedus et al., 2022). In SMoEs, the dense feed-
forward layers in Transformers are replaced with
multiple parallel experts, typically feedforward net-
works (FFNs), governed by a trainable gating mech-
anism that dynamically selects a small number of
experts for each token. This enables a substantial
increase in total model capacity while maintaining
inference cost proportional to the number of ac-
tive experts. SMoEs have been adopted in many
recent LLMs, including Mixtral (Jiang et al., 2024),
DeepSeek-MoE (Dai et al., 2024; Liu et al., 2024a),
and Qwen-MoE (Yang et al., 2024a).

2.2 Expert Pruning and Merging

Expert pruning and merging, as a SMoE compres-
sion technique, have gained growing interest. Ex-
pert pruning is motivated by observations of ex-
pert redundancy and contribution imbalance (Chi
et al., 2022; Lo et al., 2024). Early methods such
as (Chen et al., 2022) involve fine-tuning and
incur high training cost. More recent work ex-
plores retraining-free, task-agnostic approaches
based on reconstruction loss (Lu et al., 2024a), rout-
ing statistics (He et al., 2024), or changes in router
norms (Chowdhury et al., 2024). (Yang et al.,
2024b) further considers internal sparsity within
experts. However, pruning entire experts can result

in irreversible loss of important representations.
Expert merging, a technique within model merg-

ing (Yang et al., 2025), retains the knowledge of
pruned experts to mitigate performance loss. Rep-
resentative methods typically perform expert group-
ing or clustering followed by weighted expert av-
eraging. For example, (Chen et al., 2024) uses
hierarchical clustering based on expert output sim-
ilarity; (Liu et al., 2024b) employs evolutionary
strategies to iteratively merge similar experts; and
(Li et al., 2023) identifies dominant experts based
on routing patterns to guide grouping and merging.
However, most existing merging strategies operate
at the expert level, overlooking neuron-level mis-
alignment and potential semantic conflicts. This
motivates finer-grained recomposition strategies,
which we address with our proposed DERN frame-
work. Tab. 1 summarizes the differences between
our method and existing approaches.

Other SMoE compression approaches include
weight pruning within experts (Xie et al., 2024;
Liang et al., 2025), layer compression (Cao et al.,
2024; Lu et al., 2024b; Li et al., 2024d), low-rank
decomposition (Gu et al., 2025), and quantiza-
tion (Huang et al., 2024), alongside general pruning
methods (Ma et al., 2023; Lu et al., 2024c).

3 Proposed Method

Our DERN framework performs expert pruning
and merge through a three-stage process, as illus-
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trated in Fig. 2. First, we identify and retain the top-
k experts based on routing activations (Sec. 3.1).
Next, pruned experts are decomposed into neuron-
level segments and reassigned to retained experts
(Sec. 3.2). Finally, each expert merges its segments
through clustering to reconstruct a compact struc-
ture (Sec. 3.3). The overall procedure is summa-
rized in Alg. 1.

3.1 Expert Pruning via Routing Behaviors
We identify redundant experts in SMoE layers
based on routing behaviors observed over a cal-
ibration set, and select them as pruning candidates.

Let an SMoE layer consist of N experts E =
{E1, . . . , EN} and a routing network G : Rd →
RN , which outputs soft routing weights G(x) =(
G1(x), . . . , GN (x)

)
for each token feature x.

Given a calibration set C = {xm}Mm=1, let
A(xm) ⊆ {1, . . . , N} denote the index set of the
top-k experts selected for xm by the router.

We define the importance score for Ei as:

Si = Exm∼C

[
I[i ∈ A(xm)] ·Gi(xm)∑

j∈A(xm)Gj(xm)

]
, (1)

where I[·] is the indicator function. This score
reflects both the frequency and the strength of acti-
vation, effectively measuring each expert’s utility
under realistic input distributions.

After computing {Si}Ni=1, we identify the top-
k experts with the highest importance scores as
retained experts, while designating the remaining
N − k as pruning candidates.

3.2 Expert Decomposition and Segment
Recombination

We reformulate the pruning task as a modular
decomposition and recombination problem. In-
stead of discarding entire experts, we decompose
them into smaller functional units called segments,
which can be selectively reassigned to compatible
retained experts. Segments from pruned experts
are collected into a shared pool and reallocated
based on local structural similarity. This approach
facilitates neuron-level knowledge transfer while
preserving the functional coherence of each expert.

Expert-to-Segments Decomposition. We begin
by formalizing the decomposition of a standard
SMoE expert. The current mainstream LLMs adopt
the Gated Linear Unit (GLU) architecture for MLP
layers, where each expert is represented by three
weight matrices: Wg ∈ Rh×d, Wu ∈ Rh×d, and

Wd ∈ Rd×h, where d is the input dimension and h
the intermediate hidden size. Given an input token
x ∈ Rd, the forward computation is expressed as:

f(x) = Wd (σ(Wgx)⊙ (Wux)) , (2)

which can be rewritten as a sum of independent
contributions from each hidden dimension:

f(x) =

h∑

i=1

wd,i ·
[
σ(w⊤

g,ix) · (w⊤
u,ix)

]
, (3)

where σ(·) is the activation function, w⊤
g,i and w⊤

u,i

represent the i-th rows of Wg and Wu respectively,
and wd,i represents the i-th column of Wd.

As shown in Eq. (3), the expert output is a
sum of functionally independent, low-rank trans-
formations. This decomposition motivates our
definition of an Expert Segment: a minimal self-
contained unit governed by the parameter triplet
(wg,i, wu,i, wd,i). Specifically, the i-th segment is:

segi = (wg,i, wu,i, wd,i). (4)

Segments exhibit three key properties that make
them well-suited for recombination. First, they are
functionally independent, each contributing to a
single output dimension. Second, they maintain
gradient locality, with gradients depending solely
on their own parameters. Third, their structural
regularity allows each triplet to be flattened into a
fixed-dimensional vector, enabling efficient simi-
larity comparison in parameter space. Leveraging
these properties, we decompose both retained and
pruned experts into segments, aggregating those
from pruned experts into a global segment pool P
for reassignment.

Segment Recombination via local structural sim-
ilarity. To reassign segments from P to appro-
priate retained experts, we use a similarity-based
matching scheme. Let segi ∈ P be a candidate
segment and Er a retained expert with segment set
Sr. Each segment is vectorized as:

v(segi) =



wg,i

wu,i

wd,i


 ∈ R3d, (5)

where each component corresponds to a row or
column from the expert’s gate, up, and down pro-
jection matrices, respectively.

The local structural similarity between segi and
Er is defined as the maximum cosine similarity
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Algorithm 1 The Overall Procedure of DERN

Input: E = {E1, . . . , EN}, C, k, α
Output: Er

1: Stage 1: Expert Pruning
2: for i = 1 to N do
3: Si ← Exm∼C

[
I[i∈A(xm)]·gi(xm)∑

j∈A(xm) gj(xm)

]

4: end for
5: Er ← {Ei | Si ∈ Top-k(S1, . . . , SN )}
6: Stage 2: Decomposition, Recombination
7: P ← ⋃

Ei∈Er Decompose(Ei)
8: for segi ∈ P do
9: E∗

r ← argmaxEr∈Er sim(segi, Er)
10: if sim(segi, E

∗
r ) > α then

11: E∗
r ← E∗

r ∪ segi
12: end if
13: end for
14: Stage 3: Expert Reconstruction
15: for each Er ∈ Er do
16: E′

r ← Cluster(Sr)
17: end for
18: return Er

with any segment already in Er:

sim(segi, Er) = max
s′∈Sr

⟨v(segi), v(s′)⟩
∥v(segi)∥∥v(s′)∥

. (6)

For each segment segi ∈ P , we first iden-
tify the most similar retained expert E∗

r =
argmaxEr∈Er sim(segi, Er). The segment is then
reassigned to this expert only if the similarity score
exceeds the threshold α:

E∗
r ← E∗

r∪{segi} if sim(segi, E
∗
r ) > α. (7)

This local structural similarity criterion serves as
a soft gating mechanism, filtering out structurally
incompatible segments while maintaining coherent
feature composition within each expert.

To preserve routing semantics, we softly transfer
the routing contribution from Eo to Er, scaled by
the number of segments in Eo:

GEr ← GEr +
1

n
·GEo , (8)

where n = |SEo | is the number of original seg-
ments in expert Eo (i.e., its intermediate size).

3.3 Expert Reconstruction via Segment
Clustering

After reassignment, each retained expert Er is as-
sociated with a unified set of neuron segments:

Er → Sr = S int
r ∪ Sext

r , (9)

where S int
r contains the expert’s original segments,

and Sext
r includes segments reassigned from pruned

experts based on local structural similarity. To
reduce redundancy while preserving diversity, we
apply spherical weighted k-Means clustering to
compress this combined segment set into a smaller,
semantically coherent set of representative neurons.

We minimize a weighted cosine-based clustering
objective over the segment set, using cluster centers
C = {c1, . . . , ck}, where k is the target hidden
dimension of the reconstructed expert:

min
C

k∑

j=1

∑

segi∈Sj

wi

(
1− v(segi)

⊤cj
∥v(segi)∥∥cj∥

)
, (10)

where v(segi) is the vectorized form of segi in
Eq. (5), and wi reflects the importance of segi, de-
rived from its source expert’s importance score.

To initialize cluster centers, we select the top-
k segments with the highest estimated activation
bounds, measured by the maximum absolute values
of their gate projection vectors wg,i. This leverages
the gating mechanism’s implicit bias toward highly
responsive neurons, promoting faster convergence
and more coherent clusters.

To stabilize iteration and prevent segments with
extremely large norms from dominating, we apply
norm equalization before computing each cluster
center. For each segment segi ∈ Sj , we scale its
vector as:

v̂i = v(segi) ·
r̄j

∥v(segi)∥
,

r̄j =
1

|Sj |
∑

segk∈Sj

∥v(segk)∥. (11)

Then, each cluster center cj is computed via
normalized weighted averaging:

cj ←
∑

segi∈Sj
w̃iv̂i∥∥∥

∑
segi∈Sj

w̃iv̂i

∥∥∥
,

w̃i =
wi∑

segk∈Sj
wk

. (12)

Finally, the resulting cluster centers {c1, . . . , ck}
form the compressed expert:

E′
r ← {c1, c2, . . . , ck}, (13)

offering a more compact and efficient representa-
tion while retaining the expert’s functional diversity
and expressiveness.
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Table 2: Performance for Mixtral-8x7b-Instruct and Qwen2-57B-A14B-Instruct. Our method is highlighted in gray.

Model Method PIQA BoolQ HellaS. ARC-e ARC-c OBQA OBQA-F WinoG. MMLU Avg.

Mixtral-8x7b-Instruct

8*7B None 82.75 78.69 80.68 92.24 87.46 83.20 89.40 64.48 69.01 80.88

6*7B

LLM-Pruner 75.63 77.49 69.53 85.71 76.27 71.80 89.00 57.30 59.30 73.56
M-SMoE 68.66 80.24 57.40 85.36 70.17 70.80 86.80 55.17 52.44 69.67

NAEE 82.59 77.22 74.71 88.01 80.68 77.00 87.40 63.61 64.00 77.25
DERN 81.72 86.33 78.48 91.71 82.03 80.20 90.20 64.63 65.10 80.04

4*7B

LLM-Pruner 59.96 71.47 51.60 64.90 51.86 49.40 68.20 39.94 40.73 55.34
M-SMoE 49.56 62.11 26.01 47.62 35.93 35.20 48.80 48.86 28.29 42.49

NAEE 69.59 71.83 63.31 77.78 67.46 61.00 74.40 53.91 51.89 65.69
DERN 70.08 82.57 62.73 83.42 73.56 71.80 83.60 54.46 54.91 70.79

Qwen2-57B-A14B-Instruct

57.4B None 84.00 89.24 87.08 97.18 91.19 87.60 93.60 69.85 75.54 86.14

45.1B

LLM-Pruner 76.93 85.99 82.38 93.12 86.10 83.20 91.80 66.77 70.64 81.88
M-SMoE 82.70 87.09 85.00 94.53 89.83 83.40 90.20 64.80 70.65 83.13

NAEE 80.09 87.19 85.05 94.36 88.14 82.20 92.00 67.09 72.09 83.13
DERN 84.60 88.10 86.02 95.94 90.17 88.40 93.60 70.64 74.06 85.73

33.3B

LLM-Pruner 73.78 81.25 76.18 76.19 67.46 67.00 83.80 60.77 63.21 72.18
M-SMoE 70.89 83.88 73.76 84.83 69.83 68.00 82.20 60.69 58.33 72.49

NAEE 68.34 79.24 63.58 86.24 70.85 64.80 81.60 62.12 59.61 70.71
DERN 84.44 87.03 85.67 92.77 87.12 85.60 91.20 67.01 71.17 83.56

4 Experiments

4.1 Experimental Settings

Model Settings. We evaluate our method on
Mixtral-8×7B-Instruct (Jiang et al., 2024), Qwen2-
57B-A14B-Instruct (Yang et al., 2024a), and
DeepSeek-MoE-16B-Chat (Dai et al., 2024). For
Mixtral (46.7B), we evaluate 6/8 (35.4B) and 4/8
(24.2B) expert configurations. For Qwen2 (57.4B),
we use 48/64 (45.1B) and 32/64 (33.3B) expert con-
figurations. For DeepSeek (16.4B), we use 56/64
(14.5B) and 48/64 (12.7B) configurations. These
settings cover diverse architectures and compres-
sion ratios. All experiments were conducted on
2×NVIDIA H100 GPUs.

Evaluation and Datasets. To support task-
agnostic pruning, we calibrate pruning-related
statistics using 128 sequences (each with 2048 to-
kens) randomly sampled from the C4 corpus (Raf-
fel et al., 2020), following Wanda (Sun et al., 2023).

We adopt the evaluation protocol of LLM-
Pruner (Ma et al., 2023), conducting zero-shot
evaluations on a suite of commonsense reasoning
datasets: BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), HellaSwag (Zellers et al., 2019),
ARC-e and ARC-c (Clark et al., 2018), Open-
bookQA (Mihaylov et al., 2018), and Wino-
Grande (Sakaguchi et al., 2021). In addition,

we evaluate multi-domain reasoning via few-shot
prompting on MMLU (Hendrycks et al., 2020).

All tasks are framed as generation-based evalu-
ations, where the instruction-tuned model directly
outputs the answer, and correctness is determined
by template-based string matching. We follow
OpenCompass (Contributors, 2023) for prompt for-
matting and matching criteria, and conduct all in-
ference using the vLLM (Kwon et al., 2023). For
more details, see App. B.

Baselines. We compare against representative
structured SMoE pruning methods: NAEE (ex-
pert pruning) (Lu et al., 2024a), MC-SMoE (ex-
pert merging) (Li et al., 2023), and LLM-Pruner
(general structured pruning) (Ma et al., 2023). For
NAEE on Qwen2 and DeepSeek, we approximate
expert selection by sampling 10k combinations per
layer and choosing the one with minimal output
deviation. For MC-SMoE, to ensure fairness un-
der the retraining-free constraint, we disable intra-
expert compression and denote it as M-SMoE. For
LLM-Pruner, we evaluate on the taylor version,
which is data-aware and gradient-based.

4.2 Main Results

Performance on Commonsense QA and Mul-
tidomain Benchmarks. This section presents a
comprehensive evaluation of our method against

15174



Table 3: Performance for DeepSeek-MoE-16b-Chat. Our method is highlighted in gray.

Model Method PIQA BoolQ HellaS. ARC-e ARC-c OBQA OBQA-F WinoG. MMLU Avg.

16.4B None 67.57 75.75 54.00 70.55 49.83 47.40 68.80 56.99 48.32 59.91

14.5B

LLM-Pruner 62.73 67.86 40.37 54.85 31.53 35.80 53.20 48.93 41.13 48.49
M-SMoE 60.28 61.19 43.90 50.62 37.63 37.80 52.80 51.22 39.13 48.29

NAEE 64.42 69.51 48.36 68.78 51.53 45.20 68.80 53.75 41.06 56.82
DERN 61.75 73.67 52.75 76.37 55.93 51.80 68.40 53.91 47.40 60.22

12.7B

LLM-Pruner 54.68 26.36 26.59 34.74 21.02 26.00 36.20 47.59 34.05 34.14
M-SMoE 50.38 15.87 33.20 29.45 18.64 27.60 34.00 42.78 31.79 31.52

NAEE 56.37 52.14 34.35 55.73 36.27 39.80 59.40 51.38 34.60 46.67
DERN 60.83 68.29 44.47 70.90 48.14 49.00 60.20 53.51 44.17 55.50

Figure 3: Neuron-level similarity heatmap among ex-
perts in Layer 13 of the DeepSeek-MoE-16b-Chat
model. The predominantly light-colored off-diagonal
regions highlight a high degree of independence and
specialization among experts.

leading pruning baselines across three SMoE
LLMs: Mixtral-8x7B-Instruct, Qwen2-57B-A14B-
Instruct, and DeepSeek-MoE-16B-Chat.

Across all models and sparsity levels, DERN
consistently outperforms existing techniques such
as LLM-Pruner, M-SMoE, and NAEE, with par-
ticularly strong gains in commonsense reasoning
and multidomain generalization. On Mixtral-8x7B-
Instruct (Tab. 2), DERN achieves leading perfor-
mance on most Commonsense QA tasks, in some
cases matching or surpassing the original dense
model. With Qwen2-57B-A14B-Instruct, DERN
maintains this advantage, outperforming all base-
lines on MMLU while preserving high accuracy on
QA benchmarks, demonstrating strong resilience
under compression.

For DeepSeek-MoE-16B-Chat (Tab. 3), DERN
yields consistent gains at both 56 and 48 expert
settings, outperforming baseline methods. How-
ever, as the pruning ratio increases, performance
degradation becomes more pronounced across all
methods. To better understand this behavior, we
visualize expert similarity in Fig. 3. The resulting
heatmap reveals low inter-expert similarity, sug-
gesting that DeepSeek’s experts are more indepen-
dent and thus more vulnerable to pruning. This
indicates that general-purpose expert pruning meth-
ods may require architectural adaptation to fully

Table 4: Inference efficiency on Mixtral before and after
expert pruning, evaluated on 1,024 C4 samples with
64-way concurrency using vLLM.

Model Mem. (GB) Tok/s ↑ TTFT (ms) ↓ Avg.

8×7B 88.7 7962.9 3349.5 80.88
6×7B 66.0 9395.0 2850.0 80.04
4×7B 45.0 10990.3 2443.8 70.60

accommodate highly decoupled expert designs.
In summary, DERN delivers robust and scalable

performance across diverse backbones and com-
pression settings. Its superior knowledge preserva-
tion enables effective retention of both common-
sense reasoning and cross-domain capabilities.

Inference Speedup and Memory Usage. Tab. 4
reports inference efficiency on the vLLM before
and after expert pruning. Reducing the number
of experts from 8 to 6 and 4 yields notable im-
provements in both throughput and latency: token
throughput increases by up to 38%, while the time-
to-first-token (TTFT) drops by over 900 ms. This
acceleration primarily stems from improved kernel-
level parallelism—fewer experts lead to more to-
kens routed to each active expert, resulting in larger
and more GPU-efficient matrix multiplications.
Meanwhile, memory usage is substantially reduced,
enabling larger batch sizes and better hardware uti-
lization. Notably, the 6-expert variant achieves
nearly the same accuracy as the original model
while offering 25% lower memory consumption
and 18% higher throughput, demonstrating that
DERN can effectively trade off redundancy for
speed while maintaining competitive accuracy.

4.3 Ablation Study

Ablation on Segment Retention Ratio. Fig. 4
illustrates the effect of the similarity threshold α
used in the second stage of DERN. Notably, α = 1
disables merging entirely and serves as a no-merge
baseline, while α = 0 merges all pruned segments
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Table 5: Ablation of different segment components used for similarity computation during segment reassignment.
DERN uses only the up and down vectors; triplet includes gate, up, and down vectors; w/o up removes the up
component; w/o down removes the down component.

Model Method PIQA BoolQ HellaS. ARC-e ARC-c OBQA OBQA-F WinoG. MMLU Avg.

Mixtral-4×7B

DERN 70.08 82.57 62.73 83.42 73.56 71.8 83.6 54.46 55.01 70.80
triplet 70.57 79.39 59.43 82.89 72.88 71.2 84.2 56.27 55.11 70.22
w/o up 71.98 79.42 58.9 83.42 72.54 69.8 83.2 55.33 54.74 69.93

w/o down 70.57 81.96 59.49 82.36 71.86 69.4 85.2 55.8 55.51 70.24

0%

20%

40%

60%

80%

100%

Se
gm

en
ts

 R
et

ai
ne

d 
Ra

ti
o

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Threshold

64

66

68

70

72

Av
er

ag
e 

Pe
rf

or
m

an
ce

Mixtral-4×7B-Instruct
Performance
Retained

0%

20%

40%

60%

80%

100%

Se
gm

en
ts

 R
et

ai
ne

d 
Ra

ti
o

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Threshold

77.0

77.5

78.0

78.5

79.0

79.5

80.0

Av
er

ag
e 

Pe
rf

or
m

an
ce

Mixtral-6×7B-Instruct
Performance
Retained

Figure 4: Effect of the similarity threshold α during
segment reassignment. Line plots indicate average per-
formance, and bars show the ratio of segments retained
in last layer. Results are averaged over all benchmarks
for Mixtral-4×7B (left) and Mixtral-6×7B (right).

regardless of compatibility.

We observe a clear pattern across both Mixtral-
4×7B and Mixtral-6×7B: performance improves
as α increases from 0 to around 0.6, then drops
sharply beyond that point. This reveals a funda-
mental trade-off: lower thresholds allow exces-
sive reuse, introducing semantically mismatched
segments; higher thresholds, while stricter, lead
to underutilization. Best performance is achieved
when only a moderate fraction of segments are reas-
signed, highlighting a “less is more” phenomenon
where selective reuse outperforms indiscriminate
merging. For more details, see App. C.2.

Ablation on Neuron Types Used in Similarity
Estimation. Tab. 5 examines how neuron types
affect similarity measurement in clustering. Each
segment consists of a gate vector (activation), an
up-projection vector (input transformation), and
a down-projection vector (output transformation).
Excluding the gate component slightly improves
performance, suggesting dynamic activation sig-
nals may introduce noise. In contrast, removing ei-
ther up or down leads to consistent drops, highlight-
ing their complementary roles in capturing transfor-
mation behavior. The best results are achieved us-
ing only the up and down components—structural
features that govern information flow. These find-
ings support prioritizing weight geometry over ac-
tivation dynamics in expert reconstruction.

Table 6: Ablation on clustering initialization. DERN
uses top-k segments ranked by gate vector weights;
Random samples seeds uniformly; Equidistant selects
evenly from the similarity range.

Strategy CQA MMLU Average

DERN 72.78 55.01 63.89
Random 58.93 38.29 48.61
Equidistant 72.08 55.03 63.56

Table 7: Ablation on weighting mechanism in cluster-
ing. DERN applies segment importance during centroid
updates; w/o weighting treats all segments equally.

Strategy CQA MMLU Average

DERN 72.78 55.01 63.89
w/o weighting 71.23 54.14 62.69

Ablation on Clustering Initialization Strategy.
Tab. 6 compares three initialization methods for
segment clustering: DERN (gate-based), which se-
lects top-k segments with the highest gate vector
weights; Equidistant, which samples evenly across
the similarity distribution; and Random choice.
Gate-based initialization outperforms the others,
showing that highly activated segments provide a
more meaningful starting point for clustering. For
more details, see App. C.3.

Ablation on Weighting Mechanism in Cluster-
ing. We evaluate whether weighting segments by
their original expert importance improves cluster
quality. As shown in Tab. 7, applying importance-
based weighting during cluster center updates leads
to a noticeable gain, suggesting that segments from
more influential experts should be given higher pri-
ority in the reconstruction process.

5 Conclusion

We propose DERN, a task-agnostic and retraining-
free framework for compressing SMoE LLMs. By
treating experts as modular assemblies of func-
tional segments, DERN performs decomposition
and reconstruction based on neuron-level similar-
ity. This enables compact expert representations
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that preserve model performance while reducing
memory and latency. More broadly, DERN high-
lights a core insight: structural reorganization at
the sub-expert level offers a robust and adaptable
path to efficiency in SMoE.

Limitations

While DERN performs well across various SMoE
models, it measures segment similarity in parame-
ter space using cosine distance. This may be insuffi-
cient for capturing functional alignment, especially
in models with highly specialized experts. Notably,
we observe that existing pruning and merging tech-
niques perform suboptimally on DeepSeekMoE
under high sparsity settings, where expert represen-
tations are more diverse and less interchangeable.
This highlights the need for further investigation
into pruning and recombination strategies tailored
to highly specialized expert models.
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Appendix

A Implementation Details

Model Configuration. Our method is applied
to three representative SMoE LLMs: Mixtral-
8×7B-Instruct, Qwen2-57B-A14B-Instruct, and
DeepSeek-MoE-16B-Chat. Each expert in these
models is a gated MLP using the GLU architec-
ture, parameterized by three projection matrices
Wg ∈ Rh×d, Wu ∈ Rh×d, and Wd ∈ Rd×h, where
d and h denote the input and hidden dimensions
respectively.

For Mixtral, we evaluate configurations with 8,
6, and 4 experts per MoE layer, using top-2 routing.
Qwen2 and DeepSeek follow a similar sparsifica-
tion scheme, with expert counts pruned from 64
to 48 or 32, and from 64 to 56 or 48 respectively.
Unless otherwise noted, all models adopt top-k
routing with k = 2. A summary of expert-related
configuration parameters is shown in Tab. 8.

Table 8: Comparison of expert configurations in
Mixtral-8×7B-Instruct, Qwen2-57B-A14B-Instruct, and
DeepSeek-MoE-16B-Chat.

Property Mixtral Qwen2 DeepSeek

hidden_size 4096 3584 2048
moe_intermediate_size 14336 2560 1408
num_hidden_layers 32 28 28
num_experts 8 64 64
experts_per_token 2 8 6
shared_experts 0 1 2
activation SiLU SiLU SiLU
dtype bfloat16 bfloat16 bfloat16

Routing Statistics Collection. To evaluate ex-
pert importance, we support both parameter-based
and data-driven strategies. In the data-driven set-
ting, routing statistics are collected from a held-out
calibration set consisting of 128 sequences sam-
pled from the C4 corpus, each containing 2048
tokens. For each token, we record the top-k experts
selected by the gating mechanism along with their
activation weights. These statistics are aggregated
to reflect both the frequency and strength of each
expert’s participation, forming a routing-aware im-
portance score as defined in Equation 1. This
calibration-aware pruning process enables adap-
tive selection of essential experts under realistic
usage scenarios.

Segment Representation. Each expert is decom-
posed into a set of structurally independent seg-
ments, each corresponding to a triplet of projection

vectors from the gate, up, and down components of
the MLP block. These vectors are flattened and con-
catenated into fixed-dimensional representations,
enabling efficient comparison across experts. To
facilitate flexible merging, we define a similarity
metric over segments based on weighted cosine dis-
tance, where the contribution of each component
can be tuned. This design supports ablation studies
over different segment configurations and allows
fine-grained control over expert recombination.

Clustering Settings. Once segments are reas-
signed to retained experts based on local similar-
ity, we apply spherical weighted k-means cluster-
ing (Dhillon and Modha, 2001) to reduce redun-
dancy and form compact expert representations.
The number of output segments is determined pro-
portionally to the original expert size, allowing for
flexible compression. Cluster initialization priori-
tizes highly activated segments to promote stability
and convergence. Segment representations are nor-
malized before aggregation, and weighted updates
are applied to emphasize contributions from more
influential experts. This clustering process ensures
both expressiveness and efficiency in the recon-
structed model.

Hardware and Inference Setup. All experi-
ments are performed on 2×NVIDIA H100 GPUs
using the vLLM serving framework (Kwon et al.,
2023). Inference is conducted in float16 preci-
sion with a batch size of 128. Inference effi-
ciency is measured with 1,024 samples under 64-
way concurrency. For evaluation, we follow the
OpenCompass (Contributors, 2023) protocol, using
generation-based decoding with prompt templates
and string-matching for answer accuracy.

B Evaluation Details

Benchmarks. We evaluate our method on a
diverse suite of benchmarks covering common-
sense reasoning, scientific QA, and multi-domain
knowledge understanding. Specifically, we in-
clude PIQA, BoolQ, HellaSwag, ARC-Easy, ARC-
Challenge, OpenBookQA, and WinoGrande. For
multi-domain evaluation, we adopt the MMLU
benchmark, which contains 57 subjects ranging
from STEM to humanities and professional do-
mains.

Evaluation Setting. Commonsense QA tasks are
conducted in the zero-shot setting, where no in-
context examples are provided. For MMLU, we
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adopt a fixed 5-shot setting using a static in-context
example retriever. Across all tasks, model predic-
tions are evaluated via template-matching, where
string-based rules extract the first valid option or
capitalized answer token from the generated out-
put.

Prompt and Evaluation Protocol. We use Open-
Compass as the unified evaluation framework.
Each dataset is paired with a custom prompt tem-
plate designed for multiple-choice answering. In-
ference is conducted via autoregressive generation
using a standard decoding configuration. Model
outputs are post-processed by rule-based functions
to extract answers in a structured and comparable
format. Evaluation is performed using accuracy-
based metrics, optionally supporting detailed per-
category breakdowns.

PIQA (Zero-shot Template)

{goal}
A. {sol1}
B. {sol2}
Answer:

BoolQ (Zero-shot Template)

{passage}
Question: {question}
A. Yes
B. No
Answer:

HellaSwag (Zero-shot Template)

{ctx}
Question: Which ending makes the most sense?
A. {A}
B. {B}
C. {C}
D. {D}
Answer:

ARC (Easy / Challenge) (Zero-shot Tem-
plate)

Question: {question}
A. {textA}
B. {textB}
C. {textC}
D. {textD}
Answer:

OpenBookQA (Zero-shot Template)

Question: {question_stem}
A. {A}
B. {B}
C. {C}
D. {D}
Answer:

OpenBookQA-Fact (Zero-shot Template)

Given the fact: {fact1}
Question: {question_stem}
A. {A}
B. {B}
C. {C}
D. {D}
Answer:

WinoGrande (Zero-shot Template)

Question: {prompt}
A. {only_option1}
B. {only_option2}
Answer:

MMLU (5-shot Template)

</E>
There is a single choice question about
{subject}. Answer the question by replying
A, B, C or D.
Question: {example_input_1}
A. {A1}
B. {B1}
C. {C1}
D. {D1}
Answer: {label1}

. . .

Question: {example_input_5}
A. {A5}
B. {B5}
C. {C5}
D. {D5}
Answer: {label5}
</E>
There is a single choice question about
{subject}. Answer the question by replying
A, B, C or D.
Question: {input}
A. {A}
B. {B}
C. {C}
D. {D}
Answer:

Dataset Configuration in OpenCompass. We
conduct all evaluations using the standardized
dataset configurations provided by the OpenCom-
pass benchmark suite, which ensures consistency
across data splits, prompt formats, and evaluation
protocols. Specifically, we follow the officially
released validation or test splits and adopt the cor-
responding input-output schema defined by Open-
Compass for each task. This ensures compatibility
with its prompt-based inference engine and allows
for seamless integration with multiple large lan-
guage models.

To maintain reproducibility and fairness, we pre-
serve the default prompt templates and postprocess-
ing routines associated with each dataset. These
include input field extraction, candidate option for-
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Table 9: Input and output field configurations for each
dataset.

Dataset Input Columns Output Column

PIQA goal, sol1, sol2 answer
BoolQ passage, question label
HellaSwag ctx, A, B, C, D label
ARC-E / C question, textA–D answerKey
OBQA question_stem, A–D answerKey
OBQA-F question_stem, A–D, fact1 answerKey
WinoGrande prompt, only_option1/2 answer
MMLU input, A–D target

matting (where applicable), and answer string nor-
malization during evaluation. Tables 9 and 10 pro-
vide a detailed summary of the structural mappings
and evaluation strategies employed for each bench-
mark.

The specific dataset variants used in our exper-
iments follow the official OpenCompass configu-
ration identifiers, which define the exact prompt
structure, evaluation scripts, and scoring logic. The
datasets and their corresponding OpenCompass IDs
are listed below:

• PIQA: piqa_gen_1194eb

• BoolQ: SuperGLUE_BoolQ_gen_883d50

• HellaSwag: hellaswag_gen_6faab5

• ARC-easy: ARC_e_gen_1e0de5

• ARC-challenge: ARC_c_gen_1e0de5

• OpenBookQA: obqa_gen_9069e4

• WinoGrande: winogrande_gen_458220

• MMLU: mmlu_gen_4d595a

These configurations reflect the latest stable task
definitions in OpenCompass and have been widely
adopted in prior benchmarking studies. By ad-
hering to these official variants without modifica-
tion, our evaluations remain fully reproducible and
aligned with best practices in LLM benchmarking.

Inference with vLLM. All evaluations are con-
ducted using the vLLM serving framework, which
enables high-throughput and memory-efficient in-
ference via paged attention and continuous batch-
ing. In OpenCompass, we adopt two integration
modes with vLLM:

Table 10: Task types, evaluation strategies, and output
postprocessing rules.

Dataset Task Type Eval Type Postproc

PIQA Commonsense QA Accuracy A/B
BoolQ Boolean QA Accuracy Yes/No
HellaSwag Sentence Completion Accuracy A–D
ARC-E / C Science MCQ Accuracy A–D
OBQA Open-book QA Accuracy A–D
OBQA-F Fact-augmented QA Accuracy A–D
WinoGrande Coreference Reasoning Accuracy A/B
MMLU Multidomain MCQ Accuracy A–D

• Direct backend mode: By specifying -a
vllm in the evaluation command, OpenCom-
pass directly loads and executes models using
vLLM as a backend engine. No additional
serving is required.

• Remote serving mode: For scalable or dis-
tributed evaluation, vLLM is launched as a
RESTful API server via vllm serve, and
OpenCompass connects using the OpenAISDK
interface. This enables model-as-a-service de-
ployment and decouples evaluation from in-
ference hosting.

Each task is evaluated with a maximum sequence
length of 256 tokens, batch size of 128, and de-
terministic decoding (temperature = 0.0001).
Additional runtime parameters (e.g., tensor paral-
lelism, GPU memory usage) are configured via
model-level arguments. The following illustrates
a typical vLLM server launch and OpenCompass
API configuration:

Launching vLLM server:
vllm serve mistralai/Mixtral -8x7B -

Instruct --host 0.0.0.0 --port 8000

OpenCompass model config:
dict(

abbr='mixtral -vllm -api',
type=OpenAISDK ,
openai_api_base='http :// localhost

:8000/ v1',
path='mistralai/Mixtral -8x7B -

Instruct ',
tokenizer_path='mistralai/Mixtral -8

x7B -Instruct ',
)

All evaluations are fully automated and seam-
lessly integrated with the pruning pipeline. Once
a model is compressed, its checkpoint is regis-
tered into the evaluation system and executed using
vLLM without manual intervention. This ensures
consistency across settings and enables scalable
assessment of compression-quality trade-offs.
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C Further Experimental Analyses

This section provides additional results and abla-
tion studies that complement the main findings.
It includes full benchmark breakdowns, detailed
analysis of design choices, and supporting visual-
izations.

C.1 More Visualization of Neuron-level
Similarity

To better understand the structural differences
across experts in different layers, we visualize both
expert-level and neuron-level similarity for several
representative layers of the Mixtral-8×7B-Instruct
model. As shown in Figures 5, the left subplots
represent cosine similarity between expert weight
matrices, while the right subplots reflect neuron-
level alignment, where each row shows the maxi-
mal similarity between neurons in a source expert
and neurons in a target expert.

We observe several key trends:

• In early layers (e.g., Layer 0), experts are
highly distinct, as evidenced by strong diago-
nal blocks in expert-level similarity and sparse
off-diagonal interactions at the neuron level.

• As depth increases (e.g., Layer 7 and 15),
some inter-expert similarity begins to emerge.
Neuron-level heatmaps reveal increasing de-
grees of overlap, suggesting redundancy or
convergence in learned representations.

• In deeper layers (e.g., Layer 23 and 31), ex-
perts exhibit diffuse structural boundaries and
higher degrees of entanglement at the neuron
level, complicating naive expert merging.

These observations support our core motiva-
tion: expert-level similarity alone is insufficient
for reliable merging, and neuron-level structural
alignment is essential for preserving functionality.
DERN’s segment-based recombination mechanism
addresses this by explicitly matching and merging
structurally compatible components.

C.2 Full Results of Similarity Threshold α
Ablation

Table 11 provides the complete results of our ab-
lation study on the similarity threshold α, which
controls segment reassignment during expert merg-
ing. We report results on Mixtral-8×7B-Instruct
under two configurations: 6-expert (35.4B) and
4-expert (24.2B).

We observe a consistent pattern across both set-
tings: performance improves as α increases from
0 to around 0.4–0.6, but then sharply drops as α
approaches 1. This trend reveals a key trade-off:
lower thresholds enable more segment reuse, but
risk semantic mismatches due to indiscriminate
merging; higher thresholds impose stricter filtering,
but lead to underutilization of transferable struc-
ture. Notably, the best performance is achieved
when only a moderate fraction of segments are
reused, confirming that selective reuse is superior
to exhaustive merging.

For the 4-expert setting, accuracy peaks at α =
0.4 (70.87 average), significantly outperforming
the baseline (64.14 at α = 0), while reducing the
active segment ratio to approximately 30%. Sim-
ilarly, in the 6-expert setting, α = 0.4 achieves
the best trade-off between quality and compression,
improving average performance from 78.47 (base-
line) to 79.25. These results highlight a “less is
more” phenomenon: reusing only the most struc-
turally compatible segments suffices to reconstruct
performant and efficient experts.

This behavior aligns with our broader insight:
DERN benefits from structure-aware modularity.
By leveraging local segment similarity, the method
avoids the pitfalls of whole-expert averaging while
effectively capturing reusable computation patterns.
As a design recommendation, we find that α ∈
[0.4, 0.6] offers a robust operational range across
SMoE backbones.

C.3 Initialization Strategy
To support the segment clustering process in our
expert reconstruction framework, we visualize the
ℓ∞ norm of each row vector in the gate projec-
tion matrix Wg across four different Transformer
layers. Each row vector in Wg corresponds to the
gating component of a segment and determines
its activation magnitude via the term σ(w⊤

g,ix), as
formulated in Eq. (3) of the main paper. This activa-
tion controls the contribution of the segment to the
final expert output, modulating the up-projection
vector.

The ℓ∞ norm of each row provides a conserva-
tive upper bound on that segment’s gating strength
over all possible inputs. Segments with higher ℓ∞
norms are more likely to be activated with greater
magnitude and thus play a more prominent role in
computation.

As illustrated in Figure 6, different layers exhibit
distinct distributions of segment-wise activation po-
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Figure 5: Neuron-level and expert-level similarity heatmaps across Layers 0, 7, 15, 23, and 31. Left: expert
similarity; Right: neuron alignment.

Table 11: Full Results of Similarity Threshold α Ablation on Mixtral-4×7B-Instruct and Mixtral-6×7B-Instruct.

Setting piqa BoolQ hellaswag ARC-e ARC-c openbookqa openbookqa_fact winogrande mmlu Avg. ratio

Mixtral-4×7B-Instruct

sim_0 71.38 53.67 63.82 80.95 64.07 65 78.8 50.12 49.49 64.14 100%
sim_0.2 71.82 52.17 64.31 80.78 64.41 66.2 81.8 50.91 51.22 64.85 50.77%
sim_0.4 73.88 81.01 59.86 85.19 72.88 69.4 85 55.88 54.74 70.87 29.79%
sim_0.6 71.00 79.69 58.69 83.42 71.86 69 84.6 53.20 55.16 69.62 13.70%
sim_0.8 71.16 80.03 60.07 83.42 72.88 68.6 84.4 55.17 54.83 70.06 2.08%
sim_1.0 69.59 71.83 63.31 77.78 67.46 61 74.4 53.91 51.89 65.69 0%

Mixtral-6×7B-Instruct

sim_0 81.77 84.98 77.63 90.48 80.00 77.8 89.0 61.88 62.68 78.47 100%
sim_0.2 78.94 85.26 77.61 90.48 80.34 79.8 89.2 62.51 63.12 78.58 45.99%
sim_0.4 80.20 86.76 78.31 91.18 81.36 79.4 89.2 62.27 64.53 79.25 25.15%
sim_0.6 79.98 85.32 78.08 91.89 82.71 78.2 88.4 62.27 64.50 79.04 10.79%
sim_0.8 80.69 84.77 78.00 91.18 82.37 78.2 88.6 62.67 64.60 79.01 1.10%
sim_1.0 82.59 77.22 74.71 88.01 80.68 77.0 87.4 63.61 64.00 77.25 0%
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Figure 6: ℓ∞ norm of row vectors Wg across Layers 10, 15, 20, and 25.
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Table 12: Full Results on Ablation of different clustering initialization strategies on Mixtral-4×7B-Instruct.

Strategy PIQA BoolQ HellaSwag ARC-e ARC-c OpenBookQA OBQA-Fact WinoGrande MMLU Avg.

Gate-based 70.08 82.57 62.73 83.42 73.56 71.80 83.60 54.46 55.01 70.80
Random 60.01 54.28 46.30 73.02 58.31 55.00 75.00 49.49 38.29 57.74
Equidistant 71.38 81.53 61.56 82.72 73.22 69.00 83.20 54.06 55.03 70.30

tential. Some segments are consistently dominant,
while others have negligible norms, indicating a
disparity in their functional contribution. We lever-
age this observation to guide the initialization of
our clustering algorithm by selecting high-norm
segments as cluster centroids. This ensures that
structurally and functionally salient components
are retained during expert merging, which is crucial
for maintaining model performance after compres-
sion.

To further validate this design choice, we present
the full results of different clustering initialization
strategies in Table 12. Among the three evalu-
ated strategies—gate-based, random, and equidis-
tant—the gate-based method consistently outper-
forms others across tasks. This supports the intu-
ition that segment saliency, as reflected by gating
magnitude, serves as an effective heuristic for ini-
tialization during expert reconstruction.

D Link to Models and Datasets

All models and datasets used in this work are pub-
licly available and sourced from established repos-
itories to ensure reproducibility and transparency.
We rely on widely adopted pretrained SMoE lan-
guage models including Mixtral-8×7B-Instruct,
Qwen2-57B-A14B-Instruct, and DeepSeek-MoE-
16B-Chat, all hosted on Hugging Face. These mod-
els represent a diverse set of sparse expert archi-
tectures and serve as representative backbones for
evaluating the generality of our proposed method.

For dataset selection, we follow common bench-
marks used in LLM pruning and evaluation lit-
erature. Specifically, we include the C4 corpus
for calibration, and a suite of commonsense and
multi-domain reasoning datasets such as BoolQ,
PIQA, HellaSwag, ARC, OpenBookQA, Wino-
Grande, and MMLU. All datasets are retrieved
through the Hugging Face Datasets Hub, ensuring
consistent preprocessing and accessibility.

A full list of links to model checkpoints and
dataset resources is provided below for reference.

D.1 Models
Mixtral-8×7B-Instruct https://huggingface.

co/mistralai/Mixtral-8x7B-Instruct-v0.1

Qwen2-57B-A14B-Instruct
https://huggingface.co/Qwen/
Qwen2-57B-A14B-Instruct

DeepSeek-MoE-16B-Chat https:
//huggingface.co/deepseek-ai/
deepseek-moe-16b-chat

D.2 Datasets
C4 https://huggingface.co/datasets/
allenai/c4

BoolQ https://huggingface.co/datasets/
google/boolq

PIQA https://huggingface.co/datasets/
ybisk/piqa

HellaSwag https://huggingface.co/
datasets/Rowan/hellaswag

ARC https://huggingface.co/datasets/
allenai/ai2_arc

OpenBookQA https://huggingface.co/
datasets/allenai/openbookqa

WinoGrande https://huggingface.co/
datasets/allenai/winogrande

MMLU https://huggingface.co/datasets/
cais/mmlu
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