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Abstract

Visual Question Answering (VQA) requires
a vision-language model to reason over both
visual and textual inputs to answer questions
about images. In this work, we investigate
whether incorporating explicit semantic infor-
mation, in the form of Abstract Meaning Rep-
resentation (AMR) graphs, can enhance model
performance—particularly in low-resource set-
tings where training data is limited. We aug-
ment two vision-language models, LXMERT
and BLIP-2, with sentence- and document-
level AMRs and evaluate their performance
under both full and reduced training data
conditions. Our findings show that in well-
resourced settings, models (in particular the
smaller LXMERT) are negatively impacted by
incorporating AMR without specialized train-
ing. However, in low-resource settings, AMR
proves beneficial: LXMERT achieves up to a
13.1% relative gain when using sentence-level
AMRs. These results suggest that while adding
AMR can inhibit VQA performance in some
settings, AMR can serve as a useful semantic
prior in a low-resource setting, especially for
lower-capacity models trained on limited data.

1 Introduction

The task of visual question answering (VQA) (An-
tol et al., 2015; Malinowski and Fritz, 2014) chal-
lenges models to answer natural language ques-
tions about the content of an image. For example,
given an image of a scene with sheep and the ques-
tion “How many sheep are there?” the model must
identify relevant visual elements and interpret the
question to produce an accurate answer (see Fig-
ure 1).

Recent advances in multimodal learning have
led to substantial gains in VQA performance
(Huang et al., 2020; Li et al., 2023; Dai et al.,
2023; Liu et al., 2023; Bai et al., 2023), pow-
ered by transformer-based vision-language mod-
els (VLMs) pretrained on large-scale image-text
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Figure 1: An example from the COCO-VQA dataset,
where the AMR is generated from the longest image de-
scription available in the COCO captions. The AMR ap-
pears in PENMAN (text-based) notation (Kasper, 1989)
and as a graph. Notably, the : quant node in the AMR
encodes the correct answer to the question.

datasets. These models typically operate on raw
textual and visual embeddings and lack integra-
tion of deeper, structured semantic representations.
However, prior work in visual semantic parsing and
caption generation (Hildebrandt et al., 2020; Lee
et al., 2019; Yao et al., 2018; Chen et al., 2020a;
Bhattacharyya et al., 2024) has demonstrated that
incorporating formal semantic structures can en-
hance both the controllability and expressiveness
of model outputs.

Given that VQA sits at the intersection of com-
puter vision and language understanding, and
promising prior work incorporating semantic repre-
sentations into other vision-related tasks (Wein and
Opitz, 2024), we explore the integration of a se-
mantic representation as an additional modality for
this task. Abstract Meaning Representation (AMR;
Banarescu et al., 2013) is a rooted, directed graph-
based representation of meaning that broadly cap-
tures “who does what to whom,” where the nodes
in the graph correspond to concepts in the sentence
and edges denote the relationship between those
concepts. We hypothesize that the AMR of an
image description often encodes sufficient informa-
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Figure 2: Updated model architectures for AMR-augmented vision-language models. (a) AMR integration in
BLIP-2: a dedicated Q-former processes AMR embeddings, which are then combined with image features before
being passed to the language model. (b) AMR augmentation in LXMERT: AMR embeddings from AMRBART are
fed into a separate modality stream, which is later cross-attended by the language stream alongside visual features.

tion to answer associated questions. This motivates
our central inquiry: can integrating AMR into
the VQA pipeline improve model performance,
particularly under data or model capacity con-
straints? To investigate this, we frame the follow-
ing research questions:

RQ1 How does the presence of AMR in the train-
ing process impact VQA quality?

RQ2 How does model size impact the effective-
ness of AMR in VQA?

RQ3 Can AMR compensate for limited image data
in low-resource settings?

To investigate these questions, we augment
VLMs with AMR graphs parsed from image de-
scriptions in the COCO dataset (Lin et al., 2014).
We compare two architectures: LXMERT (Tan and
Bansal, 2019), a first-generation cross-modal trans-
former, and BLIP-2 (Li et al., 2023), a more ad-
vanced model that leverages frozen language mod-
els. To assess AMR’s impact under varied resource
conditions, we experiment with fine-tuning both
sentence-level and document-level (docAMR) rep-
resentations (Naseem et al., 2022), and analyze
different configurations including frozen model
components and varying contributions from visual
versus semantic inputs. Our contributions include:

* comprehensive experimentation incorporating
AMR graphs into a vision-language model for
VQA, across various resource settings;

+ a publicly available dataset! of both sentence

and document-level AMRs of the image descrip-
tions of COCO (Lin et al., 2014); and,

* analysis of the impact of incorporating AMR
on the different kinds of questions comprised in
the VQA task.

2 Methods & Experiments

In this section, we detail the data preparation pro-
cedures (Section 2.1), model configurations (Sec-
tion 2.2), and evaluation metrics (Section 2.3) used
in our experiments.

2.1 Data

In order to address our research questions and ex-
amine the effect of incorporating semantic infor-
mation into a VQA model, we first collect AMR
graphs of the image descriptions from the COCO
dataset (Lin et al., 2014), as the VQA images
are sourced from COCO. For fine-tuning, we use
the VQA training set, which contains 443,757
question-answer pairs. We report our evaluation
results on the VQA development set (214,354 ques-
tion answer pairs).

We parse these AMRs both as (1) document-
level AMR graphs (docAMR; Naseem et al., 2022),
which contains intra-sentential coreferential in-
formation, as well as (2) standard sentence-level
AMRs.

First, we generate the document-level AMR
graphs. The COCO dataset (Lin et al., 2014) pro-
vides single-sentence captions for images, which
often lack detailed information. To address this
limitation, we generate multi-sentence image de-
scriptions using the LLaVA-v1.5-7b model (Liu
et al., 2023). Additionally, large vision-language
models are known to hallucinate, particularly in
longer generations, with errors frequently appear-

Uhttps://github.com/abhidipbhattacharyya/Image_AMR_VQA ing toward the end of the output (Zhou et al., 2024;
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Huang et al., 2024). To mitigate this, we remove
any image-description pair where the length of the
description exceeded the mean by more than three
standard deviations. Then we parse the docAMRs
of the remaining descriptions.

Next, for single-sentence AMRs, we select the
longest available caption for each image from the
COCO dataset and generate the corresponding
AMR graph using a Transition-based AMR Parser
(Drozdov et al., 2022).

For experiments under limited data conditions,

we sample 10,000 examples from the full VQA
training set. To ensure a representative subset, we
adopt a cluster sampling approach. While the VQA
dataset provides predefined question types (Antol
et al., 2015), these categories are often coarse and
fail to capture the semantic nuance of the ques-
tions. For example, some of the VQA-defined
question types (per Antol et al. (2015)) such as
“what is this,” “what is the,” and simply “what” do
not meaningfully differentiate between question
intents. To obtain a more semantically informed
grouping and perform a finer-grained question type
differentiation, we apply k-means clustering to the
question set. We encode each question as a dense
vector’ and then perform k-means clustering on
these embeddings, setting the number of clusters
to 100. From each cluster, we sampled 100 ques-
tions, resulting in a reduced training set of 10,000
examples with broad semantic coverage.

2.2 Models

We use the generated AMR graphs to fine-tune two
vision-language models: BLIP-2 (Li et al., 2023)
and LXMERT (Tan and Bansal, 2019). BLIP-
2 integrates state-of-the-art vision transformers
(ViTs) with large language models (LLMs) through
a BERT-style encoder Qformer, while LXMERT
combines Faster R-CNN-based (Ren et al., 2015b)
image features with a BERT-base encoder (Devlin
et al., 2019). This simpler design lacks the archi-
tectural depth and flexibility of BLIP-2, offering a
useful point of comparison in evaluating the impact
of AMR-based supervision.

To incorporate AMR information into the VLM
pipeline for training and fine-tuning, we use AM-
RBART (Bai et al., 2022) as our AMR encoder.
We apply a depth-first traversal of the AMR
graphs (Bevilacqua et al., 2021; Hsu et al., 2023)
to convert structural information into a sequence

2Using the all-MiniLM-L12-v2 model from Sentence
Transformers (Reimers and Gurevych, 2019)

before feeding it into AMRBART. Moreover, fol-
lowing previous work (Bevilacqua et al., 2021; Hsu
etal., 2023; Bai et al., 2022), we maintain an AMR-
specific lexicon for tokenizing the flattened AMRs.
The integration pipeline for BLIP-2 and LXMERT
are illustrated in Figure 2.

In the case of BLIP-2, we introduce a separate
Qformer dedicated to processing AMR representa-
tions. The outputs from the image Qformer and the
AMR Qformer are averaged, then passed through
a projection layer before being fed into the LLM.
For our BLIP-2 experiments, we use an image res-
olution of 224x224.?

For LXMERT, we adopt the modality-specific
architecture described in the original paper,
where each modality—language, vision, and now
AMR—is processed in a separate encoder stream.
We introduce an additional AMR stream that en-
codes the AMR embeddings independently. As
with the vision stream, the language stream attends
to the AMR stream via cross-attention layers, en-
abling multimodal integration.* All training hy-
perparameters adhere to the original configuration,
which are detailed in Appendices A and B.

2.3 Evaluation

For evaluation, we follow the work of Antol et al.
(2015), which established the task of Visual Ques-
tion Answering and an evaluation protocol, in se-
lecting metrics. Accordingly, we use accuracy com-
puted based on consensus matching between the
predicted answer and the set of ground-truth human
annotations. Accuracy is measured across four cat-
egories: ‘yes/no’ for questions with binary answers,
‘num’ for questions requiring a numeric response,
and ‘other’ for all remaining question types. An
overall accuracy across all questions is reported
under aggregate (agg).

We additionally perform a qualitative analysis

3The original BLIP-2 implementation offers two vision
backbone options: ViT-L/14 (Radford et al., 2021) and ViT-
g/14 (Fang et al., 2023), as well as two choices for the language
model: OPT (Zhang et al., 2022) and FlanT5-XL (Chung et al.,
2022). In our setup, we adopt the ViT-g/14 vision encoder
paired with the FlanT5-XL language model for all BLIP-2
experiments. For BLIP-2 we used the implementation given
by salesforce. During fine-tuning, the parameters of both the
ViT and the LLM are frozen. When this work is done the
original BLIP-2 implementation does not include a training
configuration file for the VQA task. Therefore, we reconstruct
the YAML configuration using the details provided in the
paper.

4For LXMERT, we use the implementation provided by
the Hugging Face library. Visual features are extracted using
Faster R-CNN, following the original LXMERT setup.
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Model \ agg other  yes/no num
BLIP-2(FT) 7098  63.45 87.58 51.74
BLIP-2(pretrained) +docAMR | 70.13  62.28 87.29 50.5
BLIP-2(pretrained) + AMR 70.27  62.52 87.33 50.57
LXMERT(FT) 84.64  78.92 96.19 73.11
LXMERT(FT) +docAMR 72.87 65 88.97 56.34

LXMERT(FT) +AMR 76.49  69.34 91.43 60.6
LXMERT(BASE) +docAMR 69.53  61.08 86.55 52.57
LXMERT(BASE) +AMR 71.19 63.3 87.46 54.29

Table 1: Performance of AMR-augmented BLIP-2 (Li
et al., 2023) and AMR-augmented LXMERT (Tan and
Bansal, 2019). All models are initialized from the pre-
trained BLIP-2 FlanT5-XL checkpoints and fine-tuned
for five epochs on whole VQA training data. The
LXMERT+AMR model is fine-tuned using both the
Hugging Face (HF) VQA fine-tuned model and the pre-
trained model.

(Section 4) which explores how various compo-
nents of the AMR graph contribute to individual
instances of VQA results.

3 Results

We now present our experimental results address-
ing each of our three research questions.

3.1 RQ1: Presence of AMR on VQA
Performance

To address RQ1, which concerns the impact of
incorporating AMR into models for VQA, we con-
duct extensive experiments using both AMR and
docAMR representations. We fine-tune the BLIP-2
model (Li et al., 2023) with each AMR variant and
present the results in Table 1. Recall that we evalu-
ate on accuracy as measured across four categories:
‘ves/no’ for questions with binary answers, ‘num’
for questions requiring a numeric response, ‘other’
for all remaining question types, and an aggregate
(‘agg’) for all question types.

Our findings indicate that AMR-augmented ver-
sions of BLIP-2 do not outperform the original
model. We hypothesize that this is due to the strong
performance of the vanilla model, which benefits
from large-scale image-text pretraining, whereas
the AMR-augmented model may struggle to effec-
tively integrate the new modality.

To verify this trend, we conduct a similar set
of experiments using LXMERT (Tan and Bansal,
2019), with results shown in Table 1. The find-
ings are consistent with those from BLIP-2, further
suggesting that AMR integration poses challenges
for VLM architectures out-of-the-box. However,
a notable observation emerges: in LXMERT, the

model with AMR has significant relative gain over
model with docAMR. Therefore, we hypothesize
that BLIP-2 is insensitive to AMR and tends to pri-
oritize visual and textual signals over new modali-
ties. In contrast, LXMERT, with its BERT-base ar-
chitecture, shallower cross-modal fusion, and more
limited context handling capacity, is better suited
to shorter AMR inputs.

3.2 RQ2: Model Size on AMR Utility for
VQA

To investigate RQ2, which examines the impact of
model size on the effectiveness of AMR in VQA,
we compare the relative performance of BLIP-2
and LXMERT, as shown in Table 1. In our experi-
mental setup, the vanilla LXMERT model outper-
forms the vanilla BLIP-2 model. This finding con-
trasts with the original results reported in Li et al.
(2023), where BLIP-2 achieves higher accuracy on
the VQA task. This is likely due to a difference in
model configuration, as the original training config-
uration for BLIP-2 VQA is not publicly available,
leading us to develop a configuration file based on
the information provided in Li et al. (2023).

Given this discrepancy, we focus on the relative
performance of the AMR-augmented versions of
these models, particularly in relation to model size.
The AMR-augmented version of BLIP-2 has a sig-
nificantly larger model size (approximately 4.25B
parameters), compared to the AMR-augmented
LXMERT (approximately 0.47B). For BLIP-2, the
docAMR and AMR variants retain 98.89% and
98.90% of the performance of the vanilla model,
respectively—indicating minimal degradation. In
contrast, the AMR-augmented LXMERT models
show greater performance drops. When initialized
from the fine-tuned LXMERT, document-level and
sentence-level AMR variants retain only 86.09%
and 90.30% of vanilla performance, respectively.
The gap is even wider when initialized from the
pretrained (but not fine-tuned) LXMERT: 82.14%
for document-level AMR and 84.10% for sentence-
level AMR.

These results strengthen our previous hypothesis
that larger models like BLIP-2 are more insensitive
to the introduction of new modalities like AMR.
In contrast, smaller models such as LXMERT are
more sensitive to modality mismatches and require
careful initialization and training to benefit from
AMR integration. Related work has identified that
various AMR integration techniques enable AMR
graphs to be successfully leveraged for different
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Model | agg other yes/no num
BLIP-2 37.53 20.04 66.25 21.02
BLIP-2+docAMR 37.41 2047 65.76 199
BLIP-2+docAMR+AMRBART 38.01 21.05 66.16 21.14
BLIP-2+AMR 37.27 20.17 66.17 18.75
BLIP-2+AMR+AMRBART 37.56 20.57 66.08 19.76
LXMERT 30.08 5.9 62.63 27.21
LXMERT+docAMR 2427  0.58 63.76 0.24
LXMERT+docAMR+AMRBART | 32.15 9.16 63.69  28.25
LXMERT+AMR 3438 12.86 64.04 30.29
LXMERT+AMR+AMRBART 34.02 12.66 63.78 29.02

Table 2: Performance of VLMs with AMR in a low-resource setting (10k training samples). ‘+AMRBART” indicates
that the AMRBART encoder is fine-tuned, as opposed to being kept frozen along with the ViT and LLM components.

All models here are trained from scratch.

resource conditions, but that the linguistic informa-
tion contained within an AMR graph is especially
useful for compensating for limited pretraining data
(Wein and Opitz, 2024).

3.3 RQ3: AMR Utility for VQA in
Low-Resource Settings

As discussed in Sections 3.1 and 3.2, the integration
of AMR does not yield substantial performance
improvements—and even harms performance—in
full-data settings, regardless of the model size. To
investigate our third research question, which asks
whether AMR can be beneficial in low-resource
scenarios, we conduct additional experiments us-
ing a reduced training set of 10,000 samples. This
reduced sample represents only 2.25% of the origi-
nal training data. To ensure a balanced subset, we
cluster the data by question type and sample evenly
from each cluster (details of the cluster sampling
can be found in subsection 2.1). We then train
each model from scratch using the reduced dataset.
This approach removes the benefit of pretraining
on large-scale image-text corpora, thereby simulat-
ing a true low-resource scenario. The results of the
experiments using this reduced training set are pre-
sented in Table 2. While the size of the training set
is reduced, the size of the development set (which
we use for evaluation) is kept unchanged.

In the low-resource setting, incorporating AMR
leads to noticeable performance gains. For the
BLIP-2 model, the docAMR configuration with
a trainable AMRBART module outperforms the
vanilla version. The BLIP-2 model performance
when sentence-level AMR is incorporated into fine-
tuning exhibits marginal improvements, varying
depending on whether AMRBART is frozen or

Model \ agg other yes/mo num
BLIP-2+AMR 70.27 6252 8733 50.57
frozen image Qformer | 66.48  57.3 85.72  45.85
30% image 68.81 6091 86.25 48.56
50% image 69.95 62.03 87.17 504

Table 3: Performance of AMR-augmented BLIP-2 un-
der different settings, varying image contribution (30%
or 50% image) and Q-former configuration. All mod-
els were initialized from pretrained BLIP-2 FlanT5-XL
checkpoints and fine-tuned for 5 epochs.

trainable. In contrast, for the LXMERT model, the
docAMR setup with frozen AMRBART degrades
performance notably, showing a 19.3% relative
drop compared to the vanilla model. When AMR
is trainable, AMR-augmented LXMERT models
show relative gains of 6.8% with docAMR and
13.1% with AMR. This demonstrates that when
AMR is integrated into the VLM pipeline with a
trainable component, models can effectively asso-
ciate meaning representation-based cues in vision-
language (VL) tasks.

In Table 3, we further examine how controlling
the contribution of image features affects perfor-
mance in the BLIP-2 model with AMR. When
the image Q-former is frozen and its contribution
limited to 50%, performance drops by 5.4% com-
pared to the vanilla BLIP-2. Unfreezing the image
Q-former while reducing its contribution to 30%
results in a 3.5% relative improvement over the
frozen setup. Increasing the image contribution fur-
ther, with a fully trainable image Q-former, yields
an additional 1.6% gain. This strengthens our as-
sumption that BLIP-2 prioritizes visual features
over AMR features, as mentioned in subsection 3.1.

These results show that BLIP-2 models are
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Question Type | AMR Role | AMR Role Function

how many :quant quantity or numeric value

how many people :quant quantity or numeric value

are

how many people :quant quantity or numeric value

are in

what number is :quant quantity or numeric value

what time ctime temporal context; time of event
or state

what is in the :part-of compositonal structure and part-
whole relations

what is on the :location spatial or locational context

what room is :location spatial or locational context

Table 4: Semantic correspondence between VQA ques-
tions and AMR graph roles.

highly reliant on visual cues and struggle to effec-
tively leverage semantic structures like AMR. This
limitation may stem from the pretraining objectives
of BLIP-2, which are optimized for learning from
weak associations between image and text.

Overall, our experiments indicate that integrat-
ing AMR into VQA models poses challenges in
full-resource settings. Larger models like BLIP-2
are relatively unaffected by the addition of AMR,
while smaller models such as LXMERT may ex-
perience performance degradation in the full-data
setting. The choice of AMR representation also
matters: compared to the typical sentence-level
AMR, BLIP-2 benefits more from incorporating
docAMR due to its higher capacity and stronger fu-
sion mechanisms, whereas LXMERT performs bet-
ter with sentence-level AMR (relative to docAMR),
likely due to its limited model size and simpler
architecture.

However, the utility of AMR for VQA becomes
more apparent in the low-resource scenario. When
training data is scarce, AMR provides consistent
performance gains, acting as a valuable semantic
prior that aids generalization. These findings high-
light AMR’s promise as an auxiliary modality for
VQA, particularly under data constraints, and em-
phasize the importance of model-aware strategies
for effectively integrating structured semantic rep-
resentation.

4 Qualitative Analysis

To better understand model behavior in low-
resource settings (as reported in Table 2), we visual-
ize the conflict (disagreement) rate between predic-
tions made by image-only models and their AMR-
augmented counterparts (Figure 3). For LXMERT,
the conflict rate differs noticeably between the
AMR and docAMR variants, with the docAMR-
augmented model exhibiting a higher rate of dis-

0.5 N image only vs docAMR augmented model
image only vs AMR augmented model

oo lin 1N I I

image correct amr correct both correct both wrong
amr wrong image wrong

(a) BLIP-2

conflict rate
IS o
w I

o
[N]

o
=

Em image only vs docAMR augmented model
image only vs AMR augmented model

0.4
0.3
0.2
0.1 . I
0.0

image correct amr correct both correct both wrong
amr wrong image wrong

(b) LXMERT

0.5

conflict rate

Figure 3: Image only vs AMR conflict (disagreement)
rate of BLIP-2 models (a) when compared with image
only (vanilla) and AMR augmented variants. Similar ex-
periments for LXMERT (b). All the models are trained
from scratch with reduced data (model details found in
Section 3).

agreement with the image-only baseline. In con-
trast, for BLIP-2, both AMR and docAMR variants
show similar levels of conflict relative to the image-
only model.

Building on this, we set out to examine whether
including AMR is more helpful in scenarios where
the type of question aligns directly to a semantic
role included in AMR, thus indicating that there
is a specific piece of information included in the
AMR that would correspond with the answer for
that question type. We identify cases in which
AMR’s structured semantics align with specific
VQA question types; to do so, we identify a subset
of questions that exhibit explicit correspondences
with AMR edge roles, as outlined in Table 4. For
instance, questions beginning with “How many”
often align with the :quant role, which encodes
quantity-related information in AMR graphs. In
the example shown in Figure 1, the : quant edge
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Figure 4: Error rates by question type (as listed in Table 4) for models trained in a low-resource setting (section 3).

(a) shows results for BLIP-2, and (b) for LXMERT.

in the AMR graph contains the correct answer to
the associated question. Similarly, questions like
“What is in the...” may correspond to the :part-of
relation, reflecting compositional structure.

As shown in Figure 4, error rates are similar
across all question types for the three models.
We observe that AMR-augmented models exhibit
slightly lower error rates than their image-only
counterparts for the question types “What is in
the...” and “What is on the...” across both BLIP-2
and LXMERT. This suggests that AMR may help
retain part-whole relationship information, likely
due to the explicit use of the :part-of role in
AMR graphs. We also note modest performance
gains for the question “What time...” which cor-
responds to the : time role, particularly in the do-
cAMR variant. Overall, the error rate reductions
are more pronounced in LXMERT than in BLIP-
2. These observations support our earlier findings:
LXMERT, with its smaller model size and shal-
lower cross-modal attention, is more sensitive to
the structure of the AMR input and performs better
with sentence-level AMR. Meanwhile, BLIP-2’s
deeper architecture and advanced fusion mecha-
nisms make it relatively insensitive to the specific
form of AMR used, maintaining stable behavior
across both variants.

However, it is not always the case that we ob-
serve a lower error rate for AMR and docAMR on
these questions identified as having explicit AMR
roles. For example, while the AMR model achieves
the lowest error rate on “how many” questions in
LXMERT, it performs worse than the image-only
baseline for the same question type in BLIP-2.

In addition to raw error rate, we assess the qual-
ity these answers (and thus the models with and
without AMR) via BERTScore (Zhang et al., 2019)
and BLEU (Papineni et al., 2002), comparing pre-
dicted answers against ground truth responses. A

prediction is considered correct if its similarity
score exceeds a predefined threshold. We then cal-
culate the percentage of correct answers for each
model variant under the low-resource setting.

For BLIP-2, consistent with earlier findings, the
benefits of AMR augmentation are minimal and
largely unnoticeable under both BERTScore and
BLEU-based thresholding. In contrast, LXMERT
shows noticeable improvements (see Table 4) when
evaluated using BLEU. However, improvements
are less apparent with BERTScore, likely because
it assigns high similarity scores to words that are
close in the embedding space, yet semantically in-
correct—such as numerical values (e.g., three vs.
four) or binary opposites like yes and no—thus
reducing its discriminative efficacy. Conversely,
BLEU’s n-gram-based matching penalizes such
lexical deviations more strongly, which can be ben-
eficial in filtering out answers that appear close via
vector embeddings but are semantically incorrect.
These trends are illustrated in Figure 5.

While performance gains are not uniform across
all question types, our analysis indicates that incor-
porating AMR can lead to targeted improvements,
particularly when the semantics of a question aligns
closely with explicit AMR edge roles. These find-
ings underscore the potential of AMR to preserve
and leverage specific semantic information, espe-
cially in low-resource settings where visual context
alone may be insufficient.’

5In a pilot study, we also prompted a language-only model
(LLaMA-3-8B Instruct) with image AMRs in an in-context
format. We provided the model with examples of several QA
pairs along with their corresponding AMRs, followed by the
actual question and the AMR representation of the image.
However, the evaluation results were poor because LLaMA
did not follow the expected format, and there was a noticeable
vocabulary shift.
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Figure 5: Semantic answer evaluation under low-
resource settings using BLEU and BERTScore. (a)
BLIP-2 results show limited gains from AMR augmen-
tation. (b) LXMERT exhibits noticeable improvement
with AMR-aligned questions in BLEU scores, especially
under stricter thresholds, while BERTScore remains less
sensitive due to high similarity scores for semantically
close but incorrect answers.

5 Related Work

VQA (Antol et al., 2015; Malinowski and Fritz,
2014) has gained significant research momentum
over the past decade. Early neural approaches pri-
marily adopted encoder-decoder architectures (Ma-
linowski et al., 2015; Ren et al., 2015a; Noh et al.,
2016), combining CNN-based image encoders with
RNN-based question decoders. Inspired by ad-
vances in attention-based machine translation (Bah-
danau et al., 2015), prior work has begun integrat-
ing visual attention mechanisms to improve ques-
tion grounding (Anderson et al., 2018; Kazemi and
Elqursh, 2017; Sun and Fu, 2019; Jang et al., 2017,
Xu and Saenko, 2016; Zhu et al., 2017, 2015).
More recently, the rise of large-scale image-text
datasets and the success of transformer-based VLM
pretraining approaches have significantly boosted
performance in vision-language tasks (Tan and
Bansal, 2019; Lu et al., 2019; Li et al., 2019; Su
et al., 2020; Li et al., 2021, 2020; Chen et al.,
2020b). These developments, along with break-
throughs in large language models (Raffel et al.,
2020; Lewis et al., 2020; Wei et al., 2022; Brown

et al., 2020; Touvron et al., 2023) and VLMs (Rad-
ford et al., 2021; Jia et al., 2021), have led to
the emergence of multi-stage, modular architec-
tures—often referred to as ‘socratic’ models (Zeng
et al., 2023). In such architectures, a vision model
and a language model are connected via interme-
diate projection or reasoning modules that enable
interaction while keeping both components largely
frozen. Recent works that adopt this paradigm
(Mokady et al., 2021; Li et al., 2023; Dai et al.,
2023; Liu et al., 2023; Alayrac et al., 2022; Bai
et al., 2023, 2025b,a) typically use frozen vision en-
coders and LLMs, bridging them with lightweight
interface modules designed to align their represen-
tational spaces.

However, current VLMs largely ignore explicit
high-level semantic representations. Prior work has
explored scene graphs (Xu et al., 2017; Tang et al.,
2020, 2018) and their utility in downstream vision-
language tasks (Hildebrandt et al., 2020; Lee et al.,
2019; Ghosh et al., 2019; Yao et al., 2018; Chen
et al., 2020a). More recent research highlights the
value of structured semantic representations—such
as semantic role labeling (SRL; Palmer et al., 2005)
and AMR (Banarescu et al., 2013)—in improv-
ing performance on downstream multimodal tasks
(Choi et al., 2022a,b; Abdelsalam et al., 2022; Bhat-
tacharyya et al., 2022, 2024). Additionally, as is
shown in this work, AMR has been shown to be
particularly useful for engineering tasks in low-
resource settings (Wein and Opitz, 2024).

The integration of semantic representations into
modern pretrained VLMs remains underexplored;
in this work, we explore the impact of incorpo-
rating high-level semantic representations, specif-
ically AMR, into VLMs for the targeted task of
VQA-with a focus on leveraging AMR in low-
resource VQA settings.

6 Conclusion

In this work, we explore the utility of incorpo-
rating semantic information, specifically Abstract
Meaning Representation, as an additional modal-
ity in the task of VQA. Our findings indicate
that current VLMs do not consistently benefit
from AMR augmentation in standard training set-
tings. Experimenting on both a first-generation
model (LXMERT; Tan and Bansal, 2019) and a
more advanced model (BLIP-2; Li et al., 2023),
we observe that the absence of AMR-aware pre-
training makes it challenging for these models to
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effectively integrate semantic structures as an ad-
ditional modality. However, in our low-resource
experiments using only 2.25% of the original train-
ing data, AMR integration consistently improves
performance across both model architectures. This
suggests that AMR can serve as an effective induc-
tive bias, particularly when training data is limited,
to compensate for a lack of visual data.

One bottleneck in incorporating AMR into the
VQA pipeline is the lack of readily available AMRs
for images. Developing an effective system for
parsing images directly into AMR-like seman-
tic representations (Abdelsalam et al., 2022) is a
promising direction for future work. We gener-
ate silver-standard sentence- and document-level
AMRs for the VQA dataset to support reproducibil-
ity and future research on AMR for VQA.

Limitations

Our approach relies on generating AMR from tex-
tual descriptions of images, which introduces sev-
eral sources of potential error. We automatically
parse the docAMR graphs, after generating multi-
sentence image descriptions. Automatically pars-
ing AMR graphs introduces noise and as a re-
sult, any limitations, hallucinations, or inaccura-
cies in the generated text, along with any parsing
errors from the AMR system, propagate through
our pipeline and may affect downstream VQA per-
formance. For sentence-level AMR, although the
input sentences are human-annotated captions from
the COCO dataset, they are also automatically
parsed using the IBM AMR parser, which may
still introduce structural inaccuracies. These com-
pounded errors in semantic parsing and text gen-
eration may limit the effectiveness of AMR as an
additional modality, particularly (as we observe) in
high-capacity models that already rely heavily on
image-text alignment. Additionally, automatically
parsing a large number of AMR graphs at test-time
can be quite time consuming, leading to scalability
issues.
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A BLIP2 Parameters

[E,[ title and text below should be BLIP-2, right?
Not BLIP2?] Hyperparameters used for our BLIP2
experiments are summarized in Table 5.

param [ value

ViT-g/14 (Fang et al., 2023)
FlanT5 (Chung et al., 2022)

vision model
language model

image size 224 x 224

init Ir le—5

weight_decay 0.05

Ir_sched “linear_warmup_cosine_Ir”
freeze_vit True

prompt “Question: {} Short answer:”

Table 5: Hyperparameter used for our BLIP2 [{\A once
again BLIP-2, not BLIP2 for consistency] experiments.

B LXMERT Parameters

For LXMERT, we use the implementation provided
by the Hugging Face library. Hyperparameters
used for our LXMERT experiments are summa-
rized in Table 6.

param | value
x_layers 5
1_layers 9
r_layers 5
hidden_size 768

learning_rate Se—>5

weight_decay 0.05

Ir_sched “linear_warmup_cosine_Ir"
adam_epsilon le—8

visual_feat_dim 2048

Table 6: Hyperparameters used for our LXMERT exper-
iments.

C LLaVA setup

The default image descriptions provided in the
COCO dataset (Lin et al., 2014) are typically single-
sentence captions, which often omit important vi-
sual details. To address this limitation, we generate
multi-sentence descriptions using the LLaVA-v1.5-
7B model (Liu et al., 2023). Hyperparameters used
for generation are detailed in Table 7.

However, large vision-language models are
known to hallucinate, especially in longer genera-
tions, with errors often occurring toward the end of
the output (Zhou et al., 2024; Huang et al., 2024).
To reduce the impact of such hallucinations, we
filter out any image-description pairs where the de-
scription length exceeds the mean by more than
three standard deviations.

param | value

llava-v1.5-7b

“Please provide a descriptive caption of the im-
age in no more than 4 to 5 sentences. Include
details such as the number of objects, their po-
sitions, relative placement, colors, and other
attributes. Do not mention objects or concepts
that are not present in the image. Avoid starting
with phrases like *The image depicts’, 'The im-
age features’ or "The image shows.” Keep the
caption under 200 words.”

sampling tem- | 0.2

perature
max-new- 512
tokens

models
prompt

Table 7: LLaVA model hyperparameters for generating
image description for document level AMR.
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